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RESIDUAL-BASED A POSTERIORI ERROR ESTIMATION FOR
ELLIPTIC INTERFACE PROBLEMS APPROXIMATED BY

IMMERSED FINITE ELEMENT METHODS∗

YANPING CHEN† , JIAO LU‡ , YANG WANG§ , AND YUNQING HUANG¶

Abstract. This paper studies a residual-based a posteriori error estimator for partially penalized
immersed finite element (PPIFE) approximation to elliptic interface problems. Utilizing the error
equation for the PPIFE approximation, we construct an a posteriori error estimator. Properly weighted
coefficients are proposed for the terms in indicators to overcome the dependence of the efficiency
constants on the jump of the diffusion coefficients across the interface. The PPIFE method is based
on non-body-fitted mesh, and hence we perform detailed analysis on the local efficiency bounds of
the estimator on regular and irregular interface elements with different techniques. We introduce a
new approach, which does not involve the Helmholtz decomposition, to give the reliability bounds
of the estimator with an L2 representation of the true error as the main tool. More importantly,
the efficiency and reliability constants are independent of the interface location and the mesh size.
Numerical experiments are provided to illustrate the efficiency of the estimator and the adaptive mesh
refinement for different jump rates or interface geometries.

Keywords. Interface problems; a posteriori error estimator; immersed finite element methods;
adaptive refined meshes.
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1. Introduction
Interface problems with discontinuous coefficients have appeared widely in a variety

of engineering and physical fields, for instance, stationary heat conduction problems
with a discontinuous conduction coefficient [1], fluid problems with different viscosities
[2], electromagnetic problems [3] and so on [4, 5]. Because of the discontinuity of the
coefficients in the equation and the nature of the interface, the solution of the interface
problem usually has low accuracy. As a result, it is a considerable challenge to solve
interface problems efficiently and accurately.

There are some methods based on body-fitted grids available in the literature to
solve interface problems, such as the classical finite element methods [6, 7], the virtual
element methods [8,9], and the weak Galerkin methods [10,11]. These methods require
the mesh to align with the interface to render a high-order accurate approximation
(see Figure 1.1(c)). If the shape or location of the interface does not change, using
these methods to solve problems is relatively efficient. However, it may be difficult and
time-consuming to solve a problem with a moving or complex interface. Other methods
based on structured grids that do not align with the interface have been developed,
such as extended finite element methods [12, 13], immersed interface methods [14, 15],
and immersed finite element methods [16–22]. These methods have many advantages
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over the usual body-fitted grid methods. In particular, when a problem with a moving
interface is involved, they do not need to generate a new grid as time evolves. This
simplifies the solving process and saves a considerable amount of storage.

The immersed finite element (IFE) methods were first introduced by Li in [23] as
a new finite element method for solving one-dimensional elliptic interface problems.
The key to the IFE methods is to construct piecewise polynomials on interface el-
ements according to interface jump conditions while using standard polynomials on
non-interface elements. Subsequently, the partially penalized immersed finite element
(PPIFE) method was proposed in [24]. This method adds extra stabilization terms
on interface edges to penalize the discontinuity of the IFE functions and maintain the
stability of the format. As a result, the accuracy near the interface is improved while
maintaining the stability of the algorithm. More recently, the PPIFE method has been
proposed for parabolic interface problems [25], hyperbolic interface problems [26], elas-
ticity interface problems [27,28], and so on [29,30].

Since IFE functions are discontinuous over interface elements, the IFE methods
often have a much larger error near the interface. This indicates that IFE solution
errors are not uniformly distributed throughout the solution region. Therefore, if we
simply improve numerical approximation accuracy by using a global uniform refined
grid, it is computationally expensive and cannot accurately refine the regions with large
errors. We consider introducing an adaptive refinement strategy based on a posteriori
error estimation. The strategy uses the information from the IFE solution computed on
some initially uniform mesh and then adapts the grid in a post-processing way, thereby
obtaining a grid more tailored to the problem. Moreover, the adaptive strategy reduces
the number of unknowns and can converge to the exact solution faster. A posteriori error
indicators in the adaptive refinement process provide vital information for generating
a new refined mesh. Over the past six years, the residual-based a posteriori error
estimate analysis for IFE methods has been less studied, and only a few results have been
attained so far. Chen et al. [31] proposed an adaptive IFE method with error control by
introducing different error indicators on interface elements and non-interface elements,
respectively, which can effectively solve elliptic and Maxwell interface problems. He and
Zhang [32] analyzed a residual-based posterior error estimate for the PPIFE method
for elliptic interface problems and then used the Helmholtz decomposition to prove the
estimator is reliable.

In this work, our first purpose is to construct a robust, efficient and computationally
simple error estimator such that it accurately reflects the solution error distribution and
achieves an optimal convergence rate. We use the PPIFE solution uτ itself, the source
term f , and the error equation for the PPIFE approximation to derive an estimator that
contains three terms: the element residual, the numerical solution jump, and the numer-
ical flux jump. Note that the estimator constructed here is quite different from the one
in [32], which leads directly to a new analysis approach for a posterior error estimation,
especially for the analysis of the elemental residual and the numerical solution jump.
The second purpose of this paper is to present a new and direct approach for obtaining
the reliability bounds of the estimator without involving the Helmholtz decomposition.
To this end, our analysis makes full use of an L2 representation of the true error and
a modified Clément interpolation. Then, combined with the trace inequality for linear
IFE functions, both the element residual and the numerical flux jump can be bound.
We cannot, however, do the same for the numerical solution jump because the global
IFE functions are discontinuous across interface edges. A special trace inequality was
introduced to overcome this difficulty. On the other hand, we know that the IFE solu-
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tion is a piecewise linear function on interface elements, so using the standard bubble
function technique [33] to prove efficiency bounds does not apply here. We modify the
standard technique according to the feature of the linear IFE basic function. However,
when the interface element is irregular, the modified technique does not give explicit
efficiency bounds. This bound is addressed, in this case, by an interpolation estimate
in the IFE space.

The outline of this paper is as follows. The next section starts by presenting the
model problem, defining some norms, and introducing the IFE space. The error equation
for the PPIFE approximation is derived in Section 3, and then we construct a residual-
based a posteriori error estimator. Sections 4 and 5 prove the efficiency and reliability of
the residual-based a posteriori error estimator, respectively. Several numerical examples
are presented in Section 6. Finally, Section 7 summarizes and proposes a further work
plan.

+

-

+

-

(a) (b) (c)

Fig. 1.1. (a) A square domain Ω cut by an interface Γ; (b) Non-body-fitted mesh of an interface
problem; (c) Body-fitted mesh of an interface problem.

2. Preliminaries and partially penalized IFEM space

2.1. Interface problem. Let Ω⊂R2 be a bounded open domain with a Lip-
schitz boundary ∂Ω. The interface Γ is a C2-smooth curve that divides Ω into two
sub-domains Ω+ and Ω−, such that Ω̄=Ω+∩Ω−∩Γ (see Figure 1.1(a)). Further, we
assume Γ∩∂Ω=Ø. In this work, we consider the following elliptic interface problem:

−∇·(α∇u(x))=f (x), if x∈Ω, (2.1)

u(x)=0, if x∈∂Ω, (2.2)

where f ∈L2 (Ω) is a given function, the diffusion coefficient α is a piecewise constant
function defined by

α(x)=

{
α+, if x∈Ω+,

α−, if x∈Ω−,

and min{α+,α−}>0. And the exact solution u satisfies jump conditions across the
interface Γ:

[u]Γ=0 and [α∇u ·n]Γ=0, (2.3)
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where n is the unit outer normal vector of the interface Γ with a direction that points
to the domain Ω+.

In this paper, let W k
p (Ω) be the standard Sobolev space with the standard norm

∥·∥Wk
p (Ω) and the semi-norm |·|Wk

p (Ω). For any measurable open domain B⊆Ω, we

denote Bs :=B∩Ωs, s=±. When Bs ̸=∅, s=±, we define a space as follows:

W̃ k
p (B) :=

{
u∈W 1

p (B) :u |Bs∈W k
p (Bs) ,s=+,−

}
equipped with the norm and the semi-norm

∥u∥p
W̃k

p (B)
=∥u∥pWk

p (B+)+∥u∥pWk
p (B−) and |u|p

W̃k
p (B)

= |u|pWk
p (B+)+ |u|pWk

p (B−) .

Next, we introduce the following space:

PW k
p (B)=

{
u :u |Bs∈W̃ k

p (Bs) ,s=±; [u]=0, [β∇u ·nΓ]=0 on Γ∩B
}
.

We denote Lp (B) as the Lebesgue space for 1≤p≤∞, with a norm ∥·∥Lp(B). Specially,

L2 (B) is a Hilbert space with the inner product and norm

(v,w)B =

∫
B

vwdx and ∥v∥B =

(∫
B

|v|2 dx
)1/2

.

As before, L2 (∂B) is the square-integrable function space on ∂B equipped with the
inner product and norm

(v,w)∂B =

∫
∂B

vwdx and ∥v∥∂B =

(∫
∂B

|v|2 dx
)1/2

.

For p=2, we let Hk (B)=W k
2 (B) equipped with the norm ∥·∥Hk(B) and the semi-

norm |·|Hk(B). Further, we define the Hilbert spaceH
k
0 (B)=

{
v∈Hk (B) :v=0 on ∂B

}
.

Similarly, we have PHk (B)=PW k
2 (B). If B=Ω, we will omit the index Ω.

The weak formulation of problems (2.1)-(2.3) then is: find u∈H1
0 (Ω) such that∫

Ω

α∇u ·∇vdx=
∫
Ω

fvdx, for all v∈H1
0 (Ω). (2.4)

2.2. Partially penalized IFE space. Let Th={K}(0<h<1) be a family of
Cartesian triangulations of Ω. Then N , E , and Ẽ are the corresponding sets of nodes,
edges, and interior edges, respectively. Denote by T int

h the set of interface elements in Th
and by T non

h the set of non-interface elements. We assume that the interface intersects
at most two edges of an interface element. If the interface intersects the element at
either one vertex or two adjacent vertices, then the element is a non-interface element.
This assumption is reasonable when h is small enough. We denote the set of interface
edges and non-interface edges of the edges E by E int and Enon, respectively. Similarly,
we let Ẽ int and Ẽnon denote the set of interior interface edges and interior non-interface
edges, respectively.

For any element K ∈Th, we let IK ={1,2,3} and Aj ,j∈IK denote its vertices. We
define the local IFE space as follows:

Sh (K)=span{ϕi,i∈IK}, for K ∈Th.
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If K ∈T non
h , ϕi,i∈IK are the standard linear nodal basis functions satisfying

ϕi (Aj)=

{
1, i= j

0, i ̸= j
, i,j∈IK .

For each K ∈T int
h , we know that the two points where the interfaces Γ and K intersect

do not lie on the same edge. We use D and E to denote the intersection of the interface
and ∂K, and let n̄=(n̄1,n̄2) denote the normal vector to the line segment DE. The
line segment partitions K into two subelements, K+ and K− (see Figure 2.1). Then, on
the interface element K, the linear IFE shape functions ϕi,i∈IK are piecewise linear
polynomials specified by [34, 35]:

A1 A2

A3

E

D

K+

K-

Fig. 2.1. A triangular interface element

ϕi (x)=

{
ϕ+i (x)=a+x1+b

+x2+c
+, x ∈K+,

ϕ−i (x)=a−x1+b
−x2+c

−, x ∈K−,
(2.5)

where the coefficients satisfy the interface jump conditions

ϕ+i (D)=ϕ−i (D) , ϕ+i (E)=ϕ−i (E) and α+ ∂ϕ
+
i

∂n̄
=α− ∂ϕ

−
i

∂n̄
.

Then, we introduce the following global IFE space and piecewise linear space on Ω:

Sh (Ω)=
{
v∈L2 (Ω) :v |K∈Sh (K) ∀K ∈Th,v is continuous at any z∈N ,and v |∂Ω=0

}
,

Vh (Ω)={v :v |K∈P1 (K) , ∀K ∈Th} ,

where P1 (·) is the space of linear polynomials on element K.

Given e∈Ẽ , we denote Ke,1 and Ke,2 as two elements that share the common edge
e. Fix v∈Vh (Ω), we define its average and jump on each edge by

{v}e=


1

2

(
v |Ke,1

+v |Ke,2

)
, e∈Ẽ ,

v |Ke,1
, e∈E\Ẽ ,

and [v]e=

{
v |Ke,1 −v |Ke,2 , e∈Ẽ ,
v |Ke,1

, e∈E\Ẽ .

For simplicity, we omit the subscript e in these notations if there is no ambiguity.
Take any test function vτ ∈Sh (Ω) to multiply both sides of (2.1), then applying

(2.2), integration by parts on each element together with the identity

[uv]={u} [v]+[u]{v} ,
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one obtains ∫
Ω

fvτ dx=
∑

K∈Th

∫
K

α∇u ·∇vdx−
∑

e∈Ẽint

∫
e

{α∇u ·ne} [vτ ] ds. (2.6)

Note that [α∇u ·ne]e=0, ∀e∈E and [vτ ]e=0, ∀e∈Enon, where ne is the unit normal
vector to e pointing from Ke,2 towards Ke,1. According to the regularity of u, for any
parameter σ,ϵ>0 and γ≥0, we have

ϵ
∑

e∈Ẽint

∫
e

{α∇vτ ·ne}[u] ds=0 and
∑

e∈Ẽint

∫
e

γ

|he|σ
[u][vτ ] ds=0, (2.7)

where he denotes the length of e.
Inserting (2.7) into (2.6), we obtain

ah (u,vτ )=

∫
Ω

fvτ dx,

where the bilinear form ah (·,·) defined by

ah (u,vτ )=
∑

K∈Th

∫
K

α∇u ·∇vτ dx−
∑

e∈Ẽint

∫
e

{α∇u ·ne} [vτ ] ds

+ϵ
∑

e∈Ẽint

∫
e

{α∇vτ ·ne} [u] ds+
∑

e∈Ẽint

∫
e

γ

|he|σ
[u][vτ ] ds.

We may thus formulate the following PPIFE method: find uτ ∈Sh (Ω) such that

ah (uτ ,vτ )=

∫
Ω

fvτ dx, for all vτ ∈Sh (Ω). (2.8)

3. Estimator
In this section, we describe an error estimator for the PPIFE approximation.

In order to estimate the true error E=u−uτ , one may make use of (i) the PPIFE
solution uτ itself, (ii) the source term f , and (iii) the error equation for the PPIFE
approximation

ah (E,v)=

∫
Ω

fvdx−ah (uτ ,v), for all v∈H1
0 (Ω). (3.1)

Decompose (3.1) into local contributions from each element, to be rewritten as

ah (E,v)=
∑

K∈Th

∫
K

fvdx−
∑

K∈Th

∫
K

α∇uτ ·∇vdx

−ϵ
∑

e∈Ẽint

∫
e

{α∇v ·ne} [uτ ] ds. (3.2)

Integration by parts over each element gives∑
K∈Th

∫
K

α∇uτ ·∇vdx=−
∑

K∈Th

∫
K

∇·(α∇uτ )vdx+
∑
e∈Ẽ

∫
e

[α∇uτ ·ne]{v}dx. (3.3)
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Inserting (3.3) into (3.2), we get

ah (E,v)=
∑

K∈Th

∫
K

RKvdx−
∑
e∈Ẽ

∫
e

jn,e{v}dx−ϵ
∑

e∈Ẽint

∫
e

{α∇v ·ne}ju,eds, (3.4)

where RK is the element residual

RK =f+∇·(α∇uτ ) , in K, (3.5)

ju,e is the jump of the numerical solution across the edge e

ju,e=[uτ ], (3.6)

and jn,e is the jump of the gradient across the edge e

jn,e=[α∇uτ ·ne]=

{
(α∇uτ ·ne) |Ke,1

−(α∇uτ ·ne) |Ke,2
, if e∈Ẽ ,

0, if e∈E\Ẽ .
(3.7)

Let αA and αH be the arithmetic and harmonic averages of α, defined as

αA=


α++α−

2
, x∈Ω\∂Ω,

α+, x∈∂Ω,
and αH =


2α+α−

α++α−, x∈Ω\∂Ω,

α+, x∈∂Ω.

It is easy to verify that

√
α+

2
≤
√
αH ,

√
α−

2
≤
√
αH ,

1

2
√
α+

≤
1

√
αA
, and

1

2
√
α−

≤
1

√
αA
. (3.8)

The expression in (3.4) directly leads to a local error indicator ηK defined by

η2K =
∑

e∈EK∩Ẽint

(
he
2αA

∥jn,e∥2e+
αH

2he
∥ju,e∥2e

)
+
h2K
αK

∥RK∥2K

+
∑

e∈EK∩Ẽnon

he
2αA

∥jn,e∥2e , (3.9)

where hK is the diameter of K, EK is the set of three edges of K, and αK denotes the
value of α restricted to K. Then, the global error estimator η is defined by

η2=
∑

K∈Th

η2K . (3.10)

Remark 3.1. When K ∈T non
h , the second term in (3.9) is equal to 0. Now, the

error indicator only involves the element residual and the numerical flux jump. The
fundamental work of efficiency bounds for both terms on non-interface elements has
been established in [36,37].

4. Local efficiency bounds
In this section, we will establish the local efficiency bounds of the error estimator

η. To this end, we first need some notations and assumptions. Given e∈E int, let
e+=e∩Ω+ and e−=e∩Ω−. As before, set Ke+,1 and Ke+,2 as two elements that share
the common edge e+.
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When K ∈T non
h , the local indicator contains only RK and jn,e. The efficiency

bounds of both terms were addressed on non-interface elements by Verftirth [36], who
used the bubble functions technique. We mainly establish here the efficiency bound of
ηK over interface elements. We know that the IFE solution is a piecewise linear function
on interface elements. As a result, the technique cannot be used to prove the efficiency
bound of ηK on K ∈T int

h directly. To solve this difficulty, we define bubble functions
on K+ and K−, respectively.

Fix a triangle element K+⊂K ∈T int
h , ℓi,i=1,2,3 denote the barycentric coordi-

nates of K+. We then define the triangle-bubble function ψK by

ψK =

{
27ℓ1ℓ2ℓ3, on K+,

0, on Ω\K+.

For each e+∈EK+ ∩E int, define the edge-bubble function ψe by

ψe=

{
4ℓ1ℓ2, on Ke+,1∪Ke+,2,

0, on Ω\
(
Ke+,1∪Ke+,2

)
.

Notice that we here let K+=Ke+,1. If K
+ is not a triangle, then it must be a quadri-

lateral. We divide K+ into two triangles by connecting a vertex of K+ and an interface
intersection, e.g., connecting D and A1 in Figure 2.1.

The following lemma gives the bound of RK on each element K ∈Th.

Lemma 4.1. Let R̄K = 1
|K|
∫
K
RK dx be the average of RK over K ∈Th, and then the

following estimate holds:

h2K
αK

∥RK∥2K ≤C
(∥∥∥α1/2∇E

∥∥∥2
K
+h2K

∥∥∥α−1/2
(
R̄K−Rk

)∥∥∥2
K

)
, (4.1)

where C is a constant independent of the mesh size and α.

Proof. We first estimate the bound of RK on each interface element K. To this
end, we construct an element-bubble function ψK on K+. Using the property of the
element-bubble function [38], we get∥∥R̄K

∥∥2
K+ ≤

∫
K+

ψK

(
R̄K

)2
dx

=

∫
K+

∇·(α∇(uh−u))ψKR̄K dx+

∫
K+

(
R̄K−RK

)
ψKR̄K dx.

From the definition of ψK , we can derive ψK |∂K+ =0. Furthermore, we apply Green’s
formula and the Cauchy-Swartz inequality to find that∥∥R̄K

∥∥2
K+ ≤

∫
K+

α∇E ·∇
(
ψKR̄K

)
dx+

∫
K+

(
R̄K−RK

)
ψKR̄K dx

≤∥α∇E∥K+

∥∥∇(ψKR̄K

)∥∥
K+ +

∥∥R̄K−RK

∥∥
K+

∥∥ψKR̄K

∥∥
K+ .

Noting that∥∥∇(ψKR̄K

)∥∥
K+ ≤Ch−1

K+

∥∥R̄∥∥
K+ and

∥∥ψKR̄K

∥∥
K+ ≤

∥∥R̄K

∥∥
K+ . (4.2)

Hence,
∥∥R̄K

∥∥
K+ can be bound as∥∥R̄K

∥∥
K+ ≤C

(
h−1
K+ ∥α∇E∥K+ +

∥∥R̄K−RK

∥∥
K+

)
.
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Using the Cauchy-Swartz inequality, we arrive at

∥RK∥K+ ≤C
(
h−1
K+ ∥α∇E∥K+ +

∥∥R̄K−RK

∥∥
K+

)
. (4.3)

Analogously, we construct an element-bubble function on K− to obtain

∥RK∥K− ≤C
(
h−1
K− ∥α∇E∥K− +

∥∥R̄K−RK

∥∥
K−

)
. (4.4)

Now, using the definition of norm, we derive

h2K
αK

∥RK∥2K =
h2K
αK

(
∥RK∥2K+ +∥RK∥2K−

)
≤C h

2
K

αK

(
max

{
h−2
K+ ,h

−2
K−

}
∥α∇E∥2K+

∥∥R̄K−RK

∥∥2
K

)
≤C

(∥∥∥α1/2∇E
∥∥∥2
K
+h2K

∥∥∥α−1/2
(
R̄K−RK

)∥∥∥2
K

)
.

The constant C=Ch2Kmax
{
h−2
K+ ,h

−2
K−

}
in the last inequality. For K ∈T non

h , we define
an element-bubble function on K to obtain

h2K
αK

∥RK∥2K ≤C
(∥∥∥α1/2∇E

∥∥∥2
K
+h2K

∥∥∥α−1/2
(
R̄K−RK

)∥∥∥2
K

)
.

Here the constant C is independent of the interface location. This completes the proof.

The estimated result of jn,e is stated in the lemma below.

Lemma 4.2. For every e∈Ẽ, the following estimate holds:

he
2αA

∥jn,e∥2e≤C
(∥∥∥α1/2∇E

∥∥∥2
ωe

+h2e

∥∥∥α−1/2
(
R̄K−RK

)∥∥∥2
ωe

)
, (4.5)

where ωe is the union of all triangles that have e as an edge and the constant C is
independent of the mesh size and α.

Proof. We first consider an arbitrary interface edge e∈Ẽ int. Denote by ψe the
edge-bubble function on e+. We can deduce from the properties of ψe and the continuity
of α∇u ·n that

∥jn,e∥2e+ ≤
∫
e+

[α∇uτ ·ne]ψejn,edx≤
∫
e+

[α∇(uτ −u) ·ne]ψejn,edx.

Noting that ψe is equal to zeros on ∂ωe+ . Next, applying Green’s formula gives∫
e+

(α∇(uτ −u) ·ne) |Ke,1
ψejn,edx=

∫
Ke+,1

RKψejn,e+α∇(uτ −u) ·∇(ψejn,e) dx.

Hence, we have

∥jn,e∥2e+ ≤
∫
ωe+

RKψejn,e+α∇(uτ −u) ·∇(ψejn,e) dx.

From the properties of ψe [38], on the other hand, we know that

∥∇(ψejn,e)∥ωe+
≤Ch−1/2

e+ ∥jn,e∥e+ and ∥ψejn,e∥ωe+
≤Ch1/2e+ ∥jn,e∥e+ . (4.6)
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Using the Cauchy-Schwarz inequality and (4.6) yields the error estimate

∥jn,e∥e+ ≤C
(
h
−1/2
e+ ∥α∇E∥ωe+

+h
1/2
e+ ∥RK∥ωe+

)
. (4.7)

Afterward, we apply (4.3) and (3.8) to obtain

∥jn,e∥e+ ≤C
(
h
−1/2
e+ ∥α∇E∥ωe+

+h1/2e

∥∥R̄K−RK

∥∥
ωe+

)
. (4.8)

Similarly, we define ψe on e− to get

∥jn,e∥e− ≤C
(
h
−1/2
e− ∥α∇E∥ωe−

+h1/2e

∥∥R̄K−RK

∥∥
ωe−

)
. (4.9)

This and (4.8) imply

he∥jn,e∥2e=he
(
∥jn,e∥2e+ +∥jn,e∥2e−

)
≤Che

(
max

{
h−1
e+ ,h

−1
e−

}
∥α∇E∥2ωe

+he
∥∥R̄K−RK

∥∥2
ωe

)
≤CαA

(∥∥∥α1/2∇E
∥∥∥2
ωe

+h2e

∥∥∥α−1/2
(
R̄K−RK

)∥∥∥2
ωe

)
.

The constant C=Chemax
{
h−1
e+ ,h

−1
e−

}
in the last inequality. For each non-interface edge

e∈Ẽnon, we define an edge-bubble function on e to obtain

he
αA

∥jn,e∥2e≤C
(∥∥∥α1/2∇E

∥∥∥2
ωe

+h2e

∥∥∥α−1/2
(
R̄K−RK

)∥∥∥2
ωe

)
. (4.10)

The constant C is independent of the interface location. This completes the proof.

With a similar argument in Lemma 4.2, we can give the estimate of ju,e.

Lemma 4.3. There is a constant C such that, on each interface edge e∈Ẽ int, the
following estimate holds:

αH

2he
∥ju,e∥2e≤C

∥∥∥α1/2∇E
∥∥∥2
ωe

. (4.11)

The constant C is independent of the mesh size and α.

Proof. For an interior edge e∈Ẽ , the unit normal and tangential vectors to e are
denoted by ne=(xe,ye) and te=(−ye,xe), respectively. Given v∈H1

0 (Ω), define jt,e=

[∇u ·te]e as the tangential derivative jump across the edge e and ∇⊥v=

(
∂v

∂y
,−
∂v

∂x

)
as

the formal adjoint operator of the curl operator. Our goal here is to prove the efficiency
bound of ∥ju,e∥e. From [32], however, we know that

∥ju,e∥e+ ≤Che+ ∥jt,e∥e+ . (4.12)

Next, we adopt the same method as in Lemma 4.2 to give the efficiency bound of
∥jt,e∥e+ . For each interface edge e∈Ẽ int, we define an edge-bubble function ψe on e+.
Applying the properties of ψe, the continuity of ∇u ·te and Green’s formula to deduce
that

∥jt,e∥2e+ ≤C
∫
e+

[∇uτ ·te]jt,eψedx≤C
∫
ωe+

∇(uτ −u) ·∇⊥ (jt,eψe) dx

≤C ∥∇E∥ωe+
∥∇(jt,eψe)∥ωe+

.
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Similar to (4.6), we have

∥∇(jt,eψe)∥ωe+
≤Ch−1/2

e+ ∥jt,e∥e+ .

Hence, one obtains

∥jt,e∥e+ ≤Ch−1/2
e+ ∥α∇E∥ωe+

. (4.13)

Applying (4.12), it is derived that

∥ju,e∥e+ ≤Ch1/2e ∥α∇E∥ωe+
. (4.14)

Analogously, we get

∥ju,e∥e− ≤Ch1/2e ∥α∇E∥ωe−
. (4.15)

Using the definition of norm and (3.8) yields

h−1
e ∥ju,e∥2e=h

−1
e

(
∥ju,e∥2e+ +∥ju,e∥2e−

)
≤Cα−1

H

∥∥∥α1/2∇E
∥∥∥2
ωe

,

which completes our proof.

The following theorem is a direct consequence of the above three lemmas.

Theorem 4.1. Let u∈PH2 (Ω)∩H1
0 (Ω) and uτ be the unique solution of problems

(2.4) and (2.8), respectively. Then, there exists a constant C independent of the mesh
size and α, such that

ηK ≤C
(∥∥∥α1/2∇E

∥∥∥
ωK

+hK

∥∥∥α−1/2
(
R̄K−RK

)∥∥∥
ωK

)
, (4.16)

where ωK denotes the set of all elements K̂ ∈Th that share an edge with K.

Remark 4.1. The constant C in Lemma 4.1 and Lemma 4.2 depends on
max

{
h−1
e+ ,h

−1
e−

}
. If the intersection of the interface and an interface edge and the el-

ement vertexes are infinitely close, the constant C makes no sense. In this case, the
interface element can be approximated as a non-interface element. It implies that there
may exist a constant controlling the efficiency bound. The following lemma proves our
conjecture.

Lemma 4.4. There exist constants Ci>0,i=1,2,3, for each K ∈Th, such that

hK√
αK

∥RK∥K ≤C1

(∥∥∥α1/2∇E
∥∥∥
K
+hK

∥∥∥α−1/2
(
R̄K−RK

)∥∥∥
K
+hKmin{he+ ,he−}

)
,

(4.17)√
αH

2he
∥ju,e∥e≤C2

(∥∥∥α1/2∇E
∥∥∥
ωe

+hemin
{√

he− ,
√
he+
})

, e∈EK ∩Ẽ int, (4.18)√
he
2αA

∥jn,e∥e≤C3

(∥∥∥α 1
2∇E

∥∥∥
ωe

+hK

∥∥∥α− 1
2

(
R̄K−RK

)∥∥∥
ωe

+hemin
{√

he− ,
√
he+
})

,

(4.19)

where e∈EK ∩Ẽ in the third inequality, and the contants Ci (i=1,2,3) are independent
of the mesh size and α.



1008 A POSTERIORI ERROR ESTIMATION FOR ELLIPTIC INTERFACE PROBLEMS

Proof. Without loss of generality, we assume that he+ ≫he− . By the Cauchy
inequality, we then have

∥RK∥K =
(
∥RK∥2K+ +∥RK∥2K−

)1/2
≤C (∥RK∥K+ +∥RK∥K−) . (4.20)

To the first term on the right-hand side of (4.20), applying the standard efficiency
bound result in Lemma 4.1, we arrive at

hK√
αK

∥RK∥K+ ≤C
(∥∥∥α1/2∇E

∥∥∥
K
+hK

∥∥∥α−1/2
(
R̄K−RK

)∥∥∥
K

)
. (4.21)

We define an interpolation operator Ph: PH
2 (Ω)∩H1

0 (Ω)→Sh (Ω). The second
term on the right-hand side of (4.20) follows from the Cauchy-Schwarz inequality and
Green’s formula such that

∥RK∥K− ≤h−1
K−

∥∥R̄K+∇·(α∇uτ )
∥∥
L1(K−)

+
∥∥f−R̄K

∥∥
K−

≤h−1
K− ∥f+∇·(α∇uτ )∥L1(K−)+h

−1
K−

∥∥f−R̄K

∥∥
L1(K−)

+
∥∥f−R̄K

∥∥
K−

≤h−1
K− ∥α∇(uτ −Phu) ·n∥L1(∂K−)+h

−1
K− ∥α∇(u−Phu) ·n∥L1(∂K−)

+h−1
K−

∥∥f−R̄K

∥∥
L1(K−)

+
∥∥f−R̄K

∥∥
K− .

Applying the Hölder inequality, we have

∥α∇(uτ −Phu) ·ne∥L1(e)≤h
1/2
e ∥α∇(uτ −u) ·ne∥e , e∈∂K−, (4.22)

and ∥∥f−R̄K

∥∥
L1(K−)

≤hK−
∥∥f−R̄K

∥∥
K− . (4.23)

Now, a direct application of (4.22) and (4.23) gives

∥RK∥K− ≤h−
1
2

K− ∥α∇(uτ −Phu) ·n∥∂K− +h
− 1

2

K− ∥α∇(u−Phu) ·n∥∂K− +
∥∥RK−R̄K

∥∥
K− .

(4.24)
The first term in (4.24) enjoys the following estimate [32]:

h
−1/2
K− ∥α∇(uτ −Phu) ·n∥∂K− ≤C

√
α−. (4.25)

From [24], we know that the interpolation Phu in the IFE space Sh (Ω) satisfies the
estimate

∥α∇(u−Phu) |K ·ne∥2e≤Ch
3∥u∥2PW 2

∞(Ω) , ∀e∈E int.

Using this estimate yields

h
−1/2
K− ∥α∇(u−Phu) ·n∥∂K− ≤ChK− . (4.26)

Hence, utilizing (4.25) and (4.26), we get

hK√
αK

∥RK∥K− ≤C
(
hK+hKhK− +hK

∥∥∥α−1/2
(
RK−R̄K

)∥∥∥
K−

)
.

Finally, combining this bound with (4.21) yields (4.17). And from Lemma 5.2 in [32]
and (3.8), we directly obtain (4.18) and (4.19) to complete the proof of the lemma.



Y.P. CHEN, J. LU, Y. WANG, AND Y.Q. HUANG 1009

5. Global reliability bound
In this section, we shall prove the global reliability bound of the estimator. To this

end, we need to introduce an L2 representation of the true error, the trace inequality
for linear IFE functions, and a modified Clément interpolation operator.

Given z∈N set

πzv=


∫
ωz
vϕzdx∫

ωz
ϕzdx

, ∀z∈Ñ ,

0, ∀z∈N\Ñ ,

(5.1)

where ϕz ∈Sh (Ω) is the linear IFE nodal basis function at z∈N , ωz is the union of all
triangles that have z as a vertex, and Ñ denotes the set of all vertices in N except those
on ∂Ω. We define a modified Clément interpolation operator Ih :H1

0 (Ω)→Sh (Ω) by

Ihv=
∑
z∈N

(πzv)ϕz. (5.2)

We recall the following modified Clément interpolation estimates, which are proved
in Lemma 4.3 in [32].

Lemma 5.1. For each v∈H1
0 (Ω), let Ihv∈Sh (Ω) be a modified Clément interpolation

of v. There exists a constant C independent of the mesh size and the interface location,
such that

∥v−Ihv∥K ≤ChK∥∇v∥ωK
, ∀K ∈Th, (5.3)

∥∇(v−Ihv)∥K ≤C∥∇v∥ωK
, ∀K ∈Th, (5.4)

∥ (v−Ihv)|K∥e≤Ch
1/2
e ∥∇v∥ωK

, ∀e∈EK and K ∈{Ke,1,Ke,2} . (5.5)

Remark 5.1. The interpolation operator Ihv we define here is slightly different
from that in [32]. In this work, πzv only involves the linear IFE nodal basis function.
However, πzv in this literature [32] involves both the classical barycentric hat function
and the linear IFE nodal basis function. It is verified that the operator Ihv defined in
(5.2) also satisfies the above interpolation estimate.

The trace inequality for linear IFE functions is stated in the following lemma.

Lemma 5.2. For each v∈Sh (Ω) on K ∈T int
h , the following inequality holds:

∥β∇v ·ne∥e≤Ch
−1/2
K ∥β∇v∥K , (5.6)

where C is a constant independent of the interface location and the mesh size.

The following lemma gives an L2 representation of the true error, which is one of
the key points in our error analysis.

Lemma 5.3. We have the following L2 representation of the true error E:∥∥∥α1/2∇E
∥∥∥2

Ω
=

∑
K∈Th

∫
K

RK (E−Eh) dx+
∑
e∈Ẽ

∫
e

jn,e{E−Eh} ds

−
∑

e∈Ẽint

∫
e

{α∇E ·ne}ju,eds+ϵ
∑

e∈Ẽint

∫
e

{α∇Eh ·ne}ju,eds+
∑

e∈Ẽint

∫
e

γ

|he|σ
ju,e [Eh] ds,

(5.7)
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where set Eh=IhE.

Proof. According to the definition of the L2 norm, we have∥∥∥α1/2∇E
∥∥∥2
Ω
=(α∇E,∇E)=(α∇E,∇(E−Eh))+(α∇E,∇Eh) .

Since ah (uτ ,vτ )=(f,vτ ) and ah (u,vτ )=(f,vτ ) for all vτ ∈Sh (Ω), we have
ah (u−uτ ,vτ )=0. Choosing vτ =Eh, we get

(α∇E,∇Eh)=
∑

e∈Ẽint

∫
e

{α∇E ·ne} [Eh] ds+ϵ
∑

e∈Ẽint

∫
e

{α∇Eh ·ne} [uτ ] ds

+
∑

e∈Ẽint

∫
e

γ

|he|σ
[uτ ][Eh] ds. (5.8)

Integration by parts elementwise and the observation that E−Eh vanishes on ∂Ω yields

(α∇E,∇(E−Eh))=
∑

K∈Th

∫
K

α∇E ·∇(E−Eh) dx

=
∑

K∈Th

∫
K

RK (E−Eh) dx+
∑
e∈Ẽ

∫
e

jn,e{E−Eh}ds

+
∑

e∈Ẽint

∫
e

{α∇E ·ne} [E−Eh] ds. (5.9)

Together with Equation (5.8), we directly obtain this result (5.7) to complete the proof
of the lemma.

Below, we establish a reliability bound of the estimator.

Theorem 5.1. Let u∈PH2 (Ω)∩H1
0 (Ω) and uτ represent the solutions to the prob-

lems (2.4) and (2.8), respectively. There exits a constant C independent of the interface
location and the mesh size, such that

∥α1/2∇E∥≤Cη. (5.10)

Proof. Every term in the L2 representation of E in Lemma 5.3 is denoted by
Ii (i=1,2,...,5)

∥α1/2∇E∥2 := I1+I2+I3+I4+I5. (5.11)

Applying the Cauchy inequality to the first term in (5.11) leads to

I1≤

( ∑
K∈Th

(hK)
2

αK
∥RK∥2K

)1/2( ∑
K∈Th

αK

(hK)
2 ∥E−Eh∥2K

)1/2

.

From the results of Lemma 5.1, we then conclude that

1

(hK)
2

∥∥∥α1/2 (E−Eh)
∥∥∥2
K
≤C

∥∥∥α1/2∇E
∥∥∥2
ωK

, for all K ∈Th.

Hence, we get

I1≤C
∥∥∥α1/2∇E

∥∥∥( ∑
K∈Th

(hK)
2

αK
∥RK∥2K

)1/2

. (5.12)
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To bound I2, from the Cauchy-Schwarz inequality, we arrive at

I2≤
∑
e∈Ẽ

∥jn,e∥e

(
1

2

∥∥(E−Eh) |Ke,1

∥∥
e
+

1

2

∥∥(E−Eh) |ke,2

∥∥
e

)

≤

∑
e∈Ẽ

he∥jn,e∥2e

1/2
∑

i=1,2

∑
e∈Ẽ

1

4he

∥∥(E−Eh) |Ke,i

∥∥2
e

1/2
 .

Further, we use (3.8) and (5.5) to obtain

1

4he
∥E−Eh∥2e≤

1

αA

∥∥∥α1/2∇E
∥∥∥2
ωe

. (5.13)

Then, we have

I2≤C
∥∥∥α1/2∇E

∥∥∥
∑

e∈Ẽ

he
αA

∥jn,e∥2e

1/2

. (5.14)

For any v∈H1+s (K)(s>0) with ∆v∈L2 (K), and the following inequality holds
[39] ∫

e

(∇v ·ne)whds≤Ch−1/2
e ∥wh∥e (∥∇v∥K+hK ∥∆v∥K), wh∈P1 (K). (5.15)

Applying this estimate, (3.8) and the bound of RK yields

I3≤C
∑

e∈Ẽint

h−1/2
e ∥ju,e∥e

( ∑
K∈ωe

∥α∇E∥K+hK ∥RK∥K

)

≤C

(∥∥∥α1/2∇E
∥∥∥+ ∑

K∈TK

hK

∥∥∥α−1/2
(
R̄K−RK

)∥∥∥
K

) ∑
e∈Ẽint

√
αH

he
∥ju,e∥e .

To bound the fourth term in (5.11), the key is the trace inequality in Lemma 5.2,
which together with (3.8) and (5.4), yields

I4≤C
∑

e∈Ẽint

∥ju,e∥e

( ∑
K∈ωe

h−1/2
e ∥α∇Eh∥K

)

≤C
∑

e∈Ẽint

∥ju,e∥e

( ∑
K∈ωe

h−1/2
e ∥α∇(Eh−E)∥K+h−1/2

e ∥α∇E∥K

)

≤C ∥α∇E∥
∑

e∈Ẽint

√
αH

he
∥ju,e∥e .

To bound I5, by the Cauchy-Schwarz inequality and the inverse inequality, we get

I5≤C
∑

e∈Ẽint

∥ju,e∥e∥[Eh]∥e≤C
∑

e∈Ẽint

h−1/2
e ∥ju,e∥e∥Eh∥ωe

.
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Further, the function Eh in space Sh (Ω) is characterized by the property Eh |∂Ω=0. By
the Poincaré inequality and (5.4), we have

∥Eh∥Ω≤C ∥∇Eh∥Ω≤C
∑

K∈Th

∥∇E∥K+∥∇(E−Eh)∥K ≤C
∑

K∈Th

∥∇E∥K . (5.16)

Hence, by (3.8), it follows that

I5≤C
∥∥∥α1/2∇E

∥∥∥ ∑
e∈Ẽint

√
αH

he
∥ju,e∥e .

Finally, these estimates, together with Young’s inequality and the definition of η,
eventually prove the theorem.

6. Numerical examples
In this section, we present several numerical experiments to verify the efficiency

and reliability of the a posteriori error estimator. Besides, we propose a corresponding
adaptive refinement strategy and apply it to all kinds of test problems. The standard
adaptive refinement process is depicted as follows:

Solve → Estimate → Remark → Refine.
In our numerical experiments, the adaptive refinement strategy is performed specifically
as follows:

(1) Solve PPIFE numerical solution u
(i)
τ on a given polygonal mesh T i

h ,

(2) Estimate the error indicator ηiK for each element defined in (3.1),

(3) Mark the elements to be refined, and then select into a ”marked” set T̂ i
h such that,

for a given parameter ϑ=0.5, ∑
K̂∈T̂ i

h

η2
K̂
≥ϑ

∑
K∈T i

h

η2K ,

(4) Refine each element K̂ ∈T̂ i
h to get a new mesh T i+1

h ,

(5) Repeat steps (1)-(4) until the preset conditions are met.

Our main goal is to test the performance of the estimator and the correspond-
ing adaptive refinement strategy for different jump ratios or interface geometries. For
the goal, we will first consider solving the dual thermal conductivity problem [24, 40]
with a circular interface at different jump ratios. We then chose an interface problem
with a flower-like interface [41] to test the applicability of the estimator at a moderate
jump ratio. We refer to the MATLAB-based finite element package iFEM [42] for the
simulations.

6.1. Example 1. A circular interface Γ divides the domain Ω=[−1,1]× [−1,1]
into separate regions

Ω+=

{
(x1,x2) :

√
x21+x

2
2>r0

}
and Ω−=

{
(x1,x2) :

√
x21+x

2
2≤ r0

}
,

where r0=π/6.28. The solution of (2.1)-(2.3) is given by

u(x)=


1

β−

(
x21+x

2
2

)3/2
, if (x1,x2)∈Ω−,

1

β+

(
x21+x

2
2

)3/2
+

(
1

β− − 1

β+

)
r30, if (x1,x2)∈Ω+.
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The source term f is as follows:

f =−25
(
x21+x

2
2

)3/2
.

We test the performance of the estimator by comparing the convergence errors
obtained on a sequence of meshes that are either uniformly or adaptively refined start-
ing from a given 8×8 Cartesian triangular initial mesh. We solve the above problem
for two typical different jump ratios: β+/β−=100 (moderate jump) and β+/β−=104

(large jump). Figure 6.1 reports the estimated error and the error
∥∥α1/2∇(u−uτ )

∥∥
on uniformly and adaptively refined meshes for the case of the two typical different
jump ratios. As can be seen, the error and the estimator curves on the uniform and
adaptive meshes are parallel to N−1/2, where N is the total number of degrees of free-
dom. Moreover, all the errors converge toward zero as h= max

K∈Th

{hK} vanishes, and

they behave identically whatever the jump ratios are. However, in the same case, the
errors are smaller and decrease much faster on adaptive meshes. On the other hand,
we observed that the estimator gives an upper bound on the error, as predicted by
the theory. Based on these results, we can conclude that the estimator and the error∥∥α1/2∇(u−uτ )

∥∥ distribution match quite well for both the jump ratios.
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Fig. 6.1. Convergence of the error and the estimator on uniformly and adaptively refined meshes.

The adaptively generated triangulations for both different jump ratios are visualized
in Figure 6.2. Note that the adaptive meshes in the two typical jump ratios are slightly
different. Here we see that the refinement is concentrated only near the interface for
β+/β−=104. In comparison, for β+/β−=100, there is a part of the refinement that
is near the boundary. We know that the IFE methods usually have a larger error over
interface elements. When β+/β−=100, however, we observe that the error is larger
over both interface elements and boundary elements. Therefore, there is one slight
difference. This shows that the error indicator precisely detects these errors, and the
adaptive algorithm refines accordingly. From Figures 6.3 and 6.4, we can easily see
that the adaptive refinement significantly reduces pointwise errors in the vicinity of the
interface.

6.2. Example 2. To test the applicability of our estimator, we consider here a
flower-like interface, as illustrated in Figure 6.5(a). In this example, we tested on the
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+ : - = 100:1

(a) 10th iterations with 1896 triangles;

+ : - = 10000:1

(b) 10th iterations with 928 triangles.

Fig. 6.2. Adaptive meshes

(a) Adaptive meshes (b) Uniform meshes

Fig. 6.3. The pointwise errors on uniformly and adaptively refined meshes for β+/β−=100.

same domain as in Example 6.1. The exact solution is given by

u=


(
x21+x

2
2

)2
(1+0.4sin(6arctan(x2/x1)))−0.3

β− , if (x1,x2)∈Ω−,(
x21+x

2
2

)2
(1+0.4sin(6arctan(x2/x1)))−0.3

β+
, if (x1,x2)∈Ω+.

For initial meshes, we use a 16×16 Cartesian triangular mesh. To compare the
performance of the estimator in different interface geometries, we chose a moderate
jump of β+=100 and β−=1. The adaptively generated triangulations at levels four,
eight, and twelve are depicted in Figures 6.5(b)-6.5(d). We observe that the adaptive
process correctly refines the triangles in the regions of the interface and boundary, as in
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(a) Adaptive meshes (b) Uniform meshes

Fig. 6.4. The pointwise errors on uniformly and adaptively refined meshes for β+/β−=104.

+

-

-1 0 1

x

-1

0

1

y

(a)

+ : - = 100:1

(b)

+ : - = 100:1

(c) (d)

Fig. 6.5. (a) The flower-like interface; (b) Adaptive meshes with 1320 triangles on level 4; (c)
Adaptive meshes with 4840 triangles on level 8; (d) Adaptive meshes with 16190 triangles on level 12.
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Error uniform IFEM
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(a) Adaptive meshes

Fig. 6.6. Convergence of the error and the estimator on uniformly and adaptively refined meshes.

the previous example. It shows that our error indicator captures the local distribution
of the error very well for complex interface geometry.

The convergence graphs of the error
∥∥α1/2∇(u−uτ )

∥∥ and the estimated error are
plotted on both uniform and adaptive meshes in Figure 6.6, together with the theoretical
convergence rates N−1/2. We can see that the errors on adaptive meshes are smaller
than on uniform ones. As in the previous example, the estimator gives an upper bound
on the error and they decrease at the same speed. They once again match quite well.
This example confirms that a more complicated interface can easily be considered in
this framework and that optimal convergence can equally well be done.

The numerical results presented in this section emphasize the reliability and effi-
ciency of the error estimator. Moreover, this confirms that adaptive refinement is more
efficient than uniform when solving elliptic interface problems with different interface
geometries or different jump ratios.

7. Conclusion

This paper derived and analyzed a residual-based a posteriori error estimate for
the PPIFE method applied to two-dimensional elliptic interface problems. First, we
constructed a robust and computationally simple a posterior error estimator that in-
cludes the element residual, the numerical flux jump, and the numerical solution jump.
We further demonstrated that the estimator is efficient with constants independent of
the jump of the diffusion coefficients across interfaces, the interface location, and the
mesh size. A new and direct approach based on an L2 representation of the true error
was introduced without involving the Helmholtz decomposition and has been applied to
prove that the estimator is reliable. Moreover, we proposed a more local adaptive mesh
refinement strategy based on a posterior error estimation and adopted it for the PPIFE
method to solve the interface problem. For different jump rates or interface geometries,
numerical results verify that the estimator is efficient and reliable and illustrate the
improved convergence rate in comparison to uniform mesh-refining. In future work, we
will consider residual-based a posteriori error estimates of IFE methods for parabolic
interface problems.



Y.P. CHEN, J. LU, Y. WANG, AND Y.Q. HUANG 1017

Acknowledgements. This work is supported by the National Natural Science
Foundation of China (41974133, 11971410), State Key Program of National Natural
Science Foundation of China (11931003) and Postgraduate Scientific Research Innova-
tion Project of Hunan Province (CX20210606).

REFERENCES

[1] A. Hansbo and P. Hansbo, An unfitted finite element method based on Nitsche’s method for elliptic
interface problems, Comput. Meth. Appl. Mech. Eng., 191(47-48):5537–5552, 2002. 1

[2] C. Bernardi and R. Verfürth, Adaptive finite element methods for elliptic equations with non-smooth
coefficients, Numer. Math., 85(4):579–608, 2000. 1

[3] E. Haber and U.M. Ascher, Fast finite volume simulation of 3D electromagnetic problems with
highly discontinuous coefficients, SIAM J. Sci. Comput., 22(6):1943–1961, 2001. 1

[4] Y. Efendiev and T. Hou, Multiscale finite element methods for porous media flows and their appli-
cations, Appl. Numer. Math., 57(5-7):577–596, 2007. 1
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