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POINTWISE WAVE BEHAVIOR OF THE NON-ISENTROPIC
NAVIER-STOKES EQUATIONS IN HALF SPACE∗

HAI-LIANG LI† , HOU-ZHI TANG‡ , AND HAI-TAO WANG§

Abstract. In this paper, we aim to study the global well-posedness and pointwise behavior of the
classical solution to one-dimensional non-isentropic compressible Navier-Stokes equations in half space.
Based on Hs energy method, we first establish the global existence and uniqueness. To derive the
accurate pointwise estimate of the solution, Green’s function for the initial boundary value problem is
investigated. It is shown that Green’s function can be expressed in terms of a fundamental solution to
the Cauchy problem. Then applying Duhamel’s principle and nonlinear analysis yields the space-time
estimate of the solution under some suitable assumptions on the initial data, which exhibits the rich
wave structure. As a corollary, we prove that the solution converges to the equilibrium state at an
algebraic time decay rate (1+ t)−1/2 in L∞ norm with respect to the spatial variable.

Keywords. Navier-Stokes equations; pointwise estimate; Green’s function; half space; non-
isentropic.
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1. Introduction
It’s known that one-dimensional full compressible Navier-Stokes (CNS) equations

describe the motion of a viscous, compressible, heat-conductive, and Newtonian poly-
tropic fluid. In Lagrangian coordinates, it is written as follows

vt−ux=0,

ut+px=
( µ̃
v
ux

)
x
,

(e+
1

2
u2)t+(pu)x=

(κ
v
θx+

µ̃

v
uux

)
x
,

(1.1)

where v(x,t)>0, u(x,t), p(x,t), e(x,t) and θ(x,t) denote the specific volume, the veloc-
ity, the pressure, the internal energy and the absolute temperature respectively. Assume
the viscosity µ̃ and the coefficient of heat conductivity κ are positive constants. For
simplicity, the monatomic gas model is considered in this paper, which means

p=
Rθ

v
, e= cvθ, (1.2)

where R is a positive constant and cv =
R

γ−1 >0.
Most of the interesting phenomena in fluid dynamics are in connection with the

presence of a physical boundary, such as slip boundary layer, thermal creep flow, and
curvature effects. To this end, we are devoted to the study of the global existence and
pointwise wave behavior of one-dimensional compressible Navier-Stokes equations in
a half-line. According to the result of numerical simulation and physical experiment,
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the no-slip boundary condition for velocity and the adiabatic boundary condition for
temperature are commonly used, which are described as

(u,θx)|x=0=(0,0), (v,u,θ)|x→+∞=(v∗,0,θ∗), (1.3)

where v∗ and θ∗ denote the positive constants. Define E=e+ 1
2u

2. Then, the system
(1.1) is reformulated as

vt−ux=0,

ut+
R

cv
(
E

v
− u2

2v
)x=(

µ̃

v
ux)x,

Et+
R

cv
(
uE

v
− u3

2v
)x=

1

cv
(
κ

v
Ex+

µ̃cv−κ
v

uux)x.

(1.4)

It is obvious that the boundary condition (1.3) becomes

(u,Ex)|x=0=(0,0), (v,u,E)|x→+∞=(v∗,0,E∗), (1.5)

with E∗= cvθ∗. We supply (1.4) with the following initial data

(v,u,E)|t=0=(v0,u0,E0). (1.6)

When the Cauchy problem is taken into consideration, there is much important
progress on the global existence and large-time behavior of classical solutions to the com-
pressible fluid models. The global classical solution of isentropic compressible Navier-
Stokes equations has been studied by Kanel [9] with positive initial density. Later,
Kazhikhov made an important contribution to the non-isentropic case in [14]. It should
be noted that the above references focus on big initial data. When it comes to small ini-
tial data, the global smooth solution of compressible Navier-Stokes equations in 3D was
initiated by Mastumura and Nishida [21] and in one-dimensional space was proved by
Kawashima and Nishida [12]. The optimal L2 time decay rate for the three-dimensional
full CNS system was investigated by Mastumura and Nishida [22] and the Lp(p≥2)
time decay rate was established by Ponce [24] under the assumption that the initial
data is a small perturbation of constant state in H3(R3)∩L1(R3). Kawashima [10, 11]
obtained the L2 time decay rates of several general hyperbolic-parabolic systems with
applications to related models.

In order to reveal the wave propagation related to hyperbolic properties of com-
pressible flow, Zeng [25] initially studied the large-time behavior in L1 norm of the
compressible, isentropic, viscous 1-D flow. Their results show that the solution behaves
like a heat kernel with convection, which propagates with the sound speed in opposite
directions. Later, the pointwise estimates of general quasilinear hyperbolic-parabolic
systems of conservation laws were established by Liu and Zeng [20]. To describe the
wave propagation for compressible fluids in multi-dimensions, Hoff and Zumbrun [5, 6]
constructed the Green’s function of an artificial viscosity system related to linearized
isentropic CNS system and investigated the space-time structure of the solution. Liu and
Wang [19] analyzed the Green’s function for isentropic compressible Navier-Stokes equa-
tions and derived the pointwise convergence of the solution to diffusive waves with the
optimal time decay rate, which reveals the important phenomenon of the weaker Huy-
gens’ principle due to the existence of the stronger dispersion effects in odd-dimensional
space. Afterwards, David Li [17] generalized their work to the non-isentropic CNS sys-
tem on the linear level, where additional new waves are introduced to show the Huygens’
principle.
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Once the boundary is involved, there are many important mathematical results.
The global existence and uniqueness of classical solution for 1D full CNS system with
boundary were investigated by Kazhikhov and Shelukhin [15]. Matsumura and Nishida
[23] proved the global existence of this system in three-dimensional half space with small
initial data. Later, Kagei and Kobayashi [7, 8] obtained the convergence rate of the
solution to the equilibrium state based on the delicate analysis of semigroup and energy
method for isentropic CNS system with Dirichlet boundary condition to the momentum.
On the other hand, there are a few results carried out on large-time behavior in the
pointwise sense for the IBVP to compressible models. The pointwise estimate for p
system with damping in a half-line was investigated by Deng [2]. It is shown that
the solution decays exponentially with respect to space and time under some suitable
assumptions on the initial data. This was generalized later to high dimensional space in
Deng and Wang [1], and in Du [3]. It should be emphasized that the methods applied in
previous works are not applicable to the compressible Navier-Stokes equations due to the
existence of the viscosity term. To this end, Du-Wang [4] and Li-Tang-Wang [18] were
devoted to the study of the space-time pointwise estimate of one-dimensional isentropic
CNS system in half space, where the rich wave structure of the solution is observed.
When the perturbation state is non-constant, Kawashima and Zhu [13] analyzed the
stability of nonlinear waves for the outflow problem of the compressible CNS system
in half space. Recently, Koike [16] studied the large-time behavior of the motion of a
point mass moving in isentropic compressible fluid based on Green’s function and energy
method.

Nevertheless, it remains challenging to study the pointwise wave behavior of the so-
lution perturbed around a given constant state to 1D non-isentropic CNS system (1.4)
with boundary. The first challenge is to estimate the second-order spatial derivatives of
the solution, which can not be obtained by directly differentiating the integral represen-
tation of the solution twice due to the existence of boundary. To resolve this difficulty,
we employ a similar idea applied in the proof of global existence. Once the estimates
of the solution and the first derivatives in space are established, we follow in a similar
manner to derive the decay rates of the first derivatives in time. Then utilizing the
elliptic structure of the velocity and temperature yields the decay rates of the second
spatial derivatives to close the assumption on the ansatz. The second difficulty lies in
that the highest order terms coming from the nonlinear part can not be bounded by
the ansatz since the compressible Navier-Stokes system is quasilinear. To settle the
problem, we make use of the results on the global existence, which provides that the
highest order terms are bounded by the initial data. As a price, the time decay rates
of derivatives become slow. Moreover, the biggest challenge is induced by the degener-
ation of the characteristic velocity for Green’s function. Compared with the previous
work [18] on the isentropic CNS equations, the boundary terms have slower time decay
rates so that we can not close the assumption of the ansatz when taking integration by
parts to obtain the nonlinear stability. Fortunately, we observe the special structure of
Green’s function for IBVP, in terms of the no-slip boundary condition for velocity and
the adiabatic boundary condition for temperature. Indeed, our results show that the
Green’s function G(x,t;y) of the initial boundary value problem can be expressed as
below

G(x,t;y)=G(x−y,t)+G(x+y,t)

 1 0 0
0 −1 0
0 0 1

, (1.7)

where G(x,t) denotes the Green’s function of Cauchy problem that has been well studied
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in [20] and [25]. After we transform the derivative into G(x,t;y) to obtain the nonlinear
estimates, it is observed that the most troublesome boundary term vanishes due to the
fine structure of Green’s function.

This paper is organized as follows. In Section 2, some notations and auxiliary
lemmas are introduced for later use. In Section 3, we present the main theorems of this
paper. The global existence of the classical solution is proved in Section 4. The estimate
of Green’s function to the initial boundary value problem is investigated in Section 5.
In Section 6, we obtain the nonlinear pointwise estimates of the solution.

2. Preliminaries
In this section, we firstly introduce some notations, which will be used throughout

this paper. Let

Π0=

 1 0 0
0 0 0
0 0 0

, Π1=

 0 −σ
µ 0

−σ
µ 0 0

0 0 0

 . (2.1)

In Section 5, we will use the notations as follows

A=

 0 −σ 0
−σ 0 η
0 η 0

 , B=

0 0 0
0 µ 0
0 0 ν

 , (2.2)

where the positive constants σ,ν,µ,η are defined by (3.2).

The Fourier transform of f is denoted by f̂

f̂(ξ)=

∫
R
f(x)e−ixξdx (ξ∈R).

The inverse Fourier transform of f is given by F−1[f ]

F−1[f ](x)=(2π)−1

∫
R
f̂(ξ)eiξxdξ (x∈R).

The Laplace transform of f is written as L[f ]

L[f ](s)=
∫ ∞

0

f(t)e−stdt (t∈R+).

Two functions are introduced to state the main results (i=1,2,3)

ψα(x,t;li)=
(
1+ t+(x− li(1+ t))2

)−α/2
, ϕα(x,t;li)=

(
1+ t+ |x− li(1+ t)|

)−α/2
,
(2.3)

where l1=−c, l2=0, l3= c and the constant c>0 is defined in (2.12).
The diffusive wave function F (x,t) is given by

F (x,t)=

3∑
i=2

(1+ t)
3
8ϕ1(x,t;li)ψ 3

4
(x,t;li). (2.4)

Through this paper, C denotes a generic positive constant that may vary in different
estimates. A≲B and A=O(1)B mean that there exists a uniform positive constant C
such that A≤CB.
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Next, we introduce some lemmas that will be used in the proof of the main theorems.

Lemma 2.1. It holds for k≥0, C1>0 and x∈R+ that

e−
x+t
C1 ≤C(1+ t)−kψ 3

2
(x,t;c),

e
− (x−li(1+t))2

C1(1+t) ≤C(1+ t) 3
4ψ 3

2
(x,t;li),

e−
t

C1 (1+x2)−
5
8 ≤C(1+ t)−kϕ1(x,t;c)ψ 3

4
(x,t;c),

e−
x
C1 (1+ t)−

3
2 ≤C(1+ t)− 1

4ϕ1(x,t;c)ψ 3
4
(x,t;c).

Proof. In order to prove the first inequality, after a direct calculation, we have

e−
x+t
C1 ≤e−

t
2C1 e−

x+t
2C1

≤C(1+ t)−k(1+ t+(x+ t+1)2)−
3
4 .

(2.5)

Note that if c≤1, then (x+ t+1)2≥ (x+c(t+1))2. For the case c>1, it holds

(x+ t+1)2≥ 1

c2
(x+c(t+1))2. (2.6)

Then it is easy to verify

e−
x+t
C1 ≤C(1+ t)−kψ 3

2
(x,t;c). (2.7)

The second inequality is proved by using the fact e−z ≤ (1+z)−
3
4 for z>0. Concerning

the third inequality, we have

e−
t

C1 (1+x2)−
5
8 ≤e−

t
C1 (1+x)−

1
2 (1+x2)−

3
8

≤C(1+ t)−kϕ1(x,t;c)ψ 3
4
(x,t;c). (2.8)

The last inequality can be treated in a similar argument as above. This completes the
proof.

Let G(x,t) be Green’s function of the Cauchy problem (3.11) satisfying{
∂tG(x,t)+A∂xG(x,t)=B∂2xG(x,t), x∈R,t>0,

G(x,0)= δ(x)I3,
(2.9)

where I3 represents a 3×3 identity matrix and the constant matrices A and B are given
by (2.2).

Lemma 2.2. The Green’s function G(x,t) of the Cauchy problem (3.11) satisfies the
following estimate for x∈R,t>0

G(x,t)=G∗(x,t)+O(1)(1+ t)−
1
2 t−

1
2

3∑
i=1

e−
(x−lit)

2

Ct +e−
σ2

µ tδ(x)Π0, (2.10)

where the function G∗(x,t) is defined by

G∗(x,t)=

3∑
i=1

1√
4πµit

e
− (x−lit)

2

4µit Pi. (2.11)
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The matrix Π0 is given by (2.1) and the projections Pi(i=1,2,3) satisfy

P1=
1

2c2

 σ2 σc −ση
σc c2 −cη
−ση −cη η2

 , P2=
1

c2

 η2 0 ση
0 0 0
ση 0 σ2

 , P3=
1

2c2

 σ2 −σc −ση
−σc c2 cη
−ση cη η2

.

The constants li and µi satisfy

l1=−c, l2=0, l3= c, c=
√
σ2+η2,

µ1=µ3=
µ

2
+
νη2

2c2
, µ2=

νσ2

c2
.

(2.12)

Proof. Since matrix A is symmetric, applying Theorem 6.2 [20] completes the
proof.

Lemma 2.3. The Green’s function G(x,t) of the Cauchy problem (3.11) has the
property for x∈R,t>0∣∣∣∂αxG(x,t)−∂αxG∗(x,t)−e−

σ2

µ t
α∑

j=0

δ(α−j)(x)Πj(t)
∣∣∣≤C(1+ t)− 1

2 t−
α+1
2

3∑
i=1

e−
(x−lit)

2

Ct ,

where G∗(x,t) is given by (2.11), δ(k) is the k-th derivative of the Dirac delta function
and Πj =Πj(t) is a 3×3 polynomial matrix. Especially, the matrices Π0,Π1 are given
by (2.1).

Proof. Thanks to Theorem 6.15 [20] and Lemma 2.2, combining them together
completes the proof.

To gain a better understanding of interactions between different waves, we provide
some lemmas as below for x∈R, which can be found in Lemmas 3.7, 3.8 in [20].

Lemma 2.4. Let α≥0, 0≤β≤2, µ̄>0, and λ be constants. Then for x∈R, t≥0, we
have ∫ t

0

∫ ∞

−∞
(t−s)−1(1+ t−s)−α

2 e−
(x−y−λ(t−s))2

µ̄(t−s) (1+s)−
β
2 ϕ1(y,s;λ)ψ 3

4
(y,s;λ)dyds

=

{
O(1)(1+ t)−

γ1
2 log(2+ t)ϕ1(x,t;λ)ψ 3

4
(x,t;λ), if α=1, or 1≤β≤ 3

2 ,

O(1)(1+ t)−
γ1
2 ϕ1(x,t;λ)ψ 3

4
(x,t;λ), otherwise,

+

{
O(1)(1+ t)−

γ2
2 log(2+ t)ψ 3

2
(x,t;λ), if α=1, or β= 3

2 ,

O(1)(1+ t)−
γ2
2 ψ 3

2
(x,t;λ), otherwise,

where γ1=min(α,1)+ 1
2 (min(β,1)+min(β, 32 ))−1, γ2=min(α,1)+min(β, 32 )−1.

Lemma 2.5. Let the constants α≥0,0≤β≤2,µ̄>0 and λ ̸=λ′. Then for any fixed
K>2|λ−λ′| and all x∈R,t≥0, we have∫ t

0

∫ ∞

−∞
(t−s)−1(1+ t−s)−α

2 e−
(x−y−λ(t−s))2

µ̄(t−s) (1+s)−
β
2 ϕ1(y,s;λ

′)ψ 3
4
(y,s;λ′)dyds

=O(1)(1+ t)−
γ1
2

·


ϕ1(x,t;λ)ψ 3

4
(x,t;λ)+ϕ1(x,t;λ

′)ψ 3
4
(x,t;λ′), if α ̸=1,β /∈ [1, 32 ],

log(2+ t)ϕ1(x,t;λ)ψ 3
4
(x,t;λ)+ϕ1(x,t;λ

′)ψ 3
4
(x,t;λ′), if α ̸=1,β∈ [1, 32 ],

log(2+ t)[ϕ1(x,t;λ)ψ 3
4
(x,t;λ)+ϕ1(x,t;λ

′)ψ 3
4
(x,t;λ′)], if α=1,
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+O(1)(1+ t)−
γ2
2


ψ 3

2
(x,t;λ)+ψ 3

2
(x,t;λ′), if α ̸=1,β ̸= 3

2 ,

log(2+ t)ψ 3
2
(x,t;λ)+ψ 3

2
(x,t;λ′), if α ̸=1,β= 3

2 ,

log(2+ t)[ψ 3
2
(x,t;λ)+ψ 3

2
(x,t;λ′)], if α=1,

+O(1)|x−λ(1+ t)|− 1
2 min(β,2)− 1

4+ϵ|x−λ′(1+ t)|− 1
2 min(α,1)− 1

2

·char
{
min(λ,λ′)(1+ t)+K

√
1+ t≤x≤max(λ,λ′)(1+ t)−K

√
1+ t

}
,

where γ1=min(α,1)+ 1
2 (min(β,1)+min(β, 32 ))−1,γ2=min(α,1)+min(β, 32 )−1,

and ϵ>0 can be arbitrarily small.

3. Main results
In this paper, we consider a small perturbation of the solution near a constant state

(v∗,0,E∗). Denote

n=
v−v∗
v∗

, w=
u

c1
, ϕ=

E−E∗

c2E∗
, (3.1)

and

c1=

√
RE∗

cv
, c2=

√
R

cv
, σ=

c1
v∗
, ν=

κ

cvv∗
, µ=

µ̃

v∗
, η=

R
√
E∗

cvv∗
. (3.2)

Then, the system (1.4) is reformulated as

nt−σwx=0,

wt+σ
(1+c2ϕ

1+n

)
x
=
( µwx

1+n

)
x
+
( σc22w

2

2(1+n)

)
x
,

ϕt+η
(w(1+c2ϕ)

1+n

)
x
=ν

( ϕx
1+n

)
x
+
(c2(µ−ν)wwx

1+n

)
x
+
( ηc22w

3

2(1+n)

)
x
.

(3.3)

We equip (3.3) with the following boundary condition

(w,ϕx)|x=0=(0,0), (n,w,ϕ)|x→+∞=(0,0,0). (3.4)

The initial data is given by

(n,w,ϕ)|t=0=(n0,w0,ϕ0). (3.5)

To state the theorem of global existence, we introduce the definitions of energy E(t) and
dissipation D(t)

E(t)=∥n∥H4(R+)+∥w∥H4(R+)+∥ϕ∥H4(R+),

D(t)=∥nx∥H3(R+)+∥wx∥H4(R+)+∥ϕx∥H4(R+).
(3.6)

Since the classical solution is taken into consideration in the present paper, the following
compatible conditions are needed

w0(0)=ϕ
′
0(0)=0,{

σ
(1+c2ϕ0

1+n0

)
x
−
( µw0x

1+n0

)
x
−
( σc22w

2
0

2(1+n0)

)
x

}∣∣∣
x=0

=0,{
η
(w(1+c2ϕ0)

1+n0

)
x
−ν

( ϕ0x
1+n0

)
x
−
(c2(µ−ν)w0w0x

1+n0

)
x
−
( ηc22w

3
0

2(1+n0)

)
x

}
x

∣∣∣
x=0

=0.

(3.7)
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Theorem 3.1 (Global existence). Assume the initial data (n0,w0,ϕ0)∈H4(R+)
satisfying the compatibility conditions (3.7). There exists a small positive constant such
that if

∥(n0,w0,ϕ0)∥H4(R+)≤ε0, (3.8)

then the initial boundary value problem (3.3)-(3.5) admits a unique classical solution
(n,w,ϕ) satisfying

n∈C([0,∞);H4(R+))∩C1([0,∞);H3(R+)),

w∈C([0,∞);H4(R+))∩C1([0,∞);H2(R+)),

ϕ∈C([0,∞);H4(R+))∩C1([0,∞);H2(R+)),

nx∈L2([0,∞);H3(R+)),wx,ϕx∈L2([0,∞);H4(R+)).

(3.9)

Furthermore, it holds that for any given time T >0

sup
0≤t≤T

E(t)2+
∫ T

0

D(t)2dt≤Cε20, (3.10)

where C is a positive constant independent of time.

We consider the linearized system of (3.3)
nt−σwx=0,

wt−σnx+ηϕx=µwxx,

ϕt+ηwx=νϕxx,

(3.11)

with the initial data

(n,w,ϕ)|t=0=(n0,w0,ϕ0),

which satisfies the following boundary condition

(w,ϕx)|x=0=(0,0), (n,w,ϕ)|x→+∞=(0,0,0). (3.12)

The Green’s function of the linear system (3.11)-(3.12) satisfies
∂tG(x,t;y)+A∂xG(x,t;y)=B∂2xG(x,t;y), x>0,y >0,t>0,

G(x,0;y)= δ(x−y)I3, x>0,y >0,

(0,1,0)G(0,t;y)=(0,0,0),{
(0,0,1)∂xG(x,t;y)

}
|x=0=(0,0,0),

(3.13)

where A,B are defined in (2.2) and I3 represents a 3×3 identity matrix. The second
theorem is stated about the estimate of G(x,t;y).

Theorem 3.2. The Green’s function G(x,t;y) of the linear system (3.11)-(3.12) has
the following estimate for x,y∈R+,t≥0∣∣∣∂αxG(x,t;y)−e−

σ2

µ t
α∑

j=0

δ(α−j)(x−y)Πj(t)
∣∣∣

=O(1)t−
1
2−

α
2

3∑
i=1

(
e−

(x−y−lit)
2

Ct +e−
(x+y−lit)

2

Ct

)
,

(3.14)
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where δ(k) is the k-th derivative of the Dirac delta function and Πj =Πj(t) is a 3×3
polynomial matrix. Especially, Π0,Π1 is given by (2.1) and the constants li is introduced
in (2.12).

Based on the above theorems, nonlinear pointwise estimates of the solution are
obtained.

Theorem 3.3. Under the assumptions in Theorem 3.1 and define U0=(n0,w0,ϕ0)
t

satisfying

|∂αxU0(x)|≤Cε0(1+x2)−
5
8 ,

∣∣∣∫ ∞

x

U0(y)dy
∣∣∣≤Cε0(1+x2)− 5

8 , (3.15)

for α=0,1. Then the solution obtained in Theorem 3.1 obeys the following pointwise
estimate

|(n,w,ϕ)(x,t)|≤Cε0F (x,t), (3.16)

where F (x,t) represents the diffusive wave given by (2.4). Furthermore, the decay rates
of spatial derivatives of the solution satisfy

|(nx,wx,ϕx)(x,t)|≤Cε0(1+ t)−1 log(2+ t), |(wxx,ϕxx)(x,t)|≤Cε0(1+ t)−
1
2 . (3.17)

Corollary 3.1. Applying the assumptions in Theorem 3.3 and the definition of
F (x,t), we have the following Lp time decay rate of the solution

∥(n,w,ϕ)(x,t)∥Lp(R+)≤Cε0(1+ t)−
1
2 (1−

1
p ), p∈ (1,+∞]. (3.18)

In what follows, we describe a brief explanation of the main steps of the proof. The
global existence is established firstly based on the classical Hs energy method applied
in [23]. To capture the pointwise behavior of the solution, the delicate structure of
Green’s function is needed to be investigated in the first place. Then applying Duhamel’s
principle yields the accurate expression of the solution. By defining a suitable ansatz,
we anticipate obtaining nonlinear stability. Applying the results of energy estimates
and the Green’s function together close the estimates of the highest order derivatives.
With the strong wave interaction, the nonlinear analysis exhibits a rich wave structure.
As a result, the perturbed solution behaves like a diffusive wave, which propagates with
different wave speeds. Meanwhile, we also derive the algebraic time decay rate of the
solution in L∞ norm about the spatial variable.

4. The Global existence of classical solutions
The local existence of solutions are established as follows.

Theorem 4.1 (Local existence). Assume the initial data (n0,w0,ϕ0)∈H4(R+) sat-
isfying compatibility conditions (3.7). Then, the initial boundary value problem (3.3)-
(3.5) admits a unique local classical solution (n,w,ϕ) satisfying the following estimates
for some T∗>0

n∈C([0,T∗];H4(R+))∩C1([0,T∗];H
3(R+)),

w∈C([0,T∗];H4(R+))∩C1([0,T∗];H
2(R+)),

ϕ∈C([0,T∗];H4(R+))∩C1([0,T∗];H
2(R+)),

nx∈L2([0,T∗];H
3(R+)),wx,ϕx∈L2([0,T∗];H

4(R+)).

(4.1)
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Furthermore, it holds for some given time T∗>0

sup
0≤t≤T∗

E(t)2+
∫ T∗

0

D(t)2dt≤CE(0)2, (4.2)

where C is a positive constant independent of time.

Proof. The construction of local-in-time solutions is based on an iteration scheme
in [23]. Here we omit the details.

To extend the short-time classical solution to be a global one, it is essential to
establish the uniform estimates. Hence we provide the a-priori assumption that for any
given time T >0, it holds

sup
0≤t≤T

E(t)≤ δ, (4.3)

where δ is a suitably small positive constant. We first give the basic L2 energy estimate
of the solution.

Proposition 4.1. Assume (n,w,ϕ) is the classical solution of the initial boundary
value problem (3.3)-(3.5) satisfying the assumptions in Theorem 3.1 and the a-priori
assumption (4.3). Then, we obtain the following estimate for any given time T >0

sup
0≤t≤T

(
∥n∥2L2 +∥w∥2L2 +∥ϕ∥2L2

)
+

∫ T

0

(∥wx∥2L2 +∥ϕx∥2L2)dt≤Cε20.

Proof. To derive the L2 energy estimate, we employ the following equivalent form
of system (1.1) 

vt−ux=0,

ut+px=
( µ̃
v
ux

)
x
,

cvθt+pux=(
κ

v
θx)x+

µ̃u2x
v
.

(4.4)

Using (3.1) provides

v=(1+n)v∗, u= c1w.

Moreover, we define

θ=(1+c2θ̄)θ∗.

Then system (4.4) is reformulated to

nt−σwx=0,

wt+σ(
1+c2θ̄

1+n
)x=(

µwx

1+n
)x,

θ̄t+η(
1+c2θ̄

1+n
)wx=ν(

θ̄x
1+n

)x+
µc2w

2
x

1+n
,

(4.5)

where the positive constants c2,σ,ν,µ,η are given by (3.2). Define the total energy X(t)
as

X(t)=

∫
R+

[
R(n− log(1+n))+

1

2
Rw2+cv(c2θ̄− log(1+c2θ̄))

]
dx. (4.6)
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Applying (4.3) gives rise to

X(t)∼ 1

2
R

∫
R+

(n2+w2+ θ̄2)dx. (4.7)

Taking integration by parts yields

d

dt
X(t)+

∫
R+

µRw2
x

(1+n)(1+c2θ̄)
dx+

∫
R+

νRθ̄2x
(1+n)(1+c2θ̄)2

dx=0. (4.8)

Then we integrate time from 0 to t and take supremum with respect to t∈ [0,T ] to
prove

sup
0≤t≤T

(∥n∥2L2 +∥w∥2L2 +∥θ̄∥2L2)+

∫ T

0

(∥wx∥2L2 +∥θ̄x∥2L2)dt≤Cε20. (4.9)

Due to ϕ= θ̄+ 1
2c2w

2, we immediately obtain

sup
0≤t≤T

(∥n∥2L2 +∥w∥2L2 +∥θ̄∥2L2)+

∫ T

0

(∥wx∥2L2 +∥ϕx∥2L2)dt≤Cε20. (4.10)

This completes the proof.

To capture the estimates of high order derivatives, one rewrites (3.3) as below
nt−σwx=0,

wt−σnx+ηϕx=µwxx+N1,

ϕt+ηwx=νϕxx+N2,

(4.11)

which satisfies the following boundary condition

(w,ϕx)|x=0=(0,0), (n,w,ϕ)|x→+∞=(0,0,0). (4.12)

The initial data is given by

(n,w,ϕ)|t=0=(n0,w0,ϕ0). (4.13)

N1,Ñ1,N2,Ñ2 represent nonlinear terms satisfying

N1=∂xÑ1=
(ηϕn−σn2−µnwx

1+n
+

σc22w
2

2(1+n)

)
x
,

N2=∂xÑ2=
(ηnw−c2ηwϕ−νnϕx

1+n
+
c2(µ−ν)wwx

1+n
+

ηc22w
3

2(1+n)

)
x
.

(4.14)

For later use, set

Ñ =(0,Ñ1,Ñ2)
t, N =(0,N1,N2)

t. (4.15)

Let U =(n,w,ϕ)t be the solution of nonlinear system (4.11). Then we rewrite the
nonlinear system (4.11) into a simple form{

∂tU(x,t)+A∂xU(x,t)=B∂2xU(x,t)+N(x,t),

U(x,0)=U0,
(4.16)
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where U0=(n0,w0,ϕ0)
t.

In what follows, we are prepared to deduce the energy estimates of the time deriva-
tives of the solution.

Proposition 4.2. Assume (n,w,ϕ) is the classical solution of the initial boundary
value problem (3.3)-(3.5) satisfying the assumptions in Theorem 3.1 and the a-priori
assumption (4.3). Then, we obtain the following estimate for any given time T >0

2∑
k=1

(
sup

0≤t≤T
(∥∂kt n∥2L2 +∥∂kt w∥2L2 +∥∂kt ϕ∥2L2)+

∫ T

0

(∥∂kt wx∥2L2 +∥∂kt ϕx∥2L2)dt
)

≤Cε20+Cδ
∫ T

0

D(t)2dt.

Proof. Differentiate the system (4.11) with regard to t, then multiply the resulting
equations by nt,wt and ϕt respectively. Adding and integrating these equations yield

1

2

d

dt
(∥nt∥2L2 +∥wt∥2L2 +∥ϕt∥2L2)+µ∥wtx∥2L2 +ν∥ϕtx∥2L2

=

∫
R+

∂tN1wtdx+

∫
R+

∂tN2ϕtdx

=−
∫
R+

∂tÑ1wtxdx−
∫
R+

∂tÑ2ϕtxdx, (4.17)

where the last step has used integration by parts. Applying the a-priori assumption
(4.3) leads to

∥∂tÑ1∥L2

≤C∥wwt+ntϕ+ϕnt+nnt+ntwx+nwtx∥L2 +C∥(w2+nϕ+n2+nwx)nt∥L2

≤C(∥w∥L∞∥wt∥L2 +∥ϕ∥L∞∥nt∥L2 +∥n∥L∞∥nt∥L2 +∥nt∥L2∥wx∥L∞

+∥n∥L∞∥wtx∥L2)+C(∥w∥2L∞ +∥n∥L∞∥ϕ∥L∞ +∥n∥2L∞ +∥n∥L∞∥wx∥L∞)∥nt∥L2

≤C
√
E(t)D(t)+C∥n∥L∞∥wtx∥L2

≤C
√

E(t)D(t)+Cδ∥wtx∥L2 . (4.18)

It also holds

∥∂tÑ2∥L2 ≤C
√
E(t)D(t)+Cδ∥ϕtx∥L2 . (4.19)

Then we immediately compute

−
∫
R+

∂tÑ1wtxdx−
∫
R+

∂tÑ2ϕtxdx

≤∥∂tÑ1∥L2∥wtx∥L2 +∥∂tÑ2∥L2∥ϕtx∥L2

≤ε(∥wtx∥2L2 +∥ϕtx∥2L2)+Cε(∥∂tÑ1∥2L2 +∥∂tÑ2∥2L2)

≤ (ε+CCεδ
2)∥wtx∥2L2 +(ε+CCεδ

2)∥ϕtx∥2L2 +CE(t)D(t)2, (4.20)

which, together with (4.17), also leads to

1

2

d

dt
(∥nt∥2L2 +∥wt∥2L2 +∥ϕt∥2L2)+µ∥wtx∥2L2 +ν∥ϕtx∥2L2

≤ (ε+CCεδ
2)∥wtx∥2L2 +(ε+CCεδ

2)∥ϕtx∥2L2 +CE(t)D(t)2.
(4.21)
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Integrating (4.21) with respect to time from 0 to t, then taking supremum in t∈ [0,T ]
and making use of the smallness of ε,δ give rise to

sup
0≤t≤T

(∥nt∥2L2 +∥wt∥2L2 +∥ϕt∥2L2)+

∫ T

0

(∥wtx∥2L2 +∥ϕtx∥2L2)dt

≤Cε20+Cδ
∫ T

0

D(t)2dt. (4.22)

Since the case of k=2 can be treated in a similar argument as k=1, we omit the details.
This completes the proof.

Proposition 4.3. Assume (n,w,ϕ) is the classical solution of the initial boundary
value problem (3.3)-(3.5) satisfying the assumptions in Theorem 3.1 and the a-priori
assumption (4.3). Then, we obtain the following estimate for any given time T >0

1∑
k=0

(
sup

0≤t≤T
(∥∂kt wx∥2L2 +∥∂kt ϕx∥2L2)+

∫ T

0

(∥∂k+1
t w∥2L2 +∥∂k+1

t ϕ∥2L2)dt
)

≤Cε20+Cδ
∫ T

0

D(t)2dt.

Proof. Multiplying (4.11)2, (4.11)3 by wt,ϕt respectively, then integrating the
resulting equations with respect to x in R+ reaches the following equality

1

2

d

dt
(µ∥wx∥2L2 +ν∥ϕx∥2L2)+∥wt∥2L2 +∥ϕt∥2L2

=σ

∫
R+

nxwtdx−η
∫
R+

(ϕxwt+wxϕt)dx+

∫
R+

(N1wt+N2ϕt)dx. (4.23)

Using integration by parts, the first term is computed as

σ

∫
R+

nxwtdx=−σ
∫
R+

nwtxdx=−
∫
R+

nnttdx=− d

dt

∫
R+

nntdx+σ
2∥wx∥2L2 . (4.24)

With the help of Young’s inequality, it provides

η

∫
R+

(ϕxwt+wxϕt)dx

≤η∥ϕx∥L2∥wt∥L2 +η∥wx∥L2∥ϕt∥L2

≤ε(∥wt∥2L2 +∥ϕt∥2L2)+Cε(∥ϕx∥2L2 +∥wx∥2L2). (4.25)

In order to deal with the nonlinear terms, by the definition of N1,N2, we obtain∫
R+

(N1wt+N2ϕt)dx

≤∥N1∥L2∥wt∥L2 +∥N2∥L2∥ϕt∥L2

≤ε(∥wt∥2L2 +∥ϕt∥2L2)+CE(t)D(t)2. (4.26)

Since ε is sufficiently small, it is easy to confirm

1

2

d

dt
(µ∥wx∥2L2 +ν∥ϕx∥2L2)+

1

2
(∥wt∥2L2 +∥ϕt∥2L2)

≤− d

dt

∫
R+

nntdx+σ
2∥wx∥2L2 +Cε(∥ϕx∥2L2 +∥wx∥2L2)+CE(t)D(t)2.

(4.27)
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Making use of Proposition 4.2 gives

sup
0≤t≤T

∫
R+

|nnt|dx≤ sup
0≤t≤T

∥n∥L2 sup
0≤t≤T

∥nt∥L2 ≤Cε20+Cδ
∫ T

0

D(t)2dt. (4.28)

Integrating (4.27) with respect to time in [0,t] and taking supremum in t∈ [0,T ], then
applying (4.3), Proposition 4.1 and Proposition 4.2 yields

1

2
sup

0≤t≤T
(µ∥wx∥2L2 +ν∥ϕx∥2L2)+

1

2

∫ T

0

(∥wt∥2L2 +∥ϕt∥2L2)dt

≤ sup
0≤t≤T

∫
R+

|nnt|dx+Cε20+σ2

∫ T

0

∥wx∥2L2dt

+Cε

∫ T

0

(∥ϕx∥2L2 +∥wx∥2L2)dt+Cδ

∫ T

0

D(t)2dt

≤Cε20+Cδ
∫ T

0

D(t)2dt.

As a result, we deduce

sup
0≤t≤T

(∥wx∥2L2 +∥ϕx∥2L2)+

∫ T

0

(∥wt∥2L2 +∥ϕt∥2L2)dt

≤Cε20+Cδ
∫ T

0

D(t)2dt. (4.29)

The case of k=1 can be treated in a similar way as k=0. Hence, we complete the proof.

Based on the above propositions, we shall establish L2 energy estimates of spatial
derivatives.

Proposition 4.4. Assume (n,w,ϕ) is the classical solution of the initial boundary
value problem (3.3)-(3.5) satisfying the assumptions in Theorem 3.1 and the a-priori
assumption (4.3). Then, we obtain the following estimate for any given time T >0

sup
0≤t≤T

(∥nx∥2H3 +∥wx∥2H3 +∥ϕx∥2H3)+

∫ T

0

(∥nx∥2H3 +∥wxx∥2H3 +∥ϕxx∥2H3)dt

≤Cε20+Cδ
∫ T

0

D(t)2dt.

Proof. Write (4.11)2, (4.11)3 into the following form

wxx=
1

µ
(wt−σnx+ηϕx−N1),

ϕxx=
1

ν
(ϕt+ηwx−N2).

(4.30)

It is easy to verify

ntx=
σ

µ
(wt−σnx+ηϕx−N1). (4.31)
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Multiplying (4.31) by nx, then integrating with respect to x in R+ yields

1

2

d

dt
∥nx∥2L2 +

σ2

µ
∥nx∥2L2 =

σ

µ

∫
R+

(wt+ηϕx−N1)nxdx. (4.32)

By Young’s inequality, we derive

σ

µ

∫
R+

(wt+ηϕx−N1)nxdx

≤C∥wt∥L2∥nx∥L2 +C∥ϕx∥L2∥nx∥L2 +CE(t)D(t)2

≤ε∥nx∥2L2 +Cε(∥wt∥2L2 +∥ϕx∥2L2)+CE(t)D(t)2. (4.33)

Integrating (4.32) with respect to time from 0 to t and taking supremum in t∈ [0,T ],
then making use of Proposition 4.1 and Proposition 4.3 gives rise to

sup
0≤t≤T

∥nx∥2L2 +

∫ T

0

∥nx∥2L2dt≤Cε20+Cδ
∫ T

0

D(t)2dt. (4.34)

Utilizing Proposition 4.3 proves

sup
0≤t≤T

(∥wx∥2L2 +∥ϕx∥2L2)≤Cε20+Cδ
∫ T

0

D(t)2dt. (4.35)

Take L2 inner product on (4.30)1 to show

∥wxx∥L2 ≤ 1

µ
(∥wt∥L2 +σ∥nx∥L2 +η∥ϕx∥L2 +∥N1∥L2). (4.36)

In the same way, we have

∥ϕxx∥L2 ≤ 1

ν
(∥ϕt∥L2 +η∥wx∥L2 +∥N2∥L2). (4.37)

By (4.34), (4.35) and Proposition 4.3, we obtain∫ T

0

∥wxx∥2L2dt≤Cε20+Cδ
∫ T

0

D(t)2dt, (4.38)

and ∫ T

0

∥ϕxx∥2L2dt≤Cε20+Cδ
∫ T

0

D(t)2dt. (4.39)

It then deduces from the above results that

sup
0≤t≤T

(∥nx∥2L2 +∥wx∥2L2 +∥ϕx∥2L2)+

∫ T

0

(∥nx∥2L2 +∥wxx∥2L2 +∥ϕxx∥2L2)dt

≤Cε20+Cδ
∫ T

0

D(t)2dt. (4.40)

As for high order derivatives, we apply a similar argument as above. This completes
the proof.
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4.1. The proof of Theorem 3.1.

Proof. Making use of Propositions 4.1, 4.2 and 4.4 together yields

sup
0≤t≤T

E(t)2+
∫ T

0

D(t)2dt≤Cε20+Cδ
∫ T

0

D(t)2dt. (4.41)

Since δ is sufficiently small, we obtain

sup
0≤t≤T

E(t)2+
∫ T

0

D(t)2dt≤Cε20. (4.42)

Let the initial data satisfy Cε20≤ 1
2δ

2, which closes the a-priori assumption (4.3). Based
on the continuity argument, the global existence of the solution is established. The
reader can refer to [23] for details. This completes the proof of Theorem 3.1.

5. The estimate of Green’s function for IBVP

To obtain the Green’s function for IBVP (3.11)-(3.12), we construct a specific so-
lution for x∈R+,t≥0

Ũ(x,t)=(ñ,w̃,ϕ̃)t=

∫ ∞

0

G(x−y,t)U0(y)dy, (5.1)

where G(x,t) is Green’s function of Cauchy problem satisfying{
∂tG(x,t)+A∂xG(x,t)=B∂2xG(x,t), x∈R,t>0,

G(x,0)= δ(x)I3.
(5.2)

It is obvious to verify that Ũ(x,t) solves the following problem
ñt−σw̃x=0,x>0,t>0,

w̃t−σñx+ηϕ̃x=µw̃xx,

ϕ̃t+ηw̃x=νϕ̃xx,

(ñ,w̃,ϕ̃)|t=0=(n0,w0,ϕ0),

(5.3)

with the following boundary condition

(w̃,ϕ̃x)|x=0=(m(t),j(t)), (ñ,w̃,ϕ̃)|x→+∞=(0,0,0), (5.4)

where m(t),j(t) are given by

m(t)=(0,1,0)

∫ ∞

0

G(−y,t)U0(y)dy,

j(t)=
{
(0,0,1)

∫ ∞

0

∂xG(x−y,t)U0(y)dy
}∣∣∣

x=0
.

(5.5)

Denote

Ū = Ũ−U =(n̄,w̄,ϕ̄)t=(ñ−n,w̃−w,ϕ̃−ϕ)t, (5.6)
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where U =(n,w,ϕ)t is the solution of linear system (3.11). After a direct calculation, a
new system is derived as follows

n̄t−σw̄x=0,x>0,t>0,

w̄t−σn̄x+ηϕ̄x=µw̄xx,

ϕ̄t+ηw̄x=νϕ̄xx,

(n̄,w̄,ϕ̄)|t=0=(0,0,0).

(5.7)

Meanwhile, the boundary condition becomes

(w̄,ϕ̄x)|x=0=(m(t),j(t)), (n̄,w̄,ϕ̄)|x→+∞=(0,0,0). (5.8)

Through an appropriate combination, we derive the equation of w̄

w̄ttt−(µ+ν)w̄ttxx−(σ2+η2)w̄txx+µνw̄txxxx+νσ
2w̄xxxx=0. (5.9)

Then, taking Laplace transform in time gives

ν(σ2+µs)L[w̄]xxxx−(as2+bs)L[w̄]xx+s3L[w̄]=0, (5.10)

where a=µ+ν, b=σ2+η2. Solve this ordinary differential equation to give

L[w̄]= c1e−λ1x+ c̄1e
λ1x+c2e

−λ2x+ c̄2e
λ2x. (5.11)

The unknowns ci, c̄i(i=1,2) are determined by boundary data. Let λ1,λ2 satisfy

λ1=

√
as2+bs−

√
(as2+bs)2−4ν(σ2+µs)s3

2ν(σ2+µs)
,

λ2=

√
as2+bs+

√
(as2+bs)2−4ν(σ2+µs)s3

2ν(σ2+µs)
.

We take the branch such that Reλi>0 when Re s>0. It should be mentioned that the
solution of L[ϕ̄] can also be obtained identically. Hence, we deduce that it can be stated
as

L[ϕ̄]=d1e−λ1x+ d̄1e
λ1x+d2e

−λ2x+ d̄2e
λ2x. (5.12)

Note that the first equation of (5.7) tells us

L[n̄]= σ

s
L[w̄]x. (5.13)

In virtue of (5.8), one obtains

c̄1= c̄2=0, d̄1= d̄2=0.

Making use of (5.8), (5.11) and (5.12) gives{
c1+c2=L[m],

λ1d1+λ2d2=−L[j].
(5.14)
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Taking Laplace transform on system (5.7)2 and (5.7)3, then combining (5.14) yields

{
(µs+σ2)(c1λ

2
1+c2λ

2
2)=s

2L[m]+ηsL[j],
η(c1λ1+c2λ2)+(νλ21−s)d1+(νλ22−s)d2=0.

(5.15)

By a direct calculation of (5.14) and (5.15), we obtain


c1=

1

λ21−λ22

[
(

s2

σ2+µs
−λ22)L[m]+

ηs

σ2+µs
L[j]

]
,

c2=
1

λ21−λ22

[
(λ21−

s2

σ2+µs
)L[m]− ηs

σ2+µs
L[j]

]
,

(5.16)

and 

d1=− 1

(λ21−λ22)(s+νλ1λ2)
[
ηλ2s

2

(σ2+µs)
+ηλ1λ

2
2]L[m]

− 1

(λ1−λ2)(s+νλ1λ2)
[s−νλ22+

λ2sη
2

(σ2+µs)(λ1+λ2)
]L[j],

d2=
1

(λ21−λ22)(s+νλ1λ2)
[
ηλ1s

2

σ2+µs
+ηλ21λ2]L[m]

+
1

(λ1−λ2)(s+νλ1λ2)
[s−νλ21+

λ1sη
2

(σ2+µs)(λ1+λ2)
]L[j].

(5.17)

Finally, the remaining task is to calculate L[G](−y,s). Taking Fourier and Laplace
transforms in (5.2) provides

 s −iσξ 0
−iσξ s+µξ2 iηξ
0 iηξ s+νξ2

L[Ĝ](ξ,s)= I3. (5.18)

After taking inverse of the matrix, we get

L[Ĝ](ξ,s)= 1

∆

 s2+(as+η2)ξ2+µνξ4 iσξ(s+νξ2) σηξ2

iσξ(s+νξ2) s(s+νξ2) −iηξs
σηξ2 −iηξs s2+(σ2+µs)ξ2

,

where

∆=ν(σ2+µs)ξ4+(as2+bs)ξ2+s3. (5.19)

It is easy to verify

∆=ν(σ2+µs)(ξ2+λ21)(ξ
2+λ22).
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In terms of Residue Theorem, the following results hold for x ̸=0

1

2π

∫
R

eixξ

(ξ2+λ21)(ξ
2+λ22)

dξ=
λ1e

−λ2|x|−λ2e−λ1|x|

2λ1λ2(λ21−λ22)
,

1

2π

∫
R

iξeixξ

(ξ2+λ21)(ξ
2+λ22)

dξ=
sign(x)(e−λ1|x|−e−λ2|x|)

2(λ21−λ22)
,

1

2π

∫
R

ξ2eixξ

(ξ2+λ21)(ξ
2+λ22)

dξ=
λ1e

−λ1|x|−λ2e−λ2|x|

2(λ21−λ22)
,

1

2π

∫
R

iξ3eixξ

(ξ2+λ21)(ξ
2+λ22)

dξ=
sign(x)(λ22e

−λ2|x|−λ21e−λ1|x|)

2(λ21−λ22)
,

1

2π

∫
R

ξ4eixξ

(ξ2+λ21)(ξ
2+λ22)

dξ=
λ32e

−λ2|x|−λ31e−λ1|x|

2(λ21−λ22)
,

where sign(x) is a symbol function.
Thus, we obtain the Laplace transform of the Green’s function of the Cauchy problem

L[G](x,s)

=
e−λ1|x|

2ν(σ2+µs)(λ2
1−λ2

2)


−s2

λ1
+(as+η2)λ1−µνλ3

1 sign(x)(−σs+σνλ2
1) σηλ1

sign(x)(−σs+σνλ2
1)

−s2

λ1
+νsλ1 sign(x)ηs

σηλ1 sign(x)ηs −s2

λ1
+(σ2+µs)λ1



+
e−λ2|x|

2ν(σ2+µs)(λ2
1−λ2

2)


s2

λ2
−(as+η2)λ2+µνλ3

2 sign(x)(σs−σνλ2
2) −σηλ2

sign(x)(σs−σνλ2
2)

s2

λ2
−νsλ2 −sign(x)ηs

−σηλ2 −sign(x)ηs s2

λ2
−(σ2+µs)λ2

 .

(5.20)

Then, if y>0, we could obtain

L[G](−y,s)

=
e−λ1y

2ν(σ2+µs)(λ21−λ22)


−s2

λ1
+(as+η2)λ1−µνλ31 −σs+σνλ21 σηλ1

−σs+σνλ21 −s2

λ1
+νsλ1 ηs

σηλ1 ηs −s2

λ1
+(σ2+µs)λ1



+
e−λ2y

2ν(σ2+µs)(λ21−λ22)


s2

λ2
−(as+η2)λ2+µνλ

3
2 σs−σνλ22 −σηλ2

σs−σνλ22 s2

λ2
−νsλ2 −ηs

−σηλ2 −ηs s2

λ2
−(σ2+µs)λ2

.

(5.21)
We are in a position to capture the accurate expressions of L[m],L[j].

L[m]=

∫ ∞

0

(0,1,0)L[G](−y,s)U0(y)dy

=
1

2ν(σ2+µs)(λ21−λ22)

{∫ ∞

0

e−λ1y((σνλ21−σs)n0+(νsλ1−
s2

λ1
)w0+ηsϕ0)dy

+

∫ ∞

0

e−λ2y((σs−σνλ22)n0+(
s2

λ2
−νsλ2)w0−ηsϕ0)dy

}
, (5.22)

and

L[j]=
∫ ∞

0

{
(0,0,∂x)L[G](x−y,s)U0(y)dy

}∣∣∣
x=0
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=
1

2ν(σ2+µs)(λ21−λ22)

{∫ ∞

0

λ1e
−λ1y(σηλ1n0+ηsw0+(− s2

λ1
+(σ2+µs)λ1)ϕ0)dy

+

∫ ∞

0

λ2e
−λ2y(−σηλ2n0−ηsw0+(

s2

λ2
−(σ2+µs)λ2)ϕ0)dy

}
. (5.23)

After a tedious computation, we are able to prove

L[w̄](x,s)

=
1

2ν(σ2+µs)(λ21−λ22)

{∫ ∞

0

e−λ1(x+y)
(
(−σs+σνλ21)n0+(− s2

λ1
+νsλ1)w0+ηsϕ0

)
dy

+

∫ ∞

0

e−λ2(x+y)
(
(σs−σνλ22)n0+(

s2

λ2
−νsλ2)w0−ηsϕ0

)
dy

}
. (5.24)

In the same way, L[n̄] is calculated as

L[n̄](x,s)

=
1

2ν(σ2+µs)(λ21−λ22)

{∫ ∞

0

e−λ1(x+y)
(
(
s2

λ1
−(as+η2)λ1+µνλ

3
1)n0

+(σs−σνλ21)w0−σηλ1ϕ0
)
dy+

∫ ∞

0

e−λ2(x+y)
(
(− s2

λ2
+(as+η2)λ2−µνλ32)n0

+(−σs+σνλ22)w0+σηλ2ϕ0
)
dy

}
. (5.25)

In a same manner for L[ϕ̄], one has

L[ϕ̄](x,s)= 1

2ν(σ2+µs)(λ21−λ22)

{∫ ∞

0

e−λ1(x+y)
(
−σηλ1n0−ηsw0

+(
s2

λ1
−(σ2+µs)λ1)ϕ0

)
dy+

∫ ∞

0

e−λ2(x+y)
(
σηλ2n0+ηsw0

+(− s2

λ2
+(σ2+µs)λ2)ϕ0

)
dy

}
. (5.26)

Meanwhile, by (5.20), we also obtain

L[G](x+y,s)

=
e−λ1(x+y)

2ν(σ2+µs)(λ21−λ22)


−s2

λ1
+(as+η2)λ1−µνλ31 −σs+σνλ21 σηλ1

−σs+σνλ21 −s2

λ1
+νsλ1 ηs

σηλ1 ηs −s2

λ1
+(σ2+µs)λ1



+
e−λ2(x+y)

2ν(σ2+µs)(λ21−λ22)


s2

λ2
−(as+η2)λ2+µνλ

3
2 σs−σνλ22 −σηλ2

σs−σνλ22 s2

λ2
−νsλ2 −ηs

−σηλ2 −ηs s2

λ2
−(σ2+µs)λ2

.

(5.27)
According to (5.24)-(5.25) and (5.27), it is significant to observe

L[n̄](x,s)=(−1,0,0)

∫ ∞

0

L[G](x+y,s)U0(y)dy,

L[w̄](x,s)=(0,1,0)

∫ ∞

0

L[G](x+y,s)U0(y)dy,

L[ϕ̄](x,s)=(0,0,−1)

∫ ∞

0

L[G](x+y,s)U0(y)dy.

(5.28)
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As a result, it holds

L[Ū ]=

∫ ∞

0

L[G](x+y,s)

−1 0 0
0 1 0
0 0 −1

U0(y)dy. (5.29)

Therefore, we derive the solution based on (5.1) and (5.6)

L[U ](x,s)=

∫ ∞

0

(
L[G](x−y,s)+L[G](x+y,s)

 1 0 0
0 −1 0
0 0 1

)
U0(y)dy. (5.30)

Then, the Laplace transform of G(x,t;y) has the following form

L[G](x,s;y)=L[G](x−y,s)+L[G](x+y,s)

 1 0 0
0 −1 0
0 0 1

 . (5.31)

Taking Laplace inverse transform, we ultimately get

G(x,t;y)=G(x−y,t)+G(x+y,t)

 1 0 0
0 −1 0
0 0 1

 . (5.32)

According to Lemma 2.3 and the formula of G∗(x,t), the leading part of G(x,t;y) has
the following estimate ∣∣∣∂αxG(x,t;y)−e−

σ2

µ t
α∑

j=0

δ(α−j)(x−y)Πj(t)
∣∣∣

=O(1)t−
1
2−

α
2

3∑
i=1

(
e−

(x−y−lit)
2

Ct +e−
(x+y−lit)

2

Ct

)
. (5.33)

We hence complete the proof of Theorem 3.2.

6. Nonlinear pointwise estimates
In this section, we are devoted to the study of nonlinear stability. We first define

W0(x)=

∫ ∞

x

U0(y)dy. (6.1)

To investigate the poinwise behavior of the solution, we introduce the ansatz as follows

M(t)= sup
0≤s≤t

{
∥UF−1∥L∞

x
+(1+s)

(
log(2+s)

)−1∥Ux∥L∞
x
+(1+s)

1
2 ∥(wxx,ϕxx)∥L∞

x

}
.

(6.2)
The wave function F (x,t) is defined as

F (x,t)=

3∑
i=2

(1+ t)
3
8ϕ1(x,t;li)ψ 3

4
(x,t;li), (6.3)

where ψα(x,t;li),ϕα(x,t;li) are given by (2.3) and the constants li satisfy l2=0, l3= c.
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By the definition of M(t), it is easy to see

|U(x,t)|≤M(t)F (x,t),

|Ux(x,t)|≤ (1+ t)−1 log(2+ t)M(t),

|wxx(x,t)|≤ (1+ t)−
1
2M(t),

|ϕxx(x,t)|≤ (1+ t)−
1
2M(t).

(6.4)

Applying (4.14) and (6.4) yields

|Ñ(x,t)|≤CM(t)2
3∑

i=2

(1+ t)−
1
2ϕ1(x,t;li)ψ 3

4
(x,t;li). (6.5)

According to the boundary condition (4.12), we immediately obtain

Ñ(0,t)=(0,Ñ1,0)
t. (6.6)

Once the spatial variable is ignored, the time decay rates for Ñ(x,t) and N(x,t) are
computed as follows

|Ñ(x,t)|≤C(1+ t)−1M(t)2, |N(x,t)|≤C(1+ t)−1M(t)2. (6.7)

For later use, we decompose the Green’s function G(x,t;y) into two parts

G(x,t;y)≜Gs(x,t;y)+Gℓ(x,t;y), (6.8)

where Gs(x,t;y) is the short wave part corresponding to the singular part of G(x,t;y)
satisfying

∂αxGs(x,t;y)=e−
σ2

µ t
α∑

j=0

δ(α−j)(x−y)Πj(t). (6.9)

Gℓ(x,t;y) represents the long wave part, which dominates the large-time behavior. It
holds for any integers k1,k2≥0 that

∣∣∂k1
x ∂k2

y Gℓ(x,t;y)
∣∣=O(1)t−

1
2−

k1+k2
2

3∑
i=1

(
e−

(x−y−lit)
2

Ct +e−
(x+y−lit)

2

Ct

)
. (6.10)

We are prepared to develop the pointwise estimate of the solution U(x,t).

Proposition 6.1. Under the assumptions of Theorem 3.3, there exists a positive
constant C such that

|U(x,t)|≤C(ε0+M(t)2)F (x,t), (6.11)

|Ux(x,t)|≤C(1+ t)−1 log(2+ t)(ε0+M(t)2), (6.12)

where the wave function F (x,t) is defined in (2.4).

Proof. By Duhamel’s principle, the solution U(x,t) of nonlinear system (4.16) is
written as

U(x,t)=

∫ ∞

0

G(x,t;y)U0(y)dy+

∫ t

0

∫ ∞

0

G(x,t−s;y)N(y,s)dyds. (6.13)
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We begin it by applying (6.8)-(6.10)∫ ∞

0

G(x,t;y)U0(y)dy=

∫ ∞

0

Gℓ(x,t;y)U0(y)dy+

∫ ∞

0

Gs(x,t;y)U0(y)dy

≜ I1+I2.

(6.14)

Since the case when t≤1 can be handled easily by using the assumption of Theorem
3.3, we assume t>1 in the proof of (6.11). To estimate I1, we change the initial data
U0 into W ′

0, then taking integration by parts yields

|I1|=O(1)t−
1
2

3∑
i=1

e−
(x−lit)

2

Ct |W0(0)|

+O(1)

∫ ∞

0

t−1
3∑

i=1

(e−
(x−y−lit)

2

Ct +e−
(x+y−lit)

2

Ct )|W0(y)|dy

≜ I11+I12. (6.15)

Making use of (3.15) and Lemma 2.3 yields

I11≤Cε0(1+ t)−
1
2 (e−

(x−c(1+t))2

C(1+t) +e−
x2

C(1+t) +e−
(x+c(1+t))2

C(1+t) )

≤Cε0(1+ t)
1
4 (ψ 3

2
(x,t;c)+ψ 3

2
(x,t;0)+ψ 3

2
(x,t;−c))

≤Cε0F (x,t). (6.16)

It is easy to verify

I12≤Cε0
∫ ∞

0

(1+ t)−1
3∑

i=1

(e−
(x−y−li(1+t))2

C(1+t) +e−
(x+y−li(1+t))2

C(1+t) )(1+y2)−
5
8 dy. (6.17)

For simplicity, we define

Λ1=

∫ ∞

0

(1+ t)−1e−
(x−y−li(1+t))2

C(1+t) (1+y2)−
5
8 dy, (6.18)

Λ2=

∫ ∞

0

(1+ t)−1e−
(x+y−li(1+t))2

C(1+t) (1+y2)−
5
8 dy. (6.19)

In order to estimate Λ1, it is essential to divide the integration domain into three cases

(1) |x− li(1+ t)|<
√
1+ t, it holds

Λ1≤C(1+ t)−1≤C(1+ t) 1
4ψ 3

2
(x,t;li)

≤C(1+ t) 3
8ϕ1(x,t;li)ψ 3

4
(x,t;li)≤CF (x,t). (6.20)

(2)
√
1+ t≤|x− li(1+ t)|≤1+ t, we have

Λ1≤C(1+ t)−1

∫
|y|≤ |x−li(1+t)|

2

e−
(x−li(1+t))2

4C(1+t) (1+y2)−
5
8 dy

+C(1+ t)−1

∫
|y|> |x−li(1+t)|

2

e−
(x−y−li(1+t))2

C(1+t) (1+y2)−
5
8 dy

≤C(1+ t)−1e−
(x−li(1+t))2

4C(1+t) +C(1+ t)−
1
2 (1+ |x− li(1+ t)|2)−

5
8

≤CF (x,t). (6.21)
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(3) |x− li(1+ t)|>1+ t, one has

Λ1≤C(1+ t)−1

∫
|y|≤ |x−li(1+t)|

2

e−
(x−li(1+t))2

4C(1+t) (1+y2)−
5
8 dy

+C(1+ t)−1

∫
|y|> |x−li(1+t)|

2

e−
(x−y−li(1+t))2

C(1+t) (1+y2)−
5
8 dy

≤C(1+ t)−1e−
(x−li(1+t))2

4C(1+t) +C(1+ t)−
1
2 (1+ |x− li(1+ t)|)−

5
4

≤CF (x,t), (6.22)

where we use the fact that when |x− li(1+ t)|>1+ t, it holds

(1+ |x− li(1+ t)|)−
5
4 ≤Cϕ1(x,t;li)ψ 3

4
(x,t;li).

The estimates of Λ1 and Λ2 are similar. Then, we immediately obtain

I12≤Cε0F (x,t). (6.23)

It then follows from (6.16) and (6.23) that

|I1|= I11+I12≤Cε0F (x,t). (6.24)

For I2, we immediately deduce the following estimate from Lemma 2.1

|I2|≤Cε0e−
σ2

µ t(1+x2)−
5
8 ≤Cε0F (x,t). (6.25)

Consequently, we summarize above results together∣∣∣∫ ∞

0

G(x,t;y)U0(y)dy
∣∣∣≤|I1|+ |I2|≤Cε0F (x,t). (6.26)

The next goal is to deal with the nonlinear term. Applying integration by parts yields∫ t

0

∫ ∞

0

G(x,t−s;y)N(y,s)dyds

=−
∫ t

0

G(x,t−s;0)Ñ(0,s)ds−
∫ t

0

∫ ∞

0

∂yG(x,t−s;y)Ñ(y,s)dyds

≜J1+J2. (6.27)

By (5.32) and (6.6), it is crucial to observe

J1=−
∫ t

0

(G(x,t−s)+G(x,t−s)

 1 0 0
0 −1 0
0 0 1

)(0,Ñ1(0,s),0)
tds=(0,0,0)t. (6.28)

In view of (6.8), we rewrite J2 as

J2=−
∫ t

0

∫ ∞

0

∂yGℓ(x,t−s;y)Ñ(y,s)dyds−
∫ t

0

∫ ∞

0

∂yGs(x,t−s;y)Ñ(y,s)dyds

≜J21+J22. (6.29)
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By the definition of Gs, in terms of integration by parts, it is easy to verify

J22=−
∫ t

0

∫ ∞

0

∂yGs(x,t−s;y)Ñ(y,s)dyds

=

∫ t

0

Gs(x,t−s;0)Ñ(0,s)ds+

∫ t

0

∫ ∞

0

Gs(x,t−s;y)N(y,s)dyds

=

∫ t

0

e−
σ2

µ (t−s)δ(x)Π0Ñ(0,s)ds+

∫ t

0

∫ ∞

0

e−
σ2

µ (t−s)δ(x−y)Π0N(y,s)dyds

=(0,0,0)t, (6.30)

where we have used the fact that

Π0Ñ(0,s)=

1 0 0
0 0 0
0 0 0

(0,Ñ1(0,s),Ñ2(0,s))
t=(0,0,0)t, (6.31)

and

Π0N(y,s)=

 1 0 0
0 0 0
0 0 0

(0,N1(y,s),N2(y,s))
t=(0,0,0)t. (6.32)

With the help of (6.5), we ensure

|J21|≤C
∫ t

0

∫ ∞

0

(t−s)−1
3∑

i=1

(e−
(x−y−li(t−s))2

C(t−s) +e−
(x+y−li(t−s))2

C(t−s) )|Ñ(y,s)|dyds

≤CM(t)2
∫ t

0

∫ ∞

−∞
(t−s)−1

3∑
i=1

(e−
(x−y−li(t−s))2

C(t−s) +e−
(x+y−li(t−s))2

C(t−s) )

×
3∑

i=2

(1+s)−
1
2ϕ1(y,s;li)ψ 3

4
(y,s;li)dyds. (6.33)

Without loss of generality, we only consider the following two terms.
Substituting α=0,β=1,λ= c and µ̄=C into Lemma 2.4 yields∫ t

0

∫ ∞

−∞
(t−s)−1(1+s)−

1
2 e−

(x−y−c(t−s))2

C(t−s) ϕ1(y,s;c)ψ 3
4
(y,s;c)dyds

=O(1)[log(2+ t)ϕ1(x,t;c)ψ 3
4
(x,t;c)+ψ 3

2
(x,t;c)]

=O(1)[(1+ t)
3
8ϕ1(x,t;c)ψ 3

4
(x,t;c)+(1+ t)

1
4ψ 3

2
(x,t;c)]

=O(1)(1+ t)
3
8ϕ1(x,t;c)ψ 3

4
(x,t;c)

=O(1)F (x,t). (6.34)

Let α=0,β=1,λ= c,λ′=−c,µ̄=C. Via Lemma 2.5, we are able to show∫ t

0

∫ ∞

−∞
(t−s)−1(1+s)−

1
2 e−

(x−y+c(t−s))2

C(t−s) ϕ1(y,s;c)ψ 3
4
(y,s;c)dyds

=O(1)[log(2+ t)ϕ1(x,t;c)ψ 3
4
(x,t;c)+ϕ1(x,t;−c)ψ 3

4
(x,t;−c)]

+O(1)[ψ 3
2
(x,t;c)+ψ 3

2
(x,t;−c)]

+O(1)|x−c(1+ t)|− 3
4+ϵ|x+c(1+ t)|− 1

2

·char
{
−c(1+ t)+K

√
1+ t≤x≤ c(1+ t)−K

√
1+ t

}
,
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where ϵ>0 can be arbitrarily small and K>2c. Choosing ϵ= 1
4 , we have∫ t

0

∫ ∞

−∞
(t−s)−1(1+s)−

1
2 e−

(x−y+c(t−s))2

C(t−s) ϕ1(y,s;c)ψ 3
4
(y,s;c)dyds

=O(1)(1+ t)
3
8 [ϕ1(x,t;c)ψ 3

4
(x,t;c)+ϕ1(x,t;−c)ψ 3

4
(x,t;−c)]

+O(1)|x−c(1+ t)|− 1
2 |x+c(1+ t)|− 1

2 ·char
{
−c(1+ t)+c

√
1+ t≤x≤ c(1+ t)−c

√
1+ t

}
=O(1)F (x,t),

where we use the fact that when −c(1+ t)+c
√
1+ t≤x≤ c(1+ t)−c

√
1+ t, it holds

c
√
1+ t≤|x−c(1+ t)|≤2c(1+ t),

c
√
1+ t≤|x+c(1+ t)|≤2c(1+ t).

(6.35)

As a result, one can deduce

|x−c(1+ t)|− 1
2 |x+c(1+ t)|− 1

2

≲(1+ t)
3
8 [ϕ1(x,t;c)ψ 3

4
(x,t;c)+ϕ1(x,t;−c)ψ 3

4
(x,t;−c)]. (6.36)

It should be pointed out that the remainders in (6.33) can be treated in a similar manner.
We hence obtain

|J21|≤CM(t)2F (x,t). (6.37)

As a consequence, it provides

|J2|≤ |J21|+ |J22|≤CM(t)2F (x,t), (6.38)

which, together with (6.28), also leads to∣∣∣∫ t

0

∫ ∞

0

G(x,t−s;y)N(y,s)dyds
∣∣∣≤|J1|+ |J2|≤CM(t)2F (x,t). (6.39)

Therefore we derive the pointwise estimates of the solution U(x,t) satisfying

|U(x,t)|≤
∣∣∣∫ ∞

0

G(x,t;y)U0(y)dy
∣∣∣+ ∣∣∣∫ t

0

∫ ∞

0

G(x,t−s;y)N(y,s)dyds
∣∣∣

≤C(ε0+M(t)2)F (x,t). (6.40)

In what follows, we plan to derive the estimate of the spatial derivative Ux(x,t). Theo-
rem 3.1 provides

|Ux(x,t)|≤C∥U(x,t)∥H4 ≤Cε0. (6.41)

Thus, for 0≤ t≤2, we easily deduce

|Ux(x,t)|≤Cε0≤Cε0(1+ t)−1 log(2+ t). (6.42)

In the following, we will focus on t>2. First, Ux(x,t) can be written as

Ux(x,t)=

∫ ∞

0

∂xG(x,t;y)U0(y)dy+

∫ t

0

∫ ∞

0

∂xG(x,t−s;y)N(y,s)dyds. (6.43)
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According to (6.8), the first term on the right-hand side of (6.43) is decomposed into
two parts∫ ∞

0

∂xG(x,t;y)U0(y)dy=

∫ ∞

0

∂xGℓ(x,t;y)U0(y)dy+

∫ ∞

0

∂xGs(x,t;y)U0(y)dy. (6.44)

By the definition (6.10) and the assumption in Theorem 3.3, we get∣∣∣∫ ∞

0

∂xGℓ(x,t;y)U0(y)dy
∣∣∣≤C(1+ t)−1

∫ ∞

0

|U0(y)|dy≤Cε0(1+ t)−1. (6.45)

In terms of integration by parts and (6.9), we obtain∣∣∣∫ ∞

0

∂xGs(x,t;y)U0(y)dy
∣∣∣≤ ∣∣∣∫ ∞

0

e−
σ2

µ t(δ(1)(x−y)Π0+δ(x−y)Π1)U0(y)dy
∣∣∣

≤Ce−
σ2

µ t(|U ′
0(x)|+ |U0(x)|)

≤Cε0(1+ t)−1. (6.46)

Therefore, we deduce ∣∣∣∫ ∞

0

∂xG(x,t;y)U0(y)dy
∣∣∣≤Cε0(1+ t)−1. (6.47)

Similarly, it is easy to verify∫ t

0

∫ ∞

0

∂xG(x,t−s;y)N(y,s)dyds

=

∫ t

0

∫ ∞

0

∂xGℓ(x,t−s;y)N(y,s)dyds+

∫ t

0

∫ ∞

0

∂xGs(x,t−s;y)N(y,s)dyds. (6.48)

To avoid the singularity of time, it is natural to divide the domain of time into [0,t−1]
and [t−1,t]. We write the first term in (6.48) as below∫ t

0

∫ ∞

0

∂xGℓ(x,t−s;y)N(y,s)dyds

=

∫ t−1

0

∫ ∞

0

∂xGℓ(x,t−s;y)N(y,s)dyds+

∫ t

t−1

∫ ∞

0

∂xGℓ(x,t−s;y)N(y,s)dyds. (6.49)

Integrating by parts, we observe∫ t−1

0

∫ ∞

0

∂xGℓ(x,t−s;y)N(y,s)dyds

=−
∫ t−1

0

∫ ∞

0

∂x∂yGℓ(x,t−s;y)Ñ(y,s)dyds−
∫ t−1

0

∂xGℓ(x,t−s;0)Ñ(0,s)ds. (6.50)

Thanks to (6.7) and (6.10), which leads us to obtain∣∣∣∫ t−1

0

∫ ∞

0

∂x∂yGℓ(x,t−s;y)Ñ(y,s)dyds
∣∣∣

≤CM(t)2
∫ t−1

0

(t−s)−1(1+s)−1ds
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≤CM(t)2
∫ t

2

0

(t−s)−1(1+s)−1ds+CM(t)2
∫ t−1

t
2

(t−s)−1(1+s)−1ds

≤C(1+ t)−1 log(2+ t)M(t)2. (6.51)

In the same way, we have ∣∣∣∫ t−1

0

∂xGℓ(x,t−s;0)Ñ(0,s)ds
∣∣∣

≤CM(t)2
∫ t−1

0

(t−s)−1(1+s)−1ds

≤C(1+ t)−1 log(2+ t)M(t)2, (6.52)

which, together with (6.51) and (6.50), also guides to∣∣∣∫ t−1

0

∫ ∞

0

∂xGℓ(x,t−s;y)N(y,s)dyds
∣∣∣≤C(1+ t)−1 log(2+ t)M(t)2. (6.53)

Now we are in a position to estimate the second term in (6.49). That is∣∣∣∫ t

t−1

∫ ∞

0

∂xGℓ(x,t−s;y)N(y,s)dyds
∣∣∣

≤CM(t)2
∫ t

t−1

(t−s)− 1
2 (1+s)−1ds

≤C(1+ t)−1M(t)2. (6.54)

Thus, combining (6.53) and (6.54) together gives∣∣∣∫ t

0

∫ ∞

0

∂xGℓ(x,t−s;y)N(y,s)dyds
∣∣∣≤C(1+ t)−1 log(2+ t)M(t)2. (6.55)

For the second term in (6.48), we have∫ t

0

∫ ∞

0

∂xGs(x,t−s;y)N(y,s)dyds

=

∫ t

0

∫ ∞

0

e−
σ2

µ (t−s)(δ(1)(x−y)Π0+δ(x−y)Π1)N(y,s)dyds

=

∫ t

0

∫ ∞

0

e−
σ2

µ (t−s)δ(x−y)Π1N(y,s)dyds

=

∫ t

0

e−
σ2

µ (t−s)Π1N(x,s)ds, (6.56)

where we have used (6.32).
Since Π1 is a constant matrix given by (2.1), we have∣∣∣∫ t

0

e−
σ2

µ (t−s)Π1N(x,s)ds
∣∣∣

≤C
∫ t

0

e−
σ2

µ (t−s)|N(x,s)|dx
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≤CM(t)2
∫ t

0

e−
σ2

µ (t−s)(1+s)−1ds

≤C(1+ t)−1M(t)2. (6.57)

Hence, we have∣∣∣∫ t

0

∫ ∞

0

∂xGs(x,t−s;y)N(y,s)dyds
∣∣∣≤C(1+ t)−1 log(2+ t)M(t)2.

Combining above results together provides∣∣∣∫ t

0

∫ ∞

0

∂xG(x,t−s;y)N(y,s)dyds
∣∣∣≤C(1+ t)−1 log(2+ t)M(t)2. (6.58)

To this end, we finally derive the estimate of Ux(x,t) from (6.47) and (6.58)

|Ux(x,t)|≤C(1+ t)−1 log(2+ t)(ε0+M(t)2). (6.59)

This completes the proof.

To close the ansatz, it remains to get the estimates of wxx and ϕxx. Thus, we will
complete it in the next proposition.

Proposition 6.2. Under the assumptions of Theorem 3.3, there exists a positive
constant C such that

|wxx(x,t)|≤C(1+ t)−
1
2 (ε0+ε0M(t)+M(t)2), (6.60)

|ϕxx(x,t)|≤C(1+ t)−
1
2 (ε0+ε0M(t)+M(t)2). (6.61)

Proof. By Theorem 3.1, we easily check that for 0≤ t≤2

|Ut|≤C∥U∥H4 ≤Cε0≤C(1+ t)−
1
2 ε0,

|wxx|≤C∥U∥H4 ≤Cε0≤C(1+ t)−
1
2 ε0,

|ϕxx|≤C∥U∥H4 ≤Cε0≤C(1+ t)−
1
2 ε0.

(6.62)

Thus in the next section, we will assume time t>2. Differentiate the system (3.3) with
respect to time 

ntt−σwtx=0,

wtt−σntx+ηϕtx=µwtxx+∂tN1,

ϕtt+ηwtx=νϕtxx+∂tN2,

(nt,wt,ϕt)|t=0=(nt(x,0),wt(x,0),ϕt(x,0)),

(6.63)

with following boundary condition

(wt,ϕtx)|x=0=(0,0), (nt,wt,ϕt)|x→+∞=(0,0,0). (6.64)

For simplicity, we write it into the operator form{
∂tUt(x,t)+A∂xUt(x,t)=B∂2xUt(x,t)+Nt(x,t),

Ut(x,t=0)=Ut(x,0).
(6.65)



824 POINTWISE ESTIMATES OF NAVIER-STOKES EQUATIONS IN HALF SPACE

Since the Green’s function for (6.65) is the same as G(x,t;y), with the help of Duhamel’s
principle, we obtain

∂tU(x,t)=

∫ ∞

0

G(x,t;y)∂sU(y,0)dy+

∫ t

0

∫ ∞

0

G(x,t−s;y)∂sN(y,s)dyds. (6.66)

Via the compatibility condition (3.7), one has

nt(x,0)=σwx(x,0), wt(x,0)=gx, ϕt(x,0)=hx, (6.67)

where the functions g(x) and h(x) are introduced below

g(x)=−σ(1+c2)ϕ0
1+n0

+
µw0x

1+n0
+

σc22w
2
0

2(1+n0)
,

h(x)=−ηw0(1+c2ϕ0)

1+n0
+
νϕ0x
1+n0

+
c2(µ−ν)w0w0x

1+n0
+

ηc22w
3
0

2(1+n0)
.

(6.68)

Using (6.8) yields∫ ∞

0

G(x,t;y)∂sU(y,0)dy

=

∫ ∞

0

Gℓ(x,t;y)∂sU(y,0)dy+

∫ ∞

0

Gs(x,t;y)∂sU(y,0)dy. (6.69)

Applying integration by parts with respect to x and (6.68), we get∣∣∣∫ ∞

0

Gℓ(x,t;y)∂sU(y,0)dy
∣∣∣

≤
∣∣∣Gℓ(x,t;0)(σw0(0),g(0),h(0))

t
∣∣∣+ ∣∣∣∫ ∞

0

∂yGℓ(x,t;y)(σw0(y),g(y),h(y))
tdy

∣∣∣
≤Cε0(1+ t)−

1
2 . (6.70)

According to the definition of Gs(x,t;y) and assumptions on initial data, we are able to
show ∣∣∣∫ ∞

0

Gs(x,t;y)∂sU(y,0)dy
∣∣∣≤Cε0(1+ t)− 1

2 . (6.71)

Combining the above estimates together shows∣∣∣∫ ∞

0

G(x,t;y)∂sU(y,0)dy
∣∣∣≤Cε0(1+ t)− 1

2 . (6.72)

In order to estimate the nonlinear term in (6.66), we write it as∫ t

0

∫ ∞

0

G(x,t−s;y)∂sN(y,s)dyds

=

∫ t

0

∫ ∞

0

Gℓ(x,t−s;y)∂sN(y,s)dyds+

∫ t

0

∫ ∞

0

Gs(x,t−s;y)∂sN(y,s)dyds. (6.73)

We divide the time domain into [0,t−1] and [t−1,t] to avoid the time singularity.∫ t

0

∫ ∞

0

Gℓ(x,t−s;y)∂sN(y,s)dyds
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=

∫ t−1

0

∫ ∞

0

Gℓ(x,t−s;y)∂sN(y,s)dyds

+

∫ t

t−1

∫ ∞

0

Gℓ(x,t−s;y)∂sN(y,s)dyds. (6.74)

Taking integration by parts with regard to time, one has∫ t−1

0

∫ ∞

0

Gℓ(x,t−s;y)∂sN(y,s)dyds

=

∫ t−1

0

∫ ∞

0

∂tGℓ(x,t−s;y)N(y,s)dyds

+

∫ ∞

0

Gℓ(x,1;y)N(y,t−1)dy−
∫ ∞

0

Gℓ(x,t;y)N(y,0)dy. (6.75)

Integrating by parts with respect to x, the first term in (6.75) can be handled as below∣∣∣∫ t−1

0

∫ ∞

0

∂tGℓ(x,t−s;y)N(y,s)dyds
∣∣∣

≤
∣∣∣∫ t−1

0

∫ ∞

0

∂tyGℓ(x,t−s;y)Ñ(y,s)dyds
∣∣∣+ ∣∣∣∫ t−1

0

∂tGℓ(x,t−s;0)Ñ(0,s)ds
∣∣∣

≤CM(t)2
∫ t−1

0

(t−s)−1(1+s)−1ds+CM(t)2
∫ t−1

0

(t−s)−1(1+s)−1ds

≤C(1+ t)− 1
2M(t)2. (6.76)

The remaining terms in (6.75) can also be treated in a similar method∣∣∣∫ ∞

0

Gℓ(x,1;y)N(y,t−1)dy−
∫ ∞

0

Gℓ(x,t;y)N(y,0)dy
∣∣∣≤C(1+ t)− 1

2M(t)2.

To this end, we ultimately deduce∣∣∣∫ t−1

0

∫ ∞

0

Gℓ(x,t−s;y)∂sN(y,s)dyds
∣∣∣≤C(1+ t)− 1

2M(t)2. (6.77)

By the definition of N(x,t), applying integration by parts with respect to x gives rise
to ∣∣∣∫ t

t−1

∫ ∞

0

Gℓ(x,t−s;y)∂sN(y,s)dyds
∣∣∣

≤
∣∣∣∫ t

t−1

∫ ∞

0

∂yGℓ(x,t−s;y)∂sÑ(y,s)dyds
∣∣∣+ ∣∣∣∫ t

t−1

Gℓ(x,t−s;0)∂sÑ(0,s)ds
∣∣∣

≤C(ε0M(t)+M(t)2)

∫ t

t−1

(t−s)− 1
2 (1+s)−

1
2 ds

≤C(1+ t)− 1
2 (ε0M(t)+M(t)2), (6.78)

where we use the fact that

|∂sÑ(y,s)|≤C(1+s)− 1
2 (ε0M(t)+M(t)2), |∂sÑ(0,s)|≤C(1+s)− 1

2 (ε0M(t)+M(t)2).
(6.79)
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Combining it and (6.77) also leads to∣∣∣∫ t

0

∫ ∞

0

Gℓ(x,t−s;y)∂sN(y,s)dyds
∣∣∣≤C(1+ t)− 1

2 (ε0M(t)+M(t)2). (6.80)

Via (6.9), the second term in (6.73) is calculated as∫ t

0

∫ ∞

0

Gs(x,t−s;y)∂sN(y,s)dyds=(0,0,0)t. (6.81)

As a result of (6.80) and (6.81), one has

|Ut(x,t)|≤C(1+ t)−
1
2 (ε0+ε0M(t)+M(t)2). (6.82)

Now we are in a position to deal with wxx and ϕxx. Making use of (4.30) and Proposition
4.1 yields

|wxx(x,t)|≤
1

µ
(|wt|+σ|nx|+η|ϕx|+ |N1|)

≤C(1+ t)− 1
2 (ε0+ε0M(t)+M(t)2), (6.83)

and

|ϕxx(x,t)|≤
1

ν
(|ϕt|+η|wx|+ |N2|)

≤C(1+ t)− 1
2 (ε0+ε0M(t)+M(t)2). (6.84)

This completes the proof.

6.1. The proof of Theorem 3.3.

Proof. Combining (6.4), Proposition 6.1 and Proposition 6.2 together proves

M(t)≤Cε0+Cε0M(t)+CM(t)2. (6.85)

Since ε0 is sufficiently small, we deduce that there exists a constant C>0 independent
of time such that

M(t)≤Cε0. (6.86)

Therefore the pointwise estimates of the solution are written as

|U(x,t)|≤Cε0F (x,t), |Ux(x,t)|≤Cε0(1+ t)−1 log(2+ t),

|wxx(x,t)|≤Cε0(1+ t)−
1
2 , |ϕxx(x,t)|≤Cε0(1+ t)−

1
2 .

(6.87)

This completes the proof of Theorem 3.3.
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