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G-MEAN RANDOM ATTRACTORS FOR
COMPLEX GINZBURG-LANDAU EQUATIONS WITH

PROBABILITY-UNCERTAIN INITIAL DATA∗
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Abstract. In this paper, a class of complex Ginzburg-Landau equations with random initial data
is investigated, where the randomness may be of probability uncertainty. The existence and uniqueness
of global solution for such system are proved under the framework of nonlinear expectation. Then, the
existence of pullback G-mean random attractors for the G-mean random dynamical system generated
by the solution operators of (1.1) is investigated not only in L2

G(Ω,L2(R)), but also in a weighted space
L2
G(Ω,L2

σ(R)). Moreover, such attractor is periodic if the nonautonomous deterministic forcing is time
periodic.
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1. Introduction
This paper is concerned with the complex Ginzburg-Landau equation with random

initial condition in nonlinear expectation space defined on the entire R:{
∂u
∂t =(λ+ iα)∆u−ρu−(κ+ iβ)|u|2u+f(x,t), x∈R, t>τ,
u(x,τ)=uτ (x), x∈R, (1.1)

where τ ∈R, uτ ∈L2
G(Ω,L

2(R)), u(x,t) is a complex value function, i is the imaginary
unit, λ,α,ρ,κ,β are real constants satisfying λ,ρ,κ>0, and f is given in L2

loc(R,L2(R)).
It is well known that the complex Ginzburg-Landau equations have wide range

of applications in mechanics, physics and other fields. For decades, the existence and
uniqueness of global solutions of Ginzburg-Landau equations have been studied in [13,
14, 17, 25] for deterministic Ginzburg-Landau equations, and in [2, 30, 37] for stochastic
Ginzburg-Landau equations.

Observe that in the above mentioned papers, the initial condition is deterministic.
However, random disturbance or environmental noise may cause the randomness of
measurement error of initial condition, thus taking it into consideration is necessary.
Many interesting discoveries about systems with random initial condition have been
reported, see, e.g., [4, 29,40] and the references therein.

One of the basic tasks of the theory of differential equations and dynamical systems
is to study the asymptotic behavior of solutions. The long-term behaviors of determin-
istic systems have been investigated in [6, 31, 32]. In order to investigate the stochastic
systems, [1, 11] introduced the concept of pathwise random attractor. For stochastic
systems with additive or linear multiplicative noise, pathwise random attractors have
been examined in [3, 5, 7, 8, 16,18,20,27,33]. Moreover, the existence of random attrac-
tors for Ginzburg-Landau equations with linear noise has been investigated by many
authors, e.g., see [21,23,28].
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It is well known that the pathwise theory of random dynamical systems has not
been applied successfully to deal with stochastic system with nonlinear white noise or
nonlocal stochastic system. In order to overcome this, mean-square random dynamical
system was first introduced in [19], which can be applied to study nonlocal stochas-
tic differential equations, stochastic differential equations with random delay [38] and
others [36]. However, the main difficulty in applying this theory is the lack of use-
ful characterizations of compact sets of such spaces of mean-square random variables.
Therefore, until now, the existence of mean-square random attractors has been estab-
lished only for some strictly contractive systems. Especially, when the drift term of
stochastic partial differential equation is nonlinear, such theory in [19] may not be ap-
plicable since the weak continuity of solutions for stochastic systems may be difficult to
obtain. Recently, a new type of weak pullback mean random attractor was introduced
in Bochner spaces and a theorem on existence and uniqueness of such attractors was
proved in [34], which can be used to investigate asymptotic behaviors for some stochastic
systems with nonlinear drift term and nonlinear diffusion term [35,40].

However, probability uncertainty or Knightian uncertainty cannot be characterized
well in the previous literature, which often appears in practical problems such as fi-
nance and economic problems. In order to characterize such uncertainty, the theory
of time-consistent nonlinear expectation, as well as its related stochastic calculus and
G-Brownian motion, was developed by [12, 24]. Under Lipschitz condition, the exis-
tence and uniqueness of solutions of stochastic system driven by G-Brownian motion
have been investigated in [15, 24, 39]. Stability has also been extensively studied in the
literature, see, e.g., [10, 22, 26]. In addition, in [9], the mean random dynamical system
was introduced in nonlinear expectation framework, which can be used for nonlocal
stochastic systems driven by G-Brownian motion.

Inspired by the aforementioned works, in this paper, we will consider the asymptotic
dynamics of complex Ginzburg-Landau equations with random initial data in nonlinear
expectation space. It is worth mentioning that [40] discussed the weak pullback mean
random attractors for Ginzburg-Landau equations defined in Bochner spaces, where
the system is defined in a bounded domain O and the initial data are in a classical
probability space. The main contributions and the highlights of this paper are listed as
follows:

(i) The pathwise random dynamical system theory [1, 8, 11] and mean random dy-
namic system theory [19,34] under the classical probability framework have been widely
used to study the dynamic behaviors of solutions. But these theories cannot be applied
to system (1.1) with random initial condition in nonlinear expectation. Therefore, we
generalize the theories of mean random dynamical system in the sense of classical prob-
ability in [19,34] to nonlinear probability case, which can be used to study the long-term
behaviors of the solutions for system (1.1).

(ii) Compared with [13, 14, 40], the random initial condition with probabilistic un-
certainty is taken into account in complex Ginzburg-Landau equation defined on the
entire R. This system can characterize the statistic uncertainty of environmental noise,
thus it can be applied to more cases.

(iii) Different from [9], the concept of G-mean random dynamical system is intro-

duced in L2
G(Ω,L

2(R)) over (Ω,H,Ê,F), instead of over a filtered space (Ω,H,Ê,F ,Ft).
Meanwhile, the definition of pullback mean random attractor for G-mean random dy-
namical system is given. And then we prove the existence of such attractors as well as
their periodicity when the nonautonomous deterministic forcing f is periodic in time
(see Theorem 4.1).
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(iv) In addition, the existence and periodicity of such attractors for system (1.1) are
investigated in a weighted space L2

G(Ω,L
2
σ(R)) (see Section 5 for more details), which

generalizes the results in Section 4. It is worth noticing that the space L2
G(Ω,L

2(R)) is
contained in the weighted space L2

G(Ω,L
2
σ(R)). Especially, when σ> 1

2 , L
2
G(Ω,L

2
σ(R))

contains all bounded measurable functions. In this case, the requirement condition of
f(x,t) in the weighted space L2

G(Ω,L
2
σ(R)) is weaker than that in L2

G(Ω,L
2(R)).

The outline of this paper is as follows. Some preliminaries are introduced in Sec-
tion 2. In Section 3, the existence and uniqueness of solutions for system (1.1) in
L2
G(Ω,L

2(R)) are proved. The existence and periodicity of mean random attractors for
system (1.1) in L2

G(Ω,L
2(R)) and L2

G(Ω,L
2
σ(R)) are investigated in Sections 4 and 5,

respectively.
Throughout this paper, let ∥·∥Lp(R) and ⟨·, ·⟩Lp(R) denote the norm and the inner

product of Lp(R), respectively. When p=2, we will omit the subscript Lp(R) in the
above notations for simplicity.

2. Preliminaries
We use the framework and notations of Peng in [24]. Let (Ω,F) be a given measur-

able space and H be a linear space of real-valued functions defined on (Ω,F) satisfying
that φ(ξ1,ξ2, ·· · ,ξn)∈H if ξ1,ξ2,·· · ,ξn∈H for each φ∈Cl,Lip(Rn), where Cl,Lip(Rn)
denotes the linear space of functions φ satisfying the local Lipschitz condition:

|φ(x)−φ(y)|≤C(1+ |x|m+ |y|m)|x−y| for x,y∈Rn,

where C>0 and m∈N depend on φ.

Definition 2.1. A sublinear expectation Ê on H is a functional Ê :H→R satisfying
the following properties: for all ξ,ζ ∈H,

(i) Monotonicity: if ξ≥ ζ, then Ê[ξ]≥ Ê[ζ];
(ii) Constant preserving: Ê[c]= c;

(iii) Sub-additivity: Ê[ξ+ζ]≤ Ê[ξ]+ Ê[ζ];
(iv) Positive homogeneity: Ê[λξ]=λÊ[ξ] for λ≥0.

The triple (Ω,H,Ê) is called a sublinear expectation space.

Definition 2.2. A set function C on F is called a capacity if it satisfies

(i) C(∅)=0, C(Ω)=1;

(ii) C(A)≤C(B), A⊂B, A,B∈F .
A capacity C is said to be sub-additive if it satisfies C(A∪B)≤C(A)+C(B).

Definition 2.3. Given a capacity C, a set A∈F is said to be polar if C(A)=0. A
property is said to hold quasi-surely (q.s.) if it holds outside a polar set.

Let (Ω,H,Ê) be a sublinear expectation space, then define a capacity: C(A) :=

Ê(IA), ∀A∈F . Then, C is a sub-additive capacity. And it was proved in [24] that there
exists a family of linear expectations EP :H→R, indexed by P ∈P such that

Ê[u]= sup
P∈P

EP [u], u∈H, (2.1)

where P is a family of probability measures. Let L0
G(Ω,X) be the space of all (F ,B(X))-

measurable functions, where X is a Banach space with norm ∥·∥X . We observe that

L2 :={u∈L0
G(Ω,X) : Ê[∥u∥2X ]<∞} and N 2 :={u∈L0

G(Ω,X) : Ê[∥u∥2X ]=0} are linear
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spaces. Denote L2
G(Ω,X) :=L2/N 2. Similar to the classical result, it is not difficult

to prove that L2
G(Ω,X) is a Banach space with the norm ∥u∥L2

G
:= (Ê[∥u∥2X ])

1
2 .

In order to investigate the asymptotic behavior of system (1.1) with random
initial conditions, following the idea of [9, 19, 34], we will introduce the concepts
of G-mean random dynamical system and pullback G-mean random attractors over
(Ω,H,Ê,F) (not over (Ω,H,Ê,F ,Ft)). For convenience, let X :=L2

G((Ω,H,Ê,F);X)=

{ϕ| ϕ is F-measurable and Ê[∥ϕ∥2X ]<∞}, and R2
≥ :={(t,t0)∈R2 : t≥ t0}.

Definition 2.4. A family of mappings Φ={Φ(t,t0,ξ0) : (t,t0)∈R2
≥} on nonlinear

expectation space is called a G-mean square random dynamical system over (Ω,H,Ê,F),
if the mapping Φ(t,t0, ·) :X→X, (t,t0)∈R2

≥ satisfies:

(i) Initial value property: Φ(t0,t0,ξ0)= ξ0 for any ξ0∈X and t0∈R;
(ii) Two-parameter semigroup property: Φ(t2,t0,ξ0)=Φ(t2,t1,Φ(t1,t0,ξ0)) for

every ξ0∈X and (t2,t1),(t1,t0)∈R2
≥;

(iii) Continuity property: (t,t0,ξ0) 7→Φ(t,t0,ξ0) is continuous in the space R2
≥×

X.

Definition 2.5. A family K={K(t)}t∈R of nonempty subsets of X for each t∈R is
said to be Φ-invariant if

Φ(t,t0,K(t0))=K(t), for all (t,t0)∈R2
≥,

and Φ-positively invariant if

Φ(t,t0,K(t0))⊆K(t), for all (t,t0)∈R2
≥.

Let D={D(t)⊆X : t∈R} be a family of bounded nonempty sets and there exists
a constant λ>0 such that

lim
t→−∞

eλt∥D(t)∥2X=0, (2.2)

where ∥D(t)∥2X= sup
u∈D(t)

Ê[∥u∥2X ]. And D is said to be uniformly bounded if there exists

a positive constant r such that, Ê[∥u(t)∥2X ]≤ r holds for any t∈R and u(t)∈D(t)∈D.
In what follows, we set

D={D={D(t)⊆X :D(t) ̸=∅ bounded, t∈R} :D satisfies (2.2)}.

Definition 2.6. A family K={K(t)}t∈R∈D is called a D-pullback absorbing family
for Φ if for each t∈R and D∈D, there exists T ′=T ′(t,D)>0 such that

Φ(t,t−s,D(t−s))⊆K(t), s≥T ′.

Remark 2.1. Compared with [19,38], in this paper, the absorbing family for G-mean
random dynamical system Φ is not required to be uniformly bounded. Obviously, D is
uniformly bounded, which implies that it satisfies (2.2). This shows that a uniformly
bounded family of nonempty closed subsets D={D(t)}t∈R belongs to D. Therefore, the
requirement conditions of absorbing set are weaker than those in the literature [19,38].

Definition 2.7. A family A={A(t)}t∈R is called a D-pullback G-mean random
attractor for Φ in X if the following conditions are fulfilled:
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(i) A(t) is a nonempty compact subset of X for each t∈R;
(ii) A is Φ-invariant, i.e., Φ(t,t0,A(t0))=A(t), for all (t,t0)∈R2

≥;

(iii) A pullback attracts every D∈D, that is, for every t∈R,

lim
s→+∞

d(Φ(t,t−s,D(t−s)),A(t))=0,

where d(A,B) := sup
x∈A

inf
y∈B

∥x−y∥X is the Hausdorff semi-distance, for any A,B⊆X.

In addition, in this paper, the following two lemmas are also frequently used to prove
the existence of D-pullback G-mean random attractors for complex Ginzburg-Landau
system with random initial condition.

Lemma 2.1 ([23] Gagliardo-Nirenberg’s inequality). Let u∈Lq(R) and its derivatives
of order m, Dmu∈Lr(R), 1≤ q,r≤∞. For the derivatives Dju, 1≤ j <m, there exists
c= c(m,j,q,r,θ) such that

∥Dju∥Lp(R)≤ c∥Dmu∥θLr(R)∥u∥
1−θ
Lq(R),

where 1
p = j+θ( 1r −m)+(1−θ) 1q , for all θ in the interval j

m ≤θ≤1.

Lemma 2.2 ([21]). For any −1<µ<+∞ and x,y∈C, the following inequality holds

|Im(x̄− ȳ)(|x|µx−|y|µy)|≤ µ

2
√
µ+1

Re(x̄− ȳ)(|x|µx−|y|µy).

3. Existence and uniqueness of solutions for system (1.1)
The objectives of this section are to study the existence and uniqueness of solution

for system (1.1) in nonlinear expectation space (Ω,H,Ê), which are necessary for estab-
lishing the G-mean square dynamical system associated with system (1.1). First, the
definition of solution for system (1.1) is given below.

Definition 3.1. Let τ ∈R and uτ ∈L2
G(Ω,L

2(R)). A continuous mapping u(·) .
=

u(·,τ,uτ ) : [τ,∞)→L2
G(Ω,L

2(R)) is called a solution of system (1.1) if

u(·,τ,uτ )∈C
(
[τ,∞),L2

G

(
Ω,L2(R)

))⋂
L2
G

(
Ω,L2

loc

(
(τ,∞),H1(R)

))⋂
L4
G

(
Ω,L4

loc

(
(τ,∞),L4(R)

))
and u satisfies, for every t>τ and ξ∈H1(R)∩L4(R)

⟨u(t),ξ⟩=⟨uτ ,ξ⟩−(λ+ iα)

∫ t

τ

⟨∇u,∇ξ⟩ds−ρ

∫ t

τ

⟨u,ξ⟩ds

−(κ+ iβ)

∫ t

τ

⟨|u|2u,ξ⟩ds+
∫ t

τ

⟨f(s),ξ⟩ds, q.s.,

where f(·) :R→L2(R) and ⟨f(s),ξ⟩=
∫
Rf(x,s)ξ(x)dx.

We now prove the existence and uniqueness of solutions to problem (1.1) in the
sense of Definition 3.1.

Theorem 3.1. For every τ ∈R and uτ ∈L2
G(Ω,L

2(R)), system (1.1) has a unique solu-
tion u(·,τ,uτ ) in the sense of Definition 3.1. Furthermore, this solution is F-measurable
with respect to ω∈Ω.
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Proof. Let Ok={x∈R,|x|<k} for each k∈N, and consider the following equation
defined in Ok

∂uk

∂t
=(λ+ iα)∆uk−ρuk−(κ+ iβ)|uk|2uk+f(x,t), t>τ, x∈Ok, (3.1)

with boundary condition

uk(x,t)=0, t>τ, |x|=k, (3.2)

and initial condition

uk(x,τ)=uτ (x), x∈Ok. (3.3)

For any fixed k>0, we can deduce that system (3.1)-(3.3) has one solution uk (the
definition of solution is the same as in Definition 3.1 but replacing R by Ok). Moreover,
for any t≥ τ , uk(t,ω) is F-measurable with respect to ω∈Ω.

Next, we will derive uniform estimates on the solution uk of (3.1)-(3.3). Taking the
inner product of (3.1) and considering the real part, we have

d

dt
∥uk∥2=−2λ∥∇uk∥2−2ρ∥uk∥2−2κ∥uk∥4L4(Ok)

+2Re

∫
Ok

f(t,x)ukdx

≤−2λ∥∇uk∥2−ρ∥uk∥2−2κ∥uk∥4L4(Ok)
+

1

ρ
∥f(t)∥2. (3.4)

Therefore, for any t≥ τ and ω∈Ω, we find

∥uk(t,ω)∥2+2λ

∫ t

τ

∥∇uk(s,ω)∥2ds+2κ

∫ t

τ

∥uk(s,ω)∥4L4(Ok)
ds

≤∥uτ (ω)∥2+
1

ρ

∫ t

τ

∥f(s)∥2ds.

Then, for every fixed τ ∈R, ω∈Ω and T >0, we have

∥uk(t,ω)∥2≤∥uτ (ω)∥2+
1

ρ

∫ τ+T

τ

∥f(s)∥2ds, t∈ [τ,τ+T ], (3.5)

∫ τ+T

τ

∥∇uk(s,ω)∥2ds≤
1

2λ

(
∥uτ (ω)∥2+

1

ρ

∫ τ+T

τ

∥f(s)∥2ds
)
, (3.6)

and ∫ τ+T

τ

∥uk(s,ω)∥4L4(Ok)
ds≤ 1

2κ

(
∥uτ (ω)∥2+

1

ρ

∫ τ+T

τ

∥f(s)∥2ds
)
. (3.7)

It follows from (3.5)-(3.7) that for every fixed τ ∈R, ω∈Ω and T >0,

{uk(·,ω)}∞k=1 is bounded in L∞(
(τ,τ+T ),L2(Ok)

)⋂
L2

(
(τ,τ+T ),H1

0 (Ok)
)⋂

L4
(
(τ,τ+T ),L4(Ok)

)
(3.8)

and

{|uk|2uk}∞k=1 is bounded in L
4
3

(
(τ,τ+T ),L

4
3 (Ok)

)
. (3.9)
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Therefore,{
duk

dt

}∞

k=1

is bounded in L
4
3

(
(τ,τ+T ),L

4
3 (Ok)

)
+L2

(
(τ,τ+T ),H−1(Ok)

)
. (3.10)

Consider uk as a function defined on the entire space R by setting uk(x,t)=0 for
all |x|>k and t∈ [τ,τ+T ]. Let t′∈ (τ,τ+T ] be fixed. Then by (3.8)-(3.10), we know
that there exists a subsequence {ukl

}∞l=1 of {uk}∞k=1 such that

ukl
(·,ω)→u(·,ω) weak star in L∞(

(τ,τ+T ),L2(R)
)
,

ukl
(·,ω)→u(·,ω) weakly in L2

(
(τ,τ+T ),H1(R)

)
,

ukl
(·,ω)→u(·,ω) weakly in L4

(
(τ,τ+T ),L4(R)

)
,

d

dt
ukl

(·,ω)→ d

dt
u(·,ω) weakly in L

4
3

(
(τ,τ+T ),L

4
3 (R)

)
+L2

(
(τ,τ+T ),H−1(R)

)
,

ukl
(t′,ω)→v weakly in L2(R),

where u∈L∞(
(τ,τ+T ),L2(R)

)
∩L2

(
(τ,τ+T ),H1(R)

)
∩L4

(
(τ,τ+T ),L4(R)

)
and v∈

L2(R). Then by a standard procedure (see [20]), we can deduce that

|ukl
(·,ω)|2ukl

(·,ω)→|u(·,ω)|2u(·,ω) weakly in L
4
3

(
(τ,τ+T ),L

4
3 (R)

)
.

Therefore, letting l→∞, we have that for any ξ∈H1(R)∩L4(R),

d

dt
⟨u,ξ⟩=−(λ+ iα)⟨∇u,∇ξ⟩−ρ⟨u,ξ⟩−(κ+ iβ)⟨|u|2u,ξ⟩+⟨f(t),ξ⟩, (3.11)

on (τ,τ+T ). In addition, u(·,ω)∈C([τ,τ+T ],L2(R)), u(τ,ω)=uτ (ω), u(t
′,ω)=v and

1

2

d

dt
∥u(t,ω)∥2=−λ∥∇u(t,ω)∥2−ρ∥u(t,ω)∥2−κ∥u(t,ω)∥2L4(R)+⟨f(t),u(t,ω)⟩. (3.12)

Therefore, we can deduce that for any t′∈ (τ,τ+T ],

ukl
(t′,ω)→u(t′,ω) weakly in L2(R), (3.13)

and u(·,ω) is a solution of the deterministic system (1.1) with initial condition uτ (ω)
for a fixed ω∈Ω.

On the other hand, for every fixed τ ∈R, ω∈Ω and T >0, we have

∥u(t,ω)∥2≤∥uτ (ω)∥2+
1

ρ

∫ τ+T

τ

∥f(s)∥2ds, t∈ [τ,τ+T ], (3.14)

∫ τ+T

τ

∥∇u(s,ω)∥2ds≤ 1

2λ

(
∥uτ (ω)∥2+

1

ρ

∫ τ+T

τ

∥f(s)∥2ds
)
, (3.15)

and ∫ τ+T

τ

∥u(s,ω)∥4L4(R)ds≤
1

2κ

(
∥uτ (ω)∥2+

1

ρ

∫ τ+T

τ

∥f(s)∥2ds
)
. (3.16)

Since uτ ∈L2
G(Ω,L

2(R)), we see from (3.14) that u∈L∞
loc

(
(τ,∞),L2

G(Ω,L
2(R))

)
. It then

follows from (3.14)-(3.16) that

u∈L2
G

(
Ω,L2

loc

(
(τ,∞),H1(R)

))⋂
L4
G

(
Ω,L4

loc

(
(τ,∞),L4(R)

))
.
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Next, we are going to prove that u∈C
(
[τ,∞),L2

G

(
Ω,L2(R)

))
. It follows from (3.12)

and the Young inequality that

Ê[∥u(t)∥2−∥u(s)∥2]≤ 1

ρ

∫ t

s

∥f(r)∥2dr. (3.17)

For any t,s≥ τ ,

Ê[∥u(t)−u(s)∥2]= Ê[∥u(t)∥2+∥u(s)∥2−2⟨u(t),u(s)⟩]. (3.18)

It is not hard to prove that L2
G(Ω,H

1(R))∩L2
G(Ω,L

4(R)) is dense in L2
G(Ω,L

2(R)), thus
there exists {un(s)}∞n=1∈L2

G(Ω,H
1(R))∩L2

G(Ω,L
4(R)) such that

Ê[∥u(s)−un(s)∥2]→0, as n→∞. (3.19)

Combining this with (3.17), we obtain that for any fixed s≥ τ ,

Ê[∥u(t)−u(s)∥2]= Ê[∥u(t)∥2+∥u(s)∥2−2⟨u(t),un(s)+u(s)−un(s)⟩]

≤Ê[∥u(t)∥2+∥u(s)∥2−2⟨u(t),un(s)⟩]+2Ê[⟨u(t),un(s)−u(s)⟩]

≤Ê
[
2∥u(s)∥2−2⟨u(t),un(s)⟩+

1

ρ

∫ t

s

∥f(r)∥2dr
]
+2Ê[⟨u(t),un(s)−u(s)⟩].

It follows from (3.11) that

⟨u(t,ω),un(s,ω)⟩

=⟨u(s,ω),un(s,ω)⟩−
∫ t

s

(λ+ iα)⟨∇u(r,ω),∇un(r,ω)⟩dr−
∫ t

s

ρ⟨u(r,ω),un(s,ω)⟩dr

−
∫ t

s

(κ+ iβ)⟨|u(r,ω)|2u(r,ω),un(s,ω)⟩dr+
∫ t

s

⟨f(r),un(s,ω)⟩dr.

Without loss of generality, we suppose t≥s, therefore,

Ê[∥u(t)−u(s)∥2]≤ Ê
[
2∥u(s)∥2−2⟨u(s),un(s)⟩−

∫ t

s

(λ+ iα)⟨∇u(r),∇un(s)⟩dr

−
∫ t

s

ρ⟨u(r),un(s)⟩dr−
∫ t

s

(κ+ iβ)⟨|u(r)|2u(r),un(s)⟩dr

+

∫ t

s

⟨f(r),un(s)⟩dr+
1

ρ

∫ t

s

∥f(r)∥2dr
]
+2Ê[⟨u(t),un(s)−u(s)⟩]

≤Ê[2⟨u(s),u(s)−un(s)⟩]+CÊ
[∫ t

s

∥∇u(r)∥∥∇un(s)∥dr
]

+CÊ
[∫ t

s

∥u(r)∥∥un(s)∥ds
]
+CÊ

[∫ t

s

∥u(r)∥3L4(R)∥un(s)∥L4(R)dr

]
+ Ê

[∫ t

s

∥f(r)∥∥un(s)∥dr
]
+

1

ρ

∫ t

s

∥f(r)∥2dr+2Ê[⟨u(t),un(s)−u(s)⟩]. (3.20)

For the first and last terms on the right-hand side of (3.20), we have

2Ê[⟨u(s),u(s)−un(s)⟩]+2Ê[⟨u(t),un(s)−u(s)⟩]

≤2(Ê[∥u(s)∥2]) 1
2 (Ê[∥u(s)−un(s)∥2])

1
2 +2(Ê[∥u(t)∥2]) 1

2 (Ê[∥un(s)−u(s)∥2]) 1
2 .

(3.21)
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It then follows from (3.14) and (3.19) that

Ê[⟨u(s),u(s)−un(s)⟩]+2Ê[⟨u(t),un(s)−u(s)⟩]→0, as n→∞. (3.22)

For the second term on the right-hand side of (3.20), by the Hölder inequality we have

CÊ
[∫ t

s

∥∇u(r)∥∥∇un(s)∥dr
]

≤CÊ

[(∫ t

s

∥∇u(r)∥2dr
) 1

2
(∫ t

s

∥∇un(s)∥2dr
) 1

2

]

≤C

(
Ê
[∫ t

s

∥∇u(r)∥2dr
]) 1

2

(Ê[∥∇un(s)∥2])
1
2 |t−s| 12 . (3.23)

Similarly, we find

CÊ
[∫ t

s

∥u(r)∥∥un(s)∥ds
]
≤C

(
Ê
[∫ t

s

∥u(r)∥2dr
]) 1

2

(Ê[∥un(s)∥2])
1
2 |t−s| 12 , (3.24)

CÊ
[∫ t

s

∥u(r)∥3L4(R)∥un(s)∥L4(R)dr

]
≤C

(
Ê
[∫ t

s

∥u(r)∥4L4(R)dr
]) 4

3

(Ê[∥un(s)∥4L4(R)])
1
4 |t−s| 14 , (3.25)

Ê
[∫ t

s

∥f(r)∥∥un(s)∥dr
]
≤C

(
Ê
[∫ t

s

∥f(r)∥2dr
]) 1

2

(Ê[∥un(s)∥2])
1
2 |t−s| 12 . (3.26)

By (3.22)-(3.26), one can deduce that

Ê[∥u(t)−u(s)∥2]→0, as t→s,

which shows that

u∈C([τ,∞),L2
G(Ω,L

2(R))). (3.27)

Therefore, u is a solution to problem (1.1) in the sense of Definition 3.1.
Next, we will show that the solution is unique. Let u1, u2 be any two solutions of

system (1.1) with the same initial condition and v=u1−u2. Note

d

dt
∥v∥2=−2λ∥∇v∥2−2ρ∥v∥2−2Re(κ+ iβ)

∫
R
(|u1|2u1−|u2|2u2)v̄dx

≤−2λ∥∇v∥2+2

∣∣∣∣Re(κ+ iβ)

∫
R
(|u1|2u1−|u2|2u2)v̄dx

∣∣∣∣ .
It follows from the Young inequality and Lemma 2.1 that∣∣∣∣Re(κ+ iβ)

∫
R
(|u1|2u1−|u2|2u2)v̄dx

∣∣∣∣
=

∣∣∣∣Re(κ+ iβ)

∫
R

[
|u1|2(u1−u2)+(|u1|2−|u2|2)u2

]
v̄dx

∣∣∣∣
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≤κ

∫
R
|u1|2|v|2dx+

∣∣∣∣Re(κ+ iβ)

∫
R
(|u1|2−|u2|2)u2v̄dx

∣∣∣∣
≤3

√
κ2+β2

∫
R
(|u1|2+ |u2|2)|v|2dx

≤3
√
2(κ2+β2)

(∫
R
(|u1|4+ |u2|4)dx

) 1
2 ∥v∥2L4(R)

≤3c
√

2(κ2+β2)
(
∥u1∥2L4(R)+∥u2∥2L4(R)

)
∥∇v∥ 1

2 ∥v∥ 3
2

≤3c
√
2(κ2+β2)

[
ε∥∇v∥2+ 3

4
(2ε)−

1
3

(
∥u1∥

8
3

L4(R)+∥u2∥
8
3

L4(R)
)
∥v∥2

]
,

where c is defined in Lemma 2.1. Then letting ε= λ

3c
√

2(κ2+β2)
, we have

d

dt
∥v∥2≤9

√
2c

4

√
κ2+β2(2ε)−

1
3

(
∥u1∥

8
3

L4(R)+∥u2∥
8
3

L4(R)
)
∥v∥2.

It follows from the Gronwall inequality that

∥u1(t,ω)−u2(t,ω)∥2≤∥uτ,1(ω)−uτ,2(ω)∥2e
9
√

2c
4

√
κ2+β2(2ε)−

1
3
∫ t
τ
(∥u1∥

8
3
L4(R)

+∥u2∥
8
3
L4(R)

)ds

≤∥uτ,1(ω)−uτ,2(ω)∥2e
C[(

∫ t
τ
∥u1∥4

L4(R)ds)
2
3 +(

∫ t
τ
∥u2∥4

L4(R)ds)
2
3 ]
, (3.28)

where C= 9
√
2c
4

√
κ2+β2( t−τ

2ε )
1
3 . This implies the uniqueness of solution.

Note that (3.13) and the uniqueness of solutions imply that the entire sequence
uk(t,ω)→u(t,ω) weakly in L2(R). By the measurability of uk(t,ω) in ω, the measura-
bility of u(t,ω) can be obtained directly. The proof is complete.

Remark 3.1. In classical probability space, the continuity of the solution with
respect to time in the mean sense can be proved by the dominated convergence theorem,
see, e.g., [34, 35, 40]. Nevertheless, different from the classical probability space, the
dominated convergence theorem usually does not hold in the framework of nonlinear
expectation. This gives rise to some difficulties in proving u∈C([τ,∞),L2

G(Ω,L
2(R))),

which is necessary to establish the G-mean square dynamical system associated with
(1.1) in the next section.

Remark 3.2. Inequality (3.28) shows the uniqueness of the solution. However, it
does not indicate the continuity of solutions with respect to initial conditions, which
will be proved in Lemma 4.1.

4. G-mean random attractors for (1.1) in L2
G(Ω,L

2(R))
In this section, we will prove the existence of mean random attractors for system

(1.1) in L2
G(Ω,L

2(R)). For this purpose, we further assume:

|β|≤
√
3κ, (4.1)∫ τ

−∞
eρs∥f(s)∥2ds<∞, ∀ τ ∈R. (4.2)

4.1. G-mean random dynamical systems. To investigate the long-term
dynamics of the solutions of problem (1.1), we need to define a random dynamical
system based on the solution operators.
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Let Φ be a mapping on R2
≥×L2

G(Ω,L
2(R)) given by

Φ(t,τ,uτ )=u(t,τ,uτ ), t≥ τ,

where uτ ∈L2
G(Ω,L

2(R)), and u is the solution of problem (1.1) with initial datum uτ .
By the definition of Φ, we have

Ê[∥Φ(t,τ,uτ )∥2]= Ê[∥u(t,τ,uτ )∥2]<∞,

and Φ(t,τ,uτ ) is F-measurable since the solution u(t) is F-measurable, which implies
that Φ maps R2

≥×L2
G(Ω,L

2(R)) into L2
G(Ω,L

2(R)).
In addition, by the uniqueness of solutions, we have

Φ(t,τ,uτ )=Φ(t,s,Φ(s,τ,uτ )), (4.3)

for any (t,s), (s,τ)∈R2
≥ and uτ ∈L2

G(Ω,L
2(R)). Furthermore, it is easy to check that

Φ(τ,τ,uτ )=uτ .

Thus, according to Definition 2.4, in order to show that the solution of problem
(1.1) with random initial condition generates a G-mean random dynamical system, it
remains to prove that Φ is continuous in the space R2

≥×L2
G(Ω,L

2(R)).

Lemma 4.1. Assume (4.1) holds. Then, the mapping Φ is uniformly strictly contract-
ing, i.e., for the different initial values uτ,1, uτ,2∈L2

G(Ω,L
2(R)), we have

Ê[∥Φ(t,τ,uτ,1)−Φ(t,τ,uτ,2)∥2]≤Ê[∥uτ,1−uτ,2∥2]e−2ρ(t−τ), (4.4)

for all t≥ τ .

Proof. Let u1(t,τ,uτ,1) and u2(t,τ,uτ,2) be two different solutions of (1.1) for the
initial values uτ,1, uτ,2∈L2

G(Ω,L
2(R)) and the same initial time τ . By the definition of

Φ, we have

Ê[∥Φ(t,τ,uτ,1)−Φ(t,τ,uτ,2)∥2]= Ê[∥u1(t,τ,uτ,1)−u2(t,τ,uτ,2)∥2].

We can deduce that

d

dt
∥u1−u2∥2

=−2λ∥∇(u1−u2)∥2−2ρ∥u1−u2∥2−2Re(κ+ iβ)⟨|u1|2u1−|u2|2u2,u1−u2⟩
≤−2ρ∥u1−u2∥2−2Re(κ+ iβ)⟨|u1|2u1−|u2|2u2,u1−u2⟩. (4.5)

By Lemma 2.2 and (4.1), the second term on the right-hand side of (4.5) can be bounded
by

−2Re(κ+ iβ)⟨|u1|2u1−|u2|2u2,u1−u2⟩

=−2κ

∫
R
Re

(
ū1(x)− ū2(x)

)(
|u1(x)|2u1(x)−|u2(x)|2u2(x)

)
dx

+2β

∫
R
Im

(
ū1(x)− ū2(x)

)(
|u1(x)|2u1(x)−|u2(x)|2u2(x)

)
dx

≤2κ
(
−1+

|β|
κ
√
3

)∫
R
Re

(
ū1(x)− ū2(x)

)(
|u1(x)|2u1(x)−|u2(x)|2u2(x)

)
dx≤0. (4.6)
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Therefore, we can conclude

d

dt
∥u1−u2∥2≤−2ρ∥u1−u2∥2.

The Gronwall inequality gives that

Ê[∥u1(t,τ,uτ,1)−u2(t,τ,uτ,2)∥2]≤Ê[∥uτ,1−uτ,2∥2]e−2ρ(t−τ).

The proof is complete.

Remark 4.1. It follows from Lemma 4.1 that Φ(t,τ,·) maps L2
G(Ω,L

2(R)) to
L2
G(Ω,L

2(R)) continuously. Then combining u∈C([τ,∞),L2
G(Ω,L

2(R))) with (4.3), we
can deduce that the mapping Φ is continuous in the space R2

≥×L2
G(Ω,L

2(R)). There-
fore, Φ is a G-mean random dynamical system associated with problem (1.1).

4.2. Existence of G-mean random attractors. In this subsection, we prove
the existence of D-pullback G-mean random attractors for problem (1.1) with random
initial condition. We first construct a pullback absorbing set in L2

G(Ω,L
2(R)).

Lemma 4.2. Let (4.1) and (4.2) hold. Then for every τ ∈R and D∈D, there exist
T =T (τ,D)>0 and R(τ)>0 such that for all t≥T ,

Ê[∥Φ(τ,τ− t,uτ−t)∥2]≤R(τ),

where uτ−t∈D(τ− t).

Proof. It follows from the Young inequality that

d

dt
∥u∥2=−2λ∥∇u∥2−2ρ∥u∥2−2κ∥u∥4L4(R)+2Re⟨f(t),u⟩

≤−2λ∥∇u∥2−2ρ∥u∥2−2κ∥u∥4L4(R)+ρ∥u∥2+ 1

ρ
∥f(t)∥2

≤−ρ∥u∥2+ 1

ρ
∥f(t)∥2.

Therefore,

d

dt
eρt∥u∥2=ρeρt∥u∥2+eρt

d

dt
∥u∥2≤ 1

ρ
eρt∥f(t)∥2.

Then integrating on (τ− t,τ) with t≥0, we have

∥u(τ,τ− t,uτ−t)∥2≤e−ρt∥uτ−t∥2+
1

ρ
e−ρτ

∫ τ

τ−t

eρs∥f(s)∥2ds.

Therefore,

Ê[∥u(τ,τ− t,uτ−t)∥2]≤e−ρtÊ[∥uτ−t∥2]+
1

ρ
e−ρτ

∫ τ

−∞
eρs∥f(s)∥2ds, (4.7)

which together with uτ−t∈D(τ− t) and D∈D, implies that there exists T =T (τ,D)>0
such that for all t≥T ,

Ê[∥Φ(τ,τ− t,uτ−t)∥2]≤R(τ),
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where

R(τ)=1+
1

ρ
e−ρτ

∫ τ

−∞
eρs∥f(s)∥2ds.

The proof is complete.

Remark 4.2. Define the family of sets B(τ)=Br(τ), where Br(τ) is the ball in
L2
G(Ω,L

2(R)) centered on the origin with radius r(τ) specified by

r(τ) :=

√
1+

1

ρ
e−ρτ

∫ τ

−∞
eρs∥f(s)∥2ds.

It is not difficult to prove that the family B={B(τ) : τ ∈R} belongs to D. Indeed,
choosing λ=ρ in (2.2), we have

lim
τ→−∞

eρτ∥B(τ)∥2X= lim
τ→−∞

eρτ + lim
τ→−∞

eρτe−ρτ

ρ

∫ τ

−∞
eρs∥f(s)∥2ds,

which together with (4.2) implies

lim
τ→−∞

eρτ∥B(τ)∥2X=0.

Therefore, B∈D. Further, by Lemma 4.2, we find that for every τ ∈R and D=
{D(t)}t∈R∈D, there exists T =T (τ,D)>0 such that for all t≥T , Φ(τ,τ− t,uτ−t)⊆
B(τ). Therefore, B is a D-pullback absorbing family for Φ.

Theorem 4.1. Assume (4.1) and (4.2) hold. Then, problem (1.1) has a unique
D-pullback G-mean random attractor A={A(τ) : τ ∈R} in L2

G(Ω,L
2(R)). Furthermore,

if there exists a positive number ϖ such that f :R→L2(R) is ϖ-periodic, then such
attractor A is also ϖ-periodic; that is, A(τ+ϖ)=A(τ) for all τ ∈R.

Proof. It follows from Remark 4.2 that {B(τ) : τ ∈R} is a D-pullback absorbing
set for Φ.

Next, we will show that {Φ(0,tn,xn)}n∈N is a Cauchy sequence in L2
G(Ω,L

2(R))
with values in B(0), where xn∈D(tn) for each n∈N, D∈D, and {tn}n∈N is a monotone
decreasing sequence tending to −∞ with t1=0 and tn− tn+1≥T ∗(tn), where T ∗(tn) is
the absorbing time. Indeed, for any m>n,

Ê
[
∥Φ(0,tn,xn)−Φ(0,tm,xm)∥2

]
= Ê

[
∥Φ(0,tn,xn)−Φ(0,tn,Φ(tn,tm,xm))∥2

]
≤eρtn Ê

[
∥xn−Φ(tn,tm,xm)∥2

]
. (4.8)

It then follows from the construction of the time sequence and the absorbing property
of this set that Φ(tn,tm,xm)∈B(tn). Therefore,

Ê
[
∥Φ(0,tn,xn)−Φ(0,tm,xm)∥2

]
≤4eρtn

(
1+

1

ρ
e−ρtn

∫ tn

−∞
eρs∥f(s)∥2ds

)
=4eρtn +

4

ρ

∫ tn

−∞
eρs∥f(s)∥2ds, (4.9)

which implies that {Φ(0,tn,xn)}n∈N is a Cauchy sequence due to tn→−∞ as n→∞.
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Then by the completeness of L2
G(Ω,L

2(R)), there exists a unique limit x∗(0)∈B(0)
such that

Ê
[
∥Φ(0,tn,xn)−x∗(0)∥2

]
→0 as n→∞.

Now define x∗(t)
.
=Φ(t,0,x∗(0)) for t≥0. We can repeat the above argument with

0 replaced by −1 to obtain a limit x∗(−1)∈B(−1) such that

Ê
[
∥Φ(−1,tn,xn)−x∗(−1)∥2

]
→0 as n→∞.

It is clear that x∗(0)=Φ(0,−1,x∗(−1)) due to

Ê
[
∥x∗(0)−Φ(0,−1,x∗(−1))∥2

]
= Ê

[
∥x∗(0)−Φ(0,tn,xn)+Φ(0,tn,xn)−Φ(0,−1,x∗(−1))

+Φ(0,−1,Φ(−1,tn,xn))−Φ(0,−1,Φ(−1,tn,xn))∥2
]

= Ê
[
∥x∗(0)−Φ(0,tn,xn)−Φ(0,−1,x∗(−1))+Φ(0,−1,Φ(−1,tn,xn))∥2

]
≤ Ê

[
∥x∗(0)−Φ(0,tn,xn)∥2

]
+ Ê

[
∥Φ(0,−1,Φ(−1,tn,xn))−Φ(0,−1,x∗(−1))∥2

]
≤ Ê

[
∥x∗(0)−Φ(0,tn,xn)∥2

]
+e−ρÊ

[
∥Φ(−1,tn,xn)−x∗(−1)∥2

]
.

Then proceed with this construction via induction for each −n and −n−1 to obtain a
limit x∗(−n−1)∈B(−n−1) such that x∗(−n)=Φ(−n,−n−1,x∗(−n−1)). And define
x∗(t)=Φ(t,−n−1,x∗(−n−1)) for −n−1<t<−n. In this way an entire trajectory
x∗(t) of Φ is constructed, i.e., with x∗(t)=Φ(t,s,x∗(s)) for all (t,s)∈R2

≥.
Moreover, by the strictly contracting property all other paths of Φ converge to x∗(t)

in the G-mean sense. In fact, x∗(t) is unique and forms a D-pullback G-mean random
attractor for Φ consisting of singleton sets A={x∗(t)}. To see this suppose that x̄∗(t) is

another entire trajectory with x̄∗(t)∈A(t) for all t∈R and Ê
[
∥x∗(0)− x̄∗(0)∥2

]
≥ε>0.

Similarly to (4.8) and (4.9), the strictly contracting condition and uniform bound-
edness of the entire paths give

Ê
[
∥Φ(0,−t,x∗(−t))−Φ(0,−t,x̄∗(−t))∥2

]
≤eρtÊ

[
∥x∗(−t)− x̄∗(−t)∥2

]
≤4

(
1+

1

ρ
eρt

∫ −t

−∞
eρs∥f(s)∥2ds

)
e−ρt

≤4e−ρt+
4

ρ

∫ −t

−∞
eρs∥f(s)∥2ds

for all t≥0, which implies that there exists T >0 such that for all t≥T

Ê
[
∥Φ(0,−t,x∗(−t))−Φ(0,−t,x̄∗(−t))∥2

]
≤ 1

2
ε.

However, x∗(0)=Φ(0,−t,x∗(−t)) and x̄∗(0)=Φ(0,−t,x̄∗(−t)), so

ε≤ Ê
[
∥x∗(0)− x̄∗(0)∥2

]
= Ê

[
∥Φ(0,−t,x∗(−t))−Φ(0,−t,x̄∗(−t))∥2

]
≤ 1

2
ε,

for all t≥T , which is a contradiction.
Thus the G-mean random dynamical system Φ has a D-pullback G-mean random

attractor A={x∗(t)}t∈R.
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Finally, the periodicity of random attractors will be shown. According to the con-
struction process of x∗(t), for any t∈R we have x∗(t+ϖ)=Φ(t+ϖ,t,x∗(t)). It then
follows from the fact that f(x,t) is ϖ-periodic that Φ is periodic with period ϖ. Noting
that Φ satisfies two-parameter semigroup property, therefore, x∗(t)=x∗(t+ϖ), which
shows that the attractor A is also ϖ-periodic.

Remark 4.3. If f(x,t)≡0 for x∈R, we can obtain that 0 is the solution of system
(1.1). Then combining with Theorem 4.1, we have x∗(t)≡0.

Remark 4.4. In [19,34,35,38,40], the existence of mean random attractors has been
investigated for mean random dynamical system in classical probability space, which
cannot be applied to the system with probability-uncertain initial data. However, The-
orem 4.1 may be applied to prove the existence of pullback G-mean random attractors
for G-mean random dynamical system, so it can be applied to more cases.

5. G-mean random attractors for (1.1) in L2
G(Ω,L

2
σ(R))

In this section, we will investigate the asymptotic behaviors of the solutions to
problem (1.1) in the weighted space L2

G(Ω,L
2
σ(R)) with a weight function ϕ(x)=(1+

|x|2)−σ for x∈R, where σ> 1
2 is a fixed number and L2

σ(R) is defined by

L2
σ(R)=

{
u :R→R is measurable,

∫
R
(1+ |x|2)−σ|u(x)|2dx<∞

}
with the norm

∥u∥σ =
(∫

R
(1+ |x|2)−σ|u(x)|2dx

)1/2

.

In order to study the dynamics of problem (1.1) in the weighted space L2
G(Ω,L

2
σ(R)),

we have to extend Φ from L2
G(Ω,L

2(R)) to L2
G(Ω,L

2
σ(R)). This extension is possible

based on the Lipschitz continuity of solutions in L2
G(Ω,L

2
σ(R)).

The following lemma is the result about the Lipschitz continuity of solutions in
L2
G(Ω,L

2
σ(R)).

Lemma 5.1. Suppose f1,f2∈L2
loc(R,L2(R)), uτ,1,uτ,2∈L2

G(Ω,L
2(R)) and (4.1) hold.

Let u1,u2 be solutions of problem (1.1) with f replaced by f1 and f2, respectively. Then
for every τ ∈R, ω∈Ω and T >0, there exists a positive constant C=C(τ,T ) such that
for all t∈ [τ,τ+T ],

Ê[∥u1(t,τ,uτ,1)−u2(t,τ,uτ,2)∥2σ]≤CÊ[∥uτ,1−uτ,2∥2σ]+C

∫ t

τ

∥f1(s)−f2(s)∥2σds. (5.1)

Proof. It follows from (1.1) that

∂(u1−u2)

∂t
=(λ+ iα)△(u1−u2)−ρ(u1−u2)

−(κ+ iβ)(|u1|2u1−|u2|2u2)+f1(t,x)−f2(t,x).

Taking the inner product with u1−u2 in L2
σ(R), we have

d

dt
∥u1−u2∥2σ =2Re(λ+ iα)

〈
△(u1−u2),(u1−u2)

〉
σ
−2ρ∥u1−u2∥2σ

−2Re(κ+ iβ)
〈
|u1|2u1−|u2|2u2,u1−u2

〉
σ
+2Re

〈
f1(t)−f2(t),u1−u2⟩σ.

(5.2)
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Now, we compute the terms on the right-hand of (5.2).

2Re(λ+ iα)
〈
△(u1−u2),(u1−u2)

〉
σ

=−2λ
〈
∇(u1−u2),∇(u1−u2) ·ϕ(x)

〉
−2Re(λ+ iα)

〈
∇(u1−u2),∇ϕ(x) ·(u1−u2)

〉
.

By simple calculations, we find that

|∇ϕ(x)|≤σϕ(x), ∀ x∈R,

which, together with the Young inequality, shows that

2Re(λ+ iα)
〈
△(u1−u2),(u1−u2)

〉
σ

≤−2λ∥∇(u1−u2)∥2σ+2σ
√

λ2+α2
〈
∇(u1−u2),ϕ(x)(u1−u2)

〉
≤−2λ∥∇(u1−u2)∥2σ+λ∥∇(u1−u2)∥2σ+

σ2(λ2+α2)

λ
∥u1−u2∥2σ

≤−λ∥∇(u1−u2)∥2σ+
σ2(λ2+α2)

λ
∥u1−u2∥2σ. (5.3)

For the third term on the right-hand side of (5.2), it follows from Lemma 2.2 that

−2Re(κ+ iβ)
〈
|u1|2u1−|u2|2u2,u1−u2

〉
σ

=−2Re(κ+ iβ)

∫
R
ϕ(x)(|u1|2u1−|u2|2u2)(ū1− ū2)dx

=−2κ

∫
R
ϕ(x)Re Ldx+2β

∫
R
ϕ(x)Im Ldx

≤2κ
(
−1+

|β|
κ
√
3

)∫
R
ϕ(x)Re Ldx, (5.4)

where L=
(
|u1(x)|2u1(x)−|u2(x)|2u2(x)

)(
ū1(x)− ū2(x)

)
. It then follows from (4.1),

(5.2)-(5.4) and the Young inequality that

d

dt
∥u1−u2∥2σ ≤c∥u1−u2∥2σ+

1

ρ
∥f1(t)−f2(t)∥2σ, (5.5)

where c= σ2(λ2+α2)
λ −ρ. For every τ ∈R, T >0 and t∈ [τ,τ+T ], the Gronwall inequality

gives that

Ê[∥u1(t,τ,uτ,1)−u2(t,τ,uτ,2)∥2σ]

≤Ê[∥uτ,1−uτ,2∥2σ]ec(t−τ)+
1

ρ

∫ t

τ

∥f1(s)−f2(s)∥2σec(t−s)ds.

This completes the proof.

Next, we extend the mapping Φ from L2
G(Ω,L

2(R)) to L2
G(Ω,L

2
σ(R)). This will

enable us to study the dynamics of the system (1.1) in L2
G(Ω,L

2
σ(R)).

Theorem 5.1. Suppose f ∈L2
loc(R,L2

σ(R)) and (4.1) hold. Then one can associate
problem (1.1) with a continuous system Φ:R2

≥×L2
G(Ω,L

2
σ(R))→L2

G(Ω,L
2
σ(R)) such that

for every (τ,t)∈R2
≥ and uτ ∈L2

G(Ω,L
2(R)), Φ(t,τ,uτ )=u(t,τ,uτ ), where Φ(t,τ,uτ ) is

the solution of problem (1.1) with initial time τ and initial condition uτ .
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Proof. Notice that L2
G(Ω,L

2(R)) is dense in L2
G(Ω,L

2
σ(R)). Indeed, ∀u∈

L2
G(Ω,L

2
σ(R)), let un(x)=u(x)I{|x|<n}, where n∈N+. Then, for any positive integer

n, we have

Ê
[∫

R
|u(x)I{|x|<n}|2dx

]
=Ê

[∫
|x|<n

|u(x)|2dx
]

=(1+n2)σÊ
[∫

|x|<n

(1+n2)−σ|u(x)|2dx
]

≤(1+n2)σÊ
[∫

|x|<n

(1+x2)−σ|u(x)|2dx
]

≤(1+n2)σÊ
[∫

R
(1+x2)−σ|u(x)|2dx

]
<∞,

which implies un∈L2
G(Ω,L

2(R)). In addition,

Ê
[
∥u(x)−un(x)∥2σ

]
= Ê

[∫
|x|≥n

(1+x2)−σ|u(x)|2dx
]
,

which, together with u∈L2
G(Ω,L

2
σ(R)), implies

Ê
[
∥u(x)−un(x)∥2σ

]
→0, as n→∞.

Therefore, L2
G(Ω,L

2(R)) is dense in L2
G(Ω,L

2
σ(R)). Then L2

G(Ω,L
2(R))×L2((τ,τ+

T ),L2(R)) is dense in L2
G(Ω,L

2
σ(R))×L2((τ,τ+T ),L2

σ(R)).
Given (uτ ,f)∈L2

G(Ω,L
2
σ(R))×L2((τ,τ+T ),L2

σ(R)), there exists a sequence
(un,fn)∈L2

G(Ω,L
2(R))×L2((τ,τ+T ),L2(R)) such that (un,fn)→ (uτ ,f)

in L2
G(Ω,L

2
σ(R))×L2((τ,τ+T ),L2

σ(R)). Let τ ∈R and T >0, by Lemma 5.1, we
find that {u(·,τ,(un,fn))}∞n=1 is a Cauchy sequence in C([τ,τ+T ],L2

G(Ω,L
2
σ(R))), so

lim
n→∞

u(·,τ,(un,fn)) exists in C([τ,τ+T ],L2
G(Ω,L

2
σ(R))). It is evident that this limit does

not depend on the choice of (un,fn). Let Φ̃ be a mapping from L2
G(Ω,L

2
σ(R))×L2((τ,τ+

T ),L2
σ(R)) to C([τ,τ+T ],L2

G(Ω,L
2
σ(R))) such that for every (uτ ,f)∈L2

G(Ω,L
2
σ(R))×

L2((τ,τ+T ),L2
σ(R)) and (un,fn)∈L2

G(Ω,L
2(R))×L2((τ,τ+T ),L2(R))

Φ̃(·,τ,(uτ ,f))= lim
n→∞

u(·,τ,(un,fn)), (5.6)

where (un,fn)→ (uτ ,f) in L2
G(Ω,L

2
σ(R))×L2((τ,τ+T ),L2

σ(R)). It follows from Lemma
5.1 that Φ̃(·,τ,(uτ ,f)) is Lipschitz continuous in (uτ ,f) in L2

G(Ω,L
2
σ(R))×L2((τ,τ+

T ),L2
σ(R)).
Note that for every t≥ τ , u(t,τ,ω,(un,fn)) is (F ,B(L2(R)))-measurable and the em-

bedding L2(R) ↪→L2
σ(R) is continuous. Therefore, u(t,τ,ω,(un,fn)) is (F ,B(L2

σ(R)))-
measurable, which along with (5.6) implies that Φ̃(·,τ,(uτ ,f)) is (F ,B(L2

σ(R)))-
measurable for all t≥ τ . One can check that Φ̃ is continuous in R2

≥×L2
G(Ω,L

2
σ(R)).

Actually, Φ̃ is an extension of Φ to the weighted space L2
G(Ω,L

2
σ(R)), and we will not

distinguish Φ and Φ̃ in the sequel.

In order to study the existence of pullback mean attractors of Φ in L2
G(Ω,L

2
σ(R)),

we need to prove that Φ is uniformly strictly contracting and has a pullback absorbing
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family in L2
G(Ω,L

2
σ(R)). When deriving the uniform estimates on solutions, we need

the following condition on f :∫ τ

−∞
eρs∥f(s)∥2σds<∞, ∀τ ∈R, (5.7)

which weakens condition (4.2).

Remark 5.1. As we will see later, when studying the existence of pullback
mean attractors of Φ in L2

G(Ω,L
2
σ(R)), it is convenient to use an equivalent norm for

L2
G(Ω,L

2
σ(R)) which is defined by the weight function ϕδ(x)=(1+ |δx|2)−σ, x∈R, where

δ=min
{
1,

√
λρ√

(λ2+α2)σ

}
. (5.8)

By simple calculations, we can obtain that

|∇ϕδ(x)|≤σδϕδ(x), ∀ x∈R, (5.9)

and

Ê
[
∥u∥2σ

]
≤ Ê

[∫
R
ϕδ(x)|u(x)|2dx

]
≤ δ−2σÊ

[
∥u∥2σ

]
, ∀ u∈L2

G(Ω,L
2
σ(R)), (5.10)

which shows that the weighted space L2
G(Ω,L

2
σ(R)) has an equivalent norm which is

given by
(
Ê
[∫

Rϕδ(x)|u(x)|2dx
]) 1

2

for u∈L2
G(Ω,L

2
σ(R)).

Lemma 5.2. Assume (4.1) holds. Then the G-mean random dynamical system Φ is
uniformly strictly contracting in L2

G(Ω,L
2
σ(R)), i.e., for the different initial values uτ,1,

uτ,2∈L2
G(Ω,L

2
σ(R)), there exists a constant M (which is independent of τ) such that

Ê[∥Φ(t,τ,uτ,1)−Φ(t,τ,uτ,2)∥2σ]≤M Ê[∥uτ,1−uτ,2∥2σ]e−ρ(t−τ), (5.11)

for all t≥ τ .

Proof. Let u1(t,τ,uτ,1) and u2(t,τ,uτ,2) be two different solutions of (1.1) from
the different initial values uτ,1, uτ,2∈L2

G(Ω,L
2
σ(R)) for the same initial time τ . Taking

the inner product of u1−u2 with ϕδ(u1−u2) in L2(R) and then taking the real part,

d

dt

∫
R
ϕδ(x)|u1−u2|2dx=−2λ

∫
R
ϕδ(x)|∇(u1−u2)|2dx−2ρ

∫
R
|u1−u2|2ϕδ(x)dx

−2Re(λ+ iα)

∫
R
(ū1− ū2)∇(u1−u2) ·∇ϕδ(x)dx

−2Re(κ+ iβ)
〈
|u1|2u1−|u2|2u2,ϕδ(x)(u1−u2)

〉
. (5.12)

For the third term on the right-hand side of (5.12), by (5.9) and the Young inequality,

−2Re(λ+ iα)

∫
R
(ū1− ū2)∇(u1−u2) ·∇ϕδ(x)dx

≤2σδ
√

λ2+α2

∫
R

∣∣(ū1− ū2)∇(u1−u2)ϕδ(x)
∣∣dx

≤σ2δ2(λ2+α2)

λ

∫
R
|u1−u2|2ϕδ(x)dx+λ

∫
R
|∇(u1−u2)|2ϕδ(x)dx, (5.13)
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and together with (4.1), (5.8) and Lemma 2.2, we deduce from (5.12) that

d

dt

∫
R
ϕδ(x)|u1−u2|2dx≤−ρ

∫
R
|u1−u2|2ϕδ(x)dx. (5.14)

The Gronwall inequality gives that

Ê
[∫

R
ϕδ(x)|u1(t,τ,uτ,1)−u2(t,τ,uτ,2)|2dx

]
≤Ê

[∫
R
ϕδ(x)|uτ,1−uτ,2|2dx

]
e−ρ(t−τ), (5.15)

which, together with (5.10) and the definition of Φ, implies that

Ê[∥Φ(t,τ,uτ,1)−Φ(t,τ,uτ,2)∥2σ]≤ δ−2σÊ
[
∥uτ,1−uτ,2∥2σ

]
e−ρ(t−τ). (5.16)

The proof is complete.

Lemma 5.3. Let (4.1) and (5.7) hold. Then for every τ ∈R and D∈D, there exist
T =T (τ,D)>0 and R̃(τ)>0 such that for all t≥T ,

Ê[∥Φ(τ,τ− t,uτ−t)∥2σ]≤R̃(τ), (5.17)

where uτ−t∈D(τ− t).

Proof. Taking the inner product of u with ϕδu in L2(R), we obtain

d

dt

∫
R
ϕδ(x)|u|2dx=−2λ

∫
R
ϕδ(x)|∇u|2dx−2Re(λ+ iα)

∫
R
ū∇u ·∇ϕδ(x)dx

−2ρ

∫
R
|u|2ϕδ(x)dx−2κ

∫
R
|u|4ϕδ(x)dx+2Re

∫
R
f(x,t)ϕδ(x)ūdx.

Similar to (5.13), we have

−2Re(λ+ iα)

∫
R
ū∇u ·∇ϕδ(x)dx≤2σδ

√
λ2+α2

∫
R

∣∣ū∇u ·∇ϕδ(x)
∣∣dx

≤σ2δ2(λ2+α2)

λ

∫
R
|u|2ϕδ(x)dx+λ

∫
R
|∇u|2ϕδ(x)dx.

Therefore, we can deduce that

d

dt

∫
R
ϕδ(x)|u|2dx≤

σ2δ2(λ2+α2)

λ

∫
R
|u|2ϕδ(x)dx−2ρ

∫
R
|u|2ϕδ(x)dx

+
2

ρ

∫
R
|f(x,t)|2ϕδ(x)dx+

ρ

2

∫
R
|u|2ϕδ(x)dx

≤− ρ

2

∫
R
|u|2ϕδ(x)dx+

2

ρ

∫
R
|f(x,t)|2ϕδ(x)dx. (5.18)

It follows from that

d

dt
e

ρt
2

∫
R
ϕδ(x)|u|2dx=

ρ

2
e

ρt
2 ∥u∥2+e

ρt
2
d

dt
∥u∥2≤ 2

ρ
e

ρt
2

∫
R
|f(x,t)|2ϕδ(x)dx.
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Then integrating on (τ− t,τ) with t≥0, we have

Ê
[∫

R
ϕδ(x)|u(τ,τ− t,uτ−t)|2dx

]
≤e−

ρt
2 Ê

[∫
R
ϕδ(x)|uτ−t|2dx

]
+

2

ρ
e−

ρτ
2

∫ τ

τ−t

∫
R
eρs|f(x,s)|2ϕδ(x)dxds. (5.19)

Using (5.10) and the definition of Φ again, we have

Ê[∥Φ(τ,τ− t,uτ−t)∥2σ]≤e−
ρt
2 δ−2σÊ[∥uτ−t∥2σ]+

1

ρδ2σ
e−ρτ

∫ τ

−∞
eρs∥f(s)∥2ds,

which, together with uτ−t∈D(τ− t) andD∈D, implies that there exists T =T (τ,D)>0
such that for all t≥T ,

Ê[∥Φ(τ,τ− t,uτ−t)∥2]≤R̃(τ),

where

R̃(τ)=1+
1

ρδ2σ
e−ρτ

∫ τ

−∞
eρs∥f(s)∥2ds.

The proof is complete.

Theorem 5.2. Under assumptions (4.1) and (5.7), then the G-mean random dynam-
ical system Φ associated with problem (1.1) has a unique D-pullback G-mean random
attractor A={A(τ) : τ ∈R} in L2

G(Ω,L
2
σ(R)). Furthermore, if there exists a positive

number ϖ such that f :R→L2(R) is ϖ-periodic, then such an attractor A is also ϖ-
periodic; that is, A(τ+ϖ)=A(τ) for all τ ∈R.

Proof. By Lemmas 5.2 and 5.3, and using the method similar to Theorem 4.1, the
proof can be completed.
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