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THERMODYNAMICALLY CONSISTENT DYNAMIC BOUNDARY
CONDITIONS OF PHASE FIELD MODELS∗

XIAOBO JING† AND QI WANG‡

Abstract. We present a general, constructive method to derive thermodynamically consistent
models and consistent dynamic boundary conditions hierarchically following the generalized Onsager
principle. The method consists of two steps in tandem: the dynamical equation is determined by the
generalized Onsager principle in the bulk firstly, and then the surface chemical potential and the ther-
modynamically consistent boundary conditions are formulated subsequently by applying the generalized
Onsager principle at the boundary. The application strategy of the generalized Onsager principle in
two steps yields thermodynamically consistent models together with the consistent boundary conditions
that warrant a non-negative entropy production rate (or equivalently non-positive energy dissipation
rate in isothermal cases) in the bulk as well as at the boundary. We illustrate the method using
phase field models of binary materials elaborated on two sets of thermodynamically consistent dynamic
boundary conditions. These two types of boundary conditions differ in how the across boundary mass
flux participates in the surface dynamics at the boundary. We then show that many existing ther-
modynamically consistent, binary phase field models together with their dynamic or static boundary
conditions are derivable from this approach. As an illustration, we show numerically how dynamic
boundary conditions affect crystal growth in the bulk using a binary phase field model.

Keywords. Thermodynamically consistent model; phase field model; dynamic boundary condi-
tions; binary materials; energy dissipation.
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1. Introduction

Thermodynamically consistent models refer to the ones derived from thermodynam-
ical laws and principles. In particular, they obey the second law of thermodynamics,
i.e., the entropy production rate is non-negative or equivalently the energy dissipation
rate is non-positive in isothermal cases. The generalized Onsager principle is a proto-
col in which the Onsager linear response theory combined with the maximum entropy
principle is used to derive thermodynamically consistent models [44, 45, 56, 61]. The
generalized Onsager principle warrants the second law of thermodynamics in the form
of Clausius-Duhem inequality and has proven to be an effective modeling tool for de-
veloping thermodynamical models at various time and length scales [39, 55, 61, 64, 65].
In the past, the Onsager principle and the equivalent thermodynamical second law has
been primarily used to derive dynamical equations in the bulk while boundary effects
are largely ignored by assuming adiabatic and static boundary conditions or periodic
boundary conditions. In this study, we present a general, hierarchical approach to de-
rive thermodynamically consistent models with consistent dynamic boundary conditions
for material systems using the generalized Onsager principle in not only the bulk but
also the boundary, where the dynamic boundary conditions reduce to static ones in
the limit. We illustrate the idea by deriving thermodynamically consistent phase field
models and consistent boundary conditions for binary materials in a piecewise smooth
domain owing to their abundance in the literature.
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Phase field modeling has emerged as one of the powerful and versatile model-
ing paradigm in dealing with multiphase materials in domains with complex interfa-
cial geometries and complex interfacial phenomena between distinct immiscible phases
[52,54,59]. It is especially useful and effective when handling dynamic phase boundaries
in multiphase materials involving topological changes compared to other methods such
as front tracking methods, level-set methods, volume of fluid methods, etc. [6, 52, 53].
By design, it is for diffuse interfaces with certain interface thickness in which complex
interfacial dynamics prevails. A quality phase field model should be able to capture
well-known sharp interface conditions (e.g Gibbs-Thomson condition) in the vanishing
thickness of the interface [22, 51]. This requires one to be mindful when deriving the
free energy of the system in the phase field model so that thermodynamical laws and
principles are followed faithfully and properly. Notice that the advantage of the phase
field model in dealing with diffuse interfaces may also limit its applicability to resolve
sharp interfaces [13]. In life science, materials science and engineering, there are mul-
tiphase material systems with true diffuse interfaces, which have kept multiphase field
models popular and practical [33, 42,47,53].

There are quite a number of phase field models in the literature today. However,
not all are thermodynamically consistent. In this study, we focus on the derivation of
thermodynamically consistent phase field models, which include the derivation of the
transport equation in the bulk as well as the consistent dynamic boundary conditions at
fixed boundaries. We stress that it is important to study multiphase material systems
using a thermodynamically “correct” model that not only gives one a comprehensive
description of the correct physics, but also gives one a well-posed mathematical system
to analyze and compute. Speaking of a thermodynamically “correct” model, we insist
that the model must be at least thermodynamically consistent. This humble criterion
would perhaps disqualify a host of existing phase field models. In addition, we notice
that most of the studies on phase field models are concentrated on equations in the bulk
with static or periodic boundary conditions at fixed boundaries, where the boundary
contributions to thermodynamical consistency are trivialized.

Given the recent technological advances in materials science and engineering, bound-
aries of a material confining device can no longer be treated as passive. They can be
made with distinctive properties to interact or even control the material within the de-
vice [24, 49, 62]. For instance, the newly discovered boundary effect to the existence of
blue phases in cholesteric liquid crystals in microscales across a quite large temperature
range is one of the prominent examples [5,41,48]. This requires one to derive a model for
the material system to take into account the potential dynamic contribution from the
boundary. There have been a surge in activities of this direction on phase field models
recently [8,9,16,17,20,23,43]. Here, we briefly review some existing thermodynamically
consistent phase field models with various static and dynamic boundary conditions.

When one studies dynamics of a phase field model in a fixed domain with adiabatic
boundary conditions, no-flux boundary conditions are normally adopted as sufficient
adiabatic conditions which contribute to a zero energy flux across the boundary. The
most commonly studied phase field models are the Allen-Cahn and the Cahn-Hilliard
model, respectively [1,3]. We consider a binary material system in a domain Ω with the
free energy given by

E=
∫
Ω
[ ϵ2 |∇ϕ|

2+ 1
ϵ f(ϕ)]dx, (1.1)

where ϕ is a mass or volume fraction of one material’s component, boundary ∂Ω is
piecewise smooth, ϵ is the strength of the conformational entropy and 1

ϵ f(ϕ) is the bulk
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free energy density. For simplicity, we refer to ϕ as the mass fraction throughout the
paper.

The Allen-Cahn equation [1] for dynamics of ϕ is given by

ϕt=−M (1)
b µ, µ=

δE

δϕ
, (1.2)

whereM
(1)
b is the positive semi-definite mobility operator and µ is known as the chemical

potential. For adiabatic boundaries, one uses the following homogeneous Neumann
boundary condition (HNBC) to ensure that the energy dissipation of the system is
dictated exclusively by bulk energy dissipation

n ·∇ϕ=∇nϕ=0. (1.3)

The energy dissipation rate in the model is given by the bulk integral without any
boundary contributions

d
dtE=−

∫
Ω
µM

(1)
b µdx. (1.4)

Notice that this model doesn’t conserve mass. To conserve mass, one uses another one
known as the Cahn-Hilliard model with homogeneous Neumann boundary condition
(HNBC-CH model).

The Cahn-Hilliard equation [3] for dynamics of ϕ is given by

ϕt=∇·M(2)
b ·∇µ, µ=

δE

δϕ
, (1.5)

where M
(2)
b is the positive semi-definite mobility coefficient matrix. The following ho-

mogeneous Neumann boundary conditions ensure the mass conservation and energy
dissipation for the model simultaneously

n ·M(2)
b ·∇µ=0, n ·∇ϕ=0, (1.6)

where the first equation is called the no mass flux condition, resulting from the variation
in the energy dissipation rate, and the second condition ensures that no boundary energy
fluxes result from the conformational entropy. Note that all these are static boundary
conditions so that there is no boundary dynamics in this model. This is by far the most
widely studied phase field model in the literature [7, 28, 50]. Besides the Cahn-Hilliard
model, non-local constraints can be added to the Allen-Cahn model to enforce the mass
conservation to yield the Allen-Cahn model with nonlocal constraints [28,29].

If there are material and/or energy exchanges across the boundary or there exists
dynamics on the boundary, dynamics of materials in the bulk can be affected. Next,
we list several binary phase field models with dynamic boundary conditions studied
recently. The free energy of the binary material system of these models consists of two
parts: the bulk free energy Eb and the surface free energy Es, respectively,

E=Eb+Es, Eb=
∫
Ω
ϵ
2 |∇ϕ|

2+ 1
ϵ f(ϕ)dx, Es=

∫
∂Ω

δ
2 |∇sϕ|2+ 1

δ g(ϕ)ds, (1.7)

where ∇s=∇−(n ·∇)n=(I−nn)∇ is the surface gradient operator [2, 10], δ is the
strength of the conformational entropy at the boundary and g(ϕ) is the surface energy
density at the boundary [14,15,32].
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Gal et al. derived a set of dynamic boundary conditions for the Cahn-Hilliard model
in [18] (Gal model),

∂ϕ
∂t =M

(2)
b ∆µ, µ=−ϵ∆ϕ+ 1

ϵ f
′(ϕ), x∈Ω,

∂ϕ
∂t =−µs−βM (2)

b ∇nµ, x∈∂Ω,
µs=−δ∆sϕ+

1
δ g

′(ϕ)+ϵ∇nϕ, µ=βµs, x∈∂Ω,
ϕ(x,0)=ϕ0(x), x∈Ω∪∂Ω,

(1.8)

where ∇n=n ·∇, and ∆s is the Laplace-Beltrami operator [10, 27]. In this model, the

mobility operator is given by M
(2)
b ∆ with a constant mobility coefficient M

(2)
b and the

energy dissipation rate is given by

d

dt
E=−M (2)

b

∫
Ω

|∇µ|2dx−
∫
∂Ω

|µs|2ds. (1.9)

At the boundary, the chemical potential from the bulk is stipulated to be proportional
to the chemical potential at the surface with proportionality parameter β; the effective
chemical potential at the surface includes a flux contribution from the bulk; the dynamic
equation of the mass fraction on the surface follows Allen-Cahn dynamics with an ad-
ditional flux from the bulk so that it does not conserve any quantities as seen in other
models below. Neither mass of the bulk nor mass of the boundary is conserved in this
model. If we choose g= δ=0 and let β→∞, the Gal model reduces to the HNBC-CH
model.

In 2011, Goldstein et al. [26] modified the boundary transport equation of the mass
fraction in the Cahn-Hilliard model to give the following governing system of equations
(GMS model)

∂ϕ
∂t =M

(2)
b ∆µ, µ=−ϵ∆ϕ+ 1

ϵ f
′(ϕ), x∈Ω,

∂ϕ
∂t =M

(2)
s ∆sµs−βM (2)

b ∇nµ, x∈∂Ω,
µs=−δ∆sϕ+

1
δ g

′(ϕ)+ϵ∇nϕ, µ=βµs, x∈∂Ω,
ϕ(x,0)=ϕ0(x), x∈Ω∪∂Ω,

(1.10)

where M
(2)
s is the mobility coefficient for the transport equation at the boundary. This

model differs from the above model in the transport equation of ϕ at the boundary,
where an Allen-Cahn equation is replaced by a surface Cahn-Hilliard equation. This
modification results in the following mass equality

β
∫
Ω
ϕ(t)dx+

∫
∂Ω
ϕ(t)ds=β

∫
Ω
ϕ(0)dx+

∫
∂Ω
ϕ(0)ds, (1.11)

where β can be viewed as a weight of the bulk mass compared to the surface mass.
The energy dissipation rate equation is given by

d
dtE=−M (2)

b

∫
Ω
|∇µ|2dx−M (2)

s

∫
∂Ω

|∇sµs|2ds. (1.12)

Note that this model differs from the Gal model in one dynamic boundary condition
so that they yield different dynamics at the boundary and thereby different energy
dissipation rates.

By setting ∇nµ=0 instead of enforcing βµs=µ at the boundary, Liu and Wu
derived another set of boundary conditions for the Cahn-Hilliard model with dynamic
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boundary conditions (LW model) [40]:

∂ϕ
∂t =M

(2)
b ∆µ, µ=−ϵ∆ϕ+ 1

ϵ f
′(ϕ), x∈Ω,

∂ϕ
∂t =M

(2)
s ∆sµs, µs=−δ∆sϕ+

1
δ g

′(ϕ)+ϵ∇nϕ, ∇nµ=0, x∈∂Ω,
ϕ(x,0)=ϕ0(x), x∈Ω∪∂Ω.

(1.13)

In this model, mass conservation laws in the bulk and in the boundary are held respec-
tively, ∫

Ω
ϕ(x,t)dx=

∫
Ω
ϕ(x,0)dx,

∫
∂Ω
ϕ(x,t)ds=

∫
∂Ω
ϕ(x,0)ds. (1.14)

The energy dissipation rate is analogous to that in the GMS model, given by (1.12).
This model dictates that there is no material loss through the boundary and the mass in
the bulk and on the boundary are conserved, respectively, as shown in (1.14). Although
energy dissipation rates in these two models are identical, their numerical values may
be different because of the difference in the dynamic boundary conditions.

In 2019, Knopf and Lam presented yet another set of dynamic boundary conditions
for the Cahn-Hilliard equation by extending LWmodel at the boundary (KL model) [34].
The governing equation system and the boundary conditions are given by

∂ϕ
∂t =M

(2)
b ∆µ, µ=−ϵ∆ϕ+ 1

ϵ f
′(ϕ), x∈Ω,

∂ψ
∂t =M

(2)
s ∆sµs, µs=−δ∆sψ+ 1

δ g
′(ϕ)+ϵH ′(ψ)∇nϕ, x∈∂Ω,

ϵK∇nϕ=H(ψ)−ϕ, ∇nµ=0, x∈∂Ω,
ϕ(x,0)=ϕ0(x), x∈Ω, ψ(x,0)=ψ0(x), x∈∂Ω,

(1.15)

where H(ψ) is a prescribed function of ψ. The mass in the bulk and on the boundary
are conserved, respectively.

Here, a new functionH(ψ) is introduced into the chemical potential at the boundary
surface. The modified free energy is given by

E=
∫
Ω
ϵ
2 |∇ϕ|

2+ 1
ϵ f(ϕ)dx+

∫
∂Ω

[ δ2 |∇sψ|2+ 1
δ g(ψ)]ds+

∫
∂Ω

(H(ψ)−ϕ)2
2K ds. (1.16)

IfK→0 andH(ψ)=ψ, the KL model reduces to the LWmodel. The last term in the free
energy is a term penalizing the difference between H(ψ) and ϕ when K→0. Recently,
Knopf and Signori derived nonlocal models with dynamic boundary conditions and
analyzed their well-posedness [36], extending their work in this direction using distinct
variables for the bulk and surface, respectively.

In 2019, Knopf et al. derived a set of boundary conditions for the Cahn-Hilliard
model (KLLM model) [35] as follows

∂ϕ
∂t =M

(2)
b ∆µ, µ=−ϵ∆ϕ+ 1

ϵ f
′(ϕ), x∈Ω,

∂ϕ
∂t =M

(2)
s ∆sµs−βM∇nµ, µs=−δ∆sϕ+

1
δ g

′(ϕ)+ϵ∇nϕ, x∈∂Ω,
α∇nµ=βµs−µ, x∈∂Ω,
ϕ(x,0)=ϕ0(x), x∈Ω∪∂Ω,

(1.17)

where α is a relaxation length parameter. Instead of forcing µ=βµs or ∇nµ=0 at the
boundary, a relaxation mechanism is introduced along the external normal direction of
the boundary via a Robin boundary condition on the chemical potential µ: α∇nµ=
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βµs−µ. This relaxation introduces an additional energy dissipation effect (term) to
the energy dissipation rate:

d
dtE=−M (2)

b

∫
Ω
|∇µ|2dx−M (2)

s

∫
∂Ω

|∇sµs|2ds−
M

(2)
b

α

∫
∂Ω

(βµs−µ)2ds. (1.18)

The time rate of change of the total mass in the bulk and on the surface follows the
same equation as (1.11).

Clearly, the dynamic boundary conditions in the above models are related, yielding
different energy dissipation rates and mass conservation or transfer mechanisms between
the bulk and the boundary. We briefly unwind the relations below.

• If β→∞ and Es=0, (1.17)-2 implies µs=0 and ∇nϕ=0. Analogously, if α→
∞, (1.17)-2 reduces to ∇nµ=0. So, the HNBC-CH model can be viewed as a
limiting case of the KLLM model.

• In (1.17)-2, βµs−µ is explained as the difference of weighted surface chemical
potential βµs and bulk chemical potential µ. We define 1

α as the relaxation rate,
the system reaches the “equilibrium” at βµs=µ when α→0. So, the KLLM
model reduces to the GMS model at α=0.

• If α→∞, there is no relaxation and mass transfer between the boundary and
bulk, leading to ∇nµ=0. Thus, the KLLM model reduces to the LW model.

In the analysis, we note that the KLLM model is a fairly general model which includes
three others as special cases. However, it’s not general enough to include the Gal Model
and the KL model. Recently, Hao Wu reviewed the derivation and analysis of the clas-
sical Cahn-Hilliard equation with static and dynamic boundary conditions [58]. In ad-
dition, all the above mentioned boundary conditions are valid for flat boundaries where
the curvature vanishes. However, when the domain boundary has a non-negligible cur-
vature, its can affect the dynamic boundary conditions. For arbitrarily shaped domain
boundaries, we must include the curvature contribution to the boundary dynamics. In
many real-world applications, the boundary of the materials domain is not flat and it
has non-negligible curvature. When the curvature effect is taken into account, the dy-
namic boundary conditions alluded to earlier must be modified to take into account the
important geometric effect. This study will attempt to address this issue for a family
of free energies.

In addition, the above reviewed phase field models are for purely dissipative systems.
There are analogous phase field models for systems that allow both irreversible and
reversible processes. One class of the phase field models includes the inertia effect to
allow wave propagation [21]. For example, the phase field model in [4] is given by

ϕt=∇2µ−ϵ0ϕtt, µ=−∇2ϕ+f ′(ϕ)+α0ϕt, x∈Ω, (1.19)

where ϵ0 is a measure of inertia and α0>0 is a viscosity coefficient. Apparently, there
is an underlying unified framework available to derive models that are consistent with
thermodynamical principles.

In this paper, we aim to develop such a general framework to derive thermodynami-
cally consistent models together with boundary conditions for nonequilibrium materials
systems in any domain with piecewise smooth boundaries, where boundary dynamics
and the boundary curvature effect are fully accounted for. We derive the general dy-
namic boundary condition as a constitutive relation by applying the generalized Onsager
principle at the boundary analogous to what one does in the bulk. We elaborate on
two types of such dynamic boundary conditions specifically by prescribing two distinct
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energy dissipation mechanisms under the unified assumption that the mass flux at the
boundary is dictated by the imbalance between the bulk chemical potential and the
surface one. We show that most of the above reviewed boundary conditions are special
cases of the two types of boundary conditions. We illustrate the impact of boundary
dynamics on the bulk structure using a phase field model for crystal growth in the end,
numerically.

The rest of the paper is organized as follows. In Section 2, we present a general
model in domains with smooth boundaries, whose free energy depends on gradients of
the phase field variable up to the second order, and discuss its various limits. In Section
3, we discuss the extension to phase field models with a general free energy with high
order spatial derivative and a nonlocal free energy. In Section 4, we show the effect
of surface dynamics on the crystal growth in a phase field model for crystal growth by
numerical simulations. We summarize the results in Section 5.

2. Thermodynamically consistent phase field models with consistent dy-
namic boundary conditions

We present a general framework for deriving transport equations and consistent
dynamic boundary conditions for a phase field model that yields a negative energy
dissipation or a positive entropy production rate when all dynamics are accounted for.
We illustrate the approach using the scalar phase field model for a binary material
system with a free energy of up to second order spatial derivatives of the phase field
variable. Then, we elucidate the path for extending it to the more general free energy
functional including the nonlocal free energy later. We make contact with the models
mentioned in the introduction by examining limiting cases of the model and showing
that many of those models are special cases of the general model. We discuss the
derivation in the isothermal case in this paper so that the free energy is the proper
potential to work with.

2.1. Generalized Onsager principle. The classical Onsager linear response
theory on which the Onsager principle for dissipative systems is based provides a viable
way to calculate dissipative forces in relaxation dynamics in an irreversible nonequilib-
rium process [44–46]. In a general setting, the linear response theory states that given
a chemical potential in an isothermal system, the generalized flux ϕt is proportional to
the generalized force or chemical potential µ̂

ϕt=−Mµ̂, (2.1)

where M is called the mobility. In general, M is an operator. For dissipative systems
where dynamics are irreversible, the additional Onsager reciprocal relation dictates that
M is symmetric; for conservative systems where dynamics are reversible, M is antisym-
metric [56]. We note that when M is a differential operator, like in the Cahn-Hilliard
equation system, the property ofM is affected by the boundary conditions of the system.
For a system where inertia is non-negligible and there coexist irreversible and reversible
dynamics in the nonequilibrium process, we extend the force balance equation to a
generalized Onsager principle [56,61]

−M−1ϕt=ρϕtt+ µ̂⇔ϕt=−M(ρϕtt+ µ̂), (2.2)

where ρϕtt represents the inertia force, ρ is a measure of mass and M is the mobility
operator which is not necessarily symmetric. We next use the generalized Onsager
principle to derive the general phase field model along with its consistent boundary
conditions for a binary material system.
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2.2. Models with free energy of up to second spatial derivatives. Let
the bulk free energy in a fixed material domain Ω be given by

Eb[ϕ]=

∫
Ω

eb(ϕ,∇ϕ,∇∇ϕ)dx, (2.3)

where eb is the energy density per unit volume. We consider a binary material system
with a boundary that may have its distinctive properties than the bulk and possesses
its own surface energy of derivatives up to the second order in space

Es[ϕ]=

∫
∂Ω

es(ϕ,∇sϕ,∇s∇sϕ)ds, (2.4)

where es is the surface energy density per unit area, the phase field variable in the
surface energy density is defined by

ϕ=ϕ(x,t)|∂Ω, (2.5)

and ∇s is the surface gradient operator over piecewise smooth boundary ∂Ω as that in
the introduction. We note that (2.5) is a critical assumption we adopt throughout the
paper, which states that the phase field variable is continuous up to the boundary. The
case where the phase field variable on the surface may not be the limit of the phase
field variable in the bulk on the surface will be discussed in a sequel. Hence, we will not
introduce a new notation for the phase field variable on the surface in this paper.

The free energy of the system is given by

Ef [ϕ]=

∫
Ω

eb(ϕ,∇ϕ,∇∇ϕ)dx+
∫
∂Ω

es(ϕ,∇sϕ,∇s∇sϕ)ds. (2.6)

We add the kinetic energy in the bulk and on the boundary to account for the
inertia effect in the system such that the total free energy is given by

E[ϕ]=

∫
Ω

[
ρ

2
ϕt

2+eb(ϕ,∇ϕ,∇∇ϕ)dx+
∫
∂Ω

[
ρs
2
ϕ2t +es(ϕ,∇sϕ,∇s∇sϕ)]ds, (2.7)

where ϕt is the invariant time derivative of ϕ, ρ and ρs are two mass densities that
measure the inertia in the bulk and on the surface, respectively. We calculate the time
rate of change of the free energy as follows, assuming domain Ω is fixed,

dE

dt
=

∫
Ω

(ρϕtt+µ)ϕtdx+

∫
∂Ω

[ρsϕtϕtt+
∂es
∂ϕ

ϕt+
∂es
∂∇sϕ

∇sϕt+
∂es

∂∇s∇sϕ
∇s∇sϕt

+n · ∂eb
∂∇ϕ

ϕt+
∂eb

∂∇∇ϕ
:n∇ϕt−n∇ :

∂eb
∂∇∇ϕ

ϕt]ds

=

∫
Ω

(ρϕtt+µ)ϕtdx+

∫
∂Ω

[ρsϕtϕtt+
∂es
∂ϕ

ϕt−∇s ·
∂es
∂∇sϕ

ϕt−2Hn · ∂es
∂∇sϕ

ϕt

−∇s ·
∂es

∂∇s∇sϕ
·∇sϕt−2Hn · ∂es

∂∇s∇sϕ
·∇sϕt

+n · ∂eb
∂∇ϕ

ϕt+
∂eb

∂∇∇ϕ
:n∇ϕt−(n∇ :

∂eb
∂∇∇ϕ

)ϕt]ds

=

∫
Ω

(ρϕtt+µ)ϕtdx+

∫
∂Ω

[ρsϕtϕtt+µsϕt+
∂eb

∂∇∇ϕ
:nn(n ·∇ϕt)]ds, (2.8)
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where H is the mean curvature of the boundary, n is the unit external normal of ∂Ω,
the bulk and surface chemical potentials are given respectively by

µ=
∂eb
∂ϕ

−∇· ∂eb
∂∇ϕ

+∇∇ :
∂eb

∂∇∇ϕ
,

µs=
∂es
∂ϕ

−∇s ·
∂es
∂∇sϕ

−2Hn · ∂es
∂∇sϕ

+n · ∂eb
∂∇ϕ

−n∇ :
∂eb
∇∇ϕ

+∇s∇s :
∂es

∂∇s∇sϕ
+2Hn∇s :

∂es
∂∇s∇sϕ

+∇s ·(2Hn · ∂es
∂∇s∇sϕ

)

+4H2nn :
∂es

∂∇s∇sϕ
−∇sn :

∂eb
∂∇∇ϕ

−2Hnn :
∂eb

∂∇∇ϕ
. (2.9)

Note that (i) the surface chemical potential includes contributions from the surface
free energy as well as that from the bulk energy confined to the boundary; (ii) the
mean curvature shows up in the surface chemical potential, indicating that curvature
of the boundary affects the dynamics at the boundary; and (iii) more surface terms can
appear if the free energy density function depends on higher order spatial derivatives.
We adopt the Einstein notation for tensors, denote tensor product of vector n and v
as nv=nivj , use one dot · to represent inner product n ·v=nivi and two dots : to
represent contraction of two second order tensors A :C=AijCij , where n,v are vectors,
A,C are second order tensors, and the Einstein notation is adopted.

2.2.1. Dynamics in the bulk. We apply the generalized Onsager principle
firstly to the bulk integral in (2.8) to obtain the transport equation for ϕ in Ω

−M−1
b ϕt=ρϕtt+µ⇔ϕt=−Mb(ρϕtt+µ), x∈Ω, (2.10)

where Mb is the mobility operator and M−1
b is the friction operator which is positive

semi-definite to ensure energy dissipation. We consider the mobility operator in the
following form in this study

Mb=M
(1)
b −∇·M(2)

b ·∇, (2.11)

where M
(1)
b ≥0 is a scalar function of ϕ and M

(2)
b ∈R3×3 is a semi-definite positive

matrix which can be a function of ϕ as well. If M
(2)
b =M

(2)
b I and M

(2)
b is also a scalar

function of ϕ, then such a special case ∇·M(2)
b ·∇=∇·(M (2)

b ∇) can be obtained. We
note that the derivation applies to a more general mobility operator with high order
derivatives as well, which we will not pursue in this study. The presence of spatial
derivatives in the mobility indicates the nonlocal interaction is accounted for in the
friction operatorM−1

b . This is shown in the form of pseudo-differential operators. With
this, the energy dissipation rate reduces to

dE

dt
=−

∫
Ω

[(µ+ρϕtt)M
(1)
b (µ+ρϕtt)+∇(µ+ρϕtt) ·M(2)

b ·∇(µ+ρϕtt)]dx

+

∫
∂Ω

[(µs+ρsϕtt)ϕt+µc∇nϕt+(µ+ρϕtt)n ·M(2)
b ·∇(µ+ρϕtt)]ds, (2.12)

where µc=
∂eb

∂∇∇ϕ :nn. We denote the generalized chemical potential in the bulk by
µ̃=µ+ρϕtt and in the surface by µ̃s=µs+ρsϕtt, respectively. We remark that n ·
M

(2)
b ·∇(µ+ρϕtt) is the inward mass flux across the boundary. This physical quantity

is determined by the balance between the surface and bulk chemical potential. We next
derive thermodynamically consistent boundary conditions.
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2.2.2. Dynamics on boundaries. We first recognize that the boundary energy
flux density is a quadratic form and then apply the Onsager principle the second time
to the energy flux density to establish a dynamic constitutive equation at the boundary:ϕt

fm
∇nϕt

=−M3×3 ·

 µ̃s
µ̃
µc

, (2.13)

where fm=n ·M(2)
b ·∇µ̃ is the inward mass flux and M3×3≥0 is the surface mobility

operator, a 3×3 matrix or second order tensor. M3×3≥0 means that its symmetric
operator is semi-positive definite. Then,

dE

dt
=−

∫
Ω

[µ̃M
(1)
b µ̃+∇µ̃ ·M(2)

b ·∇µ̃]dx

−
∫
∂Ω

[(µ̃s,µ̃,µc)(M3×3)(µ̃s,µ̃,µc)
T ]ds≤0, (2.14)

which indicates the system is dissipative. We examine two special cases that include
most of the models and boundary conditions mentioned in the introduction below.

Case 1: a purely dissipative boundary condition.

We define a symmetric mobility operator as follows

M3×3=

Ms+
β2

α −β
α 0

−β
α

1
α 0

0 0 Mc

, (2.15)

where Ms is a semi-definite positive operator, α≥0 is a friction coefficient, 1/β≥0 is a
length parameter, and Mc is a semi-definite positive mobility operator. We note that
these mobility operators can be differential operators. When Mc is a scalar in a simple
example and Mc→∞, µc=

∂eb
∂∇∇ϕ :nn=0; while Mc→0, ∇nϕt=0.

This constitutive equation establishes a balance between the inward mass flux at
the boundary and the generalized chemical potential difference between the bulk and
the surface: it assumes the inward mass flux is proportional to the difference between
the chemical potential in the bulk and the weighted one at the boundary. When the
weighted surface energy is higher than the bulk energy confined to the boundary, the
mass flux is inward; otherwise, the mass flux flows outward. In either case, the total
energy dissipates when M3×3≥0.

The governing equation together with the boundary conditions in this model is
given as follows

∂ϕ
∂t =−Mbµ̃, x∈Ω,
∂ϕ
∂t =−(Ms+

β2

α )µ̃s+
β
α µ̃, x∈∂Ω,

αn ·M(2)
b ·∇µ̃=−µ̃+βµ̃s, ∇nϕt=−Mcµc, x∈∂Ω,

ϕ(0)=ϕ0, x∈Ω∪∂Ω.

(2.16)

The corresponding energy dissipation rate is given by

dE
dt =−

∫
Ω
[µ̃M

(1)
b µ̃+∇µ̃ ·M(2)

b ·∇µ̃]dx−
∫
∂Ω

[µcMcµc]ds

+
∫
∂Ω

[µ̃s(ϕt+βn ·M(2)
b ·∇µ̃)]ds− 1

α

∫
∂Ω

(βµ̃s− µ̃)2ds.
(2.17)



XIAOBO JING AND QI WANG 869

The surface transport equation of ϕ can be rewritten into an alternative form on bound-
ary ∂Ω

∂ϕ

∂t
=−Msµ̃s−βfm, x∈∂Ω, (2.18)

where

fm=n ·M(2)
b ·∇µ̃= 1

α
(βµ̃s− µ̃). (2.19)

This indicates that the time rate of change of mass fraction ϕ is proportional to the
outward mass flux and the generalized surface chemical potential.

Case 2: a dissipative and transportive boundary condition
In the second case, we propose another mobility operator as follows

M3×3=

Ms
β
α 0

−β
α

1
α 0

0 0 Mc

=

Ms 0 0
0 1

α 0
0 0 Mc

+

 0 β
α 0

−β
α 0 0

0 0 0

, (2.20)

which includes an antisymmetric component, contributing to transport dynamics at the
boundary, in addition to the positive semi-definite operator inM3×3. The antisymmetric
mobility component represents an energy exchange between the bulk and the boundary
without inducing any dissipation.

The governing equation together with the boundary conditions in this model is
summarized as follows

∂ϕ
∂t =−Mbµ̃, x∈Ω,
∂ϕ
∂t =−Msµ̃s− β

α µ̃, x∈∂Ω,
αn ·M(2)

b ·∇µ̃=−µ̃+βµ̃s, ∇nϕt=−Mcµc, x∈∂Ω,
ϕ(x,0)=ϕ0, x∈Ω∪∂Ω.

(2.21)

Notice that the mobility matrix has an antisymmetric component which does not con-
tribute to the energy dissipation. This set of boundary conditions has the following
interpretation: the time rate of change of the phase field variable at the boundary
is proportional to both the surface chemical potential and the inward flux across the
boundary.

The corresponding energy dissipation rate is given by

dE
dt =−

∫
Ω
[µ̃M

(1)
b µ̃+∇µ̃ ·M(2)

b ·∇µ̃]dx−
∫
∂Ω

[µ̃sMsµ̃s+
1
α µ̃

2+µcMcµc]ds. (2.22)

The two types of dynamic boundary conditions are derived from two different con-
siderations of the mobility operator, which contribute to distinct energy dissipation
mechanisms, following the generalized Onsager principle under a unified assumption
that the boundary mass flux is proportional to the difference of the bulk energy con-
fined at the boundary and a weighted surface energy. In the first case, the time rate of
change of mass fraction (phase field variable) is proportional to the surface chemical po-
tential and the outward mass flux. As a result, the distinctive surface energy dissipation
rate is directly linked to the magnitude of the mass flux across the boundary surface. In
the second case, the time rate of change of mass fraction is proportional to the surface
chemical potential and the inward mass flux. Consequentially, the distinctive surface
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energy dissipation rate is measured by the bulk chemical potential confined to the sur-
face. Two different dissipative mechanisms define two different dynamic models at the
boundary. There are more cases that one can elaborate on by specifying specific form
of operator M3×3, which we will not enumerate in this study.

In general, mobility operator in the bulkMb=M
sym
b +Manti

b in (2.2) can be decom-
posed into symmetric and antisymmetric parts, where Msym

b is semi-definite positive.
There can be many more thermodynamically consistent boundary conditions that are
compatible to the given bulk transport equation. For the mobility operators at the
boundary, we consider the following forms, analogously to the bulk,

Ms=M
(1)
s −∇s ·M(2)

s ·∇s, Mc=M
(1)
c −∇s ·M(2)

c ·∇s, (2.23)

where M
(1)
c ≥0, M

(1)
s ≥0, and M

(2)
s and M

(2)
c are 3×3 positive semi-definite matrices.

Then,

−
∫
∂Ω

[µ̃sMsµ̃s]ds

=−
∫
∂Ω

[µ̃sM
(1)
s µ̃s+∇sµ̃s ·M(2)

s ·∇sµ̃s]ds−
∫
∂Ω

[2Hµ̃sn ·M(2)
s ·∇sµ̃s]ds, (2.24)

−
∫
∂Ω

[µcMcµc]ds

=−
∫
∂Ω

[µcM
(1)
c µc+∇sµc ·M(2)

c ·∇sµc]ds−
∫
∂Ω

[2Hµcn ·M(2)
c ·∇sµc]ds. (2.25)

Whether or not the energy dissipation rate at the boundary is nonpositive depends
on the last terms in (2.24) and (2.25), which are linearly proportional to the mean
curvature.

If M
(2)
s =M

(2)
s I and M

(2)
c =M

(2)
c I, whereM

(2)
s ≥0 andM

(2)
c ≥0 are scalar functions

of ϕ, the last terms in (2.24) and (2.25) vanish and the energy dissipation rate at
the boundary is nonpositive due to n ·∇sµs=n ·∇sµc=0. Of course, H=0 is also a
sufficient condition for non-positive energy dissipation rates.

It follows from (2.16) that

d

dt
[

∫
Ω

βϕdx+

∫
∂Ω

ϕds]

=−β
∫
Ω

M
(1)
b µ̃dx−

∫
∂Ω

[M (1)
s µ̃s+2Hn ·M(2)

s ·∇sµ̃s]ds. (2.26)

If M
(2)
s =M

(2)
s I or H=0,

d

dt
[

∫
Ω

βϕdx+

∫
∂Ω

ϕds]=−β
∫
Ω

M
(1)
b µ̃dx−

∫
∂Ω

M (1)
s µ̃sds. (2.27)

If M
(1)
b =0,M

(1)
s =0,

d

dt
[

∫
Ω

βϕdx+

∫
∂Ω

ϕds]=0. (2.28)

This indicates a weighted mass in the bulk and the mass over the surface is conserved
under this dynamic boundary condition. In this case, parameter β in the dynamic
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boundary condition can be interpreted as the weighted mass at the bulk to that over
the surface.

Model (2.16) and (2.21) give a general phase field model with two different dynamic
boundary conditions, where the surface transport equation of ϕ at the boundary sets the
two models apart. In the first one, the across boundary mass flux contributes directly
to the energy dissipation on the surface; while in the second, it is the bulk chemical
potential limited to the boundary contributes to the energy dissipation on the surface
directly. We next examine various limiting cases to show that most models mentioned in
the introduction are special cases of model (2.16) and (2.21), respectively. Specifically,
when the across boundary mass flux is forbidden, i.e., α=∞ and β=0, we show that
the two types of dynamic boundary conditions are identical.

2.3. Limiting cases. Since (2.16) and (2.21) describe two different dynamics
at the boundary, we examine them closely in several limiting cases and make contact
with the models alluded to in the introduction and in the literature. Notice that when
ρ=ρs=0, the phase field model reduces to the over-damped limit where the inertia
force is neglected, µ̃=µ and µ̃s=µs. We present limits of the under-damped case in
the following, the results for the over-damped ones are obtained by setting ρ=ρs=0.

• Let β→0, the boundary conditions reduce to

αn ·M(2)
b ·∇µ̃=−µ̃, ϕt=−Msµ̃s, ∇nϕt=−Mcµc, x∈∂Ω. (2.29)

The first equation states that the mass flux between the bulk and the boundary
is completely dictated by the bulk chemical potential extrapolated (or confined)
to the boundary. The second one shows the relaxation dynamics of mass fraction
at the surface are dictated completely by the surface chemical potential. This
indicates that the across boundary mass flux does not interfere with the surface
dynamics at the boundary. The third one is necessary only when the free energy
has second order spatial derivatives, which represents the relaxation dynamics
of the directional derivative of the volume fraction.
Then the energy dissipation rate reduces to

dE

dt
=−

∫
Ω

[µ̃M
(1)
b µ̃+∇µ̃ ·M(2)

b ·∇µ̃]dx−
∫
∂Ω

[µ̃sMsµ̃s]ds

−
∫
∂Ω

[
1

α
µ̃2+µcMcµc]ds≤0. (2.30)

Model (2.16) and (2.21) are identical and dissipative in this limit.

• Limit α→0 is a singular limit. We will conduct the limiting process in the
following order. Firstly, we substitute (2.16)-3 into (2.16)-2; secondly, we take
the limit α→0 in (2.16)-3. The results are given by

ϕt+βn ·M(2)
b ·∇µ̃=−Msµ̃s, x∈∂Ω,

βµ̃s= µ̃, ∇nϕt=−Mcµc, x∈∂Ω.
(2.31)

These conditions state that the bulk chemical potential and the weighted sur-
face one reach a balance at the boundary and the time rate of change in the
phase field variable at the boundary is given by the rate of change due to the
outward mass flux and the surface chemical potential. The energy dissipation
rate reduces to

dE

dt
=−

∫
Ω

[µ̃M
(1)
b µ̃+∇µ̃ ·M(2)

b ·∇µ̃]dx−
∫
∂Ω

[µ̃sMsµ̃s]ds−
∫
∂Ω

[µcMcµc]ds.

(2.32)
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The model is dissipative with the boundary conditions.
If we take the singular limit in (2.21), we end up with

µ̃=0, µ̃s=0, ∇nϕt=−Mcµc, x∈∂Ω, (2.33)

and the energy dissipation rate is given by

dE
dt =−

∫
Ω
[µ̃M

(1)
b µ̃+∇µ̃ ·M(2)

b ·∇µ̃]dx−
∫
∂Ω

[µcMcµc]ds. (2.34)

The two models do not give the same set of boundary conditions. They indeed
describe two different dynamics in the limit.

• When α→∞, we have

ϕt=−Msµ̃s, n ·M(2)
b ·∇µ̃=0, ∇nϕt=−Mcµc, x∈∂Ω, (2.35)

and the energy dissipation rate is given by (2.32). The boundary conditions
stipulate that the mass flux at the boundary vanishes and the phase field dy-
namics at the boundary is dictated by relaxation dynamics of the surface mass
fraction exclusively. The two models are once again identical and dissipative.

Case I II

β→0 ∂ϕ
∂t =−Msµ̃s, αn ·M(2)

b ·∇µ̃=−µ̃, ∇nϕt =−Mcµc

α→0 ∂ϕ
∂t +βn ·M(2)

b · µ̃=−Msµ̃s, βµ̃s = µ̃, ∇nϕt =−Mcµc µ̃=0, µ̃s =0, ∇nϕt =−Mcµc

α→∞ ∂ϕ
∂t =−Msµ̃s, n ·M(2)

b ·∇µ̃=0, ∇nϕt =−Mcµc

Table 2.1. Dynamic boundary conditions in three limiting cases.

Case I

β→0 dE
dt =−

∫
Ω
[µ̃M

(1)
b µ̃+∇µ̃ ·M(2)

b ·∇µ̃]dx−
∫
∂Ω

[µ̃sMsµ̃s]ds− 1
α

∫
∂Ω

[µ̃2]ds−
∫
∂Ω

[µcMcµc]ds

α→0 dE
dt =−

∫
Ω
[µ̃M

(1)
b µ̃+∇µ̃ ·M(2)

b ·∇µ̃]dx−
∫
∂Ω

[µ̃sMsµ̃s+µcMcµc]ds

α→∞ dE
dt =−

∫
Ω
[µ̃M

(1)
b µ̃+∇µ̃ ·M(2)

b ·∇µ̃]dx−
∫
∂Ω

[µ̃sMsµ̃s]ds−
∫
∂Ω

[µcMcµc]ds
Case II

β→0 dE
dt =−

∫
Ω
[µ̃M

(1)
b µ̃+∇µ̃ ·M(2)

b ·∇µ̃]dx−
∫
∂Ω

[µ̃sMsµ̃s]ds− 1
α

∫
∂Ω

[µ̃2]ds−
∫
∂Ω

[µcMcµc]ds

α→0 dE
dt =−

∫
Ω
[µ̃M

(1)
b µ̃+∇µ̃ ·M(2)

b ·∇µ̃]dx−
∫
∂Ω

[µcMcµc]ds

α→∞ dE
dt =−

∫
Ω
[µ̃M

(1)
b µ̃+∇µ̃ ·M(2)

b ·∇µ̃]dx−
∫
∂Ω

[µ̃sMsµ̃s]ds−
∫
∂Ω

[µcMcµc]ds

Table 2.2. Energy dissipation rates in three limiting cases. I and II represent the first and second
type of boundary condition, respectively, when they are different.

We summarize the dynamic boundary conditions and energy dissipation rates in Tables
2.1 and 2.2 in the limits. In the case α→0, the two models are not identical, whereas
they are the same in the other two cases. While both α and β are finite, we consider the
limiting cases with respect to boundary mobility operators Ms and Mc, respectively.
The results are tabulated in Tables 2.3 and 2.4, respectively. Regardless what are
the surface mobility operators, the two boundary conditions are different in the cases,
yielding two distinct thermodynamically consistent phase field models with consistent
dynamic boundary conditions. Note that the two dynamic boundary conditions differ
in how the mass flux transfers across the boundary and how mass fraction dynamics
on the surface are prescribed. In Table 2.5, we demonstrate that most existing models
mentioned in the introduction are special cases of the general model with the first type
of dynamic boundary condition. It is obvious that none of these models are the special



XIAOBO JING AND QI WANG 873

case of the general model with the second type of dynamic boundary condition. In fact,
there are also some progresses in the nonlocal model with dynamic boundary conditions
recently [36], which is also a special case of the general model with first type of dynamic
boundary condition. We discuss the general nonlocal models with two types of dynamic
boundary conditions in the next section. Notice that models (2.16) and (2.21) include
all the models alluded to in the introduction as special cases except for the KL model
when the free energy is limited to functionals of up to the first order spatial derivative.
This is shown clearly in Table 2.5. Thus, the phase field model presented here is indeed
a general phase field model. Moreover, the boundary conditions derived in this study
include the curvature effect for an arbitrarily shaped piecewise smooth boundary, which
have not been considered in previous studies. Finally, we note that any set of boundary
conditions delineated here or their limiting cases may appear as boundary conditions
on a smooth piece of the piecewise smooth boundary so that the overall boundary
conditions can be a combination of the sets of dynamic boundary conditions.

Case I

Ms →0 ∂ϕ
∂t =− β2

α µ̃s+
β
α µ̃, αn ·M(2)

b ·∇µ̃=βµ̃s− µ̃, ∇nϕt =−Mcµc

Ms →∞ ∂ϕ
∂t =−βn ·M(2)

b ·∇µ̃, µ̃s =0, ∇nϕt =−Mcµc

Mc →0 ∂ϕ
∂t =−(Ms+

β2

α )µ̃s+
β
α µ̃, αn ·M(2)

b ·∇µ̃=βµ̃s− µ̃, ∇nϕt =0

Mc →∞ ∂ϕ
∂t =−(Ms+

β2

α )µ̃s+
β
α µ̃, αn ·M(2)

b ·∇µ̃=βµ̃s− µ̃, µc =0
Case II

Ms →0 ∂ϕ
∂t =− β

α µ̃, αn ·M(2)
b ·∇µ̃=βµ̃s− µ̃, ∇nϕt =−Mcµc

Ms →∞ ∂ϕ
∂t =βn ·M(2)

b ·∇µ̃, µ̃s =0, ∇nϕt =−Mcµc

Mc →0 ∂ϕ
∂t =−Msµ̃s− β

α µ̃, αn ·M(2)
b ·∇µ̃=βµ̃s− µ̃, ∇nϕt =0

Mc →∞ ∂ϕ
∂t =−Msµ̃s− β

α µ̃, αn ·M(2)
b ·∇µ̃=βµ̃s− µ̃, µc =0

Table 2.3. Two types of dynamic boundary conditions.

Case I

Ms →0 dE
dt =−

∫
Ω
[µ̃M

(1)
b µ̃+∇µ̃ ·M(2)

b ·∇µ̃]dx− 1
α

∫
∂Ω

[(βµ̃s− µ̃)2]ds−
∫
∂Ω

[µcMcµc]ds

Ms →∞ dE
dt =−

∫
Ω
[µ̃M

(1)
b µ̃+∇µ̃ ·M(2)

b ·∇µ̃]dx− 1
α

∫
∂Ω

[µ̃2]ds−
∫
∂Ω

[µcMcµc]ds

Mc →0 dE
dt =−

∫
Ω
[µ̃M

(1)
b µ̃+∇µ̃ ·M(2)

b ·∇µ̃]dx−
∫
∂Ω

[µ̃sMsµ̃s]ds− 1
α

∫
∂Ω

[(βµ̃s− µ̃)2]ds
Mc →∞ dE

dt =−
∫
Ω
[µ̃M

(1)
b µ̃+∇µ̃ ·M(2)

b ·∇µ̃]dx−
∫
∂Ω

[µ̃sMsµ̃s]ds− 1
α

∫
∂Ω

[(βµ̃s− µ̃)2]ds
Case II

Ms →0 dE
dt =−

∫
Ω
[µ̃M

(1)
b µ̃+∇µ̃ ·M(2)

b ·∇µ̃]dx− 1
α

∫
∂Ω

[µ̃2]ds−
∫
∂Ω

[µcMcµc]ds

Ms →∞ dE
dt =−

∫
Ω
[µ̃M

(1)
b µ̃+∇µ̃ ·M(2)

b ·∇µ̃]dx− 1
α

∫
∂Ω

[µ̃2]ds−
∫
∂Ω

[µcMcµc]ds

Mc →0 dE
dt =−

∫
Ω
[µ̃M

(1)
b µ̃+∇µ̃ ·M(2)

b ·∇µ̃]dx−
∫
∂Ω
µ̃sMsµ̃sds− 1

α

∫
∂Ω

[µ̃2]ds

Mc →∞ dE
dt =−

∫
Ω
[µ̃M

(1)
b µ̃+∇µ̃ ·M(2)

b ·∇µ̃]dx−
∫
∂Ω
µ̃sMsµ̃sds− 1

α

∫
∂Ω

[µ̃2]ds

Table 2.4. The free energy dissipation rates corresponding to the two types of boundary dynamics.

Models Specific conditions for the model with first type of dynamic boundary condition

Gal model [18] Mb =M
(2)
b ∇2, Ms =1, α=0, ρ=ρs =µc =Mc =H=0

GMS model [26] Mb =M
(2)
b ∇2, Ms =M

(2)
s ∇2

s, α=0, ρ=ρs =µc =Mc =H=0

LW model [40] Mb =M
(2)
b ∇2, Ms =M

(2)
s ∇2

s, α→∞, ρ=ρs =µc =Mc =H=0

KLLM model [35] Mb =M
(2)
b ∇2, Ms =M

(2)
s ∇2

s, ρ=ρs =µc =Mc =H=0

Table 2.5. Relation between the general model with first types of dynamic boundary conditions
and several existing models in the literature.
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2.4. Mixed dynamic boundary conditions. Let us consider a domain Ω
with piecewise smooth boundaries ∂Ω=∪Ni=1Γi, where Γi and Γj are either mutually
disjoint or adjacent smooth surfaces, i,j=1,·· · ,N . The energy dissipation rate in (2.12)
can be rewritten into

dE

dt
=−

∫
Ω

[µ̃M
(1)
b µ̃+∇µ̃ ·M(2)

b ·∇µ̃]dx

+

N∑
i

∫
Γi

[µ̃sϕt+µcn ·∇ϕt+ µ̃n ·M(2)
b ·∇µ̃]ds. (2.36)

For the surface terms in (2.36), either of two boundary conditions (2.16) and (2.21) can
be implemented. We illustrate this for case N =2.

The following boundary conditions give dissipative boundary conditions to the
above energy dissipation rate:

∂ϕ
∂t =−(Ms+

β2
1

α1
)µ̃s+

β1

α1
µ̃, x∈Γ1,

α1n ·M(2)
b ·∇µ̃=−µ̃+β1µ̃s, x∈Γ1,

∇nϕt=−Mcµc, x∈Γ1,
∂ϕ
∂t =−Msµ̃s− β2

α2
µ̃, x∈Γ2,

α2n ·M(2)
b ·∇µ̃=−µ̃+β2µ̃s, x∈Γ2,

∇nϕt=−Mcµc, x∈Γ2.

(2.37)

From (2.12), we have

dE

dt
=−

∫
Ω

[µ̃M
(1)
b µ̃+∇µ̃ ·M(2)

b ·∇µ̃]dx+
∫
Γ1

[µ̃s(ϕt+β1n ·M(2)
b ·∇µ̃)]ds

− 1

α1

∫
Γ1

(β1µ̃s− µ̃)2ds−
∫
Γ1

[µcMcµc]ds+

∫
Γ2

[µ̃s(ϕt+
β2
α2
µ̃)]ds

− 1

α2

∫
Γ2

[µ̃2]ds−
∫
Γ2

[µcMcµc]ds. (2.38)

It is straightforward to generalize it to cases where N >2. We note that the function
space for the solution of the initial boundary value problems should be chosen such that
weak derivatives exist in the bulk and on the surface. We will not elaborate on this in
this paper.

2.5. Examples. We present a few free energy functionals for binary phase
field models describing immiscible, miscible polymeric materials, molecular beam epi-
taxy (MBE) and crystal growth, respectively.

2.5.1. Polynomial double-well and Flory-Huggins mixing free energy for
multiphase polymers. We consider a general free energy functional involving
polynomial double well or Flory-Huggins bulk mixing energy and the conformational
entropy in both the bulk and on the surface

Eb=
∫
Ω
[ρ2ϕ

2
t +

γ1
2 ∇ϕ ·D ·∇ϕ+γ2f(ϕ)]dx,

Es=
∫
∂Ω

[ρs2 ϕ
2
t +

ζ1
2 ∇sϕ ·Ds ·∇sϕ+ζ2g(ϕ)]ds,

(2.39)

where ϕ is a phase variable vector, D and Ds are the positive semi-definite anisotropic
coefficients of the conformational entropy in the bulk and surface [31,57,63], respectively,
γi,ζi,i=1,2 are parameters. The corresponding dynamic governing equations are given
by setting µc=Mc=0 in (2.16) and (2.21).
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2.5.2. Free energy for molecular beam epitaxy. A bulk and a surface
free energy for molecular beam epitaxy (MBE) are similar to (2.39), but with different
choices of energy densities f and g [38, 60]:

Eb=
∫
Ω
[ρ2ϕ

2
t +

γ1
2 ∇ϕ ·D ·∇ϕ+γ2f(ϕ)]dx,

Es=
∫
∂Ω

[ρs2 ϕ
2
t +

ζ1
2 ∇sϕ ·Ds ·∇sϕ+ζ2g(ϕ)]ds.

(2.40)

There are two choices of (ϕ)f and g(ϕ) in MBE models, one is

f(ϕ)=
1

4
(1−|∇ϕ|2)2,x∈Ω, g(ϕ)=

1

4
(1−|∇ϕ|2)2,x∈∂Ω, (2.41)

with slope selection and the other is

f(ϕ)=−1

2
ln(1+ |∇ϕ|2),x∈Ω, g(ϕ)=−1

2
ln(1+ |∇ϕ|2),x∈∂Ω, (2.42)

without slope selection. Setting µc=Mc=M
(2)
b =0, we obtain the desired dynamic

equations from (2.16) and (2.21).

2.5.3. Free energy for crystal growth models. A bulk free energy for the
phase field crystal growth model is given by

Eb=

∫
Ω

[
ρ

2
ϕ2t +

ϕ

2
(−ε+(∇2+1)2)ϕ+

ϕ4

4
]dx, (2.43)

where ϕ represents an atomistic density field, which is the deviation of the density from
the average density and is a conserved field variable, ϵ is a parameter related to the
temperature, that is, higher ϵ corresponds to a lower temperature [11,12].

Likewise, we propose the following for the surface energy

Es=

∫
∂Ω

[
ρs
2
ϕ2t +

1

2
(∇2

sϕ)
2−|∇sϕ|2+g(ϕ)]ds, (2.44)

where g(ϕ) is a prescribed surface energy density. The corresponding governing equa-
tions, boundary conditions and energy dissipation rates are given by (2.16) and (2.21)
with the free energy functionals substituted, respectively. We could also consider an
anisotropic phase-field crystal model by using anisotropic conformational entropy in the
bulk and the surface energy functional [37].

3. Nonlocal models and other extensions
We now consider phase field models with a nonlocal free energy [19, 25], where the

free energy is given by

Eb=

∫
Ω

[

∫
Ω

1

4
J(∥x−y∥)(ϕ(x,t)−ϕ(y,t))2dy+f(ϕ)]dx, (3.1)

where J(∥x∥) is the interaction kernel and f is the free energy density for the bulk.
We assume the interaction between the bulk and the boundary has been built in the
interaction kernel. This form of the free energy is perhaps more generic than the one
that depends on spatial derivatives of the phase variable.

The chemical potential is calculated as follows

µ=

∫
Ω

J(∥x−y∥)(−ϕ(y,t))dy+f ′(ϕ)+a(x)ϕ(x,t), (3.2)
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where a(x)=
∫
Ω
J(∥x−y∥)dy. Likewise, we consider the surface energy given by

Es=

∫
∂Ω

[

∫
∂Ω

1

4
K(∥x−y∥)(ϕ(x,t)−ϕ(y,t))2dsy+g(ϕ)]dsx, (3.3)

where g is the surface energy density. The surface chemical potential is calculated as
follows

µs=

∫
∂Ω

K(∥x−y∥)(ϕ(x,t)−ϕ(y,t))dsy+g′(ϕ)

=

∫
∂Ω

K(∥x−y∥)(−ϕ(y,t))dsy+g′(ϕ)+aS(x)ϕ(x,t), (3.4)

where aS(x)=
∫
∂Ω
K(∥x−y∥)dsy. The total free energy, including the inertia effect, is

then given by

E=Eb+Es+

∫
Ω

ρ

2
(ϕt)

2dx+

∫
∂Ω

ρs
2
(ϕt)

2ds. (3.5)

We calculate the time rate of change of the free energy

d

dt
E=

∫
Ω

µ̃ϕtdx+

∫
∂Ω

µ̃sϕtdsx. (3.6)

We apply the Onsager principle to the bulk term to arrive at

ϕt=−Mbµ̃, x∈Ω, (3.7)

where Mb is the mobility operator. For Mb=M
(1)
b −∇·M(2)

b ·∇,

d

dt
E=−

∫
Ω

[µ̃M
(1)
b µ̃+∇µ̃ ·M(2)

b ·∇µ̃]dx+
∫
∂Ω

[µ̃sϕt+ µ̃n ·M(2)
b ·∇µ̃]dSx

=−
∫
Ω

[µ̃M
(1)
b µ̃+∇µ̃ ·M(2)

b ·∇µ̃]dx+
∫
∂Ω

[µ̃sϕt+ µ̃fm]ds. (3.8)

We propose boundary condition as follows(
ϕt
fm

)
=−M2×2 ·

(
µ̃s
µ̃

)
, x∈∂Ω, (3.9)

where M2×2≥0 is the boundary mobility operator.
The energy dissipation rate is given by

d

dt
E=−

∫
Ω

[µ̃M
(1)
b µ̃+∇µ̃ ·M(2)

b ·∇µ̃]dx−
∫
∂Ω

[(µ̃s,µ̃) ·M2×2 ·(µ̃s,µ̃)T ]ds. (3.10)

By specifying M2×2 as the 2×2 upper left sub-matrix in M3×3 in the previous section,
we arrive at two types of dynamic boundary conditions analogous to those mentioned
above, which we will not repeat here. We note that the authors derived a nonlocal
model with the first type of dynamic boundary conditions and proved the weak and
strong well-posedness of the system recently in [36] although they used two distinct
phase field variables for the bulk and surface, respectively.

The dynamic boundary conditions for the nonlocal model are similar to the ones
with weakly nonlinear interactions through high order derivatives except that the chem-
ical potential and the time rate of change of the phase field variable at the boundary do
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not have the explicit dependence on the bulk chemical potential. The explicit connec-
tion between the bulk and the surface is in fact established through the nonlocal kernel
in the free energy in the bulk effectively.

In the previous section, we present the results for a free energy with up to the
second order spatial derivatives. This can be readily extended to include more general
free energy functionals. It requires one to consider physically (i) what would be the
appropriate boundary conditions when the variation of the free energy is carried; (ii)
when the mobility operator includes high order spatial differential operators, how to
deal with the boundary terms generated while applying integrations by parts in the
context of thermodynamical consistency. The method presented here should be able to
guide the generalization to those cases straightforwardly.

4. Numerical results
In this section, we use the crystal growth model alluded to earlier, as an example,

to illustrate the effect of dynamic boundary conditions to the solution in the bulk
numerically. We adopt the energy quadratization (EQ) and finite difference method to
discretize the governing equation of the phase field crystal growth model [28, 29]. We
assume the dimensionless bulk free energy and surface energy in a fixed rectangular
domain are given respectively by

Eb=
∫
Ω
[ |∇

2ϕ|2
2 −|∇ϕ|2+ 1−ϵ

2 ϕ2+ ϕ4

4 ]dx,

Es=
∫
∂Ω

[
|∇2

sϕ|
2

2 −|∇sϕ|2+ 1−ϵs
2 ϕ2+ ϕ4

4 ]ds,
(4.1)

where ϵ,ϵs are positive constant parameters. The corresponding chemical potentials in
the bulk and on the boundary are calculated as follows

µ=∇4ϕ+2∇2ϕ+(1−ε)ϕ+ϕ3, µc=∇∇ϕ :nn,

µs=∇4
sϕ+2∇2

sϕ+(1−εs)ϕ+ϕ3−∇3ϕ ·n−2∇ϕ ·n−∇sn :∇∇ϕ.
(4.2)

We present some numerical examples of the crystal growth model with dynamic bound-
ary conditions on a part of the boundary. We use a 2D computational domain, in which
the four sides are labeled as Γ1,Γ2,Γ3 and Γ4, respectively. Dynamics in the bulk is
governed by

∂ϕ
∂t =M

(2)
b ∇2µ, (4.3)

whereM
(2)
b is a positive constant, while dynamic boundary conditions on each boundary

are given respectively by

∂ϕ
∂t =−(−M (2)

s ∇2
s+

β2
1

α1
)µs+

β1

α1
µ, α1M

(2)
b n ·∇µ=−µ+β1µs, x∈Γ1

∇nϕt=M
(2)
c ∇sµc, x∈Γ1, n ·∇ϕ=n ·∇3ϕ=n ·∇µ=0, x∈Γ2,Γ3,Γ4.

(4.4)

Namely, we allow dynamic boundary conditions on one side of the boundary and static
boundary conditions on the rest.

We use the energy quadratization technique together with the Crank-Nicolson
method in time, and the second order finite difference method on staggered grids in
space to derive a thermodynamically consistent numerical algorithm by introducing
two intermediate scalar variables in the bulk and on the surface, respectively. The nu-
merical algorithm guarantees that the total energy dissipates in time and space [30].
Simulations of the crystal growth model with static, homogeneous Neumann boundary
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conditions uniformly along the boundary, corresponding to the case of a zero surface
energy, can be found in [29].

In all simulations, solid crystallites with hexagonal ordering in 2D is initially placed
in the centre of the computational domain, which is assigned an average density ϕ. The
initial condition is given by

ϕ0(r)=ϕ+w(r)(Aϕs(r)), (4.5)

where

w(r)=

{
(1−( |r−r0|

d0
)2)2 if |r−r0|

d0
≤1,

0 otherwise,
(4.6)

ϕs(r)=cos( q√
3
y)cos(qx)− 1

2 cos(
2q√
3
y), (4.7)

r=(x,y), r0 is the center coordinate of the domain, and d0 is 1
6 of the domain length in

the x-direction. The domain is given by Ω=[0, 2πq a]× [0,
√
3π
q b], a=10 and b=12. The

other parameter values are ε=0.325,ϕ=
√
ε
2 ,A= 4

5 (ϕ+

√
15ε−36ϕ

2

3 ) and q=
√
3
2 . For the

initial condition on the surface and the surface energy at the boundary, we set ϵs= ϵ
and ϕ=Aϕs on Γ1 as the first initial condition at the surface. We move the initial
condition to the right by 6hx as the second initial condition of ϕ on the boundary to
check the potential grain boundary effects induced by the surface energy, where hx is
the spatial step size. For simplicity, we call these two initial conditions on the surface
as ordered and shifted initial condition on the surface, respectively. Besides these, we

set M
(2)
b =M

(2)
s =1 and M

(2)
c =0 in the following simulations.

In the following, we investigate the effect of the surface energy on the bulk structure
by varying two parameters α1,β1. At first, the ordered and shifted initial conditions
on the surface are depicted in Figure 4.1-(a,d), respectively. Figure 4.1-(a-c) show that
the crystal grows from the bulk and the surface simultaneously with the ordered initial
condition without a grain boundary effect. Figure 4.1-(d-f) show the grain boundary
effect induced by the shifted initial condition on the surface in the highlighted region.
This simulation demonstrates that a dynamic boundary condition can significantly affect
crystal growth in the bulk.

We then check the roles of α1,β1 by benchmarking against the result in Figure 4.1-
(a-c). In Figure 4.2, a large α1 suppresses the roles that the surface energy and bulk
energy play in inducing the across boundary mass flux at the boundary and forces a
nearly homogeneous Neumann boundary condition asymptotically for µ̃. As the result,
the surface can have very little impact on the bulk structure as shown in (a) to (c).
For a small α1, on the other hand, the difference between the surface energy and bulk
energy is amplified at the boundary to lead to a large across boundary mass flux. As
the result, the crystal growth at the boundary is significantly accelerated as shown in
Figure 4.2-(d) to (f).

β1 is also varied while α1 is fixed to show the effect of the surface energy on the
bulk pattern in Figure 4.3. If β1 is large, it forces a near static boundary state with
µs≈0. That is the reason why the pattern in the bulk is similar to the one with the
homogeneous Neumann boundary condition shown in Figure 4.2-(a-c). If β1 is small,
crystal growth near the surface tends to form solid crystallites with weak hexagonal
ordering resembling a lamellar pattern shown in Figure 4.3-(d-f). This prevents the
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(a) (b) (c)

(d) (e) (f)

Fig. 4.1. The ordered growth vs the grain boundary effect induced by a shifted initial boundary
condition in (d)-(f). Snapshots of the numerical solution of ϕ are taken with 128×128 meshes in 2D
space at T =0,32,40, respectively. Time step δt=1×10−2 and α1=β1=1 are used in the simulations.
(a)-(c): ϕ=Aϕs is used at boundary Γ1; (d)-(f): the shifted initial boundary condition is used in the
simulation, where the grain boundary effect was shown in the highlighted region.

(a) (b) (c)

(d) (e) (f)

Fig. 4.2. The role of model parameter α1 in the ordered growth. The snapshots of ϕ are taken
with 128×128 space meshes at T =0,32,40, respectively. Time step δt=1×10−2 is used. (a)-(c):
α1=1×103,β1=1;(d)-(f): α1=5×10−3,β1=1. A large α1 tends to annihilate the boundary effect to
the bulk while a small α1 promotes crystal growth near the boundary in addition to the growth in the
middle and thereby facilitates the overall growth in the domain.
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(a) (b) (c)

(d) (e) (f)

Fig. 4.3. The role of parameter β1 in the ordered growth. Snapshots of ϕ are taken with 128×128
space meshes at T =0,32,40, respectively. Time step is chosen as δt=1×10−2. (a)-(c): α1=1,β1=
10; (d)-(f): α1=1,β1=1×10−4. A large β1 diminishes the effect of boundary dynamics while a small
β1 facilitates growth near the boundary in a different pattern.

(a) (b)

(c) (d)

Fig. 4.4. Time evolutions of total energy, bulk energy and surface energy with different α1,β1 in
(a-c). In (d), the range of surface energies are between [−0.8,−0.5], which is a supplementary figure
for (c). Though the surface energies for α1=1×103,β1=1 and α1=1,β1=1×10−4 are almost same,
their bulk free energies are different. The bulk free energies for α1=5×10−3,β1=1 and α1=1,β1=
1×10−4 are also almost same, but their surface free energies are different. It reveals the magnitudes
of the bulk and surface energies and the weights for chemical potentials or flux determine the patterns.
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well-ordered crystal from growing into the boundary region. The time evolutions of
total energy, bulk energy and surface energy in Figure 4.4 show that the total free
energy dissipation is guaranteed. However, the surface energy may increase due to
the mass transfer at the boundary. The patterns in Figures 4.2-(a-c) and 4.3-(a-c) are
similar because their bulk energies are the same as in Figure 4.4-(b), however, their
surface free energies are different. The difference of surface energies between them are
covered by the magnitude of the bulk energy. Figure 4.4 shows numerically that both
α1 and β1 control the magnitude of the energies.

In the example, we demonstrate that the surface energy and prescribed dynamic
boundary conditions can indeed influence bulk dynamics in various ways depending on
what surface physical effects are dominating. It paves the way for one to alter or even
manipulate bulk dynamics by controlling the boundary condition especially when the
bulk energy and surface energy become comparable in a small confined geometry.

5. Conclusions
We have presented a hierarchical procedure for deriving thermodynamically consis-

tent models together with consistent dynamic boundary conditions using the generalized
Onsager principle in tandem. We illustrate it using the binary phase field model with up
to second order spatial derivatives in the free energy functional. Extensions to models
with more general free energy functionals, including the one with nonlocal interaction
kernels, can be derived following an analogous procedure. We show that many exist-
ing binary phase field models with the dynamic/static boundary conditions are in fact
special cases of the general model. We then show the effect of the surface energy and
the dynamic boundary conditions on solutions in the bulk in crystal growth processes
through numerical simulations. This study summarizes a thermodynamically consis-
tent modeling protocol. It also paves the way for one to develop structure preserving,
thermodynamically consistent numerical algorithms for the resulting models.
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