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A DERIVATIVE-FREE CONJUGATE GRADIENT METHOD FOR
LARGE-SCALE NONLINEAR SYSTEMS OF MONOTONE

EQUATIONS∗

JING GAO† , YANRAN LI‡ , MINGYUAN CAO§ , YUETING YANG¶, AND XUE BAI∥

Abstract. This paper presents a derivative-free conjugate gradient type algorithm for large-scale
nonlinear systems of monotone equations. New search directions with superior numerical performance
are constructed by introducing a new conjugate parameter and particular spectral parameters. These
search directions inherit the numerical stability of RMIL search direction and satisfy the sufficient
descent condition independent of step size. The method combines the hyperplane projection and the
derivative-free line search technique to compute the iteration points. Under some appropriate assump-
tions, the global convergence of the given methods is established. Numerical experiments indicate that
the proposed algorithms are effective.

Keywords. Derivative-free technique; nonlinear systems of monotone equations; projection tech-
nology; conjugate gradient method.
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1. Introduction
Nonlinear systems of monotone equations widely exist in image segmentation [1],

operation and control of power system [2], signal reconstruction [3] and many other
fields. Many problems of relevance in monotone variational inequality problems [4] and
the subproblems in the generalized proximal algorithms with Bregman distances [5] can
be transformed into the following nonlinear equations

F (x)=0, (1.1)

where F (x) :Rn→Rn is monotone and continuous, which means F (x) satisfies the in-
equality (F (x)−F (y))T(x−y)≥0 for all ∀x,y∈Rn.

Among the iterative methods for solving (1.1), the Newton method, quasi-Newton
method [6], and their variants are very popular because of their fast local superlinear
convergence property. However, they are not suitable for solving large-scale nonlinear
equations because they need to solve linear equations using the Jacobian matrix or
an approximation of it in each iteration. Therefore, many scholars prefer to use the
conjugate gradient method with a simple structure and low memory requirement to
solve large-scale nonlinear monotone equations [7–12].

Rivaie et al. [13] proposed RMIL conjugate gradient method to solve the uncon-
strained optimization problem. The numerical results show that RMIL conjugate gradi-
ent method has better performance than other conjugate gradient methods. La Cruz and
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Raydan [14] presented the spectral algorithm for nonlinear equations. Li [15] presents
a class of derivative-free methods for solving nonlinear monotone equations based on
the conjugate gradient method and line search technique. Ahookhosh [16] proposed
two derivative-free conjugate gradient methods for solving nonlinear monotone equa-
tions. Recently, Fang [17] proposed an improved RMIL derivative-free conjugate gradi-
ent method for solving nonlinear monotone equations based on RMIL conjugate gradient
method.

Liu and Feng [18] presented a class of derivative-free conjugate gradient methods
for solving nonlinear monotone equations with convex constraints and improved DY
conjugate parameters. In this way, the algorithm inherited the stability of DY conjugate
gradient method while ensuring the sufficient descent of the search direction and the
global convergence of the algorithm.

In order to make the algorithm quickly converge to the solution x∗ of the non-
linear monotone system (1.1), according to the monotonicity of F (x), the selection of
iteration points can be intervened by using the projection technique and appropriate
linear search strategy. For example, Solodov and Svaiter [19] combined an inexact
Newton method with a projection technique for solving nonlinear monotone equations.
Zhang [20] combined the spectral gradient method with the projection method to solve
nonlinear monotone equations.

Inspired by the above literature, this paper propose a derivative-free conjugate gra-
dient method for solving nonlinear monotone equations, improves the conjugate param-
eter, and uses the inequality proof technique to construct the corresponding spectral
parameter, so that the search direction satisfies the sufficient descent condition and
bounded property, and then proves the global convergence of the algorithm. The main
innovations of the algorithm include:

• Improved conjugate parameter and spectral parameters, three new derivative-
free conjugate gradient directions are proposed, which inherit the theoretical
properties of RMIL conjugate gradient directions and satisfy the sufficient de-
scent condition and boundedness.

• A derivative-free conjugate gradient algorithm with global convergence is de-
signed, which inherits the numerical stability and superiority of the RMIL con-
jugate gradient method for solving large-scale nonlinear equations, and is supe-
rior to the improved RMIL conjugate gradient method proposed by [17].

The rest of this paper is organized as follows. In Section 2, we will introduce the basic
principle, concrete steps, and sufficient descent proof of the proposed new derivative-
free conjugate gradient algorithm. In Section 3, we will give the boundedness of search
direction and the global convergence proof of the algorithm. In Section 4, we will analyze
the numerical performance of the algorithm, including the numerical results of solving
large-scale nonlinear monotone equations and the comparison with other algorithms.

2. Algorithm

In this section, our main aim is to propose a new derivative-free conjugate gradient
method for solving monotone Equation (1.1). We define a new conjugate parameter

βN
k =

FT
k yk−1

dTk−1wk−1
, (2.1)

in which Fk denotes the value of F (x) at current point xk, dk−1 denotes the search
direction at xk−1, yk−1=Fk−Fk−1, wk−1=dk−1+ tk−1yk−1 and there exists t∈ (0,1)
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satisfying

tk−1=

{
t, if dTk−1yk−1≥0,

−t, if dTk−1yk−1<0.

In order to obtain the search direction with sufficient descent property, inspired
by [17], we propose three spectral parameters based on the conjugate parameter (2.1).
On the one hand, we introduce the spectral parameters θ1k and θ2k, combining βN

k to
construct search directions d1k and d2k as follows

d1,2k =

{
−Fk, if k=0,
−θkFk+βN

k dk−1, if k≥1.
(2.2)

Here, we choose two different spectral parameters

θ1k=1+
(FT

k yk−1)
2∥dk−1∥2

4γ(dTk−1wk−1)2∥Fk∥2
, (2.3)

θ2k=1+
(FT

k dk−1)
2∥yk−1∥2

4γ(dTk−1wk−1)2∥Fk∥2
. (2.4)

On the other hand, we combine parameter

θ3k=
(FT

k yk−1)
2∥dk−1∥2

4γ(dTk−1wk−1)2
, (2.5)

with βN
k to construct search direction

d3k=

{
−Fk, if k=0,
−Fk+βN

k dk−1−θ3kyk−1, if k≥1.
(2.6)

In the formulae (2.3), (2.4) and (2.5), we set parameter γ∈ (0,1). Search directions d1k,
d2k and d3k have similar theoretical properties, such as descent and boundedness, but
they are not consistent in numerical performance. Numerical comparisons are listed in
Section 4.

Now, we will select an appropriate line search technique to get the steplength αk.
Zhang and Zhou [20] presented the following derivative-free line search rule, which
requires αk to be the largest steplength of αk=max{s,ρs,ρ2s,...} to satisfy the following
condition

−F (xk+αkdk)
Tdk≥σαk||F (xk+αkdk)||||dk||2, (2.7)

where σ>0,s>0 and 0<ρ<1.
After the search direction dk and steplength αk are obtained, we set auxiliary point

zk=xk+αkdk, (2.8)

which satisfies

F (zk)
T(xk−zk)>0. (2.9)
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For any x∗ such that F (x∗)=0, by the monotonicity of F (x), we have

F (zk)
T(x∗−zk)=−(F (x∗)−F (zk))

T(x∗−zk)≤0.

Thus the hyperplane

Hk={x∈Rn|F (zk)
T(x−zk)=0}

strictly separates the current iterate xk from zeros of the equation system (1.1).
Based on the above conclusion, Solodov and Svaiter [19] projected xk onto Hk to

get the next iteration point xk+1. Its iteration format is

xk+1=xk−
F (zk)

T(xk−zk)

||F (zk)||2
F (zk). (2.10)

This projection technique combined with the derivative-free line search technique en-
sures the boundedness of the search direction and the global convergence of the al-
gorithm. Numerical experiments show that this method is superior to other similar
algorithms in solving large-scale nonlinear monotone equations. Next, we give the spe-
cific steps of the new algorithm.

Algorithm 2.1.
Step 0: Given x0∈Rn, choose δ>0, σ>0, s>0, ϵ>0, 0<ρ<1, kmax>0, d0=

−F0. Set k :=0.

Step 1: If ||Fk||<ϵ and k<kmax, the algorithm is terminated, output xk; otherwise
set αk=s and go to Step 2.

Step 2: If αk satisfy (2.7), then set auxiliary point zk=xk+αkdk, go to Step 3,
otherwise, set αk←ραk, go to Step 2.

Step 3: Compute F (zk), if ∥F (zk)∥≤ ϵ, algorithm stops; otherwise, use (2.10) to
calculate xk+1 go to Step 4.

Step 4: Compute F (xk+1), yk=F (xk+1)−F (xk), wk=dk+ tkyk. According to
(2.1), (2.2) and (2.6), determine the search direction dk+1. Set k :=k+1 and go to
Step 1.

Here, we will prove that three directions d1k, d
2
k and d3k satisfy the sufficient descent

condition.

Lemma 2.1. Let the sequence {dk} be generated by Algorithm 2.1, then dk satisfies
the sufficient descent condition

FT
k dk≤−δ∥Fk∥2, δ >0. (2.11)

Proof.
(1) When θ is defined by θ1k , using (2.1), (2.2) and (2.3), we set u=

√
2γdTk−1wk−1Fk,

v= 1√
2γ
FT
k yk−1dk−1 and use uTv≤ 1

2 (||u||
2+ ||v||2), then, for k∈N, we have

FT
k dk = FT

k

(
−θkFk+

FT
k yk−1

dTk−1wk−1
dk−1

)

= −

[
1+

(FT
k yk−1)

2||dk−1||2

4γ||Fk||2(dTk−1wk−1)2

]
||Fk||2+

FT
k yk−1F

T
k dk−1

dTk−1wk−1
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= −∥Fk∥2+
FT
k yk−1F

T
k dk−1∥Fk∥2dTk−1wk−1− 1

4γ (F
T
k yk−1)

2∥dk−1∥2∥Fk∥2

∥Fk∥2(dTk−1wk−1)2

≤ −∥Fk∥2+
1
2 (2γ)(d

T
k−1wk−1)

2||Fk||2

(dTk−1wk−1)2

= −(1−γ)||Fk||2. (2.12)

(2) When θ is defined by θ2k, using (2.1), (2.2) and (2.4), we set u=
√
2γdTk−1wk−1Fk,

v= 1√
2γ
FT
k dk−1yk−1, then, for k∈N , we have

FT
k dk = FT

k

(
−θkFk+

FT
k yk−1

dTk−1wk−1
dk−1

)

= −

[
1+

(FT
k dk−1)

2||yk−1||2

4γ||Fk||2(dTk−1wk−1)2

]
||Fk||2+

FT
k yk−1F

T
k dk−1

dTk−1wk−1

= −∥Fk∥2+
FT
k yk−1F

T
k dk−1d

T
k−1wk−1− 1

4γ (F
T
k dk−1)

2∥yk−1∥2

(dTk−1wk−1)2

≤ −∥Fk∥2+
1
2 (2γ)(d

T
k−1wk−1)

2||Fk||2

(dTk−1wk−1)2

= −(1−γ)||Fk||2. (2.13)

(3) When dk is determined by (2.5) and (2.6), set u=
√
2γdTk−1wk−1Fk, v=

1√
2γ
FT
k yk−1dk−1, then, for k∈N, we have

FT
k dk = FT

k

[
−Fk+

FT
k yk−1

dTk−1wk−1
dk−1−

(FT
k yk−1)

2∥dk−1∥2

4γ(dTk−1wk−1)2
yk−1

]

= −∥Fk∥2+
FT
k yk−1F

T
k dk−1d

T
k−1wk−1− 1

4γ (F
T
k yk−1)

2∥dk−1∥2

(dTk−1wk−1)2

≤ −(1−γ)||Fk||2.

Set δ=1−γ, since γ∈ (0,1), for the above three directions, the sufficient descent
conditions are all satisfied.

(4) If k=0 , using(2.2), we get ∥FT
0 d0∥=−∥F0∥2.

Therefore, the search direction dk generated by the Algorithm 2.1 satisfies the suf-
ficient descent condition.

3. Convergence analysis
In order to prove the global convergence of Algorithm 2.1, we give the following

assumptions.

Assumption 3.1.

(1) The solution set of the system of monotone Equations (1.1) is nonempty.

(2) F (x) is Lipschitz continuous on Rn, namely

∥F (y)−F (x)∥≤L∥y−x∥, ∀x,y∈Rn, (3.1)

where L>0 is a positive constant.
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Assumption 3.1 implies that

∥F (x)∥≤κ, ∀x∈Rn, (3.2)

where κ is a positive constant.

Lemma 3.1. Suppose Assumption 3.1 is satisfied and the sequence {xk} is generated
by Algorithm 2.1. For any x∗ such that F (x∗)=0, we have

∥xk+1−x∗∥2+∥xk+1−xk∥2≤∥xk−x∗∥2. (3.3)

In addition, the sequence {xk} satisfies

lim
k→∞

∥xk+1−xk∥=0. (3.4)

The proof can be referenced from [19].

Remark 3.1. From (2.10) and (2.7), we have

∥xk+1−xk∥=
αk|FT(zk)dk|∥F (zk)∥

∥F (zk)∥2
≥σ∥αkdk∥2. (3.5)

Using (3.4), we can get

lim
k→∞

∥αkdk∥=0. (3.6)

Lemma 3.2. Suppose Assumption 3.1 is satisfied and the sequences {xk},{dk} are
generated by Algorithm 2.1. Then we have

∥dk∥≤κ

[
1+Ls+

(Ls)2

4γ

]
, (3.7)

where κ>0,0<γ<1,s>0,L>0.

Proof. From (2.10) and Step 2 of Algorithm 2.1, we have

∥xk+1−xk∥=
∥F (zk)

T(xk−zk)F (zk)∥
∥F (zk)∥2

≤∥xk−zk∥=αk∥dk∥. (3.8)

According to the definition of line search in Step 2 of Algorithm 2.1 and αk=

max
{
s,ρs,ρ2s,·· ·

}
, 0<ρ<1, we get

αk≤s. (3.9)

From the definition of wk−1 , we obtain tk−1d
T
k−1yk−1≥0 , and then

dTk−1wk−1≥∥dk−1∥2. (3.10)

Therefore, for θ=θ1k , from (3.1), (3.2), (3.8), (3.9) and (3.10), we have

∥dk∥ =

∣∣∣∣∣
∣∣∣∣∣−
[
1+

(
FT
k yk−1

)2∥dk−1∥2

4γ
(
dTk−1wk−1

)2∥Fk∥2

]
Fk+

FT
k yk−1

dTk−1wk−1
dk−1

∣∣∣∣∣
∣∣∣∣∣

≤ ∥Fk∥

[
1+
||yk−1||2||dk−1||2

4γ(dTk−1wk−1)2
+
||yk−1||||dk−1||
dTk−1wk−1

]
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≤ ∥Fk∥
(
1+

∥yk−1∥2

4γ∥dk−1∥2
+
∥yk−1∥
∥dk−1∥

)
≤ ∥Fk∥

(
1+

L2α2
k−1∥dk−1∥2

4γ∥dk−1∥2
+

Lαk−1∥dk−1∥
∥dk−1∥

)
≤ κ

[
1+Ls+

(Ls)2

4γ

]
.

Similarly, when θ=θ2k and dk=d3k, the conclusions also hold.

Lemma 3.3. Suppose Assumption 3.1 is satisfied and the sequences {xk},{dk} are
generated by Algorithm 2.1. If there exists a constant ϵ, such that ||Fk||≥ ϵ for all
k∈N∪{0}, then we have

αk≥min

s,
δϵ2

ρ−1κ2
{
L+σκρ−1

[
ρ+Ls+(Ls)2+ (Ls)3

4γ

]}[
1+Ls+ (Ls)2

4γ

]2
. (3.11)

The proof is analogous to that of Lemma 3.3 in [17]. We omit the proof here.

Theorem 3.1. Suppose Assumption 3.1 is satisfied, and the sequences {xk},{dk} are
generated by Algorithm 2.1, then we have

liminf
k→∞

∥Fk∥=0. (3.12)

In particular, the sequence {xk} converges to x∗ and F (x∗)=0.

Proof. If (3.12) does not hold, then there exists a constant ϵ>0 such that

∥Fk∥≥ ϵ, ∀k≥0. (3.13)

From Lemma 2.1, we get

||Fk||||dk||≥ ||FT
k dk||≥ (1−γ)||Fk||2. (3.14)

From (3.13) and (3.14), we have

||dk||≥ (1−γ)||Fk||≥ δϵ. (3.15)

Suppose x̃ is an arbitrary accumulation point of {xk} and K1 is an infinite index set
such that

lim
k∈K1,k→∞

xk= x̃. (3.16)

From (3.4), (3.8) and (3.16), we can get

lim
k∈K1,k→∞

αk||dk||=0. (3.17)

On the other hand, combined with Lemma 3.3 and (3.15),

αk∥dk∥ ≥ min

δϵs,
δ2ϵ3

ρ−1κ2
{
L+σκρ−1

[
ρ+Ls+(Ls)2+ (Ls)3

4γ

]}[
1+Ls+ (Ls)2

4γ

]2
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> 0.

This inequality and (3.17) are a contradiction, then the conclusion (3.12) holds. From
Assumption 3.1, Lemma 3.1 and (3.12), we see that the sequence {xk} converges to
some accumulation point x∗ such that F (x∗)=0.

In order to further prove the R-linear convergence rate of the algorithm, we need
to give the following assumptions.

Assumption 3.2. For ∀x̃∈Ω, there exist ϱ∈ (0,1) and ν >0 satisfying

ϱdist(x,Ω)≤∥Fk∥2,∀x∈N(x̃,ν), (3.18)

where Ω is the solution set of problem (1.1), N(x̃,ν)={x∈Rn|∥x− x̃∥≤ν}, dist(x,Ω)
represents the distance from point x to solution set Ω.

Theorem 3.2. Suppose Assumption 3.1 and Assumption 3.2 are satisfied, the se-
quence {xk} is generated by Algorithm 2.1, then the sequence {dist(x,Ω)} converges
Q-linearly to 0, therefore {xk} is R-linear convergent.

Proof. Set ωk=argmin{∥xk−ω∥|ω∈Ω}, we know that ωk is the closest solution
to point xk in the solution set Ω, that is

dist(xk,Ω)=∥xk−ωk∥. (3.19)

Using (2.11) and Cauchy-Schwartz inequality, we can get

∥dk∥≥ δ∥Fk∥. (3.20)

Since ωk ∈Ω, from (3.3), (3.18), (3.19) and (3.20), we get

dist(xk+1,Ω)
2≤∥xk+1−ωk∥2

≤∥xk−ωk∥2−∥xk+1−xk∥2

=dist(xk,Ω)
2−∥xk+1−xk∥2

≤dist(xk,Ω)
2−σ2∥αkdk∥4

≤dist(xk,Ω)
2−σ2α4

kδ
4∥Fk∥4

≤ (1−σ2ϱ2α4
kδ

4)dist(xk,Ω)
2.

It shows the sequence {dist(xk,Ω)} converges Q-linearly to 0. Using 1−σ2ϱ2α4
kδ

4∈
(0,1), then {xk} is R-linear convergent.

4. Numerical experiment
In this section, we will compare Algorithm 2.1 with the DFPB1 method in [16] and

the MRMIL1 method in [17]. Our tests are implemented in MatlabR2015b, run on a
personal computer with 4 GB RAM and Intel CPU I5-4210. We compare all methods,
and give the numerical performance comparison chart. We employ the performance
profiles [21], which are defined by the following fraction

ρν(τ)=
1

|P |

∣∣∣∣{p∈P : log2

(
tp,ν

min{tp,ν :ν ∈V }

)
≤ τ

}∣∣∣∣
to describe the performance of the algorithms. Here P is the test set, |P| is the number
of problems in the test set P, V is the set of optimization solvers, and tp,ν is the
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CPU time (or the number of the function evaluations, or the number of iterations) for
p∈P and ν ∈V . The numerical experiments include 10 large-scale nonlinear monotone
equations. The problems 1-8 are selected from problem 1 to 8 in [17], and the problems
9-10 are selected from problem 4 to 5 in [22] with sizes 500, 1000, 3000, 5000, 10000, all
problems are initialized with the following 8 starting points: x1

0=(10,10,. ..,10)T, x2
0=

(−10,−10,. ..,−10)T, x3
0=(1,1,. ..,1)T, x4

0=−(1,1,. ..,1)T, x5
0=(0.1,0.1,. ..,0.1)T, x6

0=
(1, 12 ,. ..,

1
n )

T, x7
0=( 1n ,

2
n ,. ..,1)

T, x8
0=(n−1

n , n−2
n ,. ..,0)T. For all methods, the stopping

criteria are (1)||F (xk)||≤ ϵ; or (2) ||F (zk)||≤ ϵ; or (3) the number of iterations exceeds
kmax, where ϵ=10−4, kmax=105, ρ=0.7, σ=0.3, γ= 1

4 .

Fig. 4.1. Performance profiles of Algorithm 2.1 with different t based on the number of function
evaluations.

Fig. 4.2. Performance profiles of Algorithm 2.1 with different t based on the number of iterations.

We analyze the values of parameters t,s,γ in Algorithm 2.1, the value of parameter
t in Algorithm 2.1 directly affects the search direction and its descent. Firstly, we
study the numerical results of parameter t=0.5,1,2 in terms of the number of function
evaluations, the number of iterations, and CPU operation time. Figures 4.1-4.3 show
the experimental results of the direction with d1k, s=1,γ=0.25. Obviously, in terms of
the number of the function evaluations (see Figure 4.1) and the number of iterations (see
Figure 4.2), the three values of t are almost the same, while in terms of CPU operation
time (see Figure 4.3), for t=1, it shows a more stable performance.

Secondly, we study the effect of initial steplength s and parameter γ on algorithm
performance. In Algorithm 2.1, we use d1k as the search direction, use the initial step
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Fig. 4.3. Performance profiles of Algorithm 2.1 with different t based on the CPU time.

Fig. 4.4. Performance profiles of Algorithm 2.1 with different s and γ based on the number of
function evaluations

Fig. 4.5. Performance profiles of Algorithm 2.1 with different s and γ based on the number of
iterations

for s=1, s=s0, s0=∥ FT
k dk

(F (xk+10−8dk)−Fk)Tdk/10−8 ∥, and γ=0.25 respectively to solve 10

large-scale nonlinear monotone equations, the specific results as shown in Figures 4.4-
4.6. Figures 4.1-4.6 show that Algorithm 2.1 with t=1,s=s0,γ=0,25 has high stability
in function evaluations. However, by observing the numerical results, for solving all test
problems, it is found that the average number of function evaluations generated by



JING GAO, YANRAN LI, MINGYUAN CAO, YUETING YANG, AND XUE BAI 553

Fig. 4.6. Performance profiles of Algorithm 2.1 with different s and γ based on the CPU time

Algorithm 2.1 is more than other algorithms, and the CPU operation time is the same
as that of other algorithms. Therefore, Algorithm 2.1 is not suitable for selecting initial
steplength s=s0. When t=1,s=1,γ=0,25 (red line), Algorithm 2.1 is almost the same
as other algorithms in the number of iterations and function evaluations, but it is in the
upstream in terms of the CPU operation time, which shows that in this case, the stability
of the algorithm is good, and the average time of solving the test problem is short. Based
on the above experimental results, we investigated the numerical performance of three
search directions in Algorithm 2.1 under the conditions of t=1,s=1,γ=0.25, denoted
as NA1, NA2, and NA3, as well as DFPB1 and MRMIL1 algorithms proposed by [16]
and [17], respectively.

Figures 4.7-4.9 show the performance profiles of the proposed NA1, NA2, and NA3
algorithms compared with MRMIL1 and DFPB1 algorithms in the CPU time, the num-
ber of the function evaluations, and the number of iterations. We can see from Figure
4.8 and Figure 4.9 that in terms of the number of iterations and CPU time, the per-
formance curves of Algorithm 2.1 in three directions are significantly higher than that
of the other two algorithms. It shows that the new derivative-free conjugate gradient
method has good stability in solving large-scale nonlinear monotone equations, can use
fewer iterations and CPU time, and has higher efficiency. Specifically, Figure 4.7 shows
that the proposed algorithms perform better than DFPB1 and MRMIL1, whereas the
NA1 uses slightly fewer function evaluations. In Figure 4.8, the search direction d3k(NA3)
performs better on the number of iterations at τ <2, and it still has the advantage when
τ ≥2, but it is not evident. Figure 4.9 indicates Algorithm 2.1 proposed in this paper
has obvious superiority, and Algorithm 2.1 with d3k(NA3) is faster in solving large-scale
nonlinear monotone equations and has notable advantages among the five algorithms.

In our opinion, the directions of the new algorithms have a natural descending prop-
erty that does not depend on the step size, and the parameter t is suitably selected so
that the function value has sufficient descent along these directions in each iteration.
Simultaneously, the formula of the search direction is brief and uses the stored informa-
tion in the calculation execution process, which results in no significant increase in the
amount of calculation and the number of function evaluations. For the above reasons,
the numerical performance of the newly proposed three algorithms is superior to that
of the other two methods.

Finally, we make a meaningful attempt at line search technology. In [23], Dai
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Fig. 4.7. Performance profiles of different algorithms based on the number of function evaluations

Fig. 4.8. Performance profiles of different algorithms based on the number of iterations

Fig. 4.9. Performance profiles of different algorithms based on the CPU time

introduces a line search technique:

−F (xk+αkdk)
Tdk≥σαkmin{∥dk∥2,∥F (xk+αkdk)∥∥dk∥2,−F (xk)

Tdk}, (4.1)

αk=max
{
s,ρs,ρ2s

}
, 0<ρ<1, which is used instead of (2.7) to select the appropriate

steplength αk. It may find a more accurate αk to construct an iteration point closer
to the real value, which is a technology to reduce the number of iterations and save
the operation time; it is also possible that the min function on the right side of the
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inequality increased the number of function evaluations. The guess is confirmed in the
following experiments. We replace the line search technique (2.7) in Algorithm 2.1 with
(4.1), in the case of t=1,s=1,γ=0.25,dk=d1k, then we get Algorithm 4.1.

NA1 MRMIL1 DFPB1 MNA1
Prob. n nf iter CPUt nf iter CPUt nf iter CPUt nf iter CPUt

500 988 88 0.297 992 88 0.265 988 86 0.295 1100 97 0.316
1000 1501 121 0.687 1505 121 0.656 1514 120 0.69 1502 121 0.656

1 3000 2904 204 3.385 2908 204 3.281 2914 203 3.377 2934 211 3.312
5000 3874 259 7.548 3878 259 7.295 3884 258 7.613 3874 259 7.389
100005826 364 22.5755827 364 22.03 5828 362 22.78 5853 364 24.979
500 42 15 0.028 46 15 0.016 46 14 0.021 306 39 0.052
1000 68 18 0.035 69 18 0.031 70 17 0.036 517 58 0.111

2 3000 143 27 0.181 145 27 0.172 142 25 0.173 950 93 0.495
5000 196 32 0.393 197 32 0.391 200 31 0.413 1520 135 1.32
10000 304 42 1.183 308 42 1.171 308 41 1.263 2495 202 4.202
500 1349 715 0.703 1240 685 0.641 1295 711 0.669 13 4 0.008
1000 1319 684 1.172 1316 740 1.187 1365 743 1.259 13 4 0.01

3 3000 1666 790 4.062 1393 738 3.39 1443 742 3.65 13 4 0.015
5000 1740 797 6.975 1016 474 3.952 1709 676 6.523 13 4 0.021
100001582 758 12.8521590 762 12.6071613 764 13.146 13 4 0.035
500 154 28 0.063 155 29 0.062 154 27 0.064 183 34 0.097
1000 236 36 0.14 241 37 0.125 238 35 0.146 248 39 0.129

4 3000 486 58 0.672 492 59 0.641 497 58 0.701 495 67 0.667
5000 672 73 1.526 678 74 1.484 684 73 1.506 687 77 1.598
100001044 101 4.6 1050 102 4.545 1046 100 4.647 1137 111 4.743
500 104 19 0.046 115 21 0.063 169 30 0.267 132 24 0.261
1000 104 19 0.156 115 21 0.203 169 30 0.265 132 24 0.269

5 3000 104 19 1.312 115 21 1.579 169 30 2.4 132 24 3.75
5000 104 19 3.578 115 21 3.921 169 30 5.753 132 24 6.178
10000 104 19 13.726 115 21 16.286 169 30 21.508 132 24 67.4
500 112 17 0.047 124 19 0.046 82 12 0.031 104 17 0.047
1000 133 19 0.203 136 20 0.171 104 14 0.125 156 23 0.239

6 3000 204 26 2.452 205 27 2.484 161 18 1.906 195 25 2.59
5000 245 29 7.717 240 28 7.524 201 21 6.248 270 36 7.757
10000 329 35 39.287 318 33 37.944 285 27 34.175 358 38 42.944
500 46 14 0.047 46 14 0.016 48 14 0.024 280 36 0.049
1000 75 18 0.031 70 17 0.031 74 17 0.041 477 54 0.099

7 3000 149 26 0.187 153 26 0.187 159 26 0.213 884 87 0.484
5000 214 32 0.438 218 32 0.422 214 31 0.439 1402 125 1.272
10000 330 43 1.281 332 42 1.281 335 42 1.314 2326 189 4.033
500 121 20 0.047 128 22 0.046 126 20 0.038 114 18 0.031
1000 145 22 0.062 155 24 0.063 165 24 0.071 137 20 0.063

8 3000 230 29 0.234 246 32 0.266 657 113 0.703 222 32 0.234
5000 283 33 0.485 303 37 0.499 768 127 1.428 275 31 0.453
10000 396 41 1.327 410 44 1.375 987 156 3.477 388 39 1.297
500 38 15 0.031 34 11 0.016 40 15 0.018 348 44 0.064
1000 59 18 0.032 55 14 0.031 66 19 0.037 587 65 0.132

9 3000 129 27 0.171 125 23 0.172 128 26 0.173 1048 102 0.578
5000 184 33 0.391 179 28 0.359 187 32 0.386 1676 148 1.558
10000 287 43 1.171 282 38 1.156 294 43 1.189 2742 221 4.894
500 119 21 0.046 272 50 0.078 1045 203 0.281 19 6 0.017
1000 140 24 0.063 319 58 0.14 1441 279 0.631 19 6 0.007

10 3000 178 29 0.203 328 57 0.344 1420 272 1.655 133 17 0.071
5000 295 48 0.547 377 64 0.672 1436 272 2.697 146 18 0.126
10000 293 42 1.046 345 52 1.187 1549 288 5.78 214 23 0.345

Table 4.1. Numerical Results.
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Algorithm 4.1.

Step 0: Choose an initial point x0∈Rn , choose constants δ>0,σ>0,s>0,ϵ>0,1>
ρ>0,kmax>0,d0=−F (x0). Set k :=0.

Step 1: If ||Fk||<ϵ and k<kmax, the algorithm is terminated, output xk; otherwise,
set αk=s.

Step 2: If αk satisfy (4.1), then set auxiliary point zk=xk+αkdk; otherwise, set
αk←ραk, go to Step 2 again.

Step 3: Calculate F (zk), if ∥F (zk)∥≤ ϵ, then the algorithm stops; otherwise, we use
(2.10) to calculate xk+1.

Step 4: Calculate F (xk+1), yk=F (xk+1)−F (xk), wk=dk+ tkyk.We use (2.1),
(2.2) and (2.6), to determine the search direction dk+1. Set k :=k+1 and go to Step 1.

We used Algorithm 4.1 (MNA1) to solve test problems 1-10, and compared with
the numerical results of NA1, MRMIL1, and DFPB1 algorithms, the detailed results
are given in Table 4.1. We denoted the number of function evaluations, iterations, and
CPU operation time as nf , iter, and CPUt respectively.

We can see from Table 4.1 that Algorithm 4.1 costs more than twice as much as
other algorithms in solving test problems 2, 7, and 9. However, for problems 3 and 10,
which are expensive to solve by other algorithms, the optimal solution is obtained in a
short time and with a few iterations. It is a surprising result and may be closely related
to the structure of the right side of the inequality (4.1), which is worthy of further study
and discussion in the following work.

5. Conclusion
We mainly study a few efficient algorithms for solving large-scale nonlinear mono-

tone systems in this paper, present a class of derivative-free conjugate gradient methods
based on the projection technique, and prove that the search direction satisfies the suf-
ficient descent condition. The global convergence of new algorithms is proved under
appropriate assumptions. The numerical results show that the proposed algorithm has
high efficiency in solving large-scale nonlinear monotone equations, and its performance
is better than other similar algorithms in terms of function evaluations and CPU time.
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