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THE FOURIER DISCREPANCY FUNCTION*

GENNARO AURICCHIO!, ANDREA CODEGONIf, STEFANO GUALANDI!, AND
LORENZO ZAMBONY

Abstract. In this paper, we introduce the p-Fourier Discrepancy Functions, a new family of
metrics for comparing discrete probability measures, inspired by the x,-metrics. Unlike the x,-metrics,
the p-Fourier Discrepancies are well-defined for any pair of measures. We prove that the p-Fourier
Discrepancies are convex, twice differentiable, and that their gradient has an explicit formula. Moreover,
we study the lower and upper tight bounds for the p-Fourier Discrepancies in terms of the Total
Variation distance.
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1. Introduction

Discrepancies are becoming omnipresent tool in every applied fields that require the
comparison of probability measures. Examples include computer vision [1-8], supervised
learning [9-14], and generative models [15-20]. Often the usage of these tools are
bounded by their numerical complexity [21-24].

To mitigate these issues, in recent years, several studies have been devoted to intro-
duce new discrepancies [25,26] or to study the properties of the existing ones [27,28]. A
special role is played by the study of the relationships between different discrepancies,
usually through bounds.

In particular, the problem of finding the tight bounds [29] in terms of the Total
Variation has been particularly interesting for source coding [30-32].

A well-known family of distances between probability measures is given by the y,.-
metrics. They are defined as the LP distance between the characteristic functions of two
given measures weighted by the function ||k||~"?. Despite the appealing properties they
enjoy, the use of these metrics is bounded by the fact that they are not well-defined unless
the two measures we are comparing have equal moments up to the [r]-th one [33,34].
This is a standard assumption in some applied fields, such as kinetic theory [35,36]. In
general, however, requiring two measures to have the same expectation is too restricting.
In [37], the authors studied the x,-metrics in the specific framework of discrete measures
supported over a regular grid. In this framework, they prove that some requirements
about the measures can be dropped while still preserving the appealing properties of
their continuous counterparts. However, these distances are defined through an integral,
and for r>2 some conditions on the moments are still required to ensure the finiteness
of the integral. In this paper, we overcome this issue by introducing a discretized version
of the x,-metrics, called Fourier Discrepancies.
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The paper is structured as follows. In Section 2, we recall the main notions about
discrete probability measures and the Discrete Fourier Transform (DFT) [38]. In Section
3, we introduce a new family of distances between discrete probability measures, the
p-Fourier Discrepancies. We show that they can be expressed as the square root of a
bilinear form induced by a positive definite matrix, hence they are 1-homogeneous and
convex. Moreover, we prove that the squared Fourier Discrepancy is twice differentiable
and that both its gradient and Hessian have an explicit formula. In Section 4, we study
the lower and upper tight bounds of the Fourier Discrepancy in terms of the Total
Variation distance. In particular, we prove that the upper tight bound between any
g-homogeneous and convex function and the Total Variation is attained in a finite set.
We then present an open conjecture about the value of the upper tight bound of the
Fourier Discrepancy. Finally, conclusions and future work are discussed in Section 5.
For the sake of conciseness, we only report the essential proofs in the body of the paper
and leave the others in the appendix.

2. Preliminaries

In this section, we state the framework of our work and fix our notation. Throughout
the paper, we only consider one-dimensional discrete measures, but all the results may
be extended to a multidimensional setting. Let us define the set Iy C[0,1] as In:=

{0,%,...,%}. For the sake of simplicity, we will assume that N is an even number. A
discrete measure p on Iy is defined as
N-1
U::ZMJ(S%’ (2.1)
§=0

where all the p;’s are real values and, for any k€ly, d; is the Dirac’s delta centered
in k. We denote by M(Iy) the set of discrete measures over Iy and by P(Iy):={p€
M(IN): ZO,Z;LBl p; =1} the space of discrete probability measures.

REMARK 2.1. Since any discrete measure supported on Iy is fully characterised by
the N—uple of positive values (uo,...,un—1), we refer to discrete measures and vectors
interchangeably. Although this might lead to a slight abuse of notations, it allows us to
express the Fourier Transform of a discrete measure through a linear operator.

DEFINITION 2.1. The Discrete Fourier Transform (DFT) of nweP(Iy) is the
N—dimensional vector ji:=(fig,...,fin—1) defined as

N—1
fii=Y  pje TNk, ke{0,...,N—1}. (2.2)
§=0
REMARK 2.2.  Since the complex exponential function k—e 2Ttk is a N —periodic

function for any integer j, we set fix:=flmody k) for any k€Z, where mody (k) is the
N —modulo operation. In particular, fi_x=/iny—_ for any k€{0,...,N—1}.

REMARK 2.3. The DFT of a discrete measure can be expressed as a linear map:

(ﬂ()?"'?ﬂNfl):Q.(NO?"‘?NN*l)? (23)
where () is the N x N matrix defined as
wo,0 Wo,1 --- WO N-1

W1,0 w11 ... W1 N-—1
Q.= . .

WN-1,0WN-1,1--- WN—1,N—1
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and wy, ;: e~2mi%k  Since the matrix Q is invertible, the DFT is a bijective function.

For a complete discussion about the Discrete Fourier Transform (DFT), we refer
to [38].

3. The Fourier discrepancy function

In this section we introduce the p-Fourier Discrepancy Functions, a family of discrete
versions of the metrics introduced in [37]. The p-Fourier Discrepancies inherit from their
continuous counterparts the property of being bounded by the Wasserstein distance. We
show that the Fourier Discrepancies are convex and have an explicit derivative.

DEFINITION 3.1. For any p>1, the p-Fourier Discrepancy Function is defined as
F,:P(In)xP(In)—[0,+00), where

- \uﬁ—ﬁﬂF
FQ |:u‘k Vk‘ Pl 2 1
“’ Z |k|2p |N|2p (3 )

REMARK 3.1. It is easy to show that every F, is a distance on P(Iy). In particular,
unlike its continuous counterparts, I, is finite even without requiring the two measures
to have any equal moment.

REMARK 3.2. Following [37], it is possible to prove that

F,<C,W, (3.2)
for any p>2, where Wi is the 1-Wasserstein distance [39] and C), is a constant that
only depends on p.

For any p>1, let us introduce the matrix K,:=diag(b,), where the vector b, is

defined as
1 _9p N ) N —2p _op
bp.2<1,1 ,...,<2 1) N\ o -1 yeenyl . (3.3)

Since fi=[in_k, we can express the Fourier Discrepancy function as a quadratic form:
Fy(,v)= (=) Ky (i—0) = (n—v) Hy(u—v), (34)

where H,,:=0QTK,Q and Q is the DFT matrix. Notice that we only consider the first
% frequencies as the last % have the same magnitude, hence no information is lost
by omitting them. Moreover, H,, is a symmetric and circulant matrix, since (H,); ;=

Re((ép)i_j). Therefore, its eigenvalues can be explicitly computed [40], leading us to
the following result.

LEMMA 3.1.  For any p>1, the matriz H,, is positive definite and its eigenvalues are
given by
Ai=N-(bp)s, i=0,...,N—1.

Since H), is positive definite, there exists a matrix L, such that LT]L =H,. We
can then write F,(u—v)=|L,(u—v)|2, where ||-||2 is the 12 norm. Hence we have the
following.

THEOREM 3.1. For any p>1, the Fourier Discrepancy F, is convexr and
1—homogeneous with respect to u—uv.
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To conclude, we observe that we are able to explicitly compute the gradient and
Hessian matrix of Fg.

PROPOSITION 3.1.  For any p>1 and for any probability measure v, the function Ly, ,:
P(I,)—R, defined as Ly, ,(p):=F(p,v), is twice differentiable. Moreover, its gradient
and Hessian matrix are expressed through the explicit formulae:

(Y Ly ()= 22 —v;)-Re((by);1) (3.5)

and
0? Ly,
Opn O

(H Ly ()= 522 () =2Re (b)) (3.6)

where by, is the Fourier Transform of the vector b,.

4. Tight bounds

In this section, we study the tight bounds for the p-Fourier Discrepancy in terms of
the Total Variation distance. We recall that, for any pair of discrete measures supported
on Iy, the Total Variation is defined as

N—

H

1
pr)i=5 ) lns—vil.
7=0
Following [32], for any given 6#€(0,1], we define the lower and the upper tight
bounds, respectively Cr () and Cy(0), as

o it g 4.1
L( ) M,V:T\l/r%#,y)zg p(,LL,V)) ( )
Cu(8):= sup Fp(p,v). 2

v TV (pv)=0

Due to the linearity of the DFT, we have that

vz

SRR oy 7 N et 1
pu,u—k:1 P N

(4.3)

we then set A:=p—v and express F,, as a function of A, rather than p and v. Anal-
ogously, we will often write TV (A) instead of TV (u,v), as long as A=p—v. We
now introduce the set of null-sum measures over I, O(Iy), defined as O(Iy):={A€
M(Iy) s.t. ZiAZ-:0}. Given any pair of probability measures p and v, it is easy to
see u—ve€O(Iy). Up to a multiplicative constant, the converse is also true.

PROPOSITION 4.1.  Given any non-zero A€ O(Iy) and 0€(0,1], there exists C>0 and
a pair of probability measures (u,v) such that

pu—v=C-A and TV (u,v)=0.
REMARK 4.1. Thanks to Proposition 4.1, and for the 1-homogeneity of F,, we have
that, for any 0€[0,1)
Fp(A)
inf F,(—-—A)|=60inf P
AcO(In): P <TV(A) ) AcO(In): TV(A)’
A0 A#0

CpL(0)= (4.4)
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and, analogously,

F,(A)
Cy(0)=0- su P ) 4.5
vO)=0- s TV (45)
A0

4.1. Lower tight bound. Let us define w, €C"V as the k—th column of the DFT
matrix Q. Since {wg}r=0,. n—1 is an orthogonal basis of C" [38], for any AcO(Iy)

there exists a unique N-tuple of complex coefficients ()\(k))k:() _ y_; such that
N-1
A: Z )\(k)wk
k=0
We then define the set
N—1
=={aeo(y): Y AW|=1}, (4.6)
k=0

and notice that = is not empty, as we have that w%:(—1,+1,—1,+1,—1,...,—|—1)EE.
Finally, since both TV and F, are 1-homogeneous functions, we rewrite (4.4) as

A
F (zww) ZIW)I_(, o (D)

CL®)=0- (4.7)

;(IN) TV(ZIM’“)I) SA®] e TV(A)
We now state the main result of the section.
THEOREM 4.1.  The lower tight bound Cr(0) is given by
CL(0)=20N"P, (4.8)
and is attained at Wy
Proof. To prove the theorem, we show that wy both minimizes the Fourier
Discrepancy and maximizes the Total Variation over the set =. This is enough to

Fplwy)

conclude Cp,(0)= GW

which, through a simple computation, proves (4.8). For the
2
sake of clarity, we divide the proof into two steps.

First step (w% mazximizes TV over Z).
For any A€Z, we have

7
2

-1 N-1

1
_ (kY=L ()
TV(A)_TV( Y wk) QZ‘ZA (wr) ‘
k=0 7j=0 k=0
1N IN-—1 1 —1 —
SPIPI LN 1Y o
Jj=0 k=0 =0 j=0
N—-1
:E |/\(k)|_
2
k=0

We then conclude the first step of the proof by noticing that TV (w Wy )= %
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Second Step (w% minimizes F), over E). For any j=0,...,N—1, the DFT of w; is
given by

N-1 N-1

—iZz] —i2(k—j

eTiwt w] le e iR U j):NJk_j.
1=0 1=0

From the linearity of the DFT, we infer

N—-1 N—-1
A=Y 2D (), =N 3" A0 g j=NA®), (4.9)
=0 =0

therefore, for any A€O(Iy), we have
N

‘)\(k)‘Z IA(2))2
(Z =T \N|2P . (4.10)

Finally, we conclude the proof by showing

inf F,(A)=Fp(w

J=N'7.
A€E

M\Z

Let A€Z. From (4.9), we have that )\(0)—% :NZ A;=0. Moreover, since A is

real, we have that Ap=An_}, for any k=1,...,N—1, hence |\*)|=|\N=F)| Then, if
we define

while from (4.10) we obtain Fi(A):Z;?:lak’Y;%, with

2

N —2 _ N

@) ks
N2—=2p k

Since the coefficient « N is the lowest one, as long as p>1, the minimum of I, is achieved

when Ty =1 and ;=0 for j:l,...,%—l, and the proof is complete. a0

2. Upper tight bound. We now show that it is possible to restrict the
search space of the maximizer of (4.5) to a finite set with cardinality N. In particular,
we prove that a similar restriction may be applied whenever we search for the upper
tight bound between the Total Variation and any convex and p—homogeneous function
of AeO(Iy). To accomplish that, we show that every A€O(Iy) can be written as a
linear combination of simpler null-sum measures, namely 7; ;, defined as

Nij:=0;—0;,
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for any 4,5€{0,...,N—1} such that i#5. In particular, we have the following.

LEMMA 4.1. Let A be a null-sum measure on In. Then, we can express A as
A=TV(A)-A, where A’ is a convex combination of {n;, ;. }x such that, for any k#k’,
we have i % ji .

This characterization allows us to restrict the set of possible maximizers of any
convex and p—homogeneous function over the finite set {n; ;} ;-

THEOREM 4.2.  Let G:O(In)—[0,+00) be a conver and p—homogeneous function.
Then, there exist i*,5*€{0,...,N—1} such that, for any 6€(0,1]:

6-n;x ;» = argmax G(A). (4.11)
TV (A)=06
Proof. First, we notice that

(t*,j%):= argmax G(n;;), (4.12)
i,7€{0,...,N—1}

is well-defined as the maximum is taken over a finite set. Given any 6€(0,1], let A be a
null-sum measure such that 7'V (A)=6. Lemma 4.1 allows us to write A=6->", A\eni,
with A, >0 for any k and >, Ap=1.

Finally, from the p-homogeneity and the convexity of G, we obtain:

G(A):G (0.2)%77%7%) =0r-G (Z/\kﬁik»jk)
k %
<O MG (i) <07 MG (e )
k k

=07-G(nix j+)=G(0-nix j+),
which concludes the proof. ]

Using the previous result we may recover the well-known upper tight bound between
the {? norm and the Total Variation. Indeed, since ||77i7j|\p:2% for any p, we find that
the inequality ||M—V‘|p§2%TV<M,V) is tight.

Since Fp,:O(Iy)—[0,+00) is convex and l—homogeneous, we infer Cy(6)=6-
Fp(nix j+), for some i*,7*€{0,...,N—1}. Therefore, to find the upper tight bound of

F, we only need to search over a finite set of points, which correspond to the differences
between two Dirac’s deltas. Since the DFT is linear, we have that 7, ;=0(In);—©;,

where O = (ei%o,ei%l,...,ei%w_l)) is the k—th column of the matrix 2. Hence:

F-1 2 . 2
1(0,—0,)k2 [(©1—6;) x|
]F‘g(csz,(;j):F,Q,(??l,j): |]€|2; |N|2p . 5
k=1
which boils down to
27| j—I|
31 2—2005( k;) ,
2, N N 2—2cos(m|j—1|)
Fp(nj,l)f Z ‘k|2p + |N‘2p ’ (413)
k=1

for any j,1€{0,...,N—1}. Finally, notice that Ff)(nj,l) depends on j and [ only through
d:=|j—I1|. Hence, we can further restrict to measures of the form ng 4, with de{1,...,N—

1.
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COROLLARY 4.1. For every p>1, there exists d€{0,1,...,N—1} such that

Cu(0)=0-Fy(n0,4)-

Notice that, for any de{0,1,...,N—1}, we have F2(o,4)=C—2g,(d), where C is a
constant and g,:[0,N]—R is defined as:

2mwd
31 cos(—k’)
o N cos(md)
gp(d):= 2 G + NP (4.14)

By studying the derivatives with respect to d, it is possible to show that d*:% is a
local minimum for g,. This leads us to the following open conjecture.

CONJECTURE 4.1.  For every p>1 and d€{0,1,...,N—1}, we have

Fp(no,% )2Fp(n0,4)-

If our conjecture was true, we would have

N
N

Cu()=0-| Y Q_iﬁ;)l)k + 2_|2]\([_2i)2 . (4.15)
k=1

Notice that, for p=1, the value (4.15) converges to \/22112_2,&7;1%:% as N —o0.

We numerically verify that the conjecture is true for p€{1,1.5,2} and for any even
N that ranges from 2 to 1000. In Figure 4.1, we report the graph of the function
d—TF,(no,q4) for pe{1,1.5,2} and N &{10,1000}.

5

—_— p=1 — p=1
=15 =15
— p=2 — =2
o o
o 5 10 o 500 1000

F1G. 4.1.  Plots of Fp(no,q4) for p€{1,1.5,2} and for N=10 (left), N=1000 (right). As conjec-
.

tured, the mazimum is attained at d==5

5. Conclusions and future work

In this paper, we introduced a new class of metrics between discrete probability
measures, the p-Fourier Discrepancy Functions. For any p>1, F, is a well-defined
distance induced by a bilinear form. It is convex, and its square is twice differentiable
with explicit formulae for both the gradient and Hessian. Moreover, as Figure 4.1 shows,
the Fourier Discrepancy between two Dirac’s deltas depends on the distance between
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their supports. Most common discrepancies, such as the Total Variation or the Kullback-
Leibler, do not enjoy this property, which is instead a feature of the Wasserstein distance.
This is consistent with the bound (3.2) and with the equivalence between Fourier-based
and Wasserstein distances [37]. In the last few years, the Wasserstein distance has been
widely used in several applied fields because of its topological weakness and its ability
to deal with the geometry of the underlying space [15]. However, its applicability,
especially in higher dimensions, is bounded by the computational cost for both the
distance and its gradient. On the other hand, the Fourier Discrepancy and its gradient
are cheap to compute using the Fast Fourier Transform algorithm. We believe that
the appealing properties of the Fourier Discrepancy make it a compelling alternative to
the Wasserstein distance in several applied fields, such as machine learning [13,41,42],
time series comparison [43], or barycenters computation [2,4,44]. Finally, the Fourier
Discrepancy may be easily generalized to a multidimensional setting.

Acknowledgment. The research was partially supported by the Italian Ministry
of Education, University and Research (MIUR): Dipartimenti di Eccellenza Program
(2018-2022) - Dept. of Mathematics “F. Casorati”, University of Pavia. The PhD
scholarship of Andrea Codegoni is funded by Sea Vision S.r.l..

Appendix A. Missing proofs.
Proof. (Proof of Lemma 4.1.) Let A be a null-sum measure. Without loss of
generality, we can reorder the values of A as follows:

A:(Ozl,...,Ozr,fﬂl,...,751,0,...,0),

where 7+I<N, ;,8;>0, a; <11, B;<Bj41, for any i and j, and > ;=) _f;.
Without loss of generality, we assume that

a1 <f.
Hence, we can write
A=arng,+AW,
where

T

5:(0,042,...,0&7-,—(/81—041),—52,...,—6[,0,...,0).

AL =0,a8" ..., a0, —pM . M 0,...,0)

Next, we compare agl) and B%l) and repeat the process until every entry vanishes. At

the end, we find

A:/\1770,7-+~--+/\k77r—1,N—1ZIZ/\kmk,jk~ (A-l)
k

Notice that each 7; ; in (A.1) is such that ¢<r and j>r by construction, which
implies i#£j.

Since by hypothesis, for any [=0,...,N —1, all the [-th entries (7, ;. ); have the same
sign, we can write

|Al|:’Z/\k(nimjk)l’:Z/\H(nimjk)ll'
k k
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Therefore:

TV<A>—12|A1|=1ZZA;€| (T
:722)‘” Mir i )l
ZQZAkZ\(nu,jkM:Z/\kv

k l k

since Y, |(7s,5)1|=2 for any 4,j. To conclude, it suffices to set

1 ~
A/:: mAzzAknika’
k

where Xk:—z 5 >0, and Zk)\k— O

Proof. (Proof of Proposition 4.1.) Let C:= m and ﬁ:zC‘A, which are
well-defined since TV (A)#£0 for any non-zero A. Then, for the 1—homogeneity of TV,
we have that TV(A):%@)'TV(A):&

Let z and v be, respectively, the positive and negative part of A. Therefore, A=
w—v and u;,v;>0 for any ¢. We have that

29:Z|£i|22ﬁi+2% (A.2)
and moreover, since A is a null-sum measure:
0= A;=> - . (A.3)

From (A.2) and (A.3), it follows easily that >, ;=) 7; =60
We now define
wi=p+(1-0)d, v:=v+(1-06)d.
We have that p is a probability measure since ;>0 for any ¢ and >, ;=) ;i +
(1—0)=1. The same holds for v. Moreover, p—v=A, hence TV (u,v)=TV(A)=0. O

Appendix B. Computing F,(7;;). Let us consider null-sum measures of the
form n; ;. We recall that n; j:=9;—4;. Since

MG =15,
we have
m,;=0;—0;, (B.1)

where Oy is the k—th column of the matrix 2. By the definition of {2 we have

_ (%o i2El iZZl(N—1
@l—(e N0 R et ) ,
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therefore, the value F2(n; ;) is then given by

v

2 (0-0,)2  1(©=6;)x]?
B NP

F2(m,;)= (B.2)

=1
1—

k
Let us now compute explicitly [(©;—0;)x|? for a given k. We have

B 27l 21j 2 .. [ 2mg
(@l@])kCOS( i ) cos( i k> +zsm< N k‘) zsm( ~ k),

therefore,
27l 21y ’ 27l 21y
—_O.), 2= 2T Zn i 255 —gin [ 272
(©1—0;)k] cos( ~ k:) COS( ~ k) + sm( ~ k) sm( ~ k)
_ 27l 27j . ([ 2ml . [ 2mj
_2 2 COS(Nk> COS(Nk> +Sln<Nk> S1n (Nk>

:2—2008(Wk>, (B.3)

where the equality in (B.3) comes from the following trigonometric identity:

cos(a— ) =cos(a)cos(B)+sin(a)sin(S).

Therefore,
2|51
%_1272(308(7/{/') .
N 2—2cos(m|j—1])
Fo(nj0)= T + N . (B.4)
k=1
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