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GLOBAL-IN-TIME CLASSICAL SOLUTIONS TO TWO-DIMENSIONAL
AXISYMMETRIC EULER SYSTEM WITH SWIRL∗

GENG LAI† AND MI ZHU‡

Abstract. We study global-in-time classical solutions to the two-dimensional (2D) compressible
Euler system with axial symmetry. We derive several groups of suitable characteristic decompositions
for the 2D axisymmetric compressible Euler system. Using these characteristic decompositions, we find
several classes of expanding initial data to ensure the existence of global-in-time classical solutions.
These solutions have an expanding vacuum region centered at the origin.
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1. Introduction
We consider the two-dimensional (2D) compressible Euler equations

ρt+(ρu1)x1
+(ρu2)x2

=0,

(ρu1)t+(ρu2
1+p)x1

+(ρu1u2)x2
=0,

(ρu2)t+(ρu1u2)x1
+(ρu2

2+p)x2
=0,

(ρE)t+(ρu1E+u1p)x1 +(ρu2E+u2p)x2 =0,

(1.1)

where (u1,u2) is the velocity, ρ is the density, p is the pressure, E= 1
2 (u

2
1+u2

2)+ϵ is the
total energy, and ϵ is the internal energy. We choose the equations of state

p=esργ and ϵ=
p

(γ−1)ρ
, (1.2)

where s is the entropy and γ is an adiabatic exponent between 1 and 3.
It is well known that the solutions of the Cauchy problem for the compressible Euler

equations may blow up in finite time, no matter how smooth and small the initial data
are; see, e.g., [1–3, 5, 16, 21, 30, 35, 37]. It is natural to consider what type of initial
data are possible to guarantee the existence of global-in-time classical solutions for the
compressible Euler equations. For the results on the existence of global-in-time classical
solutions for the one-dimensional compressible Euler equations, we refer the reader to
[4,6,19,28,41]. Serre [36] first obtained the existence of global-in-time classical solutions
for the compressible Euler equations for ideal gases in multi-dimensions, provided that
the initial velocity is close to a linear field and the initial density is sufficiently small.
Subsequently, Grassin [10] obtained the existence of global-in-time classical solutions
for the multi-dimensional compressible Euler equations, provided the initial velocity
forces particles to spread out and the initial density is sufficiently small in some norm.
Magali [31] extended the result of [10] to a van der Waals gas. Godin [11] studied
the lifespan of the classical solutions to the spherically Euler equations for ideal gases
with initial data that are a small perturbation, with compact support, to a constant
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state. Subsequently, Godin [12] obtained the global existence of classical solutions to
the spherically symmetric Euler equations for Chaplygin gases with initial data that are
a small perturbation, with compact support, to a constant state. Recently, Hou and Yin
[13, 14] obtained the existence of global-in-time classical solutions to the axisymmetric
non-isentropic Euler equations of Chaplygin gas with swirl.

In this paper we study axisymmetric flows of the system (1.1). That is, we assume
the flows have the property

ρ(x,θ,t)=ρ(x,t), s(x,θ,t)=s(x,t),(
u1(x,θ,t)

u2(x,θ,t)

)
=

(
cosθ −sinθ

sinθ cosθ

)(
u(x,t)

v(x,t)

)
(1.3)

for all t>0, θ∈ [0,2π), and x>0, where x and θ are the polar coordinates of the (x1,x2)-
plane. With this symmetry, system (1.1) can be reduced to

ρt+(ρu)x+
ρu

x
=0,

(ρu)t+(ρu2+p)x+
ρ(u2−v2)

x
=0,

(ρv)t+(ρuv)x+
2ρuv

x
=0,

(ρE)t+(ρuE+up)x+
ρuE

x
+

up

x
=0.

(1.4)

Notice now that u and v in (1.4) represent the radial and pure swirl velocities in the
flow, respectively.

For 2D isentropic axisymmetric flows without swirl, system (1.4) can be reduced to

ρt+(ρu)x+
ρu

x
=0,

(ρu)t+(ρu2+p)x+
ρu2

x
=0.

(1.5)

There are a lot of important works on the global existence of weak solutions to the
system (1.5); we refer the reader to [7–9,22,32–34] and the references cited therein. We
also refer the reader to the survey paper [15].

For 2D isentropic axisymmetric flows with swirl, system (1.4) can be reduced to
ρt+(ρu)x+

ρu

x
=0,

(ρu)t+(ρu2+p)x+
ρ(u2−v2)

x
=0,

(ρv)t+(ρuv)x+
2ρuv

x
=0.

(1.6)

As far as we know, the global existence of weak solutions to the Cauchy problem for
the system (1.6) is still a difficult problem. However, the Riemann problem for (1.6)
for polytropic gases has been solved completely by Zhang and Zheng [38]. We also refer
the reader to [39,40] for some other related works.

We are concerned with global-in-time classical solutions to the system (1.4). It is
well-known that the 2D axisymmetric Euler system usually does not have global classical
solutions, even with an initial data that is a small perturbation of a constant state; see
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Alinhac [1, 2]. So, a natural question is what type of initial data are possible to ensure
the existence of global-in-time classical solutions. We consider (1.4) with data

(u,v,ρ,s)(x,0)=(ū, v̄, ρ̄, s̄)(x), x>ε;

(u,v,ρ,s)(x,0)=(u0,0,ρ0,s0), 0<x<ε;

(ρu)(0,t)=0, t>0,

(1.7)

where (ū, v̄, ρ̄, s̄)(x)∈C1[ε,+∞), (ū, v̄, ρ̄, s̄)(ε)=(u0,0,ρ0,s0), (u0,0,ρ0,s0) is a constant
state, and u0>0. We aim at finding some sufficient conditions on (ū, v̄, ρ̄, s̄)(x) to ensure
the existence of global-in-time classical solutions.

t
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Ω

Ω
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C
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−
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Q

Q
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x

Fig. 1.1. Wave structure of the solution to the problem (1.4, 1.7).

Let us briefly describe the main approach to solving the problem (1.4, 1.7). See
Figure 1.1. We first consider (1.4) with data{

(u,v,ρ,s)(x,0)=(u0,0,ρ0,s0), x>0;

(ρu)(0,t)=0, t>0.
(1.8)

By the result of Zheng [40], we know that the problem (1.4, 1.8) admits a global self-
similar solution. Moreover, there exists a u∗>0 which depends only on ρ0, s0, and γ
such that when u0>u∗ the self-similar solution expands to a vacuum, i.e., there exists
a circular vacuum region expanding with a constant speed uv >0. Thus, when u0>u∗
we obtain the solution of the problem in a domain Ω1 bounded by CQ

− , x=uvt, and

the x-axis, where CQ
− is a C− characteristic curve issuing from the point Q=(ε,0). We

next solve a Cauchy problem in a triangle domain Ω3 bounded by the x-axis and a
C+ characteristic curve CQ

+ issuing from Q. Finally, we solve a Goursat problem in a

triangle domain Ω2 bounded by CQ
+ and CQ

− .
The main difficulty for the global existence is that the a priori C1 estimates for

the solutions to the Cauchy problem and the Goursat problem are hard to obtain.
In the paper we use the method of characteristic decompositions. This method was
first proposed by Li, Zhang, and Zheng [24] in investigating simple waves of the 2D
compressible Euler equations. Recently, this method was used to study the interactions
of rarefaction waves; see [17, 18, 23, 25–27]. Motivated by a recent work of Lai and
Sheng [20], we derive a group of suitable characteristic decompositions for the system
(1.4). Using these characteristic decompositions, we find a sufficient condition on the
initial data to ensure the existence of global-in-time classical solutions.

The rest of the paper is organized as follows. In Section 2 we construct the self-
similar solution to the Riemann problem (1.4, 1.8). In Section 3 we consider (1.5) with
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data 
(u,ρ)(x,0)=(ū, ρ̄)(x), x>ε;

(u,ρ)(x,0)=(u0,ρ0), 0<x≤ε;

(ρu)(0,t)=0, t>0.

(1.9)

We find a sufficient condition on (ū, ρ̄)(x) to obtain the existence of a global-in-time
classical solution. The result is stated as Theorem 3.1. In Section 4 we consider (1.6)
with data 

(u,v,ρ)(x,0)=(ū, v̄, ρ̄)(x), x>ε;

(u,v,ρ)(x,0)=(u0,0,ρ0), 0<x≤ε;

(ρu)(0,t)=0, t>0.

(1.10)

We find a sufficient condition on (ū, v̄, ρ̄)(x) to obtain the existence of a global-in-time
classical solution. The result is stated as Theorem 4.1. In Section 5 we study the problem
(1.4, 1.7). We give a sufficient condition on (ū, c̄, v̄, s̄)(x) to obtain the existence of a
global-in-time classical solution to the problem. The result is stated as Theorem 5.1.

2. Self-similar solution to the axisymmetric Euler system
In this section we consider (1.5) with data{

(u,ρ)(x,0)=(u0,ρ0), x>0;

(ρu)(0,t)=0, t>0.
(2.1)

Problem (1.5, 2.1) admits a self-similar solution which depends only on the self-similar
variable ξ=x/t. By the self-similarity, system (1.5) can be written as

−ξ
dρ

dξ
+

d(ρu)

dξ
+

ρu

ξ
=0,

−ξ
du

dξ
+u

du

dξ
+

1

ρ

dp

dξ
=0,

where we use the equation of state p=es0ργ .
A direct computation yields

du

dξ
=− p′(ρ)u

ξ
[
p′(ρ)−(u−ξ)2

] ,
dρ

dξ
=

ρu(u−ξ)

ξ
[
p′(ρ)−(u−ξ)2

] . (2.2)

Let η=1/ξ. Then the system (2.2) can be converted into
du

dη
=

p′(ρ)uη

(cη)2−(1−uη)2
,

dρ

dη
=

ρu(1−uη)

(cη)2−(1−uη)2
.

(2.3)

The initial condition (u,ρ)(x,0)=(u0,ρ0) can be converted into

(u,ρ) |η=0=(u0,ρ0). (2.4)

For the initial value problem (2.3, 2.4), we have the following result.

Lemma 2.1. There exists a u∗>0 such that when u0>u∗ the problem (2.3, 2.4)
admits a solution (û, ρ̂)(η) in (0,ηv) for some ηv >

1
u0
. Moreover, the solution satisfies
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• lim
η→ηv

û(η)=uv and lim
η→ηv

ĉ(η)=0, where ĉ(η)=
√
γes0 ρ̂γ−1(η) and uv =

1
ηv
;

• ηĉ(η)<
1√
2

(
1−ηû(η)

)
for 0<η<ηv;

• ρ̂′(η)<0 and û′(η)<0 for 0<η<ηv.

Proof. This lemma is due to Zhang and Zheng ([38], Section 5) and Zheng [40].
We also refer the reader to the work [39].

Remark 2.1. Actually, the u∗ in Lemma 2.1 depends only on ρ0, s0, and γ; uv

depends only on u0, ρ0, s0, and γ. Moreover, for any fixed γ and u0 and s0, u∗→0 and
uv →u0 as ρ0→0. We also know û′(η)<0 for η∈ (0,ηv).

3. Axisymmetric isentropic Euler system without swirl

3.1. Main result. In this section we consider the problem (1.5, 1.9). In (1.5) we
take the equation of state p=es0ργ , where s0 is given in (1.7). The main result of this
section can be stated as the following theorem.

Theorem 3.1. Assume u0>u∗ and

c
M
= sup

x∈[ε,+∞)

c̄(x) <
(γ−1

2

)
uv, (3.1)

where the constants uv and u∗ are determined in Lemma 2.1. Assume as well that there
exists a constant B∈

(
1
2 ,min{ 3

γ+1 ,
1

3−γ }
)
such that

(A1) (γ+1
2 )B2−(γ+7

4 )B+ 3
4 +
(B
2 +

1
4

) c
M

uv
<0;

(A2) |c̄′(x)|−
(
γ−1
2

)
ū′(x)+

(
B− 1

2

) (γ−1)ū(x)
x <0 for x∈ [ε,+∞).

Then the problem (1.5, 1.9) admits a global-in-time classical solution.

Remark 3.1. It is easy to check that the roots of
(
γ+1
2

)
r2−

(
γ+7
4

)
r+ 3

4 =0 are r= 1
2

and r= 3
γ+1 . Thus, one can find an expanding initial data such that the assumptions

in Theorem 3.1 can be satisfied.

3.2. Characteristic equations and decompositions for (1.5). For smooth
flows, system (1.5) can be reduced toρt+ρux+uρx+

ρu

x
=0,

ut+uux+
px
ρ

=0.
(3.2)

The eigenvalues of system (3.2) are

λ+=u+c and λ−=u−c.

The left eigenvectors corresponding to λ± are l±=(c,±ρ). Multiplying (3.2) on the left
by l±, we get the characteristic equations

c∂±ρ±ρ∂±u=−cρu

x
, (3.3)

where

∂±=∂t+(u±c)∂x.
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From c2=γes0ργ−1 we have

∂±ρ=
2c∂±c

γ(γ−1)es0ργ−2
. (3.4)

Inserting this into (3.3), we get
∂+u=− 2

γ−1
∂+c−

uc

x
,

∂−u=
2

γ−1
∂−c+

uc

x
.

(3.5)

Lemma 3.1. For the system (1.5), we have the commutator relation

∂+∂−−∂−∂+=
(
− 1

2cµ2
(∂+c+∂−c)−

u

x

)
(∂+−∂−), (3.6)

where

µ2=
γ−1

γ+1
.

Proof. Using (3.5) and ∂x=
∂+−∂−

2c , we have

∂+∂−−∂−∂+=(∂t+λ+∂x)(∂t+λ−∂x)−(∂t+λ−∂x)(∂t+λ+∂x)

=(∂+λ−−∂−λ+)∂x,

=(∂+u−∂+c−∂−u−∂−c)∂x

=
(
− 1

2cµ2
(∂+c+∂−c)−

u

x

)
(∂+−∂−). (3.7)

This completes the proof.

Proposition 3.1. We have the characteristic decompositions
c∂−∂+c=

1

2µ2
(∂+c+∂−c)∂+c+(

3

2
∂+c+

1

2
∂−c)

uc

x
+

c2

2x
(∂+c−∂−c)+

(γ−1)u2c2

x2
,

c∂+∂−c=
1

2µ2
(∂+c+∂−c)∂−c+(

3

2
∂−c+

1

2
∂+c)

uc

x
+

c2

2x
(∂+c−∂−c)+

(γ−1)u2c2

x2
.

(3.8)
Proof. Using the commutator relation (3.6) for the variable c, we have

c∂+∂−c−c∂−∂+c=− γ+1

2(γ−1)
(∂+c+∂−c)(∂+c−∂−c)−

cu

x
(∂+c−∂−c). (3.9)

Using the commutator relation (3.6) for the variable u, we have

∂+∂−u−∂−∂+u=

(
− 1

2cµ2
(∂+c+∂−c)−

u

x

)
(∂+u−∂−u). (3.10)

Inserting (3.5) into this, we get

c∂+∂−c+c∂−∂+c=
γ+1

2(γ−1)
(∂+c+∂−c)

2+
2cu

x
(∂+c+∂−c)+

c2

x
(∂+c−∂−c)+

2(γ−1)c2u2

x2
.

(3.11)
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Combining (3.9) and (3.11), we get the first equation of (3.8). The second equation
of (3.8) can be proved similarly. This completes the proof.

It is convenient to write (3.8) in the form

∂−

(∂+c
c

)
=

1

2µ2

(∂+c
c

+
∂−c

c

)∂+c
c

+
(3
2

∂+c

c
+

1

2

∂−c

c

)u
x

+
c

2x

(∂+c
c

− ∂−c

c

)
+

(γ−1)u2

x2
− ∂+c

c

∂−c

c
,

∂+

(∂−c
c

)
=

1

2µ2

(∂+c
c

+
∂−c

c

)∂−c
c

+
(3
2

∂−c

c
+

1

2

∂+c

c

)u
x

+
c

2x

(∂+c
c

− ∂−c

c

)
+

(γ−1)u2

x2
− ∂+c

c

∂−c

c
.

(3.12)

Let A>B be a fixed constant to be determined. We define

R+=
∂+c

c
+

A(γ−1)u

x
and R−=

∂−c

c
+

A(γ−1)u

x
. (3.13)

Then by (3.12) we have{
∂+R−=a11R

2
−+a12R+R−+a13R−+a14R++a15,

∂−R+=a21R
2
++a22R+R−+a23R++a24R−+a25,

(3.14)

where

a14=
{γ−3

2
A+

1

2
−(2A− 1

2
)
c

u

}u
x
, (3.15)

a24=
{γ−3

2
A+

1

2
+(2A− 1

2
)
c

u

}u
x
, (3.16)

a15=
{
2A2−3A+1−2A(1−A)

c

u

} (γ−1)u2

x2
, (3.17)

and

a25=
{
2A2−3A+1+2A(1−A)

c

u

} (γ−1)u2

x2
. (3.18)

We define

R̂+=
∂+c

c
+

B(γ−1)u

x
and R̂−=

∂−c

c
+

(γ−1)u

2x
. (3.19)

Then by (3.12) we have{
∂+R̂−= â11R̂

2
−+ â12R̂+R̂−+ â13R̂−+ â14R̂++ â15,

∂−R̂+= â21R̂
2
++ â22R̂+R̂−+ â23R̂++ â24R̂−+ â25,

(3.20)

where

â14=
{γ−1

4
− c

2u

}u
x
, (3.21)
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â24=
{γ−3

2
B+

1

2
+(2B− 1

2
)
c

u

}u
x
, (3.22)

â15=
{1−γ

4
B+

γ+1

8
− 1

4
+(

B
2
− 3

4
)
c

u

} (γ−1)u2

x2
, (3.23)

and

â25=

{
γ+1

2
B2− γ+7

4
B+

3

4
+(

B
2
+

1

4
)
c

u

}
(γ−1)u2

x2
. (3.24)

Remark 3.2. From (3.1) and (A1) we immediately have that if 0<c<c
M

and u>uv

then â14>0, â24>0, â15<0, and â25<0.

3.3. Solution in domain Ω1. Let CQ
− :x=x−(t;ε) be a C− characteristic curve

issuing from the point Q=(ε,0), i.e.
dx−(t;ε)

dt
= û(t/x−)− ĉ(t/x−), t>0;

x−(t;0)=ε.

(3.25)

We are going to show that CQ
− does not meet the vacuum boundary x=uvt, t>0.

Lemma 3.1. For the self-similar solution (u,ρ)=(û, ρ̂)(t/x), we have

− (2+
√
2)(γ−1)u

2x
<

∂−c

c
<− (γ−1)u

2x
on CQ

− . (3.26)

Proof. A direct computation yields

∂−=

(
1

x
− (u−c)η

x

)
d

dη
. (3.27)

By the second equation of (2.3) we have

dc

dη
=

γ−1

2
· cu(1−uη)

(cη)2−(1−uη)2
. (3.28)

Thus, by Lemma 2.1 we have

∂−c

c
+

(γ−1)u

2x
=

(γ−1)u

2x
·
{[

1−(u−c)η
] (1−uη)

(cη)2−(1−uη)2
+1

}
=

(γ−1)u

2x
· cη

cη+uη−1
<0 (3.29)

and

∂−c

c
+

(2+
√
2)(γ−1)u

2x
=

(γ−1)u

2x
·
{[

1−(u−c)η
] (1−uη)

(cη)2−(1−uη)2
+2+

√
2

}
=

(γ−1)u

2x
·
(2+

√
2)(cη− 1√

2
(1−uη))

cη+uη−1
>0 (3.30)

along CQ
− . This completes the proof of the lemma.
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From Lemma 3.1, we have

∂−c

c
>− (2+

√
2)(γ−1)u

2x
=− (2+

√
2)(γ−1)u

2(u−c)
∂− lnx on CQ

− . (3.31)

This immediately implies that CQ
− does not meet the vacuum boundary x=uvt, t>0.

Let Ω1 be a domain encircled by CQ
− , the vacuum boundary, and the x-axis. Then the

solution in the domain Ω1 is the self-similar solution (u,c)=(û, ĉ)(t/x).

3.4. Solution in domain Ω3. We first consider (1.5) with data

(u,c)(x,0)=(ū, c̄)(x), ε<x<r, (3.32)

where r>ε is an arbitrary constant. The local existence of classical solution to the
Cauchy problem (1.5, 3.32) can be obtained by the method of characteristics (cf. [29]).
In order to extend the local solution to a global solution, one needs to establish an a
priori C1 norm estimate of the solution.

Lemma 3.2. Assume that the Cauchy problem (1.5, 3.32) admits a classical solution
in some region. Then there exists a sufficiently large constant A such that the solution
satisfies

R̂±<0,
∂±c

c
>−A(γ−1)u

x
, 0<c<c

M
, and uv <u<ū(r)+1. (3.33)

Proof. We shall prove this lemma by the method of continuity. The proof proceeds
in two steps.

Step 1. From c2=γes0ργ−1 we have

ρt=
2cct

γ(γ−1)es0ργ−2
and ρx=

2ccx
γ(γ−1)es0ργ−2

.

Inserting this into the first equation of (1.5) we get

ct=−ucx−
γ−1

2
cux−

γ−1

2

cu

x
. (3.34)

Hence,

∂±c= ct+(u±c)cx=±ccx−
γ−1

2
cux−

γ−1

2
· cu
x
. (3.35)

Consequently, we have

R̂+(x,0)= c̄′(x)− γ−1

2
ū′(x)+

(
B− 1

2

) (γ−1)ū(x)

x
(3.36)

and

R̂−(x,0)=−c̄′(x)− γ−1

2
ū′(x). (3.37)

By assumption (A2) we have

R̂−(x,0)<0 and R̂+(x,0)<0 for ε<x<r. (3.38)
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From (3.35) we have

R±(x,0)=±c̄′(x)− γ−1

2
ū′(x)+

(
A− 1

2

) (γ−1)ū(x)

x
. (3.39)

By assumption (A2) we have ū′(x)>0 for x≥ε. Hence, ū(x)>u0. Consequently, when
A is sufficiently large,

R−(x,0)>0 and R+(x,0)>0 for ε<x<r. (3.40)

Then the inequalities in (3.33) hold on {(x,t) | t=0, ε<x<r}.

ε
0 −+

P

P

P P P

Ω

x
o

t

r

C
+

−
C

+

C

C
−

Fig. 3.1. Domain ΩP .

Step 2. Let P be an arbitrary point in the domain. The backward C+ and C− character-
istic curves issuing from P intersect the x-axis at some points P+ and P−, respectively;
see Figure 3.1. The backward trajectory line C0 issuing from P intersects the x-axis

at a point P0. We denote by ΩP a closed triangle domain closed by P̂+P , P̂−P , and
P+P−. We are going to prove that if the inequalities in (3.33) hold for all points in
ΩP \{P}, then they also hold at P .

From R̂±<0 in ΩP \{P}, we immediately have ∂±c<0 on ΩP \{P}. Hence, we

have c<c
M

at P . Since R±>0 for all points in ΩP \{P}, we have ∂0c
c >−A(γ−1)u

x in

ΩP \{P}. Integrating this along P̂0P from P0 to P , we have

c(P )>c(P0)
( x(P )

x(P0)

)−A(γ−1)

>0. (3.41)

In view of (3.5), we have

∂−u=
2cR̂−

γ−1
<0 and ∂+u=−2cR̂+

γ−1
+(B− 1

2
)
2uc

x
>0 in ΩP \{P}.

Thus, we have

uv <u(P+)<u(P )<u(P−)<ū(r)+1.

Suppose R̂−(P )=0. Then by the assumption that the inequalities in (3.33) hold

for every point in ΩP \{P}, we have ∂+R̂−≥0 at P . While, by the first equation of
(3.20) and Remark 3.2, we have

∂+R̂−= â14R̂++ â15<0 (3.42)
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at P . This leads to a contradiction. Then we get R̂−(P )<0. Similarly, we have

R̂+(P )<0. From R̂±(P )<0 we also have

R±<
A(γ−1)u

x
at P. (3.43)

Suppose R+=0 at P . Then by the assumption that the inequalities in (3.33) hold
for any point in ΩP \{P} we have ∂−R+≤0 at P . While, by (3.43) and the second
equation of (3.14), we have

∂−R+>a24
A(γ−1)u

x
+a25>

{γ+1

2
A2− 5

2
A+1

} (γ−1)u2

x2
>0 if a24<0;

∂−R+>a25>
{
2
(
1− c

M

uv

)
A2−

(
3−2

c
M

uv

)
A+1

} (γ−1)u2

x2
>0 if a24≥0.

(3.44)

This leads to a contradiction. We then have R+(P )>0. Similarly, we get R−(P )>0.
We then prove that if the inequalities in (3.33) hold for every point in ΩP \{P}

then these inequalities also hold at P . Therefore, by an argument of continuity we have
that the solution satisfies (3.33). This completes the proof of the lemma.

Lemma 3.2 gives a C0 norm estimate for (c,u) and a gradient estimate for c. The
gradient estimate for u can be obtained by (3.5). We then establish an a priori C1

estimate for the solution. Thus, the existence of a global classical solution can be
obtained by the classical extension method (cf. Li [28]). We then get the following
conclusion.

Lemma 3.3. The Cauchy problem (1.5, 3.32) admits a global classical solution.
Moreover, the solution satisfies (3.33).

Since r>ε can be arbitrary, we obtain the solution in Ω3 bounded by CQ
+ and the

x-axis, where CQ
+ is a C+ characteristic curve issuing from Q. Moreover, the solution

satisfies

R̂±<0, 0<c<c
M
, and u>uv. (3.45)

3.5. Solution in domain Ω2. Take any points Q+ and Q− on CQ
+ and CQ

− ,
respectively. We now consider (1.5) with data

(u,c)=

{
(û, ĉ)(t/x) on Q̂Q−;

(ũ, c̃)(x,t) on Q̂Q+;
(3.46)

where (ũ, c̃)(x,t) denotes the solution in Ω3.
Problem (1.5, 3.46) is a Goursat-type boundary value problem, and the existence

of a local C1 solution is known by the method of characteristics (see [29]). In order
to extend the local solution to a global solution, we need to establish an a priori C1

estimate of the solution.

Lemma 3.4. Assume that the Goursat problem (1.5, 3.46) admits a classical solution
in some region. Then there exists a sufficiently large A>0 such that

R̂±<0,
∂±c

c
>−A(γ−1)u

x
, 0<c<c

M
, and uv <u<2u(Q+). (3.47)

Proof. The proof of this lemma proceeds in two steps.
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Step 1. We first prove that the inequalities in (3.47) hold on Q̂Q+∪Q̂Q−.

Firstly, from Lemmas 3.1 and 3.2 we have 0<c<c
M

and uv <u<2u(Q+) on Q̂Q+∪
Q̂Q−, R̂−<0 on Q̂Q−, and R̂+<0 on Q̂Q+.

We next prove R̂+ |
Q̂Q−

<0 and R̂− |
Q̂Q+

<0. Suppose that there exists a “first”

point Q1 on Q̂Q+ such that R̂−(Q1)=0 and R̂−<0 on Q̂Q1. Then we have ∂+R̂−≥0

at Q1. While, as in (3.42), we have ∂+R̂−<0 at Q1, which leads to a contradiction.

Thus R̂− |
Q̂Q+

<0. Similarly, we have R̂+ |
Q̂Q−

<0.

−

o

C +

Q

+

Q

Q

−

Q

+P

Ωp

P−

.

.

t

x

P

C
Q

Fig. 3.2. Global classical solution to the Goursat problem.

When A is sufficiently large, we have R+ |
Q̂Q+

>0 and R− |
Q̂Q−

>0. We next prove

R+ |
Q̂Q−

>0 and R− |
Q̂Q+

>0. Suppose that there exists a “first” point Q1 on Q̂Q+

such that R−(Q1)=0 and R−>0 on Q̂Q1. Then we have ∂+R−≤0 at Q1. While,
as in (3.44) we have ∂−R+>0 at Q1, which leads to a contradiction. Thus we have

R+ |
Q̂Q+

>0. Similarly, we have R− |
Q̂Q−

>0. We then prove (3.47) on Q̂Q+∪Q̂Q−.

Step 2. Let P be an arbitrary point in the domain. The backward C+ and C− char-

acteristic curves issuing from P intersect Q̂Q− and Q̂Q+ at some points P+ and P−,

respectively. The backward trajectory line C0 issuing from P intersects Q̂Q+∪Q̂Q− at

some point P0. We denote by ΩP a closed quadrilateral domain closed by P̂+P , P̂−P ,
QP−, and QP+; see Figure 3.2. As in the proof of Lemma 3.2, we know that if the
inequalities in (3.47) hold for every point in ΩP \{P}, then they also hold at P .

Therefore, by an argument of continuity we complete the proof of the lemma.

By Lemma 3.4 we get an a priori C1 estimate of the solution to the Goursat problem
(1.5, 3.46). Thus, the existence of a global classical solution can be obtained by the
classical extension method (cf. Li [28]). We then have the following global existence.

Lemma 3.5. The Goursat problem (1.5, 3.46) admits a global classical solution.

Since Q± can be arbitrary, we obtain the solution in a domain Ω2 bounded by
characteristic curves CQ

+ and CQ
− . We then complete the proof of Theorem 3.1.

4. Axisymmetric isentropic Euler equations with swirl

4.1. Main result. In this section we consider the problem (1.6, 1.10). The
main result can be stated as the following theorem.
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Theorem 4.1. Let

δ= sup
x∈[ε,+∞)

v̄2(x)

c̄(x)
and c

M
= sup

x∈[ε,+∞)

c̄(x).

Assume 1<γ<5−2
√
2 and there exist constants D∈

(
1
2 ,min{ 3

γ+1 ,
1

3−γ }
)

and D′∈
(D, 2

γ−1 ) such that

|c̄′(x)|+(D− 1

2
)
(γ−1)ū(x)

x
<

γ−1

2
ū′(x)<−|c̄′(x)|+

(
D′− 1

2

) (γ−1)ū(x)

x
(4.1)

for x∈ [ε,+∞). Then when δ and c
M

are sufficiently small the problem (1.6, 1.10)
admits a global-in-time classical solution.

Remark 4.1. It is easy to check that when δ and c
M

are sufficiently small, the
following properties hold:

(S0)
c
M

uv
< γ−1

2 − (γ+1)δ
2uv

;

(S1) γ+1
2 D2− γ+7

4 D+ 3
4 +
(D

2 + 1
4

) c
M

uv
+
(
1−3γ

4 D− γ−15
8

)
δ
uv

<0;

(S2) γ+1
2 C2−

(
5
2 +

3
2

c
M

uv
+ γδ

uv

)
C+1− 2δ

uv
> 0;

(S3) 2
(
1− c

M

uv

)
C2−

(
3+2

c
M

uv

)
C+1− |γC−2|δ

uv
>0;

(S4) |c̄′(x)|− γ−1
2 ū′(x)+(D− 1

2 )
(γ−1)ū(x)

x − (γ−1)v̄2(x)
2c̄(x)x <0 for x∈ [ε,+∞);

(S5) |c̄′(x)|− γ−1
2 ū′(x)+ (γ−1)v̄2(x)

2c̄(x)x <0 for x∈ [ε,+∞);

(S6) −|c̄′(x)|− γ−1
2 ū′(x)− (γ−1)v̄2(x)

2c̄(x)x +(C− 1
2 )

(γ−1)ū(x)
x >0 for x∈ [ε,+∞).

Here, the constant

C= 2

γ−1
. (4.2)

Remark 4.2. From 1<γ<5−2
√
2 we have C>1+

√
2
2 .

4.2. Characteristic equations and decompositions for (1.6). For smooth
flows, system (1.6) can be simplified to

ρt+ρux+uρx+
ρu

x
=0,

ut+uux+
px
ρ
− v2

x
=0,

vt+uvx+
uv

x
=0.

(4.3)

The eigenvalues of the system (4.3) are

λ+=u+c, λ0=u, λ−=u−c.

The left eigenvectors corresponding to λ± are l±=(c,±ρ,0). Multiplying (4.3) on the
left by l± we get the characteristic equations

c∂±ρ±ρ∂±u=−cρu

x
± ρv2

x
, (4.4)
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where

∂±=∂t+(u±c)∂x.

Inserting (3.4) into (4.4), we get
∂+u=− 2

γ−1
∂+c−

uc

x
+

v2

x
,

∂−u=
2

γ−1
∂−c+

uc

x
+

v2

x
.

(4.5)

Remark 4.3. From (4.5) we immediately have that the bound of |∇u| can be
controlled by the bounds of ∇c, u, v, c, and 1

x .

Lemma 4.1. For the system (1.6), we have the commutator relation

∂+∂−−∂−∂+=

(
− 1

2cµ2
(∂+c+∂−c)−

u

x

)
(∂+−∂−). (4.6)

Proof. The proof is similar to that for Lemma 3.1, we omit the details.

Proposition 4.1. We have the characteristic decompositions

c∂−

(
∂+c−

(γ−1)v2

2x

)
=

1

2µ2
(∂+c+∂−c)∂+c+(

3

2
∂+c+

1

2
∂−c)

uc

x
+

c2

2x
(∂+c−∂−c)

+
(γ−1)u2c2

x2
− (γ−1)c2v2

2x2
+

3(γ−1)cuv2

2x2
,

c∂+

(
∂−c+

(γ−1)v2

2x

)
=

1

2µ2
(∂+c+∂−c)∂−c+(

3

2
∂−c+

1

2
∂+c)

uc

x
+

c2

2x
(∂+c−∂−c)

+
(γ−1)u2c2

x2
− (γ−1)c2v2

2x2
− 3(γ−1)cuv2

2x2
.

(4.7)
Proof. Using the commutator relation (4.6) for the variable c, we have

c∂+∂−c−c∂−∂+c=− γ+1

2(γ−1)
(∂+c+∂−c)(∂+c−∂−c)−

cu

x
(∂+c−∂−c). (4.8)

Using the commutator relation (4.6) for the variable u, we have

∂+∂−u−∂−∂+u=

(
− 1

2cµ2
(∂+c+∂−c)−

u

x

)
(∂+u−∂−u). (4.9)

Inserting (4.5) into (4.9), we get

c∂+∂−c+c∂−∂+c=
γ+1

2(γ−1)
(∂+c+∂−c)

2+
γ+3

2

cu

x
(∂+c+∂−c)

+
c2u2(γ−1)

x2
− c(γ−1)

2

[
∂+

(cu
x

)
+∂−

(cu
x

)]
− c(γ−1)

2

[
∂+

(v2
x

)
−∂−

(v2
x

)]
. (4.10)

Combining (4.8) and (4.10), we obtain

c∂−

(
∂+c−

(γ−1)v2

2x

)
=

γ+1

2(γ−1)
(∂+c+∂−c)∂+c+

(γ+3)cu

4x
(∂+c+∂−c)
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+
cu

2x
(∂+c−∂−c)−

c(γ−1)

4

[
∂+

(cu
x

)
+∂−

(cu
x

)]
+

c2u2(γ−1)

2x2
− c(γ−1)

4

[
∂+

(v2
x

)
+∂−

(v2
x

)]
. (4.11)

By a direct computation, we have

∂+

(
v2

x

)
+∂−

(
v2

x

)
=

2v

x
(∂+v+∂−v)−

2uv2

x2
=−6uv2

x2
(4.12)

and

∂+

(cu
x

)
+∂−

(cu
x

)
=

u

x
(∂+c+∂−c)−

2c

(γ−1)x
(∂+c−∂−c)−

2cu2

x2
+

2cv2

x2
. (4.13)

Inserting (4.12) and (4.13) into (4.11), we get the first equation of (4.7). The second
equation of (4.7) can be proved similarly. This completes the proof.

It is convenient to write (4.7) in the form

∂−

(∂+c
c

− (γ−1)v2

2cx

)
=

1

2µ2

(∂+c
c

+
∂−c

c

)∂+c
c

+
(3
2

∂+c

c
+

1

2

∂−c

c

)u
x

+
c

2x

(∂+c
c

− ∂−c

c

)
+

(γ−1)u2

x2
− (γ−1)v2

2x2

+
3(γ−1)uv2

2cx2
− ∂+c∂−c

c2
+

(γ−1)v2

2cx

∂−c

c
,

∂+

(∂−c
c

+
(γ−1)v2

2cx

)
=

1

2µ2

(∂+c
c

+
∂−c

c

)∂−c
c

+
(3
2

∂−c

c
+

1

2

∂+c

c

)u
x

+
c

2x

(∂+c
c

− ∂−c

c

)
+

(γ−1)u2

x2
− (γ−1)v2

2x2

− 3(γ−1)uv2

2cx2
− ∂+c∂−c

c2
− (γ−1)v2

2cx

∂+c

c
.

(4.14)

We define

W+=
∂+c

c
− (γ−1)v2

2cx
+

C(γ−1)u

x
and W−=

∂−c

c
+

(γ−1)v2

2cx
+

C(γ−1)u

x
. (4.15)

Then by (4.14) we have{
∂+W−= b11W

2
−+b12W+W−+b13W−+b14W++b15,

∂−W+= b21W
2
++b22W+W−+b23W++b24W−+b25,

(4.16)

where

b14=

{
γ−3

2
C+ 1

2
−(2C− 1

2
)
c

u
− (γ+1)v2

4cu

}
u

x
, (4.17)

b24=

{
γ−3

2
C+ 1

2
+(2C− 1

2
)
c

u
+

(γ+1)v2

4cu

}
u

x
, (4.18)

b15=

{
2C2−3C+1−2C(1−C) c

u
+(γC−2)

v2

cu

}
(γ−1)u2

x2
, (4.19)
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and

b25=

{
2C2−3C+1+2C(1−C) c

u
−(γC−2)

v2

cu

}
(γ−1)u2

x2
. (4.20)

We define

Ŵ+=
∂+c

c
− (γ−1)v2

2cx
+

D(γ−1)u

x
and Ŵ−=

∂−c

c
+

(γ−1)v2

2cx
+

(γ−1)u

2x
. (4.21)

Then by (4.14) we have{
∂+Ŵ−= b̂11Ŵ

2
−+ b̂12Ŵ+Ŵ−+ b̂13Ŵ−+ b̂14Ŵ++ b̂15,

∂−Ŵ+= b̂21Ŵ
2
++ b̂22Ŵ+Ŵ−+ b̂23Ŵ++ b̂24Ŵ−+ b̂25,

(4.22)

where

b̂14=

{
γ−1

4
− c

2u
− (γ+1)v2

4cu

}
u

x
, (4.23)

b̂24=

{
γ−3

2
D+

1

2
+(2D− 1

2
)
c

u
+

(γ+1)v2

4cu

}
u

x
, (4.24)

b̂15=

{
1−γ

4
D+

γ+1

8
− 1

4
+(

D
2
− 3

4
)
c

u
+
(γ+1

4
D+

3γ−17

8

)v2
cu

}
(γ−1)u2

x2
, (4.25)

and

b̂25=

{
γ+1

2
D2− γ+7

4
D+

3

4
+(

D
2
+

1

4
)
c

u
+
(1−3γ

4
D− γ−15

8

)v2
cu

}
(γ−1)u2

x2
. (4.26)

Remark 4.4. From 1
2 <D<min{ 3

γ+1 ,
1

3−γ }, (S0), and (S1), we have that if 0<c≤ c
M
,

u≥uv, and
v2

c ≤ δ then b̂14>0, b̂24>0, and b̂25<0. Meanwhile, if 0<c≤ c
M
, u≥uv, and

v2

c ≤ δ then 1−γ
4 + c

2u +
(γ+1)v2

4cu <0. Thus b̂15 is decreasing with respect to D. Inserting

D= 1
2 into b̂15, we also have that if 0<c≤ c

M
, u≥uv, and

v2

c ≤ δ then b̂15<0.

4.3. Solution in domain Ω3. Since (u,v,ρ)(x,0)=(u0,0,ρ0) for 0<x≤ε, the
solution in the region Ω1 is the self-similar solution (u,v,ρ)=(û(t/x),0, ρ̂(t/x)), where
the function (û, ρ̂) is the solution to the Riemann problem (2.3, 2.4). Moreover, from
Lemma 3.1 we also have that the solution satisfies (3.26).

We first consider (1.6) with data

(u,v,c)(x,0)=(ū, v̄, c̄)(x), ε<x<r, (4.27)

where r>ε can be arbitrary.

Lemma 4.2. Assume that the initial value problem (1.6, 4.27) admits a classical
solution in some domain. Then the solution satisfies

Ŵ±<0, W±>0, 0<c<c
M
, and uv <u<ū(r)+1. (4.28)

Proof. We shall prove this lemma by the method of continuity. The proof proceeds
in two steps.
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Step 1. From c2=γes0ργ−1 we have

ρt=
2cct

γ(γ−1)es0ργ−2
and ρx=

2ccx
γ(γ−1)es0ργ−2

.

Inserting this into the first equation of (1.6) we get

ct=−ucx−
γ−1

2
cux−

γ−1

2

cu

x
. (4.29)

Hence,

∂±c= ct+(u±c)cx=±ccx−
γ−1

2
cux−

γ−1

2
· cu
x
, (4.30)

and consequently

Ŵ+(x,0)= c̄′(x)− γ−1

2
ū′(x)+

(
D− 1

2

) (γ−1)ū(x)

x
− (γ−1)v̄2(x)

2c̄(x)x
(4.31)

and

Ŵ−(x,0)=−c̄′(x)− γ−1

2
ū′(x)+

(γ−1)v̄2(x)

2c̄(x)x
. (4.32)

Thus, by (S4) and (S5) we have

Ŵ±(x,0)<0 for ε<x<r. (4.33)

Similarly, by (4.30) we have

W±(x,0)=±c̄′(x)− γ−1

2
ū′(x)+

(
C− 1

2

) (γ−1)ū(x)

x
∓ (γ−1)v̄2(x)

2c̄(x)x
. (4.34)

Thus, by (S6) we have

W±(x,0)>0 for ε<x<r. (4.35)

Step 2. Let P be an arbitrary point in the domain. The backward C+ and C− character-
istic curves issuing from P intersect the x-axis at some points P+ and P−, respectively.
The backward trajectory line C0 issuing from P intersects the x-axis at a point P0. We

denote by ΩP a closed triangle domain closed by P̂+P , P̂−P , and P+P−. We are going
to prove that if the inequalities in (4.28) hold for all points in ΩP \{P}, then they also
hold at P . We shall prove this by the method of contradiction.

From Ŵ−<0 in ΩP \{P}, we immediately have ∂−c<0 in ΩP \{P}. Hence, we

have c<c
M

at P . From W±>0 in ΩP \{P}, we have ∂0c
c >−C(γ−1)u

x on ΩP \{P}.
Integrating this along P̂0P from P0 to P , we have

c(P )>c(P0)
( x(P )

x(P0)

)−C(γ−1)

>0. (4.36)

From the third equation of (1.6) we have

∂0 lnv=−∂0 lnx. (4.37)
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Integrating this along P̂0P from P0 to P , we get

v(P )=
x(P0)

x(P )
v(P0). (4.38)

Combining (4.36) and (4.38) and recalling C= 2
γ−1 and x(P )>x(P0), we get

(v2
c

)
(P )<

(x(P0)

x(P )

)2−C(γ−1)(v2
c

)
(P0)<δ. (4.39)

In view of (4.5), we have

∂−u=
2cŴ−

γ−1
<0 and ∂+u=−2cŴ+

γ−1
+(D− 1

2
)
2uc

x
>0 (4.40)

in ΩP \{P}. Thus we have

uv <u(P+)<u(P )<u(P−)<ū(r)+1.

Suppose Ŵ−=0 at P . Then according to that the inequalities in (4.28) hold in

ΩP \{P}, we have ∂+Ŵ−≥0 at P . While, by the first equation of (4.22) and Remark
4.4, we have

∂+Ŵ−= b̂14Ŵ++ b̂15 < 0 (4.41)

at P . This leads to a contradiction. We then get Ŵ−(P )<0. Similarly, we have

Ŵ+(P )<0.
Suppose W−=0 at P . Then according to that the inequalities in (4.28) hold in

ΩP \{P}, we have ∂+W−≤0 at P . While, using (S2), (S3), ∂−c
c <0, and the first

equation of (4.16), we have

∂+W−>b14
C(γ−1)u

x
+b15

>
{γ+1

2
C2−

(5
2
+

3

2

c
M

uv

)
C+1− 2δ

uv

} (γ−1)u2

x2
>0

if b14<0;

∂+W−>b15>
{
2C2−

(
3+2

c
M

uv

)
C+1− |γC−2|δ

uv

} (γ−1)u2

x2
>0 if b14≥0.

(4.42)

This leads to a contradiction. We then have W−(P )>0. Similarly, we have W+(P )>0.
We then prove that if the inequalities in (4.28) hold in ΩP \{P} then they also hold

at P . Therefore, by an argument of continuity we complete the proof of the lemma.

From Lemma 4.2 we actually have that the solution satisfies

Ŵ±<0, W±>0, 0<c<c
M
,

v2

c
≤ δ, and u>uv. (4.43)

This gives a C0 norm estimate for (u,v,c) and a gradient estimate for c. The gradi-
ent estimate for u can be obtained by (4.5). In order to estimate |∇v|, we use the
commutator relation

∂0∂xv−∂x∂0v=−∂xu∂xv.



LAI AND ZHU 847

Inserting the third equation of (1.6) into this, we get

∂0(∂xv)+
(u
x
+∂xu

)
∂xv=

uv

x2
− v∂xu

x
. (4.44)

Thus, the value of ∂xv can be obtained by integrating (4.44) along C0 characteristic
lines. The gradient estimate for v can be obtained by ∂xv and the third equation of
(1.6). We then establish an a priori C1 estimate for the solution. Thus, the existence of
a global classical solution can be obtained by the classical extension method (cf. Li [28]).
We then have the following global existence.

Lemma 4.3. The Cauchy problem (1.6, 4.27) admits a global classical solution.
Moreover, the solution satisfies (4.43).

Since r>ε can be arbitrary, we obtain the solution in a domain Ω3 bounded by CQ
+

and the x-axis. Moreover the solution satisfies (4.43).

4.4. Solution in domain Ω2. Take any points Q+ and Q− on CQ
+ and CQ

− ,
respectively. We now consider (1.6) with data

(u,v,c)=

{
(û, v̂, ĉ)(t/x) on Q̂Q−;

(ũ, ṽ, c̃)(x,t) on Q̂Q+;
(4.45)

where v̂=0 and (ũ, ṽ, c̃)(x,t) denotes the solution in Ω3.
Problem (1.6, 4.45) is a Goursat problem. In order to obtain a global solution, we

need to establish an a priori C1 estimate of the solution.

Lemma 4.4. Assume that the Goursat problem (1.6, 4.45) admits a classical solution
in some domain. Then the solution satisfies

Ŵ±<0, W±>0, 0<c<c
M
, and uv <u<u(Q+)+1. (4.46)

Proof. The proof of this lemma proceeds in two steps.

Step 1. We first prove that the inequalities in (4.46) hold on Q̂Q+∪Q̂Q−.

By (4.28) we know that W+>0, Ŵ+<0, v2

c ≤ δ, and 0<c<c
M

on Q̂Q+. By (4.40)

we know that uv <u<u(Q+)+1 on Q̂Q+. By (3.26) we have Ŵ−<0 and W−>0 on

Q̂Q−.

We now prove Ŵ+ |
Q̂Q−

<0 and Ŵ− |
Q̂Q+

<0. Suppose that there exists a “first”

point Q1 on Q̂Q+ such that Ŵ−(Q1)=0 and Ŵ−<0 on Q̂Q1. Then we have ∂+Ŵ−≥0

at Q1. While, as in (4.41), we have ∂+Ŵ−<0 at Q1, which leads to a contradiction.

Thus we have Ŵ− |
Q̂Q+

<0. Similarly, we have Ŵ+ |
Q̂Q−

<0.

We next prove W+ |
Q̂Q−

>0 and W− |
Q̂Q+

>0. Suppose that there exists a “first”

point Q1 on Q̂Q+ such that W−(Q1)=0 and W−>0 on Q̂Q1. Then we have ∂+W−≤0
at Q1. While, as in (4.42), we have ∂+W−>0 at Q1, which leads to a contradiction.
Thus we have W− |

Q̂Q+
>0. Similarly, we have W+ |

Q̂Q−
>0.

Step 2. Let P be an arbitrary point in the domain. The backward C+ and C−

characteristic curves issuing from P intersect Q̂Q− and Q̂Q+ at some points P+ and

P−, respectively. The backward trajectory line issuing from P intersects Q̂Q+∪Q̂Q−

at some point P0. We denote by ΩP a closed domain closed by P̂+P , P̂−P , QP−, and
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QP+. Then, as in the proof of Lemma 4.2, one has that if the inequalities in (4.46) hold
for every point in ΩP \{P} then they also hold at P .

Therefore, by an argument of continuity we complete the proof of the lemma.

Lemma 4.5. The Goursat problem (1.6, 4.45) admits a global classical solution.

Proof. This lemma can be proved by Lemma 4.4 and the classical extension
method. We omit the details.

Since Q± can be arbitrary, we obtain the solution in a triangle domain Ω2 bounded
by CQ

+ and CQ
− . We then finish the proof of Theorem 4.1.

5. Axisymmetric non-isentropic Euler equations with swirl

5.1. Problem and main result. We now consider the problem (1.4, 1.7). Let
γ∗∈ (1,2) be a constant such that 7−γ∗

2(γ∗+1) =
1

3−γ∗
. Then we have

1

2
<

7−γ

2(γ+1)
<min

{ 3

γ+1
,

1

3−γ

}
for γ∗<γ<3. (5.1)

The main result is stated as the following theorem.

Theorem 5.1. Let

δ1= sup
x∈[ε,+∞)

v̄2(x)

c̄(x)
, δ2= sup

x∈[ε,+∞)

|xc̄s̄′|, and c
M
= sup

x∈[ε,+∞)

c̄(x).

Assume γ∗<γ<5−2
√
2 and there exists a constant K∈

(
1, 2

γ−1

)
such that

|c̄′(x)|+ (γ−1)ū(x)

2x
<

γ−1

2
ū′(x)<−|c̄′(x)|+

(
K− 1

2

) (γ−1)ū(x)

x
(5.2)

for x∈ [ε,+∞). Then when δ1, δ2, and c
M

are sufficiently small the problem (1.4, 1.7)
admits a global-in-time classical solution.

Remark 5.1. Let F ∈ ( 7−γ
2(γ+1) ,min{ 3

γ+1 ,
1

3−γ }) be a constant. It is easy to check that

when δ1 and δ2 and c
M

are sufficiently small the following properties hold:

(H0)
c
M

uv
< γ−1

2 − (γ+1)δ1
2uv

− δ2
2γuv

;

(H1) 1−γ
4 F+ γ+1

8 − 1
4 +

(2F−1)δ2
8γuv

<0;

(H2) γ−3
2 F+ 1

2 −
δ2

4γuv
>0;

(H3) γ+1
2 F2− γ+7

4 F+ 3
4 +
(

F
2 + 1

4

)
c
M

uv
+
∣∣∣ 1−3γ

4 F− γ−15
8

∣∣∣ δ1uv
+ (2F−1)δ2

8γuv
<0;

(H4) γ+1
2 C2−

(
5
2 +

3
2

c
M

uv
+ γδ1

uv
+ δ2

4γuv

)
C+1− 2δ1

uv
>0;

(H5) 2
(
1− c

M

uv

)
C2−

(
3+2

c
M

uv

)
C+1− |γC−2|δ1

uv
>0;

(H6) |c̄′(x)|− γ−1
2 ū′(x)+(F− 1

2 )
(γ−1)ū(x)

x − (γ−1)v̄2(x)
2c̄(x)x + c̄(x)|s̄′(x)|

2γ <0 for x∈ [ε,+∞);

(H7) |c̄′(x)|− γ−1
2 ū′(x)+ (γ−1)v̄2(x)

2c̄(x)x + c̄(x)|s̄′(x)|
2γ <0 for x∈ [ε,+∞);

(H8) −|c̄′(x)|− γ−1
2 ū′(x)− (γ−1)v̄2(x)

2c̄(x)x − c̄(x)|s̄′(x)|
2γ +(C− 1

2 )
(γ−1)ū(x)

x >0 for x∈ [ε,+∞),

where C= 2
γ−1 .
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5.2. Characteristic equations and decompositions for (1.4). For smooth
flows, system (1.4) can be simplified to

ρt+(ρu)x+
ρu

x
=0,

ut+uux+
px
ρ
− v2

x
=0,

vt+uvx+
uv

x
=0,

st+usx=0.

(5.3)

The eigenvalues of the system (5.3) are

λ+=u+c, λ0=u, λ−=u−c.

The left eigenvectors corresponding to λ± are l±=(c,±ρ,0,
√

es

γ ρ
γ+1
2 ). Multiplying (5.3)

on the left by l± we get the characteristic equations

c∂±ρ±ρ∂±u±ργessx=−ρcu

x
± ρv2

x
, (5.4)

where

∂±=∂t+(u±c)∂x.

From c2=γesργ−1 we have

∂±ρ=
2c∂±c−γργ−1∂±e

s

γ(γ−1)esργ−2
.

Combining this with ∂±s=±csx, we have

c∂±ρ=
2ρ∂±c

γ−1
∓ γργes

γ−1
sx.

Inserting this into (5.4), we get
∂+u=− 2

γ−1
∂+c+

c2

γ(γ−1)
sx−

uc

x
+

v2

x
,

∂−u=
2

γ−1
∂−c+

c2

γ(γ−1)
sx+

uc

x
+

v2

x
.

(5.5)

Lemma 5.1. For smooth flows, we have commutator relation

∂+∂−−∂−∂+=

(
− 1

2cµ2
(∂+c+∂−c)−

u

x

)
(∂+−∂−). (5.6)

Proof. The proof is similar to that for Lemma 3.1, we omit the details.

Lemma 5.2. For the system (1.4), we have

∂0

(
sx

c
2

γ−1

)
=

u

x
· sx

c
2

γ−1

(5.7)

where ∂0=∂t+u∂x.



850 CLASSICAL SOLUTIONS TO 2D AXISYMMETRIC EULER SYSTEM

Proof. By (5.5), we have

∂0∂xs=(∂0∂x−∂x∂0)s=(∂t+u∂x)∂xs−∂x(∂t+u∂x)s

=−∂xu∂xs=
(∂+c+∂−c)sx

c(γ−1)
+

u

x
sx. (5.8)

Thus, by ∂0=
∂++∂−

2 we have

∂0

(
sx

c
2

γ−1

)
=

∂0∂xs

c
2

γ−1

− 2

γ−1

sx

c
γ+1
γ−1

∂0c =
u

x
· sx

c
2

γ−1

. (5.9)

This completes the proof.

Proposition 5.1. We have the characteristic decompositions

c∂−

(
∂+c−

(γ−1)v2

2x
− c2

2γ
sx

)
=

1

2µ2
(∂+c+∂−c)∂+c+(

3

2
∂+c+

1

2
∂−c)

uc

x

+
c2

2x
(∂+c−∂−c)+

(γ−1)u2c2

x2
− (γ−1)c2v2

2x2

+
3(γ−1)cuv2

2x2
− c4sx

2γx
− c3usx

2γx

− c2(∂+c+∂−c)sx
2(γ−1)

,

c∂+

(
∂−c+

(γ−1)v2

2x
+

c2

2γ
sx

)
=

1

2µ2
(∂+c+∂−c)∂−c+(

3

2
∂−c+

1

2
∂+c)

uc

x

+
c2

2x
(∂+c−∂−c)+

(γ−1)u2c2

x2
− (γ−1)c2v2

2x2

− 3(γ−1)cuv2

2x2
− c4sx

2γx
+

c3usx
2γx

+
c2(∂+c+∂−c)sx

2(γ−1)
.

(5.10)
Proof. Using the commutator relation (5.6) for the variable c, we have

∂+∂−c−∂−∂+c=

(
− 1

2cµ2
(∂+c+∂−c)−

u

x

)
(∂+c−∂−c). (5.11)

Using the commutator relation (5.6) for the variable u, we have

∂+∂−u−∂−∂+u=

(
− 1

2cµ2
(∂+c+∂−c)−

u

x

)
(∂+u−∂−u). (5.12)

Inserting (5.5) into this, we get

c∂+∂−c+c∂−∂+c=
γ+1

2(γ−1)
(∂+c+∂−c)

2+
2cu

x
(∂+c+∂−c)+

c2

x
(∂+c−∂−c)

− (γ−1)c

2
∂+

(
c2sx

γ(γ−1)

)
+

(γ−1)c

2
∂−

(
c2sx

γ(γ−1)

)
− c4

γx
sx+

2(γ−1)c2u2

x2
− (γ−1)c2v2

x2

− (γ−1)c

2
∂+

(
v2

x

)
+

(γ−1)c

2
∂−

(
v2

x

)
. (5.13)
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Combining (5.11) and (5.13), we get

c∂−

(
∂+c−

(γ−1)v2

2x
− c2

2γ
sx

)
=

γ+1

2(γ−1)
(∂+c+∂−c)∂+c+(

3

2
∂+c+

1

2
∂−c)

uc

x
+

c2

2x
(∂+c−∂−c)+

(γ−1)u2c2

x2

− (γ−1)c2v2

2x2
− (γ−1)c

4

[
∂+

(
c2sx

γ(γ−1)

)
+∂−

(
c2sx

γ(γ−1)

)]
− (γ−1)c

4

[
∂+

(
v2

x

)
+∂−

(
v2

x

)]
− c4

2γx
sx, (5.14)

By (5.8), we have

∂+(
v2

x
)+∂−(

v2

x
)=

2v

x
(∂+v+∂−v)−

2uv2

x2
=−6uv2

x2
(5.15)

and

∂+

(
c2sx

γ(γ−1)

)
+∂−

( c2sx
γ(γ−1)

)
=

2c

(γ−1)2
(∂+c+∂−c)sx+

2c2

γ(γ−1)

u

x
sx. (5.16)

Inserting (5.15) and (5.16) into (5.14) we get the first equation of (5.10). The second
equation of (5.10) can be proved similarly. This completes the proof.

It is convenient to write (5.10) in the form

∂−

(∂+c
c

− (γ−1)v2

2cx
− c

2γ
sx

)
=

1

2µ2

(∂+c
c

+
∂−c

c

)∂+c
c

+
(3
2

∂+c

c
+

1

2

∂−c

c

)u
x

+
c

2x

(∂+c
c

− ∂−c

c

)
+

(γ−1)u2

x2
− (γ−1)v2

2x2

+
3(γ−1)uv2

2cx2
− ∂+c∂−c

c2
+

(γ−1)v2

2cx

∂−c

c
− c2

2γx
sx

− c

2γ

u

x
sx+

csx
2γ

∂−c

c
− c

2(γ−1)

(∂+c
c

+
∂−c

c

)
sx,

∂+

(∂−c
c

+
(γ−1)v2

2cx
+

c

2γ
sx

)
=

1

2µ2

(∂+c
c

+
∂−c

c

)∂−c
c

+
(3
2

∂−c

c
+

1

2

∂+c

c

)u
x

+
c

2x

(∂+c
c

− ∂−c

c

)
+

(γ−1)u2

x2
− (γ−1)v2

2x2

− 3(γ−1)uv2

2cx2
− ∂+c∂−c

c2
− (γ−1)v2

2cx

∂+c

c
− c2

2γx
sx

+
c

2γ

u

x
sx−

csx
2γ

∂+c

c
+

c

2(γ−1)

(∂+c
c

+
∂−c

c

)
sx.

(5.17)
We define

Z+=
∂+c

c
− (γ−1)v2

2cx
− csx

2γ
+

C(γ−1)u

x
, Z−=

∂−c

c
+

(γ−1)v2

2cx
+

csx
2γ

+
C(γ−1)u

x
.

(5.18)
Then by (5.17) we have{

∂+Z−=d11Z
2
−+d12Z+Z−+d13Z−+d14Z++d15,

∂−Z+=d21Z
2
++d22Z+Z−+d23Z++d24Z−+d25,

(5.19)
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where

d14=

{
γ−3

2
C+ 1

2
−(2C− 1

2
)
c

u
− (γ+1)v2

4cu
+

xsx
4γ

· c
u

}
u

x
, (5.20)

d24=

{
γ−3

2
C+ 1

2
+(2C− 1

2
)
c

u
+

(γ+1)v2

4cu
− xsx

4γ
· c
u

}
u

x
, (5.21)

d15=

{
2C2−3C+1−2C(1−C) c

u
+(γC−2)

v2

cu

}
(γ−1)u2

x2
, (5.22)

and

d25=

{
2C2−3C+1+2C(1−C) c

u
−(γC−2)

v2

cu

}
(γ−1)u2

x2
. (5.23)

We define

Ẑ+=
∂+c

c
− (γ−1)v2

2cx
− c

2γ
sx+

F(γ−1)u

x
, Ẑ−=

∂−c

c
+

(γ−1)v2

2cx
+

c

2γ
sx+

(γ−1)u

2x
. (5.24)

Then by (5.17) we have{
∂+Ẑ−= d̂11Ẑ

2
−+ d̂12Ẑ+Ẑ−+ d̂13Ẑ−+ d̂14Ẑ++ d̂15,

∂−Ẑ+= d̂21Ẑ
2
++ d̂22Ẑ+Ẑ−+ d̂23Ẑ++ d̂24Ẑ−+ d̂25,

(5.25)

where

d̂14=

{
γ−1

4
− c

2u
− (γ+1)v2

4cu
+

xsx
4γ

· c
u

}
u

x
, (5.26)

d̂24=

{
γ−3

2
F+

1

2
+(2F− 1

2
)
c

u
+

(γ+1)v2

4cu
− xsx

4γ
· c
u

}
u

x
, (5.27)

d̂15=

{
1−γ

4
F+

γ+1

8
− 1

4
+(

F
2
− 3

4
)
c

u
+
(γ+1

4
F+

3γ−17

8

)v2
cu

}
(γ−1)u2

x2

+
[ (1−2F)xsx

8γ
· c
u

] (γ−1)u2

x2
, (5.28)

and

d̂25=

{
γ+1

2
F2− γ+7

4
F+

3

4
+(

F
2
+

1

4
)
c

u
+
(1−3γ

4
F− γ−15

8

)v2
cu

}
(γ−1)u2

x2

+
[ (1−2F)xsx

8γ
· c
u

] (γ−1)u2

x2
. (5.29)

Remark 5.2. From 7−γ
2(γ+1) <F <min{ 3

γ+1 ,
1

3−γ } and (H0)–(H3), we know that if

0<c<c
M
, u>uv,

v2

c ≤ δ1, and |xcsx|≤ δ2 then d̂14>0, d̂24>0, d̂15<0, and d̂25<0.
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5.3. Solution in domain Ω3. Since (u,v,ρ,s)(x,0)=(u0,0,ρ0,s0) for 0<x≤ε,
the solution in the region Ω1 is the self-similar solution (u,v,ρ,s)=(û(t/x),0, ρ̂(t/x),s0).
Moreover, the solution satisfies (3.26).

We first consider (1.4) with data

(u,v,c,s)(x,0)=(ū, v̄, c̄, s̄)(x), ε<x<r, (5.30)

where r>ε can be arbitrary.

Lemma 5.3. Assume that the initial value problem (1.4), (5.30) admits a classical
solution in some domain. Then the solution satisfies

Ẑ±<0, Z±>0, 0<c<c
M
, and uv <u<ū(r)+1. (5.31)

Proof. We shall prove this lemma by the method of continuity. The proof proceeds
in two steps.

Step 1. From c2=γesργ−1 we have

ρt=
2cct−γesργ−1st
γ(γ−1)esργ−2

and ρx=
2ccx−γesργ−1sx
γ(γ−1)esργ−2

.

Inserting this into the first equation of (1.4) and using the fourth equation of (1.4), we
get

ct=−ucx−
γ−1

2
cux−

γ−1

2

cu

x
. (5.32)

Hence, we have

∂±c= ct+(u±c)cx=±ccx−
γ−1

2
cux−

(γ−1

2

)cu
x
. (5.33)

Consequently, we get

Ẑ+(x,0)= c̄′(x)− γ−1

2
ū′(x)+

(
F− 1

2

) (γ−1)ū(x)

x
− (γ−1)v̄2(x)

2c̄(x)x
− c̄(x)s̄′(x)

2γ
(5.34)

and

Ẑ−(x,0)=−c̄′(x)− γ−1

2
ū′(x)+

(γ−1)v̄2(x)

2c̄(x)x
+

c̄(x)s̄′(x)

2γ
. (5.35)

Thus, by (H6) and (H7) we have

Ẑ±(x,0)<0 for ε<x<r. (5.36)

Similarly, by (5.33) we have

Z±(x,0)=±c̄′(x)− γ−1

2
ū′(x)+

(
C− 1

2

) (γ−1)ū(x)

x
∓ (γ−1)v̄2(x)

2c̄(x)x
∓ c̄(x)s̄′(x)

2γ
. (5.37)

Thus, by (H8) we have

Z±(x,0)>0 for ε<x<r. (5.38)
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Step 2. Let P be an arbitrary point in the domain. The backward C+ and C− character-
istic curves issuing from P intersect the x-axis at some points P+ and P−, respectively.
The backward trajectory line issuing from P intersects the x-axis at some point P0. We

denote by ΩP a closed triangle domain closed by P̂+P , P̂−P , and P+P−. We are going
to prove that if the inequalities in (5.31) hold for all points in ΩP \{P}, then they also
hold at P . We shall prove this by the method of contradiction.

From (5.7) we have

∂0 ln

(
sx

c
2

γ−1

)
=∂0 lnx. (5.39)

Integrating this along P̂0P from P0 to P , we get

sx(P )

c
2

γ−1 (P )
=

sx(P0)

c
2

γ−1 (P0)
· x(P )

x(P0)
. (5.40)

Since Ẑ±<0 in ΩP \{P}, we have ∂0c
c <−

(F
2 + 1

4

) (γ−1)u
x in ΩP \{P}. Integrating

this along P̂0P from P0 to P , we have

c(P )<c(P0)
( x(P )

x(P0)

)−(F
2 + 1

4 )(γ−1)

>0. (5.41)

From F > 7−γ
2(γ+1) we have 2−(F2 + 1

4 )(γ+1)<0 and x(P )>x(P0). Then we obtain

(xcsx)(P )< (xcsx)(P0)
( x(P )

x(P0)

)2−(F
2 + 1

4 )(γ+1)

<δ2. (5.42)

As in (4.39), we get

(v2
c

)
(P )<

(x(P0)

x(P )

)2−C(γ−1)(v2
c

)
(P0)<δ1. (5.43)

In view of (5.5), we have

∂−u=
2cẐ−

γ−1
<0 and ∂+u=−2cẐ+

γ−1
+(F− 1

2
)
2uc

x
>0 (5.44)

in ΩP \{P}. Then we have

uv <u(P+)<u(P )<u(P−)<ū(r)+1.

Suppose that Ẑ−=0 at P . Then by the assumption that the inequalities in (5.31)

hold in ΩP \{P}, we have ∂+Ẑ−≥0 at P . While, by the first equation of (5.25) and
Remark 5.2, we have

∂+Ẑ−= d̂14Ẑ++ d̂15 < 0 (5.45)

at P . This leads to a contradiction. We then get Ẑ−(P )<0. Similarly, we have

Ẑ+(P )<0.
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Suppose that Z−=0 at P . Then by the assumption that (5.31) holds in ΩP \{P}
we have ∂+Z−≤0 at P . While, by (H4), (H5), and the first equation of (5.19), we have

∂+Z−>
d14C(γ−1)u

x
+d15

>

{
γ+1

2
C2−

(5
2
+

3

2

c
M

uv
+

δ2
4γuv

)
C+1− 2δ1

uv

}
(γ−1)u2

x2
>0 if d14<0

and

∂+Z−>d15>

{
2C2−

(
3+2

c
M

uv

)
C+1− |γC−2|δ1

uv

}
(γ−1)u2

x2
>0 if d14≥0.

This leads to a contradiction. We then have Z−(P )>0. Similarly, we have Z+(P )>0.
We then prove that if the inequalities in (5.31) hold for every point in ΩP \{P},

then they also hold at P . Therefore, by an argument of continuity we complete the
proof of the lemma.

From Lemma 5.3 we actually know that the solution satisfies

Ẑ±<0, Z±>0, 0<c<c
M
,

v2

c
≤ δ1, |xcsx|<δ2 and u>uv. (5.46)

This gives an a priori C0 norm estimate for (u,v,c) and gradient estimates for c and s.
The gradient estimate for u can be obtained by (5.5). Like (4.44), one has

∂0(∂xv)+
(u
x
+∂xu

)
∂xv=

uv

x2
− v∂xu

x
. (5.47)

The gradient estimate for v can be obtained by ∂xv and the third equation of (1.4). We
then establish an a priori C1 estimate for the solution. Thus, the existence of global
classical solution can be obtained by the classical extension method (cf. Li [28]). We
then have the following global existence.

Lemma 5.1. The Cauchy problem (1.4, 5.30) admits a global classical solution.
Moreover, the solution satisfies (5.31).

Since r>ε can be arbitrary, we construct the solution in a triangle domain Ω3

encircled by CQ
+ and the x-axis. Moreover the solution satisfies (5.46).

5.4. Solution in domain Ω2. Take any points Q+ and Q− on CQ
+ and CQ

− ,
respectively. We now consider (1.4) with data

(u,v,c,s)=

{
(û, v̂, ĉ, ŝ)(t/x) on Q̂Q−;

(ũ, ṽ, c̃, s̃)(x,t) on Q̂Q+;
(5.48)

where v̂≡0, ŝ≡s0, and (ũ, ṽ, c̃, s̃)(x,t) denotes the solution in Ω3.
Problem (1.4, 5.48) is a Goursat problem, and the existence of a local C1 solution

is known by the method of characteristics. In order to extend the local solution to a
global solution, one needs to establish an a priori C1 norm estimate of the solution.

Lemma 5.2. Assume that the Goursat problem (1.4, 5.48) admits a classical solution.
Then the solution satisfies

Ẑ±<0, Z±>0, 0<c<c
M
, and uv <u<u(Q+)+1. (5.49)
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Proof. The approach to proving this lemma is similar to that of Lemma 4.4, we
omit the details.

From Lemma 5.2, (5.5), and (5.47), one can get an a priori C1 norm estimate of the
classical solution to the Goursat problem (1.4), (5.48). Then by the classical extension
one gets the following global existence.

Lemma 5.4. The Goursat problem (1.4, 5.48) admits a global classical solution.

Since Q± can be arbitrary, we obtain the solution in a triangle domain Ω2 bounded
by CQ

+ and CQ
− . Then we complete the proof of Theorem 5.1.
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