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KAM PERSISTENCE FOR
MULTISCALE GENERALIZED HAMILTONIAN SYSTEMS∗

WEICHAO QIAN† , XUE YANG‡ , AND YONG LI§

Abstract. This paper concerns the persistence of invariant tori for multiscale generalized Hamil-
tonian systems. A multiscale nondegenerate condition on Poisson manifold comparing Kolmogorov
nondegenerate one on symplectic manifold and multiscale iso-energetically nondegenerate condition on
Poisson manifold comparing iso-energetically nondegenerate one due to Arnold are introduced, hence
some multiscale KAM theorems and multiscale iso-energetic KAM theorems on Poisson manifold are
established. And we give three applications by a direct example, first order PDEs and steady Euler
fluid path flow, respectively.
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1. Introduction

Consider a nearly integrable real analytic multiscale generalized Hamiltonian system
of the following form:

H(x,y)=ε0h0(y)+ε1h1(y)+ ·· ·+εm0
hm0

(y)+ε2P (x,y), (1.1)

with the Poisson structure matrix I(y)=

(
0 B

−BT C

)
to be specialized below, where

y∈G, G⊂Rl is a bounded closed region (closure of a bounded, nonempty open set),
x∈Tn=Rn/2πZn; hi(y), 0≤ i≤m0, and P (x,y) are real analytic functions; εm0 , 0≤
i≤m0, and ε are parameters with 0<ε<min{ε0,ε1,·· · ,εm0}≪1; l and n are positive
integers and m0 is nonnegative integer.

When m0=0 and I=J (the standard symplectic matrix), where l=n, system (1.1)
is just the classical Hamiltonian system. The celebrated KAM theory duo to Kol-
mogorov [24], Arnold [1] and Moser [33] asserts the persistence of Lagrangian invariant
tori, which answers certain stability questions of the planetary systems. And for the
persistence of lower dimensional invariant tori, see [12,21–23,29,30,34,38–40,43,45,52],
especially, for resonant invariant tori, see [11,14,26,27,41,48]. For a long time, one has
been trying to establish the KAM type results for nonsymmetric Hamiltonian systems,
i.e. generalized Hamiltonian ones under consideration. When m0=0, l<n and l+n is
even, the system is co-isotropic, for which we refer the reader to [10,16,17,35,37,51]. Ac-
tually, by some technical reasons the development of KAM theory for ‘odd-dimensional’
systems is a challenging problem, as pointed out in [28,32,46], and the relative theorem,
where l+n is odd, was given in [25] on the Poisson manifolds, which can be applied to
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the perturbation of three-dimensional incompressible fluid flows [7,32,36]. Also see [13].
Furthermore, the KAM theory about atropic tori can be found in [18,19,46,47].

On the other hand, starting with Arnold’s research [2] form0=1, the KAM stability
for multiscale Hamiltonian systems has been paid high attention. When m0≥1 and
I=J , l=n, with the degeneracy-removing condition in many restricted 3−body as
well as n−body, there exists a family of invariant tori [4–6, 8, 20] and with high order
degeneracy-removing condition [15]. This has been applied to spatial lunar problem
by Meyer, Palacián and Yanguas [31]. And for further research, see [42, 44, 49, 50].
Naturally, one can ask whether there is a family of invariant tori when system (1.1) is
one of multiscale with m0≥1. Especially, when m0>1, this will become very complex
due to possible independence of these small parameters. In this paper we will study the
KAM persistence for such a multiscale generalized Hamiltonian system (1.1).

Let the Poisson structure matrix I=(Iij) :G×Tn→R(l+n)×(l+n) be a real analytic,
antisymmetric, matrix-valued function with rank I >0 and satisfy the Jacobi identity:

l+n∑
a=1

(Iia
∂Ijk
∂za

+Ija
∂Iki
∂za

+Ika
∂Iij
∂za

)=0 (1.2)

for all z=(y,x)∈G×Tn and i,j,k=1,2, ·· · ,l+n. Such a structure matrix defines a
2-form ω2 (Poisson structure): ω2(·,Iω1)=ω1(·), for all 1-form ω1 defined on G×Tn,
which can also be determined in the following way:

{f1,f2}=df2(Idf1)= ⟨∇f1,I∇f2⟩=ω2(Idf1,Idf2),

for all smooth functions f1 and f2 defined on G×Tn, where {·, ·} denotes the Poisson
bracket and ∇ denotes the standard Euclidean gradient on Rl×Tn. To ensure the
invariance 2-form ω2 relative to Tn, the structure matrix I should be independent of
x∈Tn, i.e. I= I(y), y∈G. Then on the Poisson manifold (G×Tn,ω2) the motion
equation of (1.1) associated to the 2-form ω2 reads

ż= I(y)∇(N(y,ε̃)+ε2P (y,x)), (1.3)

where ε̃=(ε1,·· · ,εm0
), N(y,ε̃)=ε0h0(y)+ε1h1(y)+ ·· ·+εm0

hm0
(y) and z=(y,x)T .

Moreover, we require that the unperturbed system associated to (1.3) is completely in-
tegrable, i.e. y=(y1,y2,·· · ,yl)T ∈G need to satisfy the involution conditions: {yi,yj}=
0,i,j=1,2, ·· · ,l. Thereby,

I(y)=

(
O B(y)

−BT (y) C(y)

)
, (1.4)

where O=Ol,l is a zero matrix, B=Bl,n, C=Cn,n with CT =−C.
Let ε=0 in (1.3). Then the motion equation for the unperturbed system, N(y,ε̃),

reads {
ẏ=0
ẋ=ω(y),

where ω=(ω̄1(y), ·· · ,ω̄n(y))=−BT (y)∂yN(y,ε̃), ε̃=(ε1, ·· · ,εm0
). Hence, the phase

space G×Tn is foliated into invariant n−tori {Ty :y∈G} carrying parallel flows un-
der the incommensurate condition: ⟨k,ω⟩ ≠ 0 for ∀k∈Zn \{0}. What we will show
is the persistence of invariant tori under small perturbation. To this aim, let
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g(ς,y)=(⟨ς,ω0⟩, ·· · ,⟨ς,ωm0⟩)T , ς ∈Sn, where Sn is the n dimensional unit sphere and
ωi=−BT (y)∂yhi, 0≤|i|≤m0. We introduce the following multiscale nondegenerate
condition:

(A) There exists an N >1 such that

rank{∂αy g : 0≤|α|≤N, ∀y∈G}=m0+1, ∀ς ∈Sn.

Remark 1.1. As is well-known, the weakest condition ensuring the persistence of
invariant tori is Rüssmann nondegenerate condition [45]. Condition(A) is a multiscale
nondegenerate one on Poisson manifold as compared to the Rüssmann nondegenerate
condition on symplectic manifold. For multiscale nondegenerate condition on symplectic
manifold, refer to [42].

Remark 1.2. In fact, condition (A) is also equivalent to the following:
(A′) There is a positive integer N such that

rank{∂αy ω : 0≤|α|≤N, ∀y∈G}=n for |εi|>0,

where ω=−BT (y)∂yN(y,ε̃), ε̃=(ε1, ·· · ,εm0
), n is the dimension of the variable

x.

(Kol) Assume

(∂2yN)T∂2yN ≥min{ε20,·· · ,ε2m0
}Il×l.

Remark 1.3. Assumption (Kol) is a multiscale nondegenerate condition on Poisson
manifold as compared to the Kolmogorov nondegenerate one on symplectic manifold.
If m0=0, for a similar nondegenerate condition on Poisson manifold, refer to [25].

(Iso) Assume (
∂2yN ΩT

Ω 0

)T (
∂2yN ΩT

Ω 0

)
≥min{ε20,·· · ,ε2m0

}I(l+1)×(l+1).

Remark 1.4. Assumption (Iso) is a multiscale isoenergetically nondegenerate condi-
tion on Poisson manifold as compared to the isoenergetically nondegenerate one given
by Arnold [2] on symplectic manifold. However, Arnold’s condition does not involve
multiscale. Hence (Iso) seems to be first multiscale isoenergetically nondegenerate con-
dition.

Our main result can be stated as follows.

Theorem 1.1. Consider Hamiltonian (1.1) with the Poisson structure I(y), i.e. (1.4)
and the Jacobi identity.
(1) Assume multiscale nondegenerate condition (A). Then there exist a ∆0>0 and a

family of Cantor sets Gε⊂G, 0<ε≤∆0, such that for any y∈Gε the unperturbed
torus Ty persists and gives rise to an analytic, Diophantine, invariant n−torus of
the perturbed system with small perturbed frequency ωε(y). Moreover, the Lebesgue
measure |G\Gε|→0 as ε→0;

(2) Assume (Kol) and (A) on G. Then there exist a ∆0>0 and a family of Cantor
sets Gε⊂G, 0<ε≤∆0, such that for any y∈Gε the unperturbed Diophantine tori
will persist and give rise to perturbed tori preserving corresponding unperturbed toral
frequencies.
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(3) Let Σ={y :N(y)= c} be a given energy surface. Assume (Iso) and (A) on Σ. Then
there exist a ∆0>0 and a family of Cantor sets Σε⊂Σ, 0<ε≤∆0, such that for any
y∈Σε the unperturbed Diophantine tori will persist and give rise to perturbed tori
keeping the same energy and maintaining the frequency ratio. Moreover, |Σ\Σε|→0
as ε→0.

To have a good understanding of the main result, we show three applications first.

Example 1.1. Consider the following Hamiltonian system:

H(x,y,ε̃)= ⟨ω,y⟩+ 1

2
⟨y,Ay⟩+ε2P (x,y), (1.5)

defined on a Poisson manifold with Poisson structure I(y) satisfying (1.4) and the Jacobi
identity, where

ω=ε0ω0+ ·· ·+εm0
ωm0

, A=


ε0I0 0 ·· · 0
0 ε1I1 ·· · 0
...

...
. . .

...
0 0 ·· · εm0Im0

 , I0, I1, ·· ·, Im0
are identity

matrices with dimension m̃0, m̃1, ·· ·, m̃m0 , respectively, and m̃0+m̃1+ ·· ·+m̃m0 =n.
It is easy to check

ATA =


ε20I0 0 ·· · 0
0 ε21I1 ·· · 0
...

...
. . . 0

0 0 ·· · ε2m0
Im0



≥ min{ε20, ·· · ,ε2m0
}


I0 0 ·· · 0
0 I1 ·· · 0
...

...
. . .

...
0 0 ·· · Im0

 .

Using Theorem 1.1, if ω satisfies condition (A), for Hamiltonian (1.5) there is a family
of invariant tori, on which the frequency is BTω.

Example 1.2. Consider the following first order PDEs:

n∑
i=1

ai(I1, ·· · ,In,θ1,·· · ,θl)
∂u

∂Ii
+

l∑
i=1

an+i(I1,·· · ,In,θ1, ·· · ,θl)
∂u

∂θi
=0, (1.6)

where I=(I1, ·· · ,In)∈G⊂Rn, θ=(θ1,·· · ,θl)∈T l, G is a bounded closed region.

We give some basic definitions first. In (1.6), (a1, ·· · ,an+l) is called the character-
istic direction. The following equations:

dI1
dt =a1(I1, ·· · ,In,θ1,·· · ,θl),

...
dIn
dt =an(I1, ·· · ,In,θ1,·· · ,θl),

...
dθ1
dt =an+1(I1, ·· · ,In,θ1,·· · ,θl),

...
dθl
dt =an+l(I1, ·· · ,In,θ1,·· · ,θl),

(1.7)
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and 

dI1
dt =a1(I1, ·· · ,In,θ1,·· · ,θl),

...
dIn
dt =an(I1, ·· · ,In,θ1,·· · ,θl),

...
dθ1
dt =an+1(I1, ·· · ,In,θ1,·· · ,θl),

...
dθl
dt =an+l(I1, ·· · ,In,θ1,·· · ,θl),
du
dt =0,

(1.8)

are called characteristic equations and full characteristic equations, respec-
tively.

As is well-known, the picture of integral curves for (1.6) is determined by full char-
acteristic equations. From full characteristic equations (1.8), we get u= c. Therefore,
the characteristic equations are basic to show the picture of integral curves. Next, we
give the definitions of integrable characteristic equations and nearly integrable charac-
teristic equations. The characteristic equations are integrable if there is a Hamiltonian
H(I) and a matrix Bn×l(I) such that

(1) ai=0, 1≤ i≤n,

(2)

an+1

...
an+l

=−BT ∂H
∂I .

For integrable characteristic equations, if BT ∂H
∂I is incommensurate, the picture of in-

tegral curves on space (I,θ,u) is a torus for any I ∈G and u= c.

Question: What is the picture of the integral curves if the characteristic equations
are not integrable?

The characteristic equations are nearly integrable if there are two Hamiltonians
H(I) and P (I,θ), two matrices B(I) and C(I) with C=−CT such that

(1)

 a1
...
an

=εB ∂P
∂θ ,

(2)

an+1

...
an+l

=−BT ∂H
∂I +εC ∂P

∂θ .

Remark 1.5. Combining the definitions of integrable characteristic equations and
nearly integrable characteristic equations, u= c is a surface on space (I,θ,u) with a

differential structure J(I), usually to be a Poisson one, where J(I)=

(
0 B

−BT C

)
, C=

−CT .

(A2) There is an N >1 such that

rank{∂αI g,0≤|α|≤N}=1,∀ς ∈Sl,

where g= ςBT ∂H
∂I .
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Theorem 1.2. Let J be a Poisson structure, i.e., J satisfy the Jacobi identity. The
picture of integral curves with integrable characteristic equations is a torus T l and denote
it by T .

(1) Assume (A2) on G. Then there exist a ε0>0 and a family of Cantor sets Gε⊂G,
0<ε≤ε0, such that for any I ∈Gε and u= c the picture of integral curve with nearly
integrable characteristic equations on space (I,θ,u) keeps a torus Tε. Moreover, the
Lebesgue measure |G\Gε|→0 as ε→0.

(2) Assume (A2) and rank ∂2H
∂I2 =n on G. Then there exist a ε0>0 and a family of

Cantor sets Gε⊂G, 0<ε≤ε0, such that for any I ∈Gε and u= c the picture of
integral curve with nearly integrable characteristic equations on space (I,θ,u) keeps
a torus Tε and the frequencies between T and Tε are same. Moreover, the Lebesgue
measure |G\Gε|→0 as ε→0.

(3) Let Σ={I :H= c} be a given energy surface. Assume (A2) and

rank

(
∂2H
∂I2 ΩT

Ω 0

)
=n+1

hold on Σ. Then there exist a ε0>0 and a family of Cantor sets Σε⊂Σ, 0<ε≤
ε0, such that for any I ∈Σε and u= c the picture of integral curves with nearly
integrable characteristic equations on space (I,θ,u) persists as a torus Tε, on which
the frequency ratio is kept. Moreover, the Lebesgue measure |Σ\Σε|→0 as ε→0.

Remark 1.6. In this application we give the definitions of integrable characteristic
equations and nearly integrable characteristic equations. And we prove that the picture
of integral curves for semi-linear equation with nearly integrable characteristic equations
is a family of tori. The results also hold for semi-linear equation with nearly multiscale
integrable characteristic equations.

Example 1.3. For multiscale generalized Hamiltonians, an important and direct ap-
plication is about the three-dimensional multiscale steady Euler fluid path flows. The
persistence of invariant 2-tori or 1-tori (on the cylinder) after suitable perturbations is
a significant way to understand the barrier of fluid transport and mixing, which brings
KAM theory into play.

A fundamental result about three-dimensional volume-preserving flows given by
Arnold [3] shows that the system admits either invariant tori with trajectories all closed
or all dense, or invariant annuli with trajectories all closed, when the steady Euler ve-
locity field is not everywhere collinear with its vorticity field in a domain, which uses
crucially the fact that the vorticity associated with a steady Euler flow is an infinitesimal
generator of a volume-preserving spatial symmetry group. Without the fact mentioned
above, the persistence of invariant 2-tori under volume-preserving perturbations was
shown in [32] by using the KAM theory developed in [9] for volume-preserving maps.
And for the persistence to general perturbation, we refer the reader to [25]. The frequen-
cies of the results mentioned above are only with one scale. Then a nature question is
whether there is a family of invariant tori for multiscale three-dimensional steady Euler
fluid path flows.

For example, consider the nearly planar flow reduced by a divergence-free multiscale
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system of ordinary differential equations of the following form:
ż1=

∂H(z1,z2)
∂z2

ż2=−∂H(z1,z2)
∂z1

ż3=ε1h(z1,z2)

, (1.9)

where z1, z2 and z3 ∈R1. We assume that the steady Euler flow admits a family of
elliptic vortex lines, i.e.

(H) There is a region D of the (z1,z2)−plane in which the level sets H(z1,z2)= c
are closed curves,

which is generally satisfied for steady Euler flow.

Under assumption (H), (1.9) becomes the following form of action-angle: İ=0

θ̇=ω1(I)
ż3=ε1h(I,θ)

. (1.10)

Suppose ω1 ̸=0 in D. Then with the volume-preserving transformation ϕ=z3+
θ
2π

∫ 2π

0
ε1h(I,θ)
ω1(I) dθ−

∫ ε1h(I,θ)
ω1(I) dθ, (1.10) arrives at

İ=0

θ̇=ω1(I)
ϕ̇=ε1ω2(I)

, (1.11)

where ϕ∈S1 or R1 and ω2(I)= ω1(I)
2π

∫ 2π

0
h(I,θ)
ω1(I) dθ, which describes nearly planar flow.

Actually, system (1.11) is equivalent to an integral Hamiltonian N(I) with the
Poisson structure matrix

I=

(
0 B(I)

−BT (I) C

)
,

where I ∈R1,

(
ω1

ε1ω2

)
=−BT (I)∂IN(I), ε≪ε1. With the incommensurate condition

the persistence of invariant tori is obvious. Then a direct and important problem is
whether there is a family of invariant tori under small perturbation. In other words,
consider a nearly integrable real analytic multiscale three-dimensional Hamiltonian of
the following form:

H(I,ψ)=N(I)+ε2P (I,ψ) (1.12)

with the Poisson structure matrix

I=

(
0 B(I)

−BT (I) C

)
,

where I ∈Λ⊂R1, ψ=(θ,ϕ)∈T 2,

(
ω1

ε1ω2

)
=−BT (I)∂IN(I), ε≪ε1. We state our re-

sult about the persistence of invariant tori for Hamiltonian (1.12) as follows.

(A3) There is a positive integer N such that

rank{∂αIω : 0≤|α|≤N}=2 for |εi|>0,

where ω=−BT (I)∂IN(I).
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Theorem 1.3. Consider Hamiltonian (1.12) with the Poisson structure I(I) satisfying
the Jacobi identity.

(1) Assume (A3) on Λ. Then there exist a ∆0>0 and a family of Cantor sets
Λε⊂Λ, 0<ε≤∆0, such that for any I ∈Λε the unperturbed torus TI persists
and gives rise to an analytic, Diophantine, invariant torus of the perturbed
system with small perturbed frequency ωε(I). Moreover, the Lebesgue measure
|Λ\Λε|→0 as ε→0;

(2) Assume (A3) and ∂2IN
T
∂2IN ≥ε21 on Λ. Then there exist a ∆0>0 and a fam-

ily of Cantor sets Λε⊂Λ, 0<ε≤∆0, such that for any I ∈Λε the unperturbed
Diophantine tori will persist and give rise to perturbed tori which preserve
corresponding unperturbed toral frequency. Moreover, the Lebesgue measure
|Λ\Λε|→0 as ε→0;

(3) Let Σ={I :N = c} be a given energy surface. Assume (A3) and(
∂2IN ΩT

Ω 0

)T (
∂2IN ΩT

Ω 0

)
≥ε21I2×2

on Σ. Then there exist a ∆0>0 and a family of Cantor sets Σε⊂Σ, 0<ε≤∆0,
such that for any I ∈Σε the unperturbed Diophantine tori on Σε will persist
and give rise to perturbed tori keeping the same energy and maintaining the
frequency ratio. Moreover, |Σ\Σε|→0 as ε→0.

Remark 1.7. In applications, one does have the freedom to determine the Poisson
matrix I(I) according to either the form of a perturbation or the nature of a particular
problem.

Actually, this paper is an extension of reference [25]. The extension contains not
only the scales in integrable part from 1 to m0 but also the results show the preservation
of frequency and frequency ratio. Of course, this is not simple. It seems to be the first
work to give multiscale nondegenerate condition on Poisson manifold as compared to the
Kolmogorov nondegenerate one on symplectic manifold and multiscale iso-energetically
nondegenerate condition on Poisson manifold as compared to the iso-energetically non-
degenerate one on symplectic manifold. And we use an amendatory KAM iteration
mentioned in [44] to reduce the harm caused by multiscale. The paper is organized as
follows. In Section 2, we provide an amendatory KAM iteration for a parameterized
multiscale generalized Hamiltonian. The proof of the main result is placed in Section 3.

2. Abstract Hamiltonian
Throughout the paper, unless specified otherwise, we shall use the same symbol | · |

to denote an equivalent (finite dimensional) vector norm and its induced matrix norm,
absolute value of functions, and measure of sets, etc., and denote by | · |D the supremum
norm of functions on a domain D. Also, for any two complex column vectors ξ,ζ of the
same dimension, ⟨ξ,ζ⟩ always means ξT ζ, i.e. the transpose of ξ times ζ. For the sake
of brevity, we shall not specify smoothness orders for functions having obvious orders
of smoothness indicated by taking their derivatives.

Consider a parameterized Hamiltonian system of the following form:

H = N (y,ξ,ε̃)+εP(x,y,ξ), (2.1)

N = e(ξ)+⟨Ω(ξ),y⟩+h(y,ξ),
Ω = ε0ω0+ε1ω1+ ·· ·+εm0

ωm0
,
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h = ⟨y,A(ξ)y⟩,
A = ε0A0+ε1A1+ ·· ·+εm0Am0 ,

defined on D(r,s)={(x,y) : |Im x|<r, |y|<s}, a (r,s)−complex neighborhood of Tn×
{0}⊂Tn×Rl, where P=εP (x,y,ξ), ξ∈Λ={λ : |λ|≤ δ1}⊂Rd, ε̃=(ε1,·· · ,εm0) and ε
defined as above. Denote Λ̄={λ : |λ|≤ δ1− η̄}.
(A1) There is an N >1 such that

rank{∂αξ g̃ : 0≤|α|≤N}=m0+1,∀ς ∈Sn,

where ḡ=(⟨ς,ω̄0⟩, ·· · ,⟨ς,ω̄m0
⟩), ς ∈Sn, ω̄i=−BTωi, 0≤|i|≤m0.

Theorem 2.1. Consider Hamiltonian (2.1) with the Poisson structure I(y), i.e. (1.4)
and the Jacobi identity.

(1) Assume (A1). Then there exist a ∆0>0 and a family of Cantor sets Λε⊂Λ,
0<ε≤∆0, such that for any y∈Λε the unperturbed torus Ty persists and gives
rise to an analytic, Diophantine, invariant n−torus of the perturbed system with
small perturbed frequency ωε(y). Moreover, the Lebesgue measure |Λ\Λε|→0
as ε→0;

(2) Assume (A1) and ATA≥min{ε21,·· · ,ε2m0
}Il×l on Λ. Then there exist a ∆0>0

and a family of Cantor sets Λε⊂Λ, 0<ε≤∆0, such that for any y∈Λε the
unperturbed Diophantine tori will persist and give rise to perturbed tori which
preserve corresponding unperturbed toral frequency. Moreover, the Lebesgue
measure |Λ\Λε|→0 as ε→0;

(3) Let Σ={y :N = c} be a given energy surface. Assume (A1) and(
A ΩT

Ω 0

)T (
A ΩT

Ω 0

)
≥min{ε21,·· · ,ε2m0

}I(l+1)×(l+1)

on Σ. Then there exist a ∆0>0 and a family of Cantor sets Σε⊂Σ, 0<ε≤∆0,
such that for any y∈Σε the unperturbed Diophantine tori on Σε will persist
and give rise to perturbed tori keeping the same energy and maintaining the
frequency ratio. Moreover, |Σ\Σε|→0 as ε→0.

2.1. KAM steps. Let us begin with system (2.1) by regarding it as a Hamilto-
nian of 0−step, and rewriting it as follows:

H0 = N0(y,ξ,ε̃)+εP0(x,y,ξ), (2.2)

N0 = e0(ξ)+⟨Ω0(ξ),y⟩+h0(y,ξ),
Ω0 = ε0ω

0
0+ε1ω

0
1+ ·· ·+εm0

ω0
m0
,

h0 = ⟨y,A0(ξ)y⟩,
A0 = ε0A

0
0+ε1A

0
1+ ·· ·+εm0

A0
m0
,

defined on D(r0,s0)={(x,y) : |Im x|<r0, |y|<s0}, a (r0,s0)−complex neighborhood

of Tn×{0}⊂Tn×Rl, where P0=εP (x,y,ξ), ξ∈Λ0⊂Rd. Moreover, let γ0=ε
1

12(7+N) ,

s0=ε
1
3 , µ0=ε

1
4 , η̄0=ε

3(1−b)−4(b+σ)
14N , where b and σ are constants to be determined next.

Then by Cauchy estimate we have

|∂qξP0|D(r0,s0)×Λ̄0
<
γN+7
0 s20µ0

η̄N0
, |q|≤N.
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Next, we will show the KAM iteration from ν−step to (ν+1)−step. For simplicity,
we shall omit the index for all quantities of the ν−th KAM step and use ′+′ to index
all quantities in the (ν+1)−th KAM step. Suppose, at ν−th step, we have obtained
the following smooth family of real analytic Hamiltonians

H(x,y,ξ) = N (y,ξ,ε̃)+εP(x,y,ξ), (2.3)

N (y,ξ,ε̃) = e(ξ,ε̃)+⟨Ω(ξ,ε̃),y⟩+h(y,ξ,ε̃),
Ω(ξ,ε̃) = ε0ω0+ε1ω1+ ·· ·+εm0

ωm0
,

h(y,ξ,ε̃) = ⟨y,A(ξ,ε̃)y⟩,
A(ξ,ε̃) = ε0A0+ε1A1+ ·· ·+εm0

Am0
,

where (x,y)∈D(r,s)={(x,y) : |Im x|<r, |y|<s}, a (r,s)−complex neighborhood of
Tn×{0}⊂Tn×Rl, ξ∈Λ⊂Rd. Moreover,

|∂qξP|D(r,s)×Λ̄≤ γN+7s2µ

η̄N
, |q|≤N. (2.4)

We need to construct a canonical transformation Φ+, which, on a small phase domain
D(r+,s+) and a smaller parameter domain Λ+, transforms (2.3) into a family of Hamil-
tonians with the following form

H+=H◦Φ+=N++εP+

enjoying the similar properties to (2.3) but with a much smaller unintegrable perturba-
tion P+.

All constants below, for simplicity, denoted by c, are positive and independent of

the iteration process. Define ε̃=(ε0, ·· · ,εm0) with |ε̃|=
m0∑
i=0

|εi|, and let

r+ = δr−d(1− δ2

2
)r0, s+=s1+b+σ, γ+=

γ0
4
+
γ

2
,

K+ = ([log
1

s
]+1)3, D+=D(s+,r+), D̃=D(s0,r++

5

8
(r−r+)),

Di = D(is+,r++
i−1

8
(r−r+)), i=1,·· · ,8, η̄+= η̄− η̄0

2ν+1
,

where a0, b, σ, d are chosen so that 1<b≪σ≪1, 0<d≪1, 2−m(b+σ)−σ> 3
2 , δ(1+

b+σ)>1 and δ=1−d. Hereafter, we let τ >max{0,n(n+1)−1,l(l+1)−1,(N+1)N−
1} be fixed.

2.1.1. Truncation. Consider the Taylor-Fourier series of P

P=
∑

|k|∈Zn, i∈Zn
+

Pkiy
ie

√
−1⟨k,x⟩,

and denote the truncation of P by R with the following form

R=
∑

|k|≤K+, |i|≤2

Pkiy
ie

√
−1⟨k,x⟩.

With the following assumptions

s+ ≤ s

16
, (2.5)
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K+

λn+Ne−
λ(r−r+)

16 dλ ≤ s3(1+b+σ), (2.6)

and using Lemma 2.1 in [25] we get

|∂qξ (P−R)|D8×Λ̄≤
cγN+7µ(s3(1+b+σ)+

s3+
s )

η̄N
.

2.1.2. Homological equations. To average out all harmonic terms of R,
i.e. all terms Pkiy

ie
√
−1⟨k,x⟩, 0< |k|≤K+, |i|≤2, consider the following homological

equations

{N ,F}+ε(R− [R])−Q=0, (2.7)

where

F =
∑

0<|k|≤K+, |i|≤2

fkiy
ie

√
−1⟨k,x⟩,

[R] =
1

(2π)n

∫
Tn

R(x,y)dx,

Q =
∑

0<|k|≤K+,
|i|≤2

√
−1⟨k,(BT (y,ξ)−BT (y0,ξ))(Ω(ξ)+∂yh(y,ξ,ε̃))⟩fkiyie

√
−1⟨k,x⟩.

By comparing coefficients of (2.7), we set formally

√
−1⟨k,BT (y0,ξ)(Ω(ξ,ε̃)+∂yh(y,ξ,ε̃))⟩fki=εPki. (2.8)

Put

BT (Ω+∂yh)=ε0ω̃0+ε1ω̃1+ ·· ·+εm0
ω̃m0

+O(ε0y+ ·· ·+εm0
y)

and denote

Lk= ⟨k,BT (y0,ξ)(Ω(ξ,ε̃)+∂yh(y,ξ,ε̃))⟩.

Furthermore, on Λ+, by the following assumption

s ·Kτ+1
+ =o(γ0), (2.9)

we have

|Lk| = |(ε0, ·· · ,εm0)(⟨k,ω̃0⟩, ·· · ,⟨k,ω̃m0⟩)
+(ε0, ·· · ,εm0)(⟨k,O(|y|)⟩,·· · ,⟨k,O(|y|)⟩)|

≥ c|ε̃| γ
|k|τ

−|ε̃||k|O(|y|)

≥ c|ε̃| γ0
|k|τ

,

where Λ+={ξ∈Λ: |⟨k,ω⟩|> |ε̃|γ
|k|τ , 0< |k|≤K+}, ω=ε0ω̃0+ ·· ·+εm0 ω̃m0 . Then (2.8) is

solvable on Λ+. Moreover, all solutions fki, 0< |k|≤K+, |i|≤m, are real analytic on
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Λ+. Thus we have found out the desired generalized Hamiltonian F , which is real
analytic in both ξ∈Λ+ and (y,x)∈D8. Moreover,

|∂qξ∂
j
y∂

z
xF | ≤

s2−|i|µ

η̄N
Γ(r−r+),

where Γ(r−r+)=
∑

|j|≤2, 0<|k|≤K+

|k|τ(|j|+|q|)+|j|+|q|−1+|z|e−
|k|(r−r+)

8 . We place the details

in Appendix A.

2.1.3. Estimate for transformations. Let Φ+=ϕ1F be the time−1 map of
the motion equation associated to F , i.e.

ż= I(y,ξ)∇F (y,x,ε̃), (2.10)

where z=(y,x)T . Then Φ+ is a canonical transformation and

H̄+ = H◦Φ+=(N +εR)◦ϕ1F +ε(P−R)◦ϕ1F = N̄++ P̄+,

where

P̄+ =

∫ 1

0

{Rt,F}◦ϕtF dt+ε(P−R)◦ϕ1F +Q,

N̄+ = N +ε[R],

Rt = (1− t){N ,F}+εR.

It should be pointed out that due to the Jacobi identity the structure matrix I is
kept unchanged at each KAM step. Let I(z), z=(x,y), be a structure matrix on G×Tn

and ϕtF (z) be the flow generated by a vector field I(z)∇F (z). Then by Jacobi identity,

∂zϕ
t
F (z)

T I(z)∂zϕ
t
F (z)= I(ϕ

t
F (z)),

which implies the preservation of the Poisson structure on G×Tn under the transfor-
mation z1=ϕ

1
F (z). And with the following assumptions

cµΓ(r−r+)
η̄N

<
1

8
(r−r+), (2.11)

cs2µΓ(r−r+)
η̄N

< 3s+, (2.12)

we have

|DϕtF −Did| ≤ cµΓ(r−r+)
η̄N

.

And we place the details in Appendix B.

Consider the transformation

ϕ :x→x, y→y+y∗.

Then

H+ = H̄+ ◦ϕ=e++⟨Ω+,y⟩+h+(y)+P+,
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where

e+ = e+⟨Ω(ξ),y∗⟩+ 1

2
⟨y∗,Ay∗⟩+[R](y∗),

Ω+ = Ω+Ay∗+εP01,

A+ = A+ε∂2y [R](y∗),

h+ = ⟨y,A+y⟩,
P+ = P̄+ ◦ϕ.

Moreover, by induction, we have |∂qξy∗|≤ c
γN+7sµ

η̄N . We place the details in Appendix C.

Remark 2.1. Let {
⟨Ω(ξ),y∗⟩+ 1

2 ⟨y
∗,Ay∗⟩+[R](y∗)=0,

Ay∗+εP01+ tΩ(ξ)=0.
(2.13)

Assume (
A ΩT

Ω 0

)T (
A ΩT

Ω 0

)
≥min{ε20,·· · ,ε2m0

}I(l+1)×(l+1).

Then there is a solution (y∗,t)T for (2.13), which implies the preservation of frequency
ratio on a given energy surface.

2.1.4. Estimate for new Hamiltonian. By the estimate of |∂lξy∗| together
with definitions of e+, Ω+ and A+, we have

|∂qξ (e+−e)| ≤ cγN+7sµ

η̄N
,

|∂qξ (Ω+−Ω)| ≤ cγN+7sµ

η̄N
,

|∂qξ (A+−A)| ≤ cγN+7µ

η̄N
.

Lemma 2.1. Assume

∆+<
γN+7
+ s2+µ+

η̄N+
, (2.14)

where

∆+=
µ(cµs4Γ2(r−r+)+γN+7µs3+(1+

1
s )+s

3µΓ(r−r+)+γN+7s4)

η̄N
.

Then there is a constant c such that

|∂qξP+|D+×Λ̄+
≤ c

γN+7
+ s2+µ+

η̄N+
.

Proof. Using the definition of Q, by Cauchy estimate, we deduce

|∂qξQ|D+×Λ̄+
≤ cs3µΓ(r−r+)

η̄N
.
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With the definition of Poisson bracket and direct calculating, we have

|∂qξ
∫ 1

0

{Rt,F}◦ϕtF dt◦ϕ|≤
cµ2s4Γ2(r−r+)

η̄N
.

Besides

|∂qξ (P−R)◦ϕ1F ◦ϕ|≤ cγN+7µ

η̄N
(s3(1+b+σ)+

s3+
s
),

finally,

|∂qξP+|≤∆+≤
γN+7
+ s2+µ+

η̄N+
.

Now, we finish a KAM step.

2.2. Iteration lemma. In this section, we will prove an Iteration Lemma which
guarantees the inductive construction of canonical transformations in all KAM steps.
Let r0, s0, γ0, µ0, Λ0, H0, N0, e0, Ω0, P0 be given as above and let D̃0=D(r0,β0),
D0=D(r0,s0), K0=0, Φ0= id. For any ν=0,1, ·· · , we label all index-free qualities
in Section 2 by ν and all ‘+′−indexed qualities in Section 2 by ν+1. This defines
sequences

rν , sν , µν , Kν , Λν , Dν , D̃ν , Hν , Nν , eν , Ων , ων , hν , Pν , Φν ,

for ν=0,1, ·· ·. In particular,

Hν =Hν(x,y)=Nν+Pν ,

Nν =ev+⟨Ων ,y⟩+hν(y),

where (y,x)∈ D̃ν , ξ∈Λν , eν =eν(y0), ων =−BT (y0,ξ)Ων(ξ,ε̃), Ων =Ων(ξ,ε̃) is analytic
on Λν , and hν =hν(y,ξ,ε̃) and Pν =Pν(y,x,ξ) are analytic in ξ∈Λν and (y,x)∈ D̃ν .
Moreover, for ν=1,2,·· · ,

sν = s1+b+σ
ν−1 , µν = c0s

σ
ν−1µν−1, γν =γ0(1−

ν∑
i=1

1

2i+1
), Kν =([log

1

sν−1
]+1)3,

∆ν =
µν−1

η̄Nν−1

(cµν−1s
4
ν−1Γ

2(rν−1−rν)+γN+7
ν−1 µν−1s

3
ν(1+

1

sν−1
)

+s3ν−1µΓ(rν−1−rν)+γN+7
ν−1 s

4
ν−1),

Λν = {ξ∈Λν−1 : |⟨k,ων−1(ξ)⟩|>
|ε̃|γν−1

|k|τ
,0< |k|≤Kν}, η̄ν = η̄ν−1−

η̄0
2ν+1

,

Dν = D(rν ,sν), D̃ν =D(rν+
7

8
(rν−1−rν),s0),

where c0 is the maximum among c mentioned above.

Lemma 2.2. If µ0=µ0(ε) is sufficiently small, then the following hold for all ν=
0,1, ·· ·:
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(1)

|eν−e0|Λν
, |Ων−Ω0|Λν

, |ων−ω0|Λν
, |hν−h0|Λν

≤2γN+7
0 µ∗,

|eν+1−eν |Λ∞ , |Ων+1−Ων |Λ∞ , |ων+1−ων |Λ∞ , |hν+1−hν |Λ∞ ≤ γN+7
0 µ∗

2ν+1
,

|∂qξPν |Dν×Λ̄ν
≤ γN+7

ν s2νµν

η̄Nν
;

(2) Φν+1 : D̃ν+1×Λν+1→ D̃ν is canonical and real analytic with respect to (y,x)∈
D̃ν+1, ξ∈Λν+1. Moreover, Hν+1=Hν ◦Φν+1, and, on D̃ν+1×Λν+1,

|Φν+1− id|, |DΦν+1−Did|,|DiΦν+1|≤
µ∗

2ν+1
, 2≤ i≤m;

(3) Λν+1={ξ∈Λν : |⟨k,ων(ξ)⟩|> |ε̃|γν

|k|τ ,Kν < |k|≤Kν+1}.

Proof. The lemma will be proved by performing the KAM steps inductively. What
we should do is to verify conditions (2.5), (2.6), (2.9), (2.11), (2.12) and (2.14) for all
ν=0,1, ·· ·.

Inductively,

µν = cν0µ0s
σ((1+b+σ)ν−1)

b+σ

0 ,

sν = s
(1+b+σ)ν

0 .

Then

sν+1=sνs
(1+b+σ)ν(b+σ)
0 ≤sνsb+σ

0 ≤ sν
16
,

i.e. (2.5) holds. Denote

Eν =
rν−rν+1

8
=
δν+2γ0(1−δ)

16

and with δ(1+b+σ)>1 we have

Eν

2
log

1

sν
=
δν+2γ0(1−δ)

32
logs

−(1+b+σ)ν

0 ≥−γ0δ
2(1−δ)
32

logs0≥1.

Therefore

log(n+N+1)!+3(n+N)log([log
1

sν
]+1)− Eν

2
([log

1

sν
]+1)3

≤ −(m+1)(1+b+σ)log
1

sν
.

Thus ∫ ∞

Kν+1

λn+Ne−
λEν

2 dλ≤ (n+N+1)!Kn+N
ν+1 e

−Kν+1Eν
2 ≤s3ν+1,

i.e. (2.6) holds. Similarly,

sνK
τ+1
ν+1 =s

(1+b+σ)ν

0 ([log
1

sν
]+1)3(τ+1)≤s(1+b+σ)ν

0 (log
1

s
(1+b+σ)ν

0

+2)3(τ+1).
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Since xβ(log 1
x +c)

ξ →0, as x→0, where β>0, ξ >1 and c>1 are constant, hypothesis

(2.9), sνK
τ+1
ν+1 =O(γ0), is obvious.

Let l0= b, η=8+n+4[τ ]+4, where [τ ] is the integral part of τ . Without doubt

Γν =
∑

|j|≤2, 0<|k|≤Kν+1

|k|τ(|j|+|q|+1)+|j|+|q|+|z|e−
|k|(r−r+)

8 ≤
∫ ∞

1

ληe−λEνdλ≤ η!

Eη
ν
.

Besides

µl0
ν

Eη+1
ν

=(
16

γ0(1−δ)δν+2
)η+1cν0µ

l0
0 s

σ
b+σ ((1+b+σ)ν−1)

0 ≤ c∗µl0
0 (
sσ0 c0
δη+1

)ν ,

we have

c0µνΓν

Eν η̄Nν
≤ c0η!

µl0
ν

Eη+1
ν

≤1,

as ε0 small enough, i.e. (2.11) holds. By c0sνµνΓν

sν+1η̄N
ν

≤3, (2.12) is obvious.

Moreover, by making ε0 small, we have c0µ
a0
ν Γ3

ν ≤ 1
2ν . Next, for each ν≥1

|∂lξ∆ν+1| ≤
(
cµ2

νs
4
νΓ

2
ν(rν−rν+1)+γ

N+7
ν µνs

3
ν+1(1+

1

sν
)

+s4νµνΓν(rν−rν+1)+cγ
N+7
ν s4νµν

)
/η̄Nν

≤ [2cµ2
ν+1s

2
ν+1s

4−2σ−2(1+b+σ)
ν +2γN+7

ν µν+1s
m
ν+1s

1+σ
ν

+2γN+7
ν µν+1s

2
ν+1s

b
ν+3s4−σ−2(1+b+σ)

ν µν+1s
2
ν+1]

Γ2
ν(rν−rν+1)

η̄Nν

≤ γN+7
ν+1 sν+1µν+1[2s

1+b
ν +2sbν+2

s
4−2σ−2(1+b+σ)
ν µν+1

γN+7
0

+3
s
4−σ−2(1+b+σ)
ν

γN+7
0

]
Γ2
ν(rν−rν+1)

η̄Nν

≤ cγN+7
ν+1 s

2
ν+1µν+1(s

b
ν+

s
3
2
ν

γN+7
0

)
Γ2
ν(rν−rν+1)

η̄Nν

≤ CγN+7
ν+1 s

2
ν+1µν+1s

l0
ν

Γ2
ν(rν−rν+1)

η̄Nν

≤
CγN+7

ν+1 s
2
ν+1µν+1

η̄Nν+1

,

i.e. (2.14) holds.

For brevity we omit the measure estimate of |Λ0 \Λ∗| and for details we refer the
reader to [25] and [42].

3. Proof of main theorem
Actually, the main task of the persistence of invariant tori for multiscale generalized

Hamiltonian (1.1) is to achieve the program of the KAM iteration consisting of infinite
KAM steps by induction. Without loss of generality, we assume that there is a closed
region Λ⊂Rd and a Cl0 diffeomorphism y :Λ→M (=y(Λ)). Let ξ∈Λ and consider
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the transformation: y 7→y+y(ξ). Then (1.1) turns into a parameterized Hamiltonian
system of the following form:

H = N (y,ξ,ε̃)+ε2P (x,y,ξ), (3.1)

N = e(ξ)+⟨Ω(ξ),y⟩+h(y,ξ)+O(|y|3),
Ω = ε0∂yh0+ε1∂yh1+ ·· ·+εm0∂yhm0 ,

h = ⟨y,A(ξ)y⟩,
A = ε0∂

2
yh0+ε1∂

2
yh1+ ·· ·+εm0∂

2
yhm0 ,

where ξ∈Λ={λ : |λ|≤ δ1}⊂Rd, ε̃=(ε1, ·· · ,εm0
) and ε defined as above. Consider the

following symplectic transformation:

x→x, y→
√
εy, H→ 1√

ε
H,

and denote
√
ε=ε, then the Hamiltonian (3.1) is changed to

H = N (y,ξ,ε̃)+ε2P̄ (x,y,ξ), (3.2)

N =
e(ξ)

ε
+⟨Ω(ξ),y⟩+εh(y,ξ),

where ε2P̄ =ε3P +ε2O(|y|3), Ω and h defined as above. Moreover,

|P̄ |≤ cγN+7s2µ,

if γ=ε
1

12(7+N) , s=ε
1
3 , µ=ε

1
4 . Hence, with Theorem 2.1 we can get Theorem 1.1.

Remark 3.1. Normal forms (3.2) and (2.1) seem a little different. In normal form (3.2),
the perturbation is ε2P̄ (x,y,ξ)=O(ε3), which is small comparing the integrable part.
The difficulty is the term εh(y,ξ), which is bad for the preservation of the frequency. In
fact, in our case, this difficulty could be overcome since the coefficient of the perturbation
is ε2. We could achieve the proof of Theorem 1.1 step by step using the proof of
Theorem 2.1.
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Appendix A. The norm on the derivative of F . By induction, we have

|∂qξ∂
j
yL

−1
k | ≤ c|k||j|+|q|−1|ε̃||j|+|q|−1 |k|τ(|j|+|q|)

|ε̃||j|+|q|γ|j|+|q|

≤ |k|τ(|j|+|q|)+|j|+|q|−1

|ε̃|γ|j|+|q| .

Then

|∂qξ∂
j
yfki| ≤

c|k|τ(|j|+|q|)+|j|+|q|−1

|ε̃|γ|j|+|q| ε
γN+7s2−|i|µ

η̄N
e−|k|r
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≤ c|k|τ(|j|+|q|)+|j|+|q|−1 s
2−|i|µ

η̄N
e−|k|r.

Finally,

|∂qξ∂
j
y∂

z
xF | ≤

∑
|j|≤2, 0<|k|≤K+

|k|z|∂jy(∂
q
ξfkiy

i)|e|k|(r++ 7
8 (r−r+))

≤ s2−|i|µ

η̄N
Γ(r−r+),

where Γ(r−r+)=
∑

|j|≤2, 0<|k|≤K+

|k|τ(|j|+|q|)+|j|+|q|−1+|z|e−
|k|(r−r+)

8 .

Appendix B. The estimate on ϕtF . Denote ϕtF1
, ϕtF2

as the components of
ϕtF in y, x planes, respectively, and let XF be the vector field on the right-hand side of
(2.10), i.e. (

ẏ
ẋ

)
= I(y,ξ)∇F (y,x)=

(
0 B

−BT C

)(
∂yF
∂xF

)
.

Then ϕtF = id+
∫ t

0
XF ◦ϕλF dλ. For any (y,x)∈D3, we let t∗=sup{t∈ [0,1] :ϕtF (y,x)∈

D4}. By (2.5), i.e. s+≤ s
16 , we have D4⊂D∗, where D4=D(4s+,r++ 3

8 (r−r+)), D∗=
D( s2 ,r++ 6

7 (r−r+)). Then

|ϕtF1
(y,x)| = |y|+ |

∫ t

0

B(ϕλF1
+y0)Fx ◦ϕλF dλ|≤s++

cs2µΓ(r−r+)
η̄N

≤4s+,

|ϕtF2
(y,x)| = |x|+ |

∫ t

0

−B(ϕλF1
+y0)Fy ◦ϕλF +C(ϕλF1

+y0)Fx ◦ϕλF dλ|

= r++
7

8
(r−r+)+

cµΓ(r−r+)
η̄N

≤ r++
3

8
(r−r+),

where B, C are the matrices defined as above. This shows that ϕtF (y,x)∈D4 for all
0≤ t≤ t∗. Hence t∗=1 holds, i.e. ϕtF :D3→D4 for all 0≤ t≤1. Therefore, Φ+ :D+→
D(s,r). It follows straightforward form the argument above that |ϕtF − id|D̃≤ cµΓ(r−r+)

η̄N .

With Gronwall Inequality and

DϕtF = Did+

∫ t

0

((DI ·DF )◦ϕλF ·DϕλF +(I ·D2F )◦ϕλF ·DϕλF )dλ,

we have

|DϕtF −Did| = |
∫ t

0

(DI ·DF −I ·D2F )◦ϕλF ·(DϕλF −Did)

+(DI ·DF −I ·D2F )◦ϕλF dλ|

≤
∫ t

0

e
∫ t
s
|(DI·DF−I·D2F )◦ϕr

F |dr|(DI ·DF −I ·D2F )◦ϕsF |ds

≤ c|DI ·DF −I ·D2F |ec|DI·DF−I·D2F |

≤ cµΓ(r−r+)
η̄N

.
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Appendix C. The estimate on ϕ. Let

Ay∗=−εp01.

Then

(y∗)TATAy∗=−ε2pT01p01.

Assume

ATA≥min{ε21,·· · ,ε2m}I.

Obviously,

(y∗)
T

|y∗|
(ATA−min{ε21, ·· · ,ε2m}I) y

∗

|y∗|
|y∗|2≥0.

Therefore,

min{ε21, ·· · ,ε2m}|y∗|2 =
(y∗)

T

|y|
min{ε21,·· · ,ε2m}I y

∗

|y∗|
|y∗|2

≤ (y∗)
T

|y∗|
ATA

y∗

|y∗|
|y∗|2

= ε2pT01p01,

i.e.

√
|y∗|2≤

√
ε2

min{ε21,·· · ,ε2m}
pT01p01≤

√
pT01p01.

Therefore, |y∗|≤ cγN+7sµ. By induction, we have |∂qξy∗|≤ c
γN+7sµ

η̄N .
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