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NUMERICAL EVIDENCE OF EXPONENTIAL MIXING BY
ALTERNATING SHEAR FLOWS∗

LI-TIEN CHENG� , FREDERICK RAJASEKARAN� , KIN YAU JAMES WONG§ , AND

ANDREJ ZLATOŠ¶

Abstract. We performed a numerical study of the efficiency of mixing by alternating horizontal
and vertical shear “wedge” flows on the two-dimensional torus. Our results suggest that except in
cases where each individual flow is applied for only a short time, these flows produce exponentially fast
mixing. The observed mixing rates are higher when the individual flow times are shorter (but not too
short), and randomizing either the flow times or phase shifts of the flows does not appear to enhance
mixing (again when the flow times are not too short). In fact, the latter surprisingly seems to inhibit
it slightly.
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1. Introduction and motivation
The study of mixing of substances by incompressible flows has practical applications

as well as connections to multiple branches of mathematics and science. The simplest
mathematical model of the process of mixing in the absence of diffusion is the transport
PDE

ρt+u ⋅∇ρ=0, (1.1)

where ρ represents concentration of the mixed substance with some initial value ρ(⋅,0)=
ρ0, and u is the (prescribed and divergence-free) velocity of the mixing flow. We will
consider here ρ∈L∞(T2×[0,∞)), so the physical domain will be the two-dimensional
torus. Moreover, since addition of a constant does not affect the dynamic of (1.1) and
the spatial average ∫T2 ρ(x,t)dx=∫T2 ρ0(x)dx of solutions is conserved, we can restrict
our analysis to mean-zero solutions without loss. We also stress that our interest is
in mixing by divergence-free fluid flows acting on T2 (=[0,1)2 with identified sides)
continuously in time, as opposed to general measure-preserving maps T ∶T2→T2 (which
represent the discrete-time version of the problem but may not result from real-world
advective stirring). Also, due to practical considerations and ease of implementation, of
particular interest are time-periodic flows, possibly up to some simple transformations.

Two important questions about (1.1) concern optimal mixing rates of solutions,
given certain natural constraints on the mixing flows u (see Section 2 for related defi-
nitions and further details), and which flows achieve these rates. Addressing the first
question, Crippa and De Lellis essentially showed in [7] that one cannot achieve faster
than exponential-in-time mixing, thus also proving a modified version of Bressan’s re-
arrangement cost conjecture [5, 6]. That this exponential rate is indeed achievable was
shown by Yao and Zlatoš [19], who found flows exponentially mixing any given initial
data ρ0 (including on domains with boundaries), as well as by Alberti, Crippa, and
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Mazzucato [2], whose results only apply to a special class of initial data on T2 but
also to a larger set of flow constraints. These results therefore established optimality of
exponential mixing and also found flows that achieve it.

Unfortunately, the flows constructed in [2, 19] are quite complicated, far from time
periodic, and heavily depend on the initial data. All these facts have obvious practical
limitations. These issues were remedied by Elgindi and Zlatoš [9], who constructed much
simpler and time-periodic almost universal exponential mixers — ρ0-independent flows
that mix exponentially all initial data that have at least some degree of regularity (the
construction also extends to domains with boundaries and, unlike [2, 19], to all spatial
dimensions). These flows even mix all initial data asymptotically as t→∞, so they are
universal mixers, but it was shown in [9, Theorem 1(ii)] that no universal mixer can
have a mixing rate (exponential or otherwise) that is uniform in all bounded mean-zero
ρ0, even if one allows for a ρ0-dependent initial delay before this rate is realized.

The construction in [9] nevertheless still has one limitation. While the constructed
flows are Hölder continuous in space, they are not Lipschitz and their flow maps are dis-
continuous. (The flows in [19] share this limitation; those in [2] apply to solutions taking
only two values, so they can be modified arbitrarily on each of the two level sets with-
out changing the solution dynamics, which allows one to avoid potential singularities in
their construction.) Also, Bedrossian, Blumenthal, and Punshon-Smith [3] showed that
generic solutions u to the 2D Navier-Stokes equations with certain stochastic forcings
are almost universal exponential mixers, which is of obvious practical interest. On the
other hand, these flows are again quite complicated and not time-periodic, as well as not
deterministic, and they only satisfy the required constraints on average in time rather
than pointwise. It is therefore still an open question whether (time-periodic) smooth or
at least Lipschitz continuous almost universal exponential mixers (or even just universal
mixers) exist on T2 or other domains.

One candidate for such flows on T2 was proposed by Pierrehumbert [14, 15], and
this suggestion is quite simple although not time-periodic. It is almost every realiza-
tion of the random vector field taking values (sin(2πx2+ωn),0) and (0,bsin(2πx1+ωn))
(with b∈R some constant) on time intervals (n−1,n− 1

2
] and (n− 1

2
,n] (for n∈N), re-

spectively. Here ωn are independent random variables uniformly distributed over T;
note also that while these flows are not continuous in time, this is easily remedied by a
simple reparametrization described in [19].

These flows are a representative of a wider class of alternatively horizontal and
vertical shear flows. Heuristically, they appear to have very good mixing properties in
many cases, but we are not aware of any rigorous proofs. The goal of the present work
is to demonstrate numerically that such flows can indeed yield exponential mixing of
passive scalars advected by them. We will consider random flows, with randomness
in phase and/or flow time (the latter will replace the amplitude b above), as well as
deterministic time-periodic ones.

One difficulty with a computational approach to (1.1) is that when mixing is fast,
solutions quickly become very rough, which poses a challenge from the numerical stand-
point. This may be further amplified when one considers non-smooth initial data, which
we will do here because

ρ0 ∶=χ[0,1/2)×[0,1)−χ[1/2,1)×[0,1) (1.2)

(considered also in, e.g., [2, 5]) is a natural choice of a “minimally premixed” initial
datum; of course, ρ0 is smooth away from the line x1 = 1

2
.

This problem can be somewhat remedied by adding a smoothing diffusion term to
(1.1), but we do not wish to take this route and will instead address the issue by using a
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setup in which we can minimize the resulting complications. We will use the approach
from the advection step of Pierrehumbert’s lattice method [15] (but with no diffusion
step), where the solution is approximated by a linear combination of characteristic
functions of 22N squares of size 2−N ×2−N from a fine grid into which T2 is split (with
N ∈N). These squares are then moved according to the prescribed shear flow, with each
shift rounded to be an integer multiple of the grid scale 2−N . This results in a specific
permutation of these squares in each advective step. Of course, one can equivalently
represent each square by its “lower left” vertex, and these vertices are then the grid
points from

GN ∶={0,
1

2N
,...,

2N −1
2N

}
2

⊆T2, (1.3)

whose coordinates are integer multiples of 2−N . We will do so and thus have ρ(⋅,t)∈
L∞(GN).

Moreover, we will avoid having to round the shifts by considering the horizontal
and vertical “wedge” flows

uH
ω (x1,x2) ∶=(dT(x2,ω),0) and uV

ω (x1,x2) ∶=(0,dT(x1,ω)) (1.4)

instead of the sine flows from [14], with

dT(x,y) ∶=min{∣x−y∣,1−∣x−y∣}

the distance on T (so dT(x,y)∈[0, 12 ]) and ω ∈T some phase shift. If ω is an integer

multiple of 2−N and either of these flows is applied for an integer length of time τ ∈Z,
then the resulting time-τ flow maps

Hτ
ω (x1,x2) ∶=(x1+τdT(x2,ω),x2) and V τ

ω (x1,x2) ∶=(x1,x2+τdT(x1,ω)) (1.5)

acting on T2 keep GN invariant. These then transform functions f ∈L∞(T2) via

Hτ
ω[f](x1,x2) ∶=f (x1−τdT(x2,ω),x2) and Vτ

ω[f](x1,x2) ∶=f (x1,x2−τdT(x1,ω)).
(1.6)

Since we want our flows to satisfy time-uniform constraints, τ ∈Z will represent the
length of time during which the particular shear flow is acting rather than the flow
amplitude, and we will refer to it as flow time. For instance, the solution to (1.1) with
u=uH

ω is given by ρ(⋅,τ)=Hτ
ω[ρ(⋅,0)] (see Figure 1.1). We note that while these flows

with a fairly simple geometry are only Lipschitz, which nevertheless still guarantees
continuity of their flow maps, this comes with an additional advantage over the sine
flows from [14] and smooth flows in general. Since they do not have “flat” spots (such
as at the maxima and minima of the sines where their derivatives vanish), where less
mixing is happening due to much less advective stretching in those regions, they should
be better candidates for efficient mixers, at least on the quantitative level.

The above setup means that we will consider here functions ρ0,ρ1, ⋅ ⋅ ⋅ ∈L∞(GN), with
ρk+1 being either H1

ω[ρk] or V1
ω[ρk], where ω ∈{0, 1

2N
,⋯, 2

N−1
2N
} is the phase shift of the

either horizontal or vertical wedge flow that acts during the integer-length time interval
that contains [k,k+1). We will study four cases here, with both ω and τ fixed as well
as random. When both are fixed, the resulting flow is 2τ -periodic in time (one could fix
separate values of τ for the horizontal and vertical flows but we will not do this here).
In the random case, we will randomly choose new ω and/or τ each time we switch the
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(a) ρ0 (b) H1
1/4[ρ0] (c) H3

0[ρ0]

Fig. 1.1: Action of horizontal wedge flows on ρ0 from (1.2) (values 1 and −1 are represented by dark
and light regions, respectively).
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Fig. 1.2: Action of alternating wedge flows with fixed τ and ω (the monochromatic lines in the top
left and bottom right of the pictures are due to τ =2, see Subsection 3.2).

direction of the flow between horizontal and vertical (see Section 2 below for details).
In Figure 1.2 we demonstrate the action of alternating wedge flows, with both phase
shift and flow time fixed, on the initial datum ρ0 from (1.2). In the rest of this paper,
we restrict ρ and ρ0 to GN ⊆T2 with N =15, where each point from GN represents its
adjacent 2−N ×2−N grid square.

Our results support the conjecture that all the flows studied here are indeed ex-
ponential mixers for ρ0, except possibly some of those with ∣τ ∣ ≤2. Although we only
consider the single initial datum (1.2), the fact that it is “minimally premixed” and
that it appears to be mixed exponentially quickly regardless of the choice of the phase
shifts and flow times, suggest that results for other initial data would be similar, and
therefore these flows could in fact be almost universal exponential mixers.

Let us now turn to the specifics of our work. We discuss the details of our setup
and the definition of mixing scales that we will use here in Section 2. We then present
our results in Section 3, the main one being numerical evidence of exponential mixing
by alternating wedge flows, summarized in the table in Figure 3.1.
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2. Definition of mixing scales and the modeled flows

2.1. Mixing scales of bounded functions. In order to be able to study
mixing efficiency of flows, we need to adapt a relevant definition of mixing scales of
solutions ρ to (1.1) with initial data ρ0. Following [5,19], one option is to say that ρ(⋅,t)
is κ-mixed to scale ε>0 (for some κ∈(0,1)) when

∣⨏
Bε(y)

ρ(x,t)dx∣≤κ∣∣ρ0∣∣∞ (2.1)

holds for each y ∈T2 (note that ∣∣ρ∣∣∞ = ∣∣ρ0∣∣∞). The mixing scale of ρ(⋅,t) is then the
infimum of all ε>0 such that ρ(⋅,t) is mixed to scale ε. This is also called the geometric
mixing scale in [19], and was recently used in various other works including [1, 2, 7–9].
Other alternatives are the functional mixing scale ∥ρ(⋅,t)∥Ḣ−s∥ρ(⋅,t)∥

−1
∞ for some s>0

(particularly s∈{ 1
2
,1}), used for instance in [2, 3, 8–12, 16] and closely related to the

geometric mixing scale (see [19]), as well as the Wasserstein distance of the positive and
negative parts of ρ(⋅,t) [4,13,16,17]. We note that there is also a large literature on the
interaction between mixing and diffusion, as well as alternative definitions of mixing in
the diffusive setting, but we will not attempt to provide an overview here and instead
refer the reader to the review [18] (which also concerns the diffusion-less case (1.1)) and
references therein.

We will consider here a version of the geometric mixing scale above, which is most
suited to our setting, but with further adjustments. In the discrete setting of the grid
GN that we will consider here, averaging the solution over discs may be problematic as
the number of points from GN inside the disc Bε(y) is not a constant multiple of ε2.
Moreover, finding averages over all discs of a particular radius centered at points from
GN is unnecessarily computationally intensive, while restricting this to only points from
some sub-grid would mean that not all points from GN are equally represented in the
mixing scale computation.

It is therefore both more reasonable and better suited to our setup to consider only
ε=2−n for n=0,1,... and replace the discs Bε(y) in (2.1) by all 22n squares

Si,j
n ∶=[

i

2n
,
i+1
2n
)×[ j

2n
,
j+1
2n
)

with i,j ∈{0,1,...,2n−1}. One can easily show (see the proof of Lemma 2.7 in [9])
that the resulting definition of the mixing scale (which will always be a power of 1

2
) is

essentially equivalent to the above definition of geometric mixing scale when it comes to
the study of asymptotic mixing rates (ratio of one with any κ∈(0,1) and the other with
any κ′ <κ is bounded above by a constant depending only on κ−κ′; as a result, mixing to
arbitrarily small scales as t→∞ happens at the same rate in both senses, up to constant
factors). As mentioned in the introduction, we will also have ρ0,ρ1, ⋅ ⋅ ⋅ ∈L∞(GN) instead
of ρ∈L∞(T2×[0,∞)), so the averages over these squares will be just the averages over
the points from GN contained in them. Of course, this means that the minimal possible
mixing scale will be 21−N (unless f ≡0). The choice of κ∈(0,1) does not affect the
exponential mixing rates as t→∞ (in the continuous space setting as well as in the
N≫ t regime in the discrete setting) but will have some effect on finite time intervals.
We choose κ ∶= 1

3
as in [5], which finally yields the following definition.

Definition 2.1. We say that a mean-zero function f ∶GN→R is mixed to scale 2−n
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for some n∈{0,1,...,N} if for each pair i,j ∈{0,1,...,2n−1} we have

RRRRRRRRRRRR
2−2(N−n) ∑

x∈Si,j
n ∩GN

f(x)
RRRRRRRRRRRR
≤ ∥f∥∞

3
.

The mixing scale of f is the smallest such 2−n.

Note that in our setting we will always have ∥ρk∥∞ =∥ρ0∥∞ =1 for all k ∈N0.

2.2. The modeled flow types. As discussed in the introduction, we will
consider here four basic flow types, all alternating wedge flows. Two will have fixed
phase shifts (chosen randomly at the start) and two will have their phase shifts chosen
randomly each time we switch the flow direction. Two will have fixed flow times and
two will have their flow times chosen randomly each time we switch the flow direction.
We will use the discretized framework described in the introduction with N =15 (so grid
scale will be 2−15), modeling the flow dynamic via the mappings from (1.6) applied to
the initial data (1.2) on the domain (1.3). The specific details are as follows.

Fixed Shift Fixed Time (FSFT): We choose randomly phase shifts ω,ω′ ∈
{0, 1

2N
,⋯, 2

N−1
2N
} (with uniform joint distribution), then fix these and some flow time

τ ∈{2,...,10}, and let

ρk+1 ∶=
⎧⎪⎪⎨⎪⎪⎩

H1
ω[ρk] k ∈ [2jτ,(2j+1)τ) for some j ∈N0,

V1
ω′[ρk] k ∈ [(2j+1)τ,(2j+2)τ) for some j ∈N0,

for k=0,1,.... Since one should expect different behavior for different τ (which we do
confirm), we model these cases separately. The phase shifts ω,ω′ are not expected to
have a significant effect on the mixing rates (which we also confirm), although they will
have some effect on the computed mixing scales at individual times k. This is clear for
the horizontal shift ω′ of the vertical flow uV

ω′ because different shifts align differently
with ρ0. The vertical shift ω would have no effect on the mixing scales if we were to
include in Definition 2.1 all the 2−n×2−n squares with vertices in GN rather than just
the squares Si,j

n (which have vertices in Gn). We do not do this in order to shorten
the required computing time, and our simulations show that the effect on the obtained
mixing rates would also be negligible. We run the simulation 100 times (i.e., with 100
random choices of (ω,ω′)) for each τ .

Random Shift Fixed Time (RSFT): Here the phase shifts are i.i.d. random vari-

ables ω0,ω
′
0,ω1,ω

′
1, ⋅ ⋅ ⋅ ∈{0, 1

2N
,⋯, 2

N−1
2N
} (with uniform distribution) and the flow time

τ ∈{2,...,10} is again fixed, so we have

ρk+1 ∶=
⎧⎪⎪⎨⎪⎪⎩

H1
ωj
[ρk] k ∈ [2jτ,(2j+1)τ) for some j ∈N0,

V1
ω′j
[ρk] k ∈ [(2j+1)τ,(2j+2)τ) for some j ∈N0,

for k=0,1,.... Contrasting the results in this case with those for FSFT allows one to see
whether in the latter case the mappings V1

ω′ ○H1
ω (which generate the FSFT dynamic,

and coincide for all (ω,ω′) up to translation) may involve structures that slow down
or accelerate mixing, since such structures would not persist in the RSFT case. We
perform 100 simulations for each τ .

Fixed Shift Random Time (FSRT): Here the phase shifts are randomly chosen at
the start and then kept fixed as in FSFT, but the flow time is chosen randomly at each
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direction switch to see whether this can improve mixing. Since our FSFT and RSFT
results show that the mixing rate depends nontrivially on the flow time when the latter
is fixed, decreasing as τ increases from 3 or 4 to higher values, it makes sense to limit
the randomness in the flow time to small intervals. We therefore let the flow times
be i.i.d. random variables τ0,τ

′
0,τ1,τ

′
1, ⋅ ⋅ ⋅ ∈{τ −1,τ,τ +1} (with uniform distribution) for

some fixed τ ∈{2,...,10}, so

ρk+1 ∶=
⎧⎪⎪⎨⎪⎪⎩

H1
ω[ρk] k ∈ [tj ,tj +τj) for some j ∈N0,

V1
ω′[ρk] k ∈ [tj +τj ,tj+1) for some j ∈N0,

for k=0,1,..., with tj ∶=∑j−1
l=0 (τl+τ

′
l ). We perform 100 simulations for each τ .

Random Shift Random Time (RSRT): Here the phase shifts ω0,ω
′
0,ω1,ω

′
1,... are

chosen as in RSFT and flow times τ0,τ
′
0,τ1,τ

′
1,... as in FSRT, so now

ρk+1 ∶=
⎧⎪⎪⎨⎪⎪⎩

H1
ωj
[ρk] k ∈ [tj ,tj +τj) for some j ∈N0,

V1
ω′j
[ρk] k ∈ [tj +τj ,tj+1) for some j ∈N0,

for k=0,1,..., with tj ∶=∑j−1
l=0 (τl+τ

′
l ). We perform 100 simulations for each τ ∈{2,...,10}.

Of course, the formula for ρk+1 in the RSRT case also applies in the other cases,
but with (ωj ,ω

′
j) ∶=(ω,ω′) for all j ∈N0 and/or (τj ,τ ′j) ∶=(τ,τ) for all j ∈N0.

2.3. Computation of exponential mixing rates. In each of the four cases
above and for each τ ∈{2,...,10}, we performed 100 simulations. In every simulation we
found the mixing scale 2−nk of the solution ρk at each time k ∈N0 via Definition 2.1.
We then used these mixing scales to find an exponential mixing rate of the flow in each
individual run via linear regression over a relevant time interval (see below) and finally
averaged these rates over the 100 runs.

The computed mixing scales can never reach the grid scale 2−N , and they typically
plateaued around 24−N in our simulations with N =15 (see Figure 2.1) as well as for
other values of N (since the square Si,j

N−3 has 64 points from GN , reaching mixing scale
23−N requires it to contain between 22 and 42 points of either color for each (i,j)).
In order to suppress this grid scale effect, we chose the end of the time interval for
computation of the mixing rate to be the first time when the mixing scale reached 25−N .
For N =15 this is 2−10, and we denote this time T10 below.

Our simulations also showed that there is an initial time interval where the mixing
scale may display somewhat irregular behavior. An example of this is in Figure 2.1,
which contains means and standard deviation error bars of the binary logarithms −nk

of the mixing scales at different times k for the 100 simulations in two flow cases, the
RSFT case with τ =3 and the FSRT case with τ =7. One can observe near-plateaus
of the averaged mixing scales in the time interval [3,7] (roughly while these scales are
between 2−1 and 2−2), likely due to an interaction of the initial data with different phase
shifts, before they start an almost constant rate descent (until they plateau around 2−11).
A similar pattern appears before time 8 in most of the other cases of flows with τ ≥3
(which are the ones providing efficient mixing, see Section 3 below), more so for smaller
values of τ . None is more pronounced than that on the left of Figure 2.1, and therefore
their effect on the computed mixing rates would be very small. Nevertheless, in the
interest of obtaining the most accurate approximations of the actual asymptotic mixing
rates, we suppressed it by choosing the start of the time interval for computation of the
mixing rates to be 8. (We note that in almost all cases with τ ≥3, the first time when
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the averaged mixing scales dropped below 2−2 was either 7 or 8. The exceptions were
FSRT and RSRT with τ =3, when this time was 9; these are however also somewhat
exceptional, see Subsection 3.1 below.)

Fig. 2.1: Means and standard deviation error bars of the binary logarithms of the mixing scales for
the 100 simulations with N =15 in the RSFT case with τ =3 (left) and in the FSRT case with τ =7
(right). The (mean) mixing scales have a near-uniform exponential decay before eventually plateauing
around 2−11.

So withN =15, we considered the time interval [8,T10] for each individual simulation
(with T10 being simulation-dependent). We then found the corresponding exponential
mixing rate as the negative of the slope of the line that best (in terms of least squares)
fits the computed binary logarithms −nk of mixing scales at all the integer times within
this time interval (so this is then a base-2 exponential rate). We also computed the
R-squared value of the fitting line (its proximity to 1 indicates a good fit and hence a
near-uniform exponential decay of the mixing scales), as well as averages and standard
deviations of the mixing rates and the R-squared values for the 100 runs for each flow
type and each τ .

Remark 2.1. Besides the simulations described above, we also performed more limited
simulations (in the cases FSFT and RSFT with τ =3) with other initial data, namely
with values 1 and −1 attained first on the two sides of a diagonal of [0,1)2, and then
according to a 2×2 checkerboard pattern. We did this to confirm that our observations
are not due to the specific choice of initial data, and indeed in both cases the obtained
mean exponential mixing rates were within 2% of the corresponding ones in Figure 3.1
below. We also performed limited simulations (again for FSFT and RSFT with τ =3)
involving the functional mixing scale, which were considerably more computationally
demanding. The differences from Figure 3.1 were slightly larger in this case, owing
to the different methodology applied on a finite time interval (these always become
relatively negligible as the mixing scales decay to 0) but the evidence for exponential
mixing was equally clear as the one presented in the next section.

3. Main results and discussion
In this section, we first present the results of the simulations described in Section 2.

These constitute numerical evidence that the alternating wedge flows from Subsec-
tion 2.2 indeed exhibit exponential mixing, except in some cases with small τ , and we
also identify the apparently most efficient mixers among these flows. We then discuss
the cases with small τ , when mixing rates are lower and mixing can even be algebraic,
as well as the related existence of structures fixed by the mixing dynamic.
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3.1. Evidence of exponential mixing. The table in Figure 3.1 contains aver-
ages of the base-2 exponential mixing rates for all four flow types and all τ ∈{2,...,10},
computed as described in Subsection 2.3 (with N =15 and 100 runs in each case). It
suggests that the most efficient mixing by the alternating wedge flows considered here
happens when each individual wedge flow acts for the same time, which is either 3 or
4, and the phase shifts of the flows are not varied during each run.

It also shows that flows with τ =2 are much worse mixers than those with τ ≥3; this
is even more pronounced for τ =1, which is why we did not include that case in our
simulations. We discuss these issues in Subsection 3.2 below, so will now concentrate on
the cases with τ ≥3. We note that in all 32 of them, the means of the R-squared values
were at least 0.9660 and their standard deviations were no more than 0.0109, which is
why we do not report these here (we note that even the 3200 individual R-squared values
were all no less than 0.9290). These numbers indicate an excellent fit and near-uniform
exponential decay in all cases.

τ FSFT RSFT FSRT RSRT

2 — 0.2137 0.1279 0.1220
3 0.3954 0.3781 0.3560 0.3480
4 0.3955 0.3726 0.3723 0.3595
5 0.3542 0.3342 0.3560 0.3429
6 0.3409 0.3258 0.3293 0.3195
7 0.3121 0.3046 0.3125 0.3070
8 0.2959 0.2891 0.2946 0.2861
9 0.2789 0.2723 0.2788 0.2714
10 0.2631 0.2595 0.2620 0.2556

Fig. 3.1: Mean (base-2) exponential mixing rates.

For flow types FSFT and RSFT, the largest mixing rates were obtained for τ =3
and τ =4; those for τ ≥5 are noticeably lower, and steadily decrease as τ grows. This
phenomenon can be explained by noticing that mixing scales for time-independent shear
flows decrease no faster than O(t−1), and exponential mixing therefore results from
alternation of horizontal and vertical flows. This alternation cannot be too fast (as the
cases τ =1,2 show), but once each individual flow acts for a long enough time (which our
simulations suggest to be 3 or 4), switching the flow direction becomes more beneficial for
fast mixing than keeping it. The reason for smaller mixing rates in the cases FSRT and
RSRT with τ =3 vs. τ =4 is the fact that the set {τ −1,τ,τ +1}, from which we randomly
chose the flow times, contains the less-conducive-to-mixing value 2. Moreover, the best
mixing was obtained by FSFT flows with τ =3,4, which are time-periodic and hence
most convenient in potential applications.

Randomizing the phase shift each time the direction of the flow switches seems
to have a (slight but consistent) negative effect on the mixing rates for all τ ≥3, so
mixing in these cases appears to be solely a result of stretching by the individual wedge
flows. Note that this effect is smaller for larger τ , but in those cases there were also
fewer additional random choices made during each run (besides the initial randomly
chosen vertical and horizontal phase shifts). While it need not be surprising that this
randomness does not increase mixing, the strictly lower mixing rates in the RSXT cases
vs. their FSXT counterparts are unexpected. We do not know what is the underlying
reason, and further study of this phenomenon could be of interest.
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We note that this could also suggest that the phase shift randomization proposed
by Pierrehumbert in [14, 15] might have a positive effect on mixing only when the flow
direction switching is too frequent. Moreover, in that case it might be more beneficial
to increase flow times rather than randomize the phases, which could also be more
easily implemented in real world situations. Nevertheless, the sine flows in [14,15] have
a different geometry from our wedge flows due to decreased stretching near the lines
where their velocities are extremal (and hence their derivatives vanish), so simulations
with these flows will be needed to determine whether the above conclusions also apply
in this case.

The effect of randomizing the flow times is more difficult to discern. Comparing
the corresponding XSRT and XSFT cases suggests that it is negligible for τ ≥7, but this
may not be unexpected since the variation in the flow times is small relative to the mean
flow time τ . For τ =4,6, one can observe some decrease of mixing rates when the flow
times are randomized, but this reverses for τ =5 (the XSRT cases with τ =3 are again
special because 2∈{τ −1,τ,τ +1}). However, in the cases τ =4,5 these differences can be
explained at least in part by noticeably slower mixing when the (fixed) flow time is τ =5
vs. τ =4, meaning that randomizing the flow time should slow down mixing for τ =4
but speed it up for τ =5. In fact, in order to exclude effects of both values 2 and 5, we
also made 100 runs of each of the XSRT cases with flow times uniformly distributed in
{3,4}; the obtained average mixing rates were much closer to the corresponding XSFT
cases with τ =3,4, namely 0.3905 in the FSRT case and 0.3778 in the RSRT case. Hence
no clear pattern seems to emerge here.

τ FSFT RSFT FSRT RSRT

2 — 0.0234 0.0569 0.0508
3 0.0115 0.0168 0.0301 0.0250
4 0.0136 0.0170 0.0144 0.0175
5 0.0096 0.0161 0.0189 0.0193
6 0.0105 0.0135 0.0146 0.0155
7 0.0105 0.0113 0.0135 0.0168
8 0.0102 0.0101 0.0126 0.0149
9 0.0123 0.0139 0.0124 0.0154
10 0.0125 0.0129 0.0139 0.0146

Fig. 3.2: Standard deviations of (base-2) exponential mixing rates.

Let us also discuss variations in the data that yielded the average rates in Figure 3.1,
since one may wonder whether individual runs of our simulation exhibited mixing rates
that are close enough to these averages. Figure 3.2 shows the standard deviations of
the 100 individual base-2 mixing rates in each case, demonstrating that the averages in
Figure 3.1 are also good approximations of the mixing rates of most individual runs. In-
deed, the standard deviations were no more than 0.0193 in all cases with τ ≥3 except for
the cases FSRT and RSRT with τ =3, where the variation of mixing rates was magnified
due to 2∈{τ −1,τ,τ +1}. For instance, the largest difference between the mixing rate for
an individual run with τ ≥3 and the average mixing rate in the corresponding flow case
was 0.1020 in the FSRT case with τ =3; that run included a number of consecutive flow
times 2 (and fixed phase shifts), a setup that leads to much slower mixing (see the next
subsection).
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Finally, for completeness, we list the means and standard deviations of T10 in Figure 3.3.

τ FSFT RSFT FSRT RSRT

2 — 48.13 72.73 75.86
3 27.58 28.88 30.09 30.80
4 26.73 28.00 28.26 28.77
5 28.22 29.48 28.56 29.46
6 29.41 30.46 30.52 31.07
7 31.28 32.00 31.79 31.86
8 33.89 34.23 34.01 34.30
9 34.90 35.93 34.92 35.92
10 35.73 36.49 36.12 36.88

τ FSFT RSFT FSRT RSRT

2 — 3.67 18.95 17.66
3 0.64 0.83 2.17 1.87
4 0.49 1.11 0.84 1.05
5 1.05 1.08 1.13 1.08
6 1.54 1.18 1.37 1.30
7 1.19 1.03 1.11 1.21
8 0.65 0.45 1.04 1.21
9 1.47 1.57 1.19 1.55
10 1.32 1.66 1.49 1.68

Fig. 3.3: Means (left) and standard deviations (right) of T10.

We also mention that there is no need to compare our simulations with distinct
values of N because there are no errors or rounding involved in the transformations
from Subsection 2.2, and hence the observed mixing scales will only diverge once they
approach too close to the grid scale of the coarser grid simulation (i.e., mixing scale
approximately 24−N ).

3.2. Fixed structures and grid scale effects. Let us now turn to flow times
τ =1,2, starting with τ =2. The tables above are all missing data in the case FSFT with
τ =2, which is because one can easily show that these flows do not produce exponential
mixing (hence we did not run our simulations in this case). The segments {(s,s+ 3

4
)∣s∈

(0, 1
4
)} and {(s,s+ 1

4
)∣s∈( 1

4
, 1
2
)} are fixed by (V2

0 ○H2
0)2, and mapped onto each other

by V2
0 ○H2

0. The same is true about the segments {(s, 3
4
−s)∣s∈( 1

2
, 3
4
)} and {(s, 5

4
−

s)∣s∈( 3
4
,1)}. Obviously, (ω′,ω)-shifts of these segments have the same relationship to

V2
ω′ ○H2

ω. Moreover, locally at any point on these segments, (V2
ω′ ○H2

ω)2 is represented
by the matrix

[−3 4
−4 5
],

which is similar to the 2×2 Jordan block with diagonal elements 1 (the eigenspace for
this eigenvalue is generated by (1,1)). It is easy to see from this that one can at best
hope for algebraic-in-time mixing in this case. Figure 1.2 in fact shows how mixing is
inhibited near the above segments, as well as that it is faster elsewhere in the domain.

These structures of course do not survive the randomization in the RSFT, FSRT,
and RSRT cases with τ =2, but they show that flow time τ =2 does not provide enough
stretching and layering for the most efficient mixing. This is compounded by flow times
1 occurring in the FSRT and RSRT cases, as data in Figure 3.1 demonstrates (while
the RSFT entry does show a decent mixing rate in that case, it is still well below the
cases with τ ≥3).

The cases with τ =1 were even slower mixers and we therefore did not perform their
full simulations. In the FSFT case, one can again easily identify a fixed structure of
the mapping V1

0 ○H1
0. Indeed the segments {(s,s+ 1

2
)∣s∈(0, 1

2
)}, {( 1

2
,s)∣s∈(0, 1

2
)}, and

{(s, 1
2
)∣s∈( 1

2
,1)} form a 3-cycle for this mapping and each is fixed by (V1

0 ○H1
0)3. The
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latter mapping is locally represented by matrices

[3 −2
2 −1] and [−1 2

−2 3
]

on the two sides of the segment {(s,s+ 1
2
)∣s∈(0, 1

2
)}, and both are again similar to

the 2×2 Jordan block with diagonal elements 1 (the eigenspace in both cases is again
generated by (1,1)). Thus there is no exponential mixing in this case either.

Fig. 3.4: Means and standard deviation error bars of the binary logarithms of the mixing scales for
the 100 simulations with N =15 in the FSFT (left) and RSFT (right) cases with τ =8, over an extended
time interval.

Finally, we mention here a curious phenomenon that we observed for the FSFT and
RSFT cases with τ =8. In both cases, after the mixing scale ∼2−11 was reached and
the observed exponential decrease stopped, the computed scale rebounded to ∼2−9 for
some time (as if some unmixing were happening there). This was then followed by a
time interval (fairly long one, particularly in the FSFT case) where the mixing scale
equaled 2−10 for each of the 100 simulations, before it stopped having this surprisingly
uniform behavior and settled into a slightly more varied dynamic with values near 2−10

and 2−11. Figure 3.4 contains means and standard deviation error bars of the binary
logarithms −nk of the mixing scales in these two flow cases. We ran our simulations
with a larger grid scale as well, and this behavior persisted in that case, albeit clearly
at larger mixing scales.

These observations are of course completely irrelevant to the mixing theory, since
they involve behavior on time intervals where the simulation cannot anymore capture
the mixing dynamic due to the mixing scales being too close to the grid scale 2−15.
Nevertheless, we did not observe it or something similar for other values of τ (as well
as in the XSRT cases where τ varies over time), so it may point to some special feature
of the discrete grid dynamic for flow time τ =8. At the same time, the fact that this
behavior is observed in the RSFT case as well, where the randomness in phase shifts
would destroy any potential special structures present in the FSFT dynamic, is quite
curious. We do not currently have a candidate for the possible reason behind this
phenomenon, and do not know why τ =8 is the only flow time among those we studied
for which it occurs.
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[8] G. Crippa, R. Lucá, and C. Schulze, Polynomial mixing under a certain stationary Euler flow,

Phys. D, 394:44–55, 2019. 2.1
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[19] Y. Yao and A. Zlatoš, Mixing and un-mixing by incompressible flows, J. Eur. Math. Soc., 19:1911–

1948, 2017. 1, 2.1, 2.1

https://doi.org/10.1016/j.crma.2014.08.021
https://www.ams.org/journals/jams/2019-32-02/S0894-0347-2018-00913-0/
 https://doi.org/10.1214/21-AOP1533
https://epubs.siam.org/doi/abs/10.1137/090775142
http://www.numdam.org/item/RSMUP_2003__110__97_0.pdf
http://personal.psu.edu/axb62/PSPDF/prize1.pdf
https://doi.org/10.1515/CRELLE.2008.016
https://doi.org/10.1016/j.physd.2019.01.009
https://doi.org/10.1016/j.aim.2019.106807
https://iopscience.iop.org/article/10.1088/0951-7715/27/5/973/meta
https://doi.org/10.1017/S0022112011000292
https://doi.org/10.1063/1.4752098
https://doi.org/10.1063/1.4752098
https://dx.doi.org/10.4310/CMS.2013.v11.n2.a6
https://doi.org/10.1016/0960-0779(94)90139-2
https://doi.org/10.1063/1.166476
https://iopscience.iop.org/article/10.1088/0951-7715/26/12/3279/meta
https://epubs.siam.org/doi/10.1137/080713598
https://iopscience.iop.org/article/10.1088/0951-7715/25/2/R1/meta
https://iopscience.iop.org/article/10.1088/0951-7715/25/2/R1/meta
https://doi.org/10.4171/jems/709
https://doi.org/10.4171/jems/709

