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FAST COMMUNICATION

BLIND SUPER-RESOLUTION OF POINT SOURCES VIA FAST
ITERATIVE HARD THRESHOLDING*

ZENGYING ZHU', JINCHI CHEN#, AND WEIGUO GAO$

Abstract. In this work, we develop a provable fast algorithm for blind super-resolution based
on the low rank structure of vectorized Hankel matrix associated with the target matrix. Theoretical
results show that the proposed method converges to the ground truth with linear convergence rate.
Numerical experiments are also conducted to illustrate the linear convergence and effectiveness of the
proposed approach.
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1. Introduction
Blind super-resolution is the problem of estimating {7x,dy,gx};_, from the obser-
vations

yljl=> dre ™0 Ngy[4), for j=1,...,n, (1.1)
k=1

where {dy, 7, }}._, are unknown coefficients and frequencies associated with the complex
exponentials, and {gx}},_, are unknown point spread functions. It has many applica-
tions, such as computational photography [12], multi-user communication system [15]
and seismic data analysis [17]. It is worth noting that the measurement model (1.1) also
includes blind sparse spike deconvolution problem [9,14] in which the point spread func-
tion is shared among all point sources. In particular, when the knowledge of {gy}}_, is
available, blind super-resolution reduces to the super-resolution problem [2,10].

Since the number of unknowns in (1.1) is larger than the number of samples, it is an
ill-posed problem without any additional constraints on gi. To alleviate this issue, it is
typically assumed that {gy}}_, belong to a known low-dimensional subspace spanned
by the columns of B € C"**® with s<n, i.e.,

gk:Bhk, (1.2)

where hj € C® represents the unknown coefficient of g in the subspace [7,9,21]. Un-
der the subspace assumption (1.2) and applying the lift technique [1,14], blind super-
resolution can be cast as the problem of recovering the matrix X b 22221 dkhkaﬂk IS
C**™ from a set of linear measurements

yljl=(bjel!, X"), j=0,...n—1, (1.3)

*Received: January 25, 2022; Accepted (in revised form): November 04, 2022. Communicated by
Lexing Ying.

tSchool of Mathematical Sciences, Fudan University, Shanghai, China (zengyingzhu@fudan.edu.cn).

¥School of Data Science, Fudan University, Shanghai, China (jcchen.phys@gmail.com).

§School of Mathematical Sciences and School of Data Science, Fudan University, Shanghai, China
(wggao@fudan.edu.cn).

581


mailto:zengyingzhu@fudan.edu.cn
mailto:jcchen.phys@gmail.com
mailto:wggao@fudan.edu.cn

582 BLIND SUPER-RESOLUTION OF POINT SOURCES VIA FIHT-VHL

where a,=[1 e 2m71 ... 6_2””'(”_1)}H, b; €C* is the j-th column of B", e; is the
(j+1)-th standard basis of R™, and the inner product between two matrices is given
by (A,B)=trace(A"B). The measurement model (1.3) can be rewritten as a more
compact form

y=A(X"), (1.4)

where A:C**™ —C™ is the linear operator. When the data matrix X? is recovered,
the frequencies {7 }}_; can be extracted from it via spatial smoothing MUSIC [11] and
coefficients {dj,ht}},_; can be estimated by solving an over-determined linear system
[21]. Therefore in this work we focus on the problem of estimating X % from its linear
measurements (1.4).

Let H be the vectorized Hankel lift operator [7,22] which maps a matrix X € C**"
into an sny X ny matrix,

T o an
T2 T3 0t Pngtl sn1Xn

H(X)=| . . . . |eCmxm (1.5)
Tpy Tpy4+1 "0 Tp,

and x; € C* is the i-th column of X and n;+ng=n-+1. It has been shown that the
rank of H(X") is at most r and thus it is a low rank matrix when r < min(sny,nz) [7].
To recover X2, we seek a rank-r vectorized Hankel matrix consistent with the linear
measurements (1.4) by solving the following low rank vectorized Hankel matrix sensing
problem

.1 2
i > ly— A3 s.t. rank(H(X))=r, (1.6)

Inspired by [5,22], we develop a non-convex algorithm called Fast Iterative Hard
Thresholding via Vectorized Hankel Lift (FIHT-VHL) to solve (1.6). We apply the low
rank structure of the vectorized Hankel matrix associated with the target matrix while
Cai et al. [5] investigated the low rank Hankel matrix recovery problem in the context
of spectrally sparse recovery. Moreover, the measurement model in this work is different
from that in [22]. Therefore the theoretical guarantee in [22] is not applicable for the
blind super-resolution setting. We show that FIHT-VHL is able to converge linearly to
the unknown data matrix with high probability if the number of measurements is of the
order O(s*r?log®(sn)) and the algorithm is properly initialized.

Related works: The problem of recovering X? from (1.6) is also studied in [7,16].
Chen et al. [7] developed a nuclear norm minimization method based on the vector-
ized Hankel lift. Recently, Mao and Chen [16] developed a Projected Gradient Descent
via Vectorized Hankel Lift (PGD-VHL) method for the problem (1.6). Their theoret-
ical results show that the matrix X! can be exactly recovered from O(s2r2log?(sn))
measurements.

Another line of related work addresses the problem of recovering X% from (1.4)
[13,18,21]. More specifically, Yang et al. [21] proposed an atomic norm minimization
method to recover the data matrix. Their theoretical result shows that O(srlogn)
measurements are sufficient to guarantee exact recovery of X with high probability
under certain incoherence condition. The stable analysis of blind super-resolution is
also provided in [13,18]. The approaches developed in [13,18,21] are based on convex
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relaxation and the equivalent semi-definite programmings are computationally inefficient
for large-scale problems.

Organization: The remainder of this paper is organized as follows. In Section 2,
we will introduce FIHT-VHL algorithm. In Section 3, we will introduce two assumptions
and establish our main result. The performance of FIHT-VHL is evaluated by numerical
experiments in Section 4. In Section 5, we give the detailed proofs for main result. We
close with a conclusion in Section 6.

Notations and preliminaries: Throughout this work, we use bold lowercase let-
ters, bold uppercase letters and calligraphic letters for vectors, matrices and operators,
respectively. The letter Z denotes the identity operator. We use x[i] to denote the i-th
entry of vector x and X[j,k] to denote the (j,k)-th entry of matrix X. Additionally, we
use Z[i:j,k] to denote a j—i+1 vector with entries Z[i,k|,...,Z[j,k]. The adjoint of
H, denoted by H*, is a linear mapping from sn; X no matrices to matrices of size s X n.
In particular, for any matrix Z € C*"1*"2 the i-th column of H*(Z) is given by

W' (Z)ei= Yz,

(4,k)EW;
where z; , =Z[js: (j+1)s—1,k] and W is the set
{(G.k)|j+k=i,0<j<n;—1,0<k<ny—1}.
Let D:C5*™ — C**"™ be an operator such that

D(X) = X diag (VWo, - /W 1)

for any X, where the scalar w; is defined as the number of W; for i=0,...,n—1. The
Moore-Penrose pseudoinverse of H is given by HT =D~2H* which satisfies HIH =T [7].
The adjoint of the operator A(-), denoted by A*(-), is defined as A*(y) = 3"~ y[j]b; e,
Notice that A and A* satisfy || AA* —Z|| <spo and || A <\/spo, whose proof is provided
in [7, Lemma 3.2]. Define G=HD~!. Then the adjoint of G, denoted by G*, is given by
G*=D~'H*. Additionally, G and G* obey that G*G=Z, ||G|| =1 and ||G*|| <1.

Let Z=UXVHcC*™ " he the compact singular value decomposition of a rank-r
matrix, where U € C*™ %"V € C"2*" and X € R"*". It is known that the tangent space
of the fixed rank-r matrix manifold at Z is given by [19]

T={UN"+MVH: MecC™ " NeC"*"}.

Given any matrix W € Cs"1*"2_ the projection of W onto ¥ can be computed using
the formula [19]

P<(W)=UU"W+wVvV" _uvu"wvvH

2. Fast Iterative Hard Thresholding via Vectorized Hankel Lift

We develop a fast iterative hard thresholding method for the problem (1.6), which is
summarized in Algorithm 1. The initial guess was obtained with the spectrum method.
In the t-th iteration of FIHT-VHL, the current estimate X! is first updated along the
gradient descent direction of the objective function in (1.6). Then, the vectorized Hankel
matrix corresponding to the update is formed via the application of the vectorized
Hankel lift operator H, followed by a projection operator Pz, onto the T, space. After
that, it imposes a hard thresholding operator 7, to W? by truncated SVD process.
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Finally, it applies H on the low rank matrix Z**!. Indeed, FIHT-VHL algorithm can be
efficiently implemented. The authors in [7] show that H#(X) and H'(Z) can be computed
by using O(srnlogn) flops. Moreover, instead of computing a SVD directly, FIHT-VHL
first projects a matrix onto a 2r-dimensional subspace and then calculates the SVD of
a rank-2r matrix, which requires O(r?sn+73) flops. Thus the main computational
complexity in each step is O(r2sn+7r3+srnlogn) and therefore our algorithm is very
efficient compared to existing algorithms.

Algorithm 1 FIHT-VHL

Input: Initialization X°=HTT, HA*(y).
Output: X7

1: for t=0,1,...,7—1do

2 X'=X'- A (AX')-y)
3 =Pz, H(X?)
4: Ztt :ﬁ(Wt)
5
6

xt+l :’HT(ZtJrl)
: end for

3. Main result
In this section, we establish our main result. To this end, we make two assumptions.

ASSUMPTION 3.1.  The column vectors {bj};.”:_o1 CC?® of the subspace matriz B" are
i.4.d random vectors which obey

E[b;bff] =1, and | max  [b;[]* < po,

for some constant pio. Here, b;[¢] denotes the (-th entry of b;.

REMARK 3.1. This assumption is standard in compressed sensing [6] and blind super-
resolution [7,9,13,21], and holds with 1o =1 when b is uniformly sampled from the rows
of a Discrete Fourier Transform (DFT) matrix.

ASSUMPTION 3.2. There exists a constant uy >0 such that

pir
o max ||UHF<L and o max HeHVHQ_

H17“

where the columns of U € C*™*" and V € C"2*" are the left and right singular vectors
of Z%=H(X?") separately, and U; =Ulis: (i+1)s—1] is the i-th block of U.

REMARK 3.2. Assumption 3.2 is commonly used in spectrally sparse signal recovery
[3,4,8] and blind super-resolution [7,16], and is satisfied when the minimum separation
distance between {7 },_; is greater than about 1/n.

Now, we are in the position to state our main result, whose proof is deferred to
Section 5

THEOREM 3.1. Let 0<e< % be a constant. Under Assumptions 3.1 and 3.2, with
probability at least 1—(sn)~, the iterations generated by FIHT-VHL with the initial
guess XO=HIT, H(A*(y)) satisfy

=% < (5 ) 120X, @)



Z. ZHU, J. CHEN, AND W. GAO 585

provided the sample complexity obeys that
n>Cr2pdu s*r*log®(sn) /2

where c¢; and C are absolute constants and k=01 (H(X?))/o.(H(X?)).

REMARK 3.3. The sample complexity established in [7] for the Vectorized Hankel Lift
is n>cuop1 ~5rlog4(sn). While the sample complexity is sub-optimal dependence on s
and r, our recovery method requires low per iteration computational complexity.

REMARK 3.4. It is shown in [16] that PGD-VHL can exactly recover X" when the
measurements are of order O(s2r2log?(sn)). Moreover the exact recovery of PGD-VHL
relies on a more complicated regularization scheme.

4. Numerical simulations

Numerical experiments are conducted to evaluate the performance of FIHT-VHL.
In the experiments, the target matrix X is generated by X :Z;:ldkhkaﬂk and the
measurements are obtained by (1.1), where the locations {71 }},_, are generated from
a standard uniform distribution U(0,1), and the amplitudes {dy},_, are gencrated
via dp = (1410°%)e~"* where 1)}, follows U(0,27) and ¢, follows U(0,1). Each row of
subspace matrix B is uniformly sampled from the rows of a Discrete Fourier Transform
matrix. The coefficient vectors {hy}},_, are generated from a standardized multivariate
Gaussian distribution MV Ng(0,Isxs), where Iy is the identity matrix.

Convergence rate

- = PGD-VHL n = 256
——FIHT-VHL n =256 |]
PGD-VHL n =512
——FIHT-VHL n = 512
~ = PGD-VHL n = 10244
FIHT-VHL n = 1024

X — X/ XE e

20 40 60 80 100 120 140 160 180 200
Number of Iterations

Fic. 4.1. Convergences of FIHT-VHL and PGD-VHL for n=256,512,1024 when s=4 and r=4.

In the first experiment, we study the convergence rate of FIHT-VHL under different
number of observations and compare it with PGD-VHL [16]. The step size for FIHT-
VHL in the second step is given by

_ IPs, Gy - AXY)I3
T TAG P, (y— AX0) (41)

in each iteration and for PGD-VHL, the step size is chosen using the line search method.
We set dimensions of subspaces s =4 and the number of point sources r=4. Figure 4.1
presents the logarithmic recovery error log ||Xt—X tlHF/ ||X h||F with respect to the
number of iterations. Figure 4.1 shows that FIHT-VHL converges linearly which is in
accordance with our main theorem. Compared to PGD-VHL [16], FIHT-VHL requires
fewer number of iterations to achieve convergence when s=r=4.
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Relative Reconstruction Error(dB)
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Fic. 4.2. Performance of FIHT-VHL under different noise levels when s=r=2.

In the second experiment, we conduct tests to illustrate the robustness of FIHT-
VHL to additive noise. More specifically, we add noise vector e=0e - ||y||2- Tl to the
measurements where y is the noiseless observations (1.3), o, denotes the noise level and
w is the standard Gaussian vector with i.i.d entries. In the tests, the noise level o,
is evenly spaced from 107> to 1073, corresponding to the signal-to-noise ratio (SNR)
from 100 to 60 dB. For each noise level, 10 random trails are conducted with s=7r=2.
We choose n=128 and n=256 for the number of measurements. In Figure 4.2, we
demonstrate the linear relationship between the average relative reconstruction error
and the noise level. It can be seen that the relative recovery error decreases with the
increase of the number of measurements.

5. Proof of main result
We first introduce three auxiliary lemmas that will be used in our proof.

LeEMMA 5.1 ([7, Corollary IIL.10]).  Suppose 0<e<1 and n>Ce 2puouisrlog(sn).
Then the event

1P< (GG — GA* AG*) Ps|| <e (5.1)

occurs with probability at least 1 — (sn)~° for absolute constants ¢1 and C.

LEMMA 5.2 ([16, Lemma 6.3]).  Suppose that Z% is ju;-incoherent. Then with proba-
bility at least 1 — (sn)~, the initialization Zy=T,H(X") obeys

120 25 < coon (20 | L2 108 (5m)

)

n
where ¢y and ¢ are absolute constants.
LEMMA 5.3.  Suppose that
(Z°
HZt_ZuHFSM. (5.2)
16+/(1+¢€)- pos

Conditioned on (5.1), one has

AG* P, || <3v1+e, (5.3)

Pz, G(ZT—A"A)G* Pz, || < 2e. (5.4)
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Now we are in the position to prove our main result. The iteration in FIHT-VHL
can be rewritten as

ZM =T, Pz, (2" - GA*AG* (Z' - Z7)). (5.5)

For ease of exposition, we will prove our main results in this section in terms of Z*
and Z' but note that results in terms of X* and X! follow immediately due to

B Ty ST P (5:6)

Motivated by [5], we prove our main result by induction. When ¢ =0, the condition
(5.2) can be verified as follows.

12° - 2. < var||2° - Z¥|

1 2
<V coo (254 | HOHLET08 15T (sn)
n

0. (Z%)e
164/ (1+¢€)pos
where the second line is due to Lemma 5.2 and the last line follows from n >

Ce 2k2p2 1 s?r2log?(sn). Next we assume (5.2) holds for the iterations 0,1,...,¢, and
then prove it also holds for ¢+ 1. Denote

W'=Ps, (Z' -GA*AG* (Z' - Z7)).
Then it can be seen that Z!™1 =T.(W?). Since Z'*! is the best rank-r approximation

of W, it implies that || Z+! — Wt”F <||z*- Wt||F. A direct computation yields that

Hzt-‘rl_Zh <Hzt+1_Wt

HF— HF
SZHVVt*ZhHF
=2||Ps, (2! ~GA*AG* (2! - Z°)) - Z°|
<2||Pg, (2"~ Z° ~GA*AG* (2" - Z°)) || +2||(Z~P=,) (29|,
<2|(Z-Px,) (2% | +2||P<, (GG" —GA“AG") P, (2" - 2%) ||,
+2||Pg, (GG* — GA* AG*) (T~ Ps,) (2"~ Z7) ||,

<2|(Z-Ps,) (2" - 2") | +2|Px, (GG —GA AG") Px, (Z' - Z%)||,
+2|Ps,66" (Z—Ps,) (2" - 2|,
+2|Ps,GA*AG (I —P<,) (2" - 2%,

AN+ L+ I3+14.

+[w* - z"

We bound Iy, 15,15 and Iy, respectively. Applying [20, Lemma 4.1] yields that
N<2|2 - 2%} Jo,(Z%), Is<2|Z'-Z"||/o.(Z")
For I, a simple computation yields that

I, <2||Ps, (GG* — GA*AG*) Pg, || - || 2" — Z°||,
<ic|2' - 77,
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where the last line is due to (5.4). Finally, Lemma 5.3 implies that

L<3Vite||Z2' 2|} o (ZY).

Combining these terms together, we have

4+3v1+¢
R e EE s W

4+3\/1+€ + b
<|4e+——Ff—c¢|-||Z2"—Z 5.7
(s syt =) 121, o0
<se|z'- 2/,
1
gguzt—zh . (5.8)

where (5.7) follows from (5.2) and (5.8) is due to e<1/10. Since HZt—Zt'HF is a
contractive sequence following from (5.8), the inequality (5.2) holds for all ¢>0 by
induction. Thus we complete the proof.

5.1. Proof of Lemma 5.3. For any Z € C"1*"2 we have

|AG*Px(Z) | = (AG*Ps(Z),AG Pz (Z))
(G"P<(2), A" AG"P<(Z))
(
<(

Z,PxG(A"A-I)G"P<(Z))+(Z,P<GG " Px(Z))
1+6)|1 2],

where the last inequality is due to Lemma 5.1. So it follows that || AG*P<|| <+/1
and

I AG"Ps, || < AG™Px[| + [ AG™ (P, —Pa)|
<V1+e+||A|-||Pz, — Pz

2 /o8 || 2t — Zz°
<Vl4e+ u(:” (Z%) HF
<3V1+eg,

where the last inequality is due to (5.2). Finally, a straightforward computation yields
that

[P, G(Z—-A"A) G Px, || <|(Px, —Px)G(Z—- A" A)G*Pg, || +||P<G(Z - A" A) G Pg, ||
<||(Pz, —P<)G(ZT—A*A)G*Px, ||
+ PG (Z—-A"A)G" (Ps, —Ps)||
+||PzG(ZT— A" A)G*P<||
<|[(Ps, —P=)GG Pz, || +[P<GG" (P, — Ps)|
+|(Pg, —P<)GA"AG" Pg, ||
+[[PsGA*AG" (P, — Ps)|| +[[P=G (T — A" A)G" P<||

>~ O'T(Zh) ( ) HoS Tt
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+|P<GA*|) +¢ (5.9)
< 4e . 8/ pos(1+¢) e (5.10)
164/(1+¢)-pos  16+/(1+¢) s
<2e,

where (5.9) is due to [20, Lemma 4.1] and the fact that [ A*||=].A| </mos and
|P<,GA*|| = | AG* P, ||, (5.10) follows from (5.2).

6. Conclusion

We propose a FIHT-VHL method to solve the blind super-resolution problem in
a non-convex scheme. The convergence analysis has been established for FIHT-VHL,
showing that the algorithm linearly converges to the target matrix given suitable initial-
ization and provided the number of samples is large enough. The numerical experiments
illustrate our theoretical results.
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