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ON THE GLOBAL WELL-POSEDNESS AND OPTIMAL LARGE-TIME
BEHAVIOR OF STRONG SOLUTION FOR A MULTI-DIMENSIONAL
TWO-FLUID PLASMA MODEL*

FUYI XUt AND NINGNING GAOf

Abstract. This article is concerned with the Cauchy problem to a multi-dimensional two-fluid
plasma model in critical functional framework which is not related to the energy space. When the
initial data are close to a stable equilibrium state in the sense of suitable LP-type Besov norms, the
global well-posedness for the multi-dimensional system is shown. As a consequence, one may exhibit
the unique global solution for a class of large highly oscillating initial velocities in physical dimensions
N =2,3. Furthermore, based on refined time weighted inequalities in the Fourier spaces, we also
establish optimal large-time behavior for the constructed global solutions under a mild additional
decay assumption involving only the low frequencies of the initial data.
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1. Introduction and main results
In this paper, we consider the following multi-dimensional two-fluid plasma model,
namely the bipolar compressible Navier-Stokes-Poisson system in Ry x R™:

Oyp1 +div(prur) =0,

Ot(prur) +div(prur @uq) + VP (p1) = p1 Vo + p1 Aug + peVdivus,

Orp2 +div(paug) =0, (1.1)
O¢(pauz) +div(paus @uz) + VP (p2) = —p2 Vo + 1 Aug + o Vdivug,
AbAG=p1—pa, \;c1|ii>noo¢(x) =0

subject to the initial data

(p1,u1,p2,u2,0)|t=0 = (p1,0,U1,0,P2,0,U2,0,P0)(x), xERN, (1.2)

Here p;(t,z) denotes the density, u;(¢,z) stands for the velocity field, P;(¢,z) is pressure,
and ¢ is the electrostatic potential. The constant N stands for the space dimension
with N >2. The viscosity coefficients p; and ps satisfy the usual physical conditions
w1 >0, py+2p9>0. Ap >0 presents the Debye length, and we can take A\p =1 without
loss of generality. From a physical point of view, the motion of the ion-dust plasma,
the self-gravitational viscous gaseous stars and the charged particles in semiconductor
devices can be governed by the macroscopic fluid equation such as the compressible
Euler equation and the compressible Navier-Stokes equation under the self-consistent
electromagnetic fields. However, in some semiconductor devices and plasmas, the Lorenz
force caused by magnetic field is relatively small and can be neglected in some sense, so
that it is appropriate for us to consider the effect of the electric field alone. In general,
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1020 WELL-POSEDNESS AND LARGE-TIME BEHAVIOR OF THE PLASMA MODEL

the bipolar Navier-Stokes-Poisson system (1.1) can be used to model the transport of
charged particles, for instance, holes and electrons in semiconductor devices, and ions
and electrons in plasmas under the influence of electrostatic force governed by the self-
consistent Poisson equation. Moreover, when we only focus on the dynamics of one
particle in semiconductor devices and plasmas, system (1.1) reduces to the unipolar
Navier-Stokes-Poisson system. More details on the compressible Navier-Stokes-Poisson
system can be found in, e.g. [13,22] and references therein.

In recent years, there have been a great number of mathematical studies about the
compressible Navier-Stokes-Poisson equations. In what follows, we only recall some of
them related to our interest. The global existence and L?-decay rates of the smooth so-
lution of the initial value problem for the unipolar compressible Navier-Stokes-Poisson
system in R? are proved in [19,34]. Wang [28] obtained the optimal asymptotic de-
cay rates of solutions just by pure energy estimates. The global existence and optimal
L?-decay rates of solutions for the compressible unipolar Navier-Stokes-Poisson system
with external force are discussed in [35]. The point-wise estimates of the smooth solu-
tions for the three-dimensional unipolar isentropic compressible Navier-Stokes-Poisson
equation are obtained in [25]. Large-time behavior of the spherically symmetric Navier-
Stokes-Poisson system with degenerate viscosity coeflicients and the vacuum in the
three dimensions is investigated in [33]. Hao and Li [17] proved the global existence and
uniqueness of strong solutions for the unipolar isentropic compressible Navier-Stokes-
Poisson equation with three and higher dimensions in hybrid Besov spaces. Zheng [32]
removed the extra-assumptions on the velocity from [17] and extended the global exis-
tence result to the critical LP framework by using the arguments in [4,7,10]. Chikami
and Danchin [8] further improved the known result in [32] and established the unique
global solvability and time decay rates in any dimension N > 2 for small perturbations of
a linearly stable constant state. Bie et al. [2], Shi and Xu [24] also obtained optimal time
decay rates in critical L? framework, respectively. The first author and Li [30] proved
the unique global solvability of multi-dimensional compressible Navier-Stokes-Poisson
model with capillarity effect when the initial data are close to a stable equilibrium state
in critical Besov spaces.

For the more complicated bipolar Navier-Stokes-Poisson system (1.1), there are very
few results due to the interplay of two particles which counteracts the influence of electric
field. Li et al. [20], Wang and Xu [27] obtained the global existence and optimal decay
rates of classical solution around a constant state for the bipolar compressible Navier-
Stokes-Poisson system by a detailed analysis of Green’s function to the corresponding
linearized equations in R®. Zhao and Li [36] showed the global existence and optimal
L2-decay rate of solutions for the compressible bipolar Navier-Stokes-Poisson system
with external force. Wu and Wang [26] further investigated the pointwise estimates
for the isentropic compressible bipolar Navier-Stokes-Poisson system in dimension three
and other odd dimensions N >5. Lin et al. [21] constructed the global well-posedness
of strong solutions to system (1.1) with the initial data close to an equilibrium state
in Besov spaces in dimensions N >3. Wu, Zhang and Zhang [29] showed the global
existence and time decay rates for the 3D bipolar compressible Navier-Stokes-Poisson
system with unequal viscosities. Finally, we also mention that there are some studies
about the asymptotic stability of nonlinear waves such as the viscous shock wave, the
rarefaction wave, the contact discontinuity and stationary wave and their combinations
to system (1.1), for example, we refer to [15,16,31] and some references therein.

Here, it should be pointed out that the existing results mentioned above including
the global existence and large-time behavior of solution to system (1.1) are mainly based
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on L?-framework and the dimensions of spaces are only limited to N >3. However, to
our knowledge, so far there are few results on the global existence and large-time behav-
ior to the model in LP-framework. Therefore, in this paper, we shall investigate some
mathematical properties of system (1.1) in critical LP-framework. Let us emphasize
that this framework allows us to construct global solutions for highly oscillating initial
velocities in larger spaces in physical dimensions N =2,3. At this stage, let us recall the
scaling analysis of system (1.1) to guess which spaces may be critical. One can check
that if (p1,u1, p2,usz, @) solves (1.1), so does (p1x, Uax,P1x, U2x, Px) Where:

pu(t,x):pl()\zt,)\x), ul)\(t,:c):)\ul()\zt,)\a:),
pox(t,) = pa (N2, M), uax(t,2) = Mua (N2t \x), (1.3)
oa(t,x) =A"2p(\’t, \x)

provided that the pressure laws P;(i=1,2) have been changed into A?P; for all A > 0.
Due to the mixed hyperbolic-parabolic property of system (1.1), the system has to be
handled differently in the low and high frequencies respectively. Roughly speaking,
the first order terms predominate in low frequencies, so that system (1.1) has to be
treated by means of hyperbolic energy methods, which implies that we must treat the
low frequencies regime only in spaces constructed on L?, as it is classical that hyperbolic
systems are ill-posed in general LP spaces. In contrast, in the high frequencies, a LP
approach may be used. The main aim of this article is to address the global existence
and optimal large-time behavior of strong solution to the Cauchy problem (1.1)-(1.2) in
critical LP-framework. More importantly, our result allows us to cover any dimension
N>2.
Our first main result on global well-posedness then reads as follows.

THEOREM 1.1. Let N >2, and the p satisfy
. 2N .. .
2<p<min{4, m}, additionally, p#4, if N =2. (1.4)

Assume that P{(p)>0, Pj(p)>0 for p>0. There exists a small enough constant ag
such that if

d
Xo =ef||(01,0702,0)||£. x oyl ,0,u2,0) | - + [ (ex0,c2,0) 1" x4+ [ (u1,0,u2,0) 1" x
32?1 32?1 Bp{)l szy)l

<ty

with ¢1,0=p1,0— P, C2,0=p2,0— P, then the Cauchy problem (1.1)-(1.2) admits a unique
global solution (c1,u1,co,u2) satisfying that for all t >0,

where
def, ¢ ¢ h
X(@) =N(er,e)ll” oo Fllunue)lll oy, +llen,e]”
Lz (B ) Ly (B2 ) Ly (B,
i u)® v Flllene)l® x Flluu)® N,
LEO(B:1 ) Lt(B2,1) Lt(B2,1 )
Hierel” oy )l (16)

t\Pp1 tPp1
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Our second main result on the optimal large-time behavior of strong solution is
stated as follows.

THEOREM 1.2. Let (c1,0,u1,0,C2,0,u2,0) fulfill the assumptions of Theorem 1.1,
(c1,u1,c0,u2) be the corresponding global solution to the Cauchy problem (1.1)-(1.2),
and set (T)=:v/1+72 and a:51+%+%fs for sufficiently small € >0. Let the real
number s, satisfy

N
17§<81§SO (17)

with so=: % — % There exists a positive constant ¢ such that if

D(0)=:[I(A™ (pr,0+ P20 —2p), ur,0 +u2,0,A7 (p1,0— p2,0): U1 0 —u2,0)||f~9;sl <e,
then we have for all t >0

D(t) S (D(O) +[(V(p1,0+p2,0 —2p),u1,0 +u2,0,V(p1,0— p2,0),U1,0 —U2,0)||h‘ ﬂ,l),
B P

s
which implies that

stsp )
) sy,)

s+sq ¢
sup_ (115 (enea)lf e gy +17)
s€le—s1, ¥ +1] t 21

HI el FI )l s (T V)l

=B =B L(B)
SD(0)+[[(V(p1,0+ p2,0 — 25),u1,0 + 12,0, V(p1,0 — p2,0), 11,0 —u2,0)||" & ;- (1.9)
Bzfl
Here
s+sq _
Dt)= s ()T (o1t p2 2,01~ p2)f
56[6781,%+1] 21
stsg o _
) T2 (un Fug,ug —ug)|l, )+||<T> (p1+p2—20.p1—p2)|"  ~
21 L (BF))
) (ur +ugur —ug) | w T (V(ur+u2), Vug —u2)) [
Ly(BS ) L (B)

We would like to give some comments on our main results.

REMARK 1.1. Compared with [21], in Theorem 1.1, the regularity indices for the high
frequency part of u1p and ugy may be negative. Especially, this allows us to obtain the
global well-posedness of system (1.1) for the highly oscillating initial velocities u1o and
ugg. For example, let

. T . /T
u10(z):551n(?11)¢(95)a um(x)::sm(g—;w(x), $(x) € S(RY).
Thus for any ¢; >0(i=1,2)
h -4 h -4
l|lw1o]| N <Ce; ", |luoll v <Ce, " for p>N.

p,1 Bp,1

Hence such data with small enough ;(i=1,2) generate global unique solutions in di-
mension N =2,3.



FUYI XU AND NINGNING GAO 1023

REMARK 1.2. In Theorems 1.1 and 1.2, we obtain the global well-posedness and
optimal time decay rates for multi-dimensional system (1.1) in critical LP-framework,
respectively. Additionally, in Theorem 1.2, the regularity index s can take both nega-
tive and nonnegative values, rather than only nonnegative integers, which extends the
classical decay results in high Sobolev regularity in [20, 26, 27].

REMARK 1.3. It should be emphasized here that, in Theorems 1.1 and 1.2, our
conclusions hold in critical regularity framework and the dimensions of spaces are more
extensive and are not limited to N =3.

As a consequence of Theorem 1.2, we can show the following decay rates of L? norm
of (c1,u1,c2,u2).

COROLLARY 1.1.  The solution (c1,uy,c,us) constructed in Theorem 1.2 fulfills

s < h _s¥siHl N
A% (er,e2) e S { D(0) +[[(Vn1,0,w1,0, Viz,0,w2,0)[|” ) ) (7)™ 2 lf—81—1<8§;,
Bpl?l
s h _sts1 N
A% s u2)lle S (DO)F | (s, n0 Vs gno)|® ) )5 if—sa << 4,
B:l

where the fractional derivative operator A* is defined by Au=: F~1(|¢|*Fu).

REMARK 1.4. In Corollary 1.1, for the three-dimensional case, taking p=2, s=0 and
s1= %, we see that the corresponding decay rates are consistent with the optimal time
decay rates in [19] for the unipolar Navier-Stokes-Poisson model and the time decay
rates in [20] for bipolar compressible Navier-Stokes-Poisson system, respectively.

Moreover, one has more L?-L" time decay rates of (c1,uy,co,us).

COROLLARY 1.2.  Let the assumptions of Theorem 1.2 be satisfied with p=2. For
2<r<oo and [ €R the corresponding solution (cy,u1,co,us) fulfills

1A er.e) e < (D) 411 (V.10 Vns 0. 5, ) r)~ 3 - F 308
BP

,1

S

1 1. N
1A (s, u2)l| e S (DO)+[(Tna0.010, Vnzowo)l|" s, ) (1)~ F ~H =94
BIJ

p,1

. 1 1 N
if 81<k‘+N(2 T)S 2+1.

Before going into the proof of the theorems, let us outline the main ideas and
difficulties in proving our main results. Due to the similarity between the compress-
ible Navier-Stokes equations and the bipolar compressible Navier-Stokes-Poisson system
(1.1), we can borrow some arguments and ideas in [4,7,10,12,18] to prove the existence
and optimal large-time behavior of strong solution for system (1.1). However, it is non-
trivial to apply directly the ideas to system (1.1) because the non-conservative structures
of the system and the presence of the nonlocal electric field V¢, coupled with the non-
linear interplay of two carriers through the electric field, ultimately bring us more new
difficulties in our analysis. First, system (1.1) has no conservative structures because of
the presence of the terms p; V¢ and pa V¢ in the two momentum equations, which leads
to the essential difficulty in the bipolar case. To get around this difficulty, we consider a
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new system (3.2) with the new variables (p1 + p2,u1 +ug, p1 — p2,u1 —ug) which is equiv-
alent to the original system (1.1). Here, the new system has some good mathematical
structures, for instance, the partial system including the variables p; +p2 and uq 4 us
is conservative. Hence, it is possible to help us to obtain some desired estimates in
our analysis. Second, the nonlocal term V(—A)71(p1 —p2) (that is, V(=A)"(c; —c2)

n (3.2)) arising from the lower order electrostatic potentlal ¢ plays a bad role in the
low frequencies. Indeed, we observe that the term |£|~! appearing in Go1 and Gog of

G(&,t) in [27] is singular and causes some difficulty in low frequencies, which leads us
to not getting the estimates of @(5 ,t) like the heat kernel and also prevents us from
dealing with two-dimensional case (see [32]). Obviously, the bad term |¢|7! exactly
comes from the symbol of the nonlocal term V(—A)~!(c; —¢2). In order to overcome
the difficulty, we notice an important fact that V(—A)~!(c; — ¢2) should have the same
regularity as A(uj; —us) in (3.2), which induces us to introduce two new unknowns
a;=A"1(c;+¢2) and ap=A"1(c; —c2) and then change system (3.2) into (3.7) with-
out the pseudo-differential operator of order —1 in the linear part of the momentum
equations. Then, we can present an explicit derivation of the Fourier transform of
Green’s matrix G(z,t) corresponding to the linearized system of (3.7) and then carry
out its spectral analysis. In particular, we can exhibit that G(z,t) behaves like the
heat kernel in the low frequencies, which plays a key role in obtaining the global priori
estimates and optimal large-time behavior. In the high frequencies, in order to cover
more general values of the integration parameter p, we need to exploit the damping
effects of the densities and parabolic properties of the velocities, respectively. For this
purpose, as in [18], we introduce two suitable effective velocity fields (named viscous ef-
fective flux in Hoff’s work [14]) ¢;=: V(- A)_l(éni —divw; ) (i=1,2) with the variables
N1 =c1+C2,No =01 — Co,w1 =U1 + Uz,ws =u; —Uz. Then we easily obtain two standard
heat equations for the variables e; and ey with some low order terms and two transport
equations for the variables n; and no with damping terms:

2

3tn1+in1 =—dive; — (n1+n2> -div(wl +W2) _ (n1 —TLQ) ~div(w1 —w2>
v D) B 5 5

() () () o ()
2

atn2+in2:—dive2— (n1+n2) -div(w1+w2) n (n1 —nz) ~div(w1 —wg)
v 2 B 5 5

() W) (152) 5 (57

Noticing that, different from the standard barotropic compressible Navier-Stokes equa-
tions, there are two convection terms (“’1;““2) -V(’“;’"?) and (%) V(%)

which easily lose one derivative for functions n; and ny. To deal with them, we need to
take full advantage of the mathematical structures which can help us tackle this prob-
lem. Finally, we investigate how global strong solution constructed above looks like for
large time. Our main ideas are based on refined time-weighted energy inequalities in
the Fourier spaces. In the low frequency parts, by making good use of the decay esti-
mates to the Fourier transform of Green’s function, it is possible to adapt the standard
Duhamel’s principle handling those nonlinear terms. With the aid of the low and high
frequency decomposition and the nonclassical product estimates in Besov spaces, one
can obtain the desired estimates. In the high frequency parts, we can deal with the

and
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decay estimates of the solutions using a similar method as that in the proof for global
existence in Section 5 together with elaborate nonlinear estimates. Furthermore, in
order to close the estimate from time-weighted energy functional, we also exploit some
decay estimates with gain of regularity for the high frequencies of velocity fields. The
analysis strongly relies on the parabolic maximal regularity for the Lamé semi-group
(that is the same as for the heat semi-group, see Remark 2.1).

The rest of the paper unfolds as follows. In the next section, we recall some basic
facts about Littlewood-Paley decomposition, Besov spaces and some useful lemmas. In
Section 3, we rewrite the original system (1.1)-(1.2) into a new system. Section 4 is
devoted to giving the spectral analysis of the semigroup of the linearized system. Then,
we shall prove Theorems 1.1 and 1.2 in Sections 5 and 6, respectively.

Notations. We assume C be a positive generic constant throughout this paper that
may vary at different places and denote A<CB by A< B. We shall also need the
notations

Z‘:;E A,z and 2 =:2—2% for some ko €Z.
J<ko

2], =: 29%|A 2|2 and 2|, =: 27%|A;2|| 12, for some ko € Z.
2,1 2,1
© o J<ko C o iZko

Noting the small overlap between low and high frequencies, we have

125, Slally,  and 12"l S lelly,

2. Littlewood-Paley theory and some lemmas

In this section, we first introduce some notations and basic theories about the
Littlewood-Paley decomposition, Besov spaces, then we also list some inequalities, which
will be used in Sections 5-6.

First, let S(RY) be the Schwartz class of rapidly decreasing functions. Given f¢&

S(RY), its Fourier transform Ff = fis defined by
fie)= [ ey

Let (x,®) be a couple of smooth functions valued in [0,1] such that x is supported in
the ball {¢€RY: [£[< 3}, ¢ is supported in the shell {E€RY: 2 <|¢[< 8} (&)=
x(£/2) = x(§) and

XE+D e i) =1for V €eRY, D p(277¢)=1 for V ¢eRV\ {0}.

j>0 JEZ
The homogeneous frequency localization operators Aj and Sj are defined by
AjfEF @ 7)Ff), Sif2 Y Alf for jEZ.
q<j—1

We denote the space Sj(RYN) by the dual space of S'(RN)={feS(RN): D*f(0)=
0,where « is multi-index}, it also can be identified by the quotient space of S'(RY)/P
with the polynomial space P. The formal equality

F=>_Af

JEZL
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holds true for f €S (RY) and is called the homogeneous Littlewood-Paley decomposi-
tion. One easily verifies that with our choice of ¢,

AjA,f=0 if |j—q|>2 and A;(S,_1fAf)=0 if |j—q|>5.
Now let us show the definitions of the homogeneous Besov spaces.

DEFINITION 2.1. Let S’ be the space of all tempered distributions. For s€R, 1<p<oo,
we define the homogeneous Besov space By, | to be

By = {feS;L: 1Al s <°O}

with

S,’I:{fes' :ZAjfzfeS'} and | fllg; =D 2"°14;f L.

jez jEz

DEFINITION 2.2. Let s€R,(r,p,p) €[1,+0cc]® and T €(0,+00]. We say then that
feLli(By,), if

H2qSHAqf||LP

”fHL‘}(B;JJ 2 am <+o00.

Here, we introduce the Besov-Chemin-Lerner space E’}(B;T) which is initiated in [6].

DEFINITION 2.3. Let s< % (respectively s€R), (r,p,p) €[1,+00]® and T € (0, +oc].
We define f%(B;r) as the completion of C([0,T);S}) by the norm

25 A; F ()l e 0.7:L7)

A
Iz s )= P

with the usual change if r = oo.
Obviously, ilT(Bgl) = L%«(B;’l). By a direct application of Minkowski’s inequality,
we have the following relations between these spaces

L’%(B;J)‘—)IN/’}(B;’,) it r>p, IN/’%(B;7T)<—>L;(B;77) it p>r.

In what follows, some properties of the Besov spaces are listed.

LEMMA 2.1 (See [1]).
(1) For any p€ [1,00] we have the continuous embedding

0 » -0
Bp71 — L (—>Bp7oo.

1 1

. . s—N
2) If seR, 1<p;1<p2<oo and1<r;<ry<oo, then B; (_>Bs AT
p2,72

p1,71

LN

(3) The space B’ is continuously embedded in the set of bounded continuous functions
(going to 0 at infinity if p<oo).

(4) For 1<p,ry,rq9,7 <00, 01 # 09 and € (0,1), then

-0
70 ggesvca-ses SO 17
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LEMMA 2.2 (See [1]).  For all 1<r,p,p1,p2 <+00, there exists a positive universal
constant such that

1905, SIFlelgllp, +lale=llflp, o if s>0;

. N
||f9|le+527%5||f|\3;}r||9||gggm’ if S182< and  s1+s2>0;
p,r
N
<l - - .
Ifallag, S1Slsy lallx o lol<

1£lsg, SIf0spalgllsg o if s €(=N/2,N/2.

The basic tool of the paradifferential calculus is Bony’s decomposition [3]. Formally,
the product of two tempered distributions u and v may be decomposed into

ww=T,v+Tyu+ R(u,v)
with
TuU:ZS’j,luAjv, R(u,v):ZAjuAjv, Ajv: Z Aj/v.
JEL JEZ li—3"1<1

As a consequence, the estimates for the paraproduct and remainder operators can be
given by

PROPOSITION 2.1 (See [18]). Let N>2, s€R and 2<p<min(4,2), we have

1591, g3, SO sz

In particular, for seR, m >0, we also have

14 R
Il oy - <CIFN 2 a9l

2,1 p,1

PROPOSITION 2.2 (See [18]). Let N >2, s>17min(%,§) and 1 <p<4, we have

IR U9

R SCHfHBﬁ;l lgllz: -

LEMMA 2.3 (See [8,9]).
(i) Let s>0, 1<p,r<oco and uEB;)TﬁL‘X’. IfFer[S]H’OO(RN) with F(0)=0, then

oc
F(u) € B, . Moreover, there exists a function of one variable Cy depending only on s

and F, and such that

1E @) g5 < Colllullze=)l[u]

By,
. LN N
(ii) Let s> —Nmin (1 17%) and w€ By ;N B ’1 and

o) 1, we have F(u) GB;JOB

p,

1 (w)]

5;, < Co(L+|lull 2 )lul

p,1

e .
Bp,1
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PROPOSITION 2.3 (See [12]). Let the real numbers o1, o2, p1 and ps satisfy

N N 1 1
o1+02>0, 01<—, 03<—, 01203, —+—<1,
b1 D2 p1 P2
then
1 1 1 o
con || F|l o . ith == —4+— 2L
Ifollags SIFlsgy Nollgge, with —=—+——%
Let the exponents 0 >0 and 1<p1,p2,q < oo satisfy
N N N N 1 1 1
—+——N<o<min(—,—) with f:—+——£,
P11 P2 P1 P2 g p1 p2 N

then

£,z SN Fllsg, ol s .-

PROPOSITION 2.4 (See [12]). Let qo €Z, and denote S’qouéue and for any s € R, there
exists a universal integer Ny such that for any 2<p<4 and o >0, then

o 4o <Ol g + 800wl o 10"l e
and

Huhvllfg;-;g <C(lu" | g +1Sa0+not" o) 10l o,
with so= 27 — % and p% = % — %, and C' depending only on ko, N and o.

The following Bernstein inequality and Bernstein-like inequality will be frequently
used.

LEMMA 2.4 (See [5]). Let 1<p<qg<-+oco. Assume that f€ LP(RY), then for any
v € (NU{0})N, there exist constants C1, Co independent of f, j such that

107 fllg < CL2ZMHING=D| 7|1, for suppf C {|¢] < Ag27},

||f||p§022‘j'”"s‘u1|>|||8‘3f||p for suppf C {427 <[¢] < A,27}.
Bl=lv

LEMMA 2.5 (See [11]).  If suppFfCEERN :r A< €| <ma), then there exists ¢ de-
pending only on N,r1 and ro so that for all 1 <p< oo,

() [ APz =) [ VIEIP o= [ AP

We shall also use the following important commutator estimates in the proof of our
main results.

LEMMA 2.6 (See [1]). Let 1<p,p1 <oo, 1<r<oo and o €R. There exists a constant
C >0 depending only on o such that for all g€ Z, we have

A . .. N N .. N N
I[v-V.00AJall e < Ce2 9 Vo] x a5, L if—min(—, =) <o <1+min(—,—)
BP1 p.1 p1 p pP1r P

P15l
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and

. N N N
Ilo-V.Agals <Ce,2 Vol »  lallg . if —min(—,~)<o<l+—,
Byt o0 Pl b1 p

P1,00

where the commutator [-,-] is defined by [f,g]=fg—gf and (¢;);jcz denotes a sequence
such that 3, czcq<1.

We also recall some maximal regularity properties for the heat equation.

PROPOSITION 2.5 (See [1]).  Assume u>0, o €R,(p,r) € [1,00]? and 1< py < p; <oo.
Let u satisfy

Oyu— pAu = f,
u |t=0: ug-

Then for all T >0 the following a priori estimate is fulfilled

1 1
1 < ‘ 19
ol govay Slvollsg oA, Looarg, -

REMARK 2.1. The solutions to the following Lamé system
Opu— pAu— (A +p)Vdive = f,
u|t=0 = Uo,
also fulfill the above inequality, whenever >0 and A+ 24> 0.
Finally, we give several important inequalities to conclude this section.
LEMMA 2.7 (See [1]). For all 0 >0, there exists a positive constant C, such that
supZ(Tlt%)”e*COQth <C,.
>0
qE€L
LEMMA 2.8 (See [23]). Let r1,m9 >0 satisfy max{ry,ro}>1. Then

t
/ (L4t —7) " (147)""2dr < C(r1,r2) (1 +-t)min{rira},
0

LEMMA 2.9 (See [12]). Let 0<11 <rg with ro>1. Then

t
/(1+t—T)*T1770(1+7)(’*r2d7gcm,m)(utr“.
0

3. Reformulation of the original system

First, we can assume that p=1 and +/P/(p)=c without loss of generality. Let
c¢1=p1—1,co=ps—1, then the Cauchy problem (1.1)-(1.2) rewrites as
8tc1 +diVU1 = 7diV(Clul),

VP1(1+C1)
1+c

C1

. 2 _
Orut1 — p1Aug — peVdivur +¢"Vey — Vo = o

.Aul—( —C2V01) —u1Vui,

Orca +divug = —div(cauz),

Co A _(VP2(1+CQ)

— 1 Ao — i 2 -
Orug — 1 Aug — puaVdivue +¢“Vea + Vo e L res

— CQVCQ) —u2Vua,
Aqﬁz C1 —C2,

(01,u1,62,UQ)|z:0 = (01,07U1,0,C2,07u2,0)7

(3.1)
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where
A=: 1 A+ paVdiv.

Denoting ni =:c¢1 +ca,n9 =:¢1 — Ca,w1 =: U1 +Usz,ws =: U1 —Us, which gives, equivalently

ni+ng  np—ng  witwy @ W —Ww
1= 92 ,C2 = 9 , U1 = ) ,Ug = 2

Then it follows that system (3.1) can be reformulated into the following Cauchy problem
for the new unknown (ni,wi,ns,ws, Vo)

8,577,1 +divw1 =E1 (nl,n27wlaw2)7

Btwl - ,ulAwl - /,LQVdin:[ +02Vn1 = F1 (nhng,whwg),

Oyng +divwy = Ea(ny,n2,w1,ws), (3.2)
Dswo — 11 Awsg — 1o Vdivws +c*Vng —2Vd = Fo(n1,n9,w1,ws),
Ap=ns

with initial data

(n1,w1,n2,w2, V@) |t=0 = (11,0,w1,0,M2,0,w2,0, Vo)

=:(c1,0+€2,0,U1,0+U2,0,C1,0 —C2,0,U1,0— U2,0),

where for i=1,2,

E;=: —div(nlﬁ_n2 wl—i—ng) +(—1)idiv<n1 —MNg W1 —w2)’

2 2 2 2

and

F= n1+n2 (w1+w2> (71)2» np—n2 (w1—w2>

24+ n1+no 2 24n1—no 2
ni+n ni—nm
B (2P{(1+TQ) —C2)V(n1 +TL2) _’_(_1)1(2P2/(1+T2) —CQ)V(nl —TLQ)
2—|—’I’L1—|—’I’L2 2 2—|—TL1—TL2 2

() () (25 v (252).

Next, let us decompose w; into w;="Pw;+ Qw;(i=1,2), where P and Q are the
projectors onto divergence-free and potential vector-fields, respectively (hence P =
Id+ (—A)~1Vdiv). Setting v= ju; + u2, and applying the orthogonal projectors P and
Q, respectively, to (3.2)2 and (3.2), yield that

Ogni +divQuw, = By,
9, Quy — vAQur +c*Vng = QF},

. (3.3)
ath + leQCUQ = EQ,
0rQus — VA Qus +*Vns —2VA ™ 'ny = QF,
and
8t73w1 — ulAPwl :PFl, (3 4)
athg — NIAPWQ = PFQ. ’
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Setting vy =: A~ 'divQuw, vy =: A~ divQus, here ASh=: F~1(|¢|*h) for s€R, then we
see that, from (3.3), (n1,v1,n9,vs) satisfies

Ogn1 +Avy =Eq,
Oy —vAvy — 2 Any = A HdivE,

3.5
Opng + Avg = Ey, (8:5)
Byv9 —VAVy — P Ang — 20 T ne = AT divF,
with initial data
(nl,Ul,n27U2)|t:0 = (n107U10,n20,U20)- (36)

Here we would like to point out that, different from the compressible Navier-Stokes
equations, the nonlocal term A~'n, in system (3.5) causes some trouble in low frequen-
cies in our analysis. To tackle this problem, we further introduce two new unknowns
a;=A"'n; and ag=A"1ny, and the Cauchy problem (3.5)-(3.6) is equivalent to the
following form

Oa1+v1=A"1E;,

Oyv1 —vAvy +c2Aay = A" divFy,

Oas +vo=A"1E,, (3.7)
Oyv9 —VAVy+ 2 Aas —2a0 = A div Fy,

(a1,v1,a2,v2)|t=0 = (A" 110,010, A" 1120, v20).

4. The spectral analysis of the linearized system

In this section, we shall give a detailed analysis of Green’s function and exploit
the smoothing effects of Green’s matrix in the low frequencies. To begin with, let us
consider the Cauchy problem for the corresponding linearized system of (3.7) without
outer forces, namely

Ora1 +v1 =0,
Oy — v AV +c2Aaqg =0,
Oras +v2 =0, (41)

yvs — VAV + 2 Aay —2a5 =0,

(a1701,a27?12)|t:0 = (a107U10,a20,U20)-

Then, the solution of (4.1) can be expressed as

ay ai,0
v | _ V1,0
s =G(z,t)* aso | (4.2)
V2 V2,0

where G(z,t) is Green’s matrix for system (4.1).

Now we first present an explicit derivation of the Fourier transform G (&,t) of Green’s
matrix G(x,t) in the following lemma.
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LEMMA 4.1.  The Fourier transform é(ﬁ,t) of Green’s matriz G(x,t) for the linearized
system (4.1) is given by

Arer—t_x_ e 4t Apt_ At
- Ap—A_ _i ,\+7§\,A 0 0
A_t At t _t
. v el e e 0 0
G(fat) = Soer St eApt_ At
0 0 ApelfoA e+t _etttoett
~ /\~ X /\+ X
er—t_ AperttA_er-
0 0 —e (e LRl 2) e e T
(4.3)
with
v 1 ~
)\i:_§|§|2i§\/1/2|€|4_402|§|27 Ay = —*lﬁ\zi \/V2|§|4 4(c*[€[* +2).
Proof.  Applying the Fourier transforms to (4.1); and (4.1), leads to
Ora1+01 =0,
tAl 1 - - (4.4)
0yi1 +v|€|701 — c7[¢]7a1 =0.
From (4.4), it is easy to get
Ot +v|E[20y01 — 2 |€)?Opay =0.
Further, we have
Op1 +v[E[?0p1 + ¢ |€)* 01 = (4.5)
01(€,0) =010(€),0,01(€,0) = ﬂ%ﬁm+8m%m '

It is easy to check that Ay are two roots of (4.5). Thus, we assume that the solution of
(4.5) has the form

W1 (§,1) = A(§)er O 4 B(¢)eM O, (4.6)
It follows from the initial conditions, that

_ (A F €0+ P Pano _ (A= +v[€]?) 10— P[€] a0
A(E) - )\7 _>\+ 9 B(g) - )\7 _)\+ )

which together with (4.6) implies

e/\ft _ e>\+ )\76)\7t _ )\ 6A+t
——— € a0(€) + -
A — A=Ay

01(&,t) = D10()- (4.7)

Moreover, from the first equation of (4.4), we see

¢
i€ =an(€0)+ [ e rdr
0
which together with (4.7) and the following relations Ay + Ay =—v|¢[2 A A =c2|¢[?
yields

A eA_t —)\_6>‘+t A 6>\_t _6)\+t
S v U b v v
+ 7 - - N+

a1 (&)= 010(§)- (4.8)
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Next, in the completely same way, dealing with the Fourier transforms to (4.1), and
(4.1),, we also obtain

ei_t_e Lt ot )\_ej‘—t—jx+es‘+t
'IA} 7t = ——F—|\C +2 & + = = fi} 5 49
(60 = G5 2O+ O, (49
and
;\+65\_t_5\_65\+t ei_t_€5\+t
a ,t - = = a —_— == 3 . 410
as(€,) o azo(§) o 20(§) (4.10)
Therefore, combining (4.7), (4.8), (4.9) and (4.10), we get (4.3). |

With Lemma 4.1 at hand, we shall derive the pointwise estimates for @(f ,t) in the
low frequencies, which behaves like the heat kernel.

LEMMA 4.2.  Let G(z,t) be Green’s matriz of Lemma 4.1. Given R>0, there is a
positive number ¥ such that for || <R, it holds that

|G(&.t)| < Ce 51, (4.11)
where C=C(R).
Proof.  First, recalling
v 1
L

we readily gather the following simple facts:
If |€| < %7 then both AL are two complex conjugated eigenvalues

4c2

vV, 92 . .

If |¢] =2¢, then both A+ have real double roots
v
Ay = 3 {58

If % < |¢| < Ry, then both Ay are two real eigenvalues

V. 4c? V. 4c?
= —— - << ——= _
Ae=—2le2 (1741 VQW), Clel (1w 1 VQR%),

and there is also a positive constant ¥ depending on R; such that for 0 <|¢{| < Ry, it
holds that

Re(Ay) < = ¢%, (4.12)
and

|e>\i(f)t| Se—%lélzt. (4.13)
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Now let r = % be the resonant value of |£], and choose a small positive number p. First,

for 0<[¢|<r—p, we denote b=1./4c?[¢]2—v2[¢|%, then b>0 and Ay =—¥|¢[*+bi.

Further, employing FEuler’s formula, it is easy to see

O ) T T i SL M (bt)+581n(bt)|£\ e~ Blel™
Ay — Ao b ’ Ap = Ao 2 7
Apert—_er-t ysm(bt) -%le”?
- g1t
e = feosto) — £ e

Therefore, for 0<|¢| <r—u, we have

G (6,6)],|Gr2(€,8)],|Gar (€,8)],|Gaa (€,1)] < Ce 3181, (4.14)

Next, for r—u <|¢| <r+ u, applying (4.13), we see

Agt A_t
1T <t sup efReA-FIOND) < o IE < 0TI
A=A T 02 - a
Apert A et eAt—eMt )
Ao T +le 4t <C€ 3 If‘ t
| )\+—A_ |—‘ + A — ‘ ‘ |
A e/\th—)\,e)‘ )\ t e/\ t 0
S W |<\A+A7\+\eA <Ce e,
A

Then, for r — pu<|€| <r+ p, we also have
G (&)1 Gra(€, )], Gan (6,)], | Gaa (&) < Cem 31, (4.15)

Finally, for r 4+ u <|¢| < Ry, we have

A=A =vIEPV1-r2lg[ "2 > vigf?

— )2>C—1
r+u

which implies

Ayt A_t
|%| <t sup etRe(A-F1=9)A) < 40Pt < e IE1E
A 0<s<1
Aper-t—A_er! et — et A = l€I?
< )\ e ¢ + e 4t <CeT“E‘ t7
e e E W P e
Apett—\_er-t Mt — et =
W |_\A+A7\+\eA e,
N

Hence, for r+ pu<|¢| < Ry, we also have

1G11 (6,8)],|Gra(€,8)],|Gan (€,8)], | Gan (&, )| < Cem B IEFE (4.16)

On the other hand, considering

:~|§|Qi \/u2|£\4 4(c?[¢)2+2),

we have the following facts:
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If |€] </ W}ﬂ, then both Ay are two complex conjugated eigenvalues

- v ‘ . 4(c?[€]2 +2)
A =——|€12(1 th =y ——= 1.
+ 5 I€]°(1FiS2) wi Sz v2|¢]
If €] =1/ 2“’2””7 W, then both Ay have real double roots

~ v
Ai :_§|£‘2.

If 4/ 202”1)7 Vel 2u? |€] < Ra, then both A4 are two real eigenvalues

AT AP 2N vy e e
Ae=—2lel (1)1 e )<—2lel (1w 1 VQRg),

and there is also a positive constant ¥ depending on Rg such that for 0 <|¢| < Ry, it
holds that

Re(AL) < —thl€]?,  |er© < e 2l

Using similar derivations of (4.14)-(4.16), we also deduce that

~ ~ ~ ~ 9 2
|G33(&,6)],1G34(&,0)],|Gus (€,8)],|Gaa(€,1)| < Ce™ T,
Finally, taking R=min{R;, Ry}, 9 =min{d;,92}, we conclude that (4.11) holds. This
completes the proof of Lemma 4.2. 0

Next we shall exploit the following smoothing effects of Green’s matrix G(x,t) in
the low frequencies which plays an important role in this paper.

LEMMA 4.3.  Let C be a ring centered at 0 in RN . Then there exist several positive
constants Ry,C and c such that, if suppt C AC and A< Ry, then we have

|G w2 < Ce™NH|ul L2 (4.17)

Proof. Using the Plancherel theorem and (4.11) yields that
|Gxullz2 = 1G©)aE) 2 < Clle 21 a2 < Ce N u 2.

This completes the proof of Lemma 4.3. O

To conclude this section, we shall also give the following lemma about some optimal
a priori estimates in the low frequencies for the solution to system (3.7) assuming that
FEq, F1, E5, and F5 are given.

LEMMA 4.4.  Let (ay,v1,a9,v2) be a solution of system (3.7), and mqg be any integer
number. There exists a positive constant C depending only on v,c? and mg, such that
the following inequality holds for all t>0 and 1 <r<oo

||(a171117a27112)‘|22 B’;t%) SC(”(a17077}1,07a2707UQ,O)H%;;J + H(A_lEl7A_1E27F17F2)H%%<BS‘1)> .

(4.18)
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Proof.  From (4.2) and Duhamel’s principle, the solution of system (3.7) can be
expressed as

aq ai,o A_lEl

U1 V1,0 ¢ Fl

o =G(t)* a0 —i—/o Gt—1)x A1E, dr.
V2 V2,0 Fy

Applying homogeneous frequency localization operators Aj on both sides of the equation
above yields

Ajal AjaLO A_lAjEl

R R ¢ .

23_2 =G(t)* 2{223 + /0 G(t—7)* A_AIJAF}Ez dr,
=J AR L5

Aj’l)g Ajv270 AjFQ

which together with Lemma 4.3 and Young’s inequality yields

1A ar (£), A 01 (), A jas(t), Ajua (1)) 2
Scfi*czz“H (Aja1,0,Av1,0,Aja9,0,Av90) | 12

t i . . . .
+C/ 6_022J (t=7) ||(A_lAjEl,AjF17A_1AjE2,AjF2)||L2d7—.
0

Then, taking L™ norm with respect to t gives

||( Ja17 J’UhAJa?»AJUQ)HL’“LZ

<02 (H A al o,A (%1 07A a2 0,AjU2,0)||L2-I—H(AilA]‘EhAijAilAjEz,Asz)”L%Lz).

Finally, multiplying 27¢ on both sides of the above equation, and then summing for
Jj <myg, we get (4.18). This completes the proof of Lemma 4.4. d

5. The proof of Theorem 1.1

Our goal in this section is to prove Theorem 1.1. Here, we only exploit an important
global a priori estimate for system (3.2). The proof is divided into four parts as follows.
Part 1: Low frequencies. Recall that Pw;(i=1,2) are defined by (3.4). According
to Proposition 2.5, we easily deduce that

1Pwill sy IV Pkl s ) S IPwiolly

s -|—||FHL1 1=1,2. (5.1)

oo(Bs (Bs‘

Combining (4.18) with (5.1) and then taking s= 4 —1 yield that

||(a17w1,a27w2)|\£ x oy Hll(a1,wr,a2,ws) N4
Lz (B 221 ) Lrl,(Bz?l )
Slar0,w1,0,020,w20)[% 5, +IFLR)E  x +IELE)NS  x . (52)
BQ%I L%(Bza ) L%(BZ?I )

As A=tny =a1, A" ny =as, (5.2) is equivalent to

4 4 4 14
Ism2)ll | x o Hllwnw2)ll |y Fln2)ll |y Hllwnw2)ll
L?O(BQI ) L?O( 2,1 ) t( 21> Li(BQ,l ) ( )

<H(n107n20)|| yooHllwrow2 )l o FIFLE)S | x X +||(E17E2)|| N oo
B LY(B,2 (B2

By 201 201 21 )
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Part 2: High frequencies. First, we bound Pw;(i=1,2) as follows. Thanks to
Proposition 2.5 (restricted to the high frequencies), we have

”’PWZHE LN +M1||'Pwi||h LS §||Pwi,0||h_ﬂ71+||PFi||h LN 1=1,2.
L?o Bp;l:l L%( p[,)l ) sz,)l L% B;fl

(5.4)
In what follows, we consider system (3.3) coupling the densities and the velocities in the
high frequencies. In order to decouple the densities and the velocities so that we can
exploit damping effects of n;(i=1,2), as in [18], we introduce two new effective velocity
fields ei::V(—A)_l(éni—divwi)(i:1,2). Then, according to (3.3)2 and (3.3)4, we
have

c? 1 c? 1 ? 1
01 (Qur+ S V(=8) " ) —vA(Qui+ S V(=2) "' ) = QR + S V(=A) ormy,
(5.5)
and
C2 —1 02 —1
8t(Qw2+7V(—A) ng)—VA(sz—i—;V(—A) nz)
2
:QF2+%V(—A)_latng—i—QVA_lng. (5.6)

On the other hand, thanks to the definition of e;, we may rewrite (3.3); and (3.3)3 as
the following transport systems with damping terms:

2
Oyni+ Smy = —dive; + E;, i=1,2, (5.7)
v
which together with (5.5) and (5.6) yields the following two standard heat equations:

2 4 2

Oie1 —vAe; = QF + %61 — %V(—A)_lnl + %V(—A)_lEl, (58)
2 ct = ? 1
87562—Z/A€2:QF2+;€2—(2+§)V(—A) n2+;v(_A) Es. (59)

Hence, owing to Proposition 2.5 and using the fact that V(—A)~!

Fourier multiplier of degree —1, we have

is a homogeneous

Ieve)l®  w_, +0l(VPer, Vier)|"  w

Le (B ) Ly(BS )
2
C
Shterosez o) v +II(FLE)" & +—l(er,e)|”  ~_,
B LiBr, ) ¥ Ly (B,
T (=a) (24 )V (=A) ) "
? 1 ~1 h
F SN T BT AT (5.10)

Noticin the definition of E;, from (5.7), we have

2

5‘tn1+in1 =—dive; — (n1+n2) ~div(w1+w2> _ (n1 —nz) ~div(w1 —w2>
v 2 B 5 5
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7(w1;-w2>.v(m;nz)i(wl;w?),v(m;m), (5.11)

and
2

atn2+in2:—dive2— (n1+n2) -div(wl +W2> n (ﬂl —nz) ~div(w1 —(Ug)
v 2 B 5 5

- V) () V() e

Applying the operator Aj to (5.11) and (5.12), respectively, and then adding them gives
rise to
. n1+neo 2. ni+no w1 +wo . ni+no
08, (P )+ A (R )+ (F7) VA (R
AN T e A - A S VAl
i, () - A, (P2 () [ g 4] (T E),
2 2 2 2 2
(5.13)

Taking the LP scalar product with AJ(%) for (5.13) and integrating it with respect
to time ¢, we have

. N1+ne 2 [t ni+no
1A (— >||Lp+;/0 |45 (=5 | edr

v M10+tn20 L[t witws v M1t neg
SIA (LTI ot 2 [ i A () g

¢ . ni+n . wrtw . . o e1te
+/O (18 (P72 div (S 2)) o + 1divA (B2

w1 + w2 ny+ng

+II[(

)-V,A]( )||Lp>d7. (5.14)

. N
By virtue of Lemmas 2.6 and 2.2, from the embedding B,’; = L>°, multiplying (5.14)
by 27 % and then summing up over j > jo yields

n1+neo 2 ny1 +no
I==1"_ x +—l=—=I"
Ly (BS) Y LY(B,)
n1,0+N2,0 5 er1+ex,
S S L
Ly (B)y)
n1+n2 w1+ w2
[ 3 ISy i (515)
Bpljl
Similarly, we also have
ni—mn2p
IR Sy
L?o(Bp Ll(Bpl)
n1,0 —N2,0
SI=5—1"x
BP
ny— n2 . W1 —Wa
+ldiv(Z2) " /H |2 lidiv( |, v dr. (5.16)
HEXS By 2 BN
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Then it follows from (5.15) and (5.16) that
h c? h
[(ni,n)[I" & +—[l(n1,n2)|| x
Ly(Br) ¥V LY(B}F,
§||(n1’07n2,0)||h.% +]|(divey,dives) ||h1 % / |(n1,m2)] H(dlvwl,dlvoug)H V%dﬂ
BTJxl p,1
(5.17)
which together (5.10) implies that
2
[mm2)lI" & +=l(rn)" & +lene)l” xo, +v(Vier, V)"  x_,
LgO(Bp’jl) I(B” LgO(BI}’1 ) L}(Bp{’l )
Sl (n0,m2,0)l|" & +l(e1,0,e2,0)]" 7_1+||(F1 B)" x_,
1 1 LyBr, )
P, P P,
2
+ENVEATELVEA) BT v, S lenen)t
v L%(B;l ) v Lflr(Bijl )
04 1 C4 —1 h
FIGV8) 24+ VA )
L%(Bp{’l )
t
+/ I(nnyma)ll e [[(diveon, diveon)|| x dr. (5.18)
0 Bpijl Bzfl
Due to the high frequency cut-off, we have
lene2)ll”  n_, S27%°0(V2er, V)" w_, 0 5o,
Lfl/ Bplfl ) t plfl )
and
[(V(=A)'ny, V(=A) M ng)|I* o, S27%(nm2)|” x5l
L%(BP{JI ) L% Bppil
Then, taking jo suitably large, we deduce from (5.18) that
h ¢ h h
[(nin)]® & +—=[(ne,n2)]* ~ +[(er, )|~
L;)C(Bpljl v L%( p},)l & pl?l )
+v[[(Vier, V)" ~_,
Ly(B, )
Slna0,m20)1" & +l(ex0,e20) 1" 5, +II(FLF)|" v,
B B LUBS, )
+(Ey, B)||" gz / [[(r1,m2)| 5 [(divws, divas)|| |~ dr. (5.19)
Lt(B B Pl
Noticing that w; =Pw; + Qw; =Pw; +e; — %V(—A)_lni(i =1,2), we deduce that
||(w17"~’2)“h Ny +u[|(Viwr, V)" w
(B ) L},(szfl )
S||(7’w1»7%2)||_ N +|(V2Pw, V2Pwo)|*  nx_, +l(ee)]”  ~_,
Ee(BP ) LBl ) LB )
2 .
(Ve V2e)|”  nx_, + 527 (nam)l” x +Ell(nn)|” . (5.20)
I:% Bzfl v E?O(BPT:N

il(gPp
Ly(B.)
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which together with (5.4) and (5.19) implies that

2

C
[(nm2)lI" ;ll(m,nz)l\h N Fll(ws,w) " N +)[(Vwr, Viwo) " n
L (Bl Ly (B.) LBy ) LB )
<C(||(n10,n20)\| ~ +llwro,wa o) x_, +HIFL )" x,
pl? Bppl Ll(Bppl )
(B E)|" ~ -2, /ll nn)| w ([(divers,dives) || ﬂdT)- (5.21)
D 4 .

3
t(Bp, Bp 1 Bp,1

Putting together (5.3) and (5.21), we finally get
X(t) <X )+||(F1,F2)||Z N +||(F17F2)Hh o HIELE)S ko,
Li(B ) Ly(By ) L

12

(B2 )
+ (B, E2)||" N -2 / l(n1,n2)]|| . ||(d1vw1,dlvw2)|| ~dT. (5.22)
1 Bplyjl

Part 3: Nonlinear estimates. Now, let us bound nonlinear terms in (5.22). For the
last term, thanks to Holder’s inequality, Lemmas 2.4 and 2.2, we get

t
il e an
0 P P

S lnall v [V
e pl) Ll(B pl)
<<ni€ +[Ima| " )(wze + Jwi )
< (lnal| i [l L | ”L1 i i " I
5X2(t),z:1,2. (5.23)

According to Lemmas 2.2 and 2.4, embedding B221+ <—>B ” * for all p>2,s€R and
interpolation inequality, we have

niy+na w1 +wa .
IBI" o, SIEDxo SITETR o ) <X (,i=10.
LI(Br, ) LE(BS ) LE(B) LI (B)
(5.24)
In what follows, we will bound term by term from F;(i=1,2). For simplicity, denote
ny+no ny—ns
Li(ni+n ——=— Lo(ni—mg)=——",
( ! 2) 2—|—n1—|—n2 2( ! 2) 2—|—n1—n2
2P{(2ugm) P+
L = 2= 2~ —P|(1),
3(n1+n2) Srniie ¢ = (1)

2P{(1+™572)  ,  Pi(1+™572)
2fni—ny | 14msm

L4(n1—n2): —Pll(l).

Obviously, Li,Ls, L3, Ly are smooth functions vanishing at 0. Thanks to Lemmas 2.4,
2.3 and 2.2, we infer that

w1 +w
S5O xSl s (Ve s
L P 1

LBE ) L(B) LIBY, )

Slinitnal|  x flortwef  oxy,
Loo P) 1

t (Bp,l i ( pl,)l )

||L1 (m +n2)A(

< X2(t).
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Similarly, we also obtain the corresponding estimates of other terms such as Lo(ng —
ng) A(1542), L3(ni +n2)V(™322) and Ly(ny —no)V(™5"2). Here, we omit the de-
tails.

By virtue of Lemmas 2.4 and 2.2, we get

w1 +ws w1 +ws
ey ey
LyBSy )

Slor+wall  x IVE@+en)l |
LB,y ) Li(Byh)
Sllovtwsl  xoy flortwl - xu,
Lfc pljl t pI))l )
Slon+enl® oy, Hlortenl  x,)
Lge(Byh LBl )

$ (ol o, +lortwal )
LiB ) LB

p,1
SX2(1).
Similarly,
W1 —wz2 W1 —wz
I(ES2) V2 SX0).
Ly(Bl )
Hence
IF" v, SXP(1),i=1,2. (5.25)
Ly(Br )

SN
Next, we will bound the low frequencies of E;(i=1,2) and F;(i=1,2) in L{ (B2 1).
For E;, we have

LN g

1B v, Sl(na4ne)(wr+ws)|
) Li (B2 )

LB
Using Bony’s decomposition gives
(n1+n2) (W1 +w2) = T(ny 4ny) (W1 +wa) + R((11+n2), (W1 +w2)) +Tw, 4ey) (n1 +12).

According to Propositions 2.1 and 2.2, we get

<

1T (ny 4no) (W1 +w2)||L%(B§1_1) S +n2)”Lg(Bﬁ"1)H(wl +WQ)||Lf(B§1)7
<

1T (w1 4ez) (121 +n2)HLt1(BfN;1) Sliws +W2)||L$o B;;l)ﬂ(nl +n2)HLtI(3ﬁ)’

1R((tna) @tw))ll oy SHatm2)ll o el |

Ly (B ) {(B #(Bp)

which together with the interpolation inequality yields that

1B, 5o SXWi=12 (5.26)

¢t (D2l
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To handle the first term of F;, employing Bony’s decomposition and splitting (wq +ws)
into (wy +ws)’ + (wy +ws2)", we have
Ll(nl +n2)A(w1 +w2) :TA(W1+w2)L1(n1 +Tl2) +R(A(w1 +WQ),L1(77,1 +’ﬂ2))
+ TL1 (n1+n2)A(w1 + WQ)Z JrTL1 (n1 +n2)A(w1 Jr(Ug)h.

It follows from Lemma 2.3(i), Propositions 2.1 and 2.2, that

N _

I T 4w w2y L (1 +12) + R(A(w1 +w2), L1 (n1 +n2)) ”il(B Yo
271

t

SlAi w2l o~y [[La(na+ng)] w

Li(B)Sy ) Ly (B)
Slwitwa| vy fInit+ne| o~
LB L3 (BF)

t p,1

SX3(t).

According to Lemma 2.2, we infer that
J-1

Jana 4
Iy o0 SIa(na+n2)l e o) [ Alwr +ws) ”L},(le

2
t 2,1

HTLl(n1+n2)~A(W1 +ws) |

P4
%)”wl—’—wQ” N g

Slni+nef
L Li(ByY )

(B

< X2(1).

By virtue of Proposition 2.1 and Lemma 2.3(ii), we have

h£
||TL1("1+n2)A(w1+w2) ‘|L%(B2%,171)
SILi(na4ng)ll o~y AW +w)| w
L& (Bl ) Ly (B )
5(1+”nl+n2”Lm(3%))”nl+n2‘|m(3%*1)”w1+w2HZl(B%+1)
t p,1 t p,1 t p,1
SX2(t) + X3(1).
Thus,
w1 +w
ILi(n1+n2) A(——2)°  ~ , SX2()+X3(1).
2 LEB2 )
Similarly,
|La(m1 —n2) ACE22))1E - SX20)+X3(0),
2 LI(B2 )
ni+no
||L3(”1+n2)V(T)Hil(Bg_l)§X2(’5)+X3(t)»
and
ny—n
1La(m —n2) V(=) w , SX2()+X3(1).
2 LEBA )
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witwa

To handle the term (T)V(%), employing Bony’s decomposition yields that
(wl +CU2) . V(wl +CLJ2) :T(w1+w2)V(w1 +LLJ2) +R((w1 +w2),V(w1 +w2))
+Tv(w1+w2)(w1 +QJ2).
Thanks to Proposition 2.1 and Proposition 2.2, we get

HT(w1+w2)V(w1+w2)+R((w1+w2)7V(w1+w2))||L}(B?N;1)
Sllwrtwel v [[V(witw)|| ~
Le(BS ) Ly (B)
SXA (),
T w W . a—1
1T (wr+ 2)(W1+W2)||L%(B;2?fl :
Sllwrtwel  ~ [V(wi+wa)l|  ~_,y
L3 (B L3 (B, )
<SXA(t).
Thus,
w1+ w2 w1twa, g 9
-V < X“4(t).
Il( 5 )-V( 5 )||L,%(Bﬁ’l)w (t)
Similarly,
Wi—w2, Wi W < x4
Il( 5 )-V( 5 )||L%(B§1_1)N (t).
Hence
IE] v, SXP)+X3(t),i=1,2. (5.27)
Ly (B2 )

Therefore, putting all the above estimates (5.23), (5.24), (5.25), (5.26) and (5.27) to-
gether, we conclude that

X()SX0)+X2()+X3(t). (5.28)

Part 4: Global a priori estimates. According to (5.28), for some sufficiently small
g, and applying the standard bootstrap argument, we finally obtain the following global
uniform estimates for all ¢ >0,

X (t) < X(0).

Furthermore, employing the same argument in [7,32], we can also obtain the uniqueness
of strong solution to the system. Here, we omit it. This completes the proof of Theorem
1.1.

6. The proof of Theorem 1.2

Our goal in this section is to prove Theorem 1.2. We divide it into the following
three steps, according to the three terms of the time-weighted functional D(t) (see (1.9)).
In what follows, we shall use frequently the fact that the global solution (c;,u1,c2,us)
provided by Theorem 1.1 fulfills

l(cr,e2)|l.  ~x <ex1l forall ¢>0. (6.1)
L (B)
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Step 1: Bounds for the low frequency regimes. From Lemma 4.2, we have

IFG|<Cemtlél® | i=12 |¢| <2,

where positive constants ¢y and C' depend only on jy, and F presents the Fourier

transform.
Denoting U = (A~ ny,w, A" 1ny,ws), we have

IF(GHU)(E)| < Ce= U | FUE€)] for all [¢]<27.

(6.2)

Therefore, using Parseval’s inequality and the definition of Aj, we get for all j < jo,

|GAU )12 Sem o AU ()]
Hence, multiplying by +"5°275 and then summing up on j < jo, yield that
s1+s

)llz2 St Y 20 AU )] 12
7<jo i<jo
s1+s

StTE Z Qj(ersl)efcozwt||AjU(t)||L227jSl

~

J<jo

SIT@Io Yo

= §<do

By Lemma 2.7, we thus have that for s+ s >0,

s1ts
supt™ [GU (1), < CollU (0521
>0 2,1

In addition, it is obvious for s+ s1 >0,

IGUD;, SIUE) Hé o > eI gu )IIZ o

Ji<jo

Then, setting (t) =:v1+1t2, we get

sup (1) = [|GU(t)]5, SIU Ol
tZO 2,1

Therefore, taking advantage of Duhamel’s formula, we have

b S(B)
2,1

(A ng w1, A g, wo)

+/Ot< )t

PROPOSITION 6.1.  If p and sy fulfill (1.4) and (1.7), respectively, we have

/0t< )t

where X (t) and D(t) have been defined in (1.6) and (1.9), respectively.

(/\_1711,0,0-21,07/\_1712,07602,0)||f_t-5,;s1

( 1E1; 1E27F1aF2)(T)||ZB;2dT‘

AT B AT B PR (1) dr S (0777 (D20 + X2(0)),

(6.5)

(6.6)
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Proof. Using similar derivations of Lemmas of 3.1-3.3 in [24], we can complete the
proof of Proposition 6.1. Here, we omit it. O

Therefore, combining (6.6) with (6.5) and the fact that —s; <s< % 41, we deduce

s1+s
2

1A 1, A g, wr,w2) || %, < D(0)+ D2(£)+ X2(t). (6.7)

{t)

Step 2: Decay estimates for the high frequencies of (Vni,Vng,wi,ws). This
step is devoted to bounding the second and third terms of D(t). Applying the operator
A; to (3.4), and multiplying them with A;Pw;|A;Pw;[P~2 and then integrating over
RN , we deduce that

1d, . . . o . . .
%HAJ‘Pwinip7‘LL1/AAJ"P(JJZ‘|A]"PCUZ“I7 zAijidz:/|Aiji|p 2AijiAjFidac.
According to Lemma 2.5, there exists a positive constant ¢; such that
d . 23 A 1A
G183 Pwill e +espa 27| A Pwill e S I A  Eill e (6.8)

Now, recall that

2
C
8tn1 +—n;= —diV€1 +E1,
v

2 4 2
Oer —vAe; = —V(=A)1divEF + —e; — —
v
2
3tn2 + —MNg = 7diV€2 +E2,
v
2 4 2
Oreg —vAey =—V(=A)1divFy + —ey — (24 —
v v

By a similar derivation in (6.8), for e;(:=1,2), we get

d . . . .
7 1(Ajer, Ajea)llLe +csv2¥ [[(Ajer, Ajes)|| e

c2 A ) o .
<IIf( 3617Ajez)+§(fA)’1VAjm +(2+;)(7A)’1VAJ'H2HLP
+ || (—V(—A)_ldiVAjFl, —V(—A)_ldiVAng)HLP
2
C . .
+7||(V(—A)—lAjEl,V(—A)—lAjEz)||Lp. (6.9)

witwa

Following similar derivations of (5.14) and (5.16), and denoting Ry =:[(**5*2)-
V,VA;|(mfm2), Ry =: [(£1542) -V, VA;](™5"2), we deduce that

d . oni+n c? voonitn
CIVA (s + ST A2 1
1. .. wtw n+n ni+n LWt w
(AT L VA () o+ VA (P 572) - div(H572)) e
..o e1te
+C2Y || Ay (= Z)HLP+||R1||LP7 (6.10)
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and
d . N1—Nog c? LN
e A vl - A" P
CIVA () e+ S IVA ()]
1, .. w—w . oni—n . ny—n LW —w
S ldiv( 52 e [ VA () 1+ VA, () div( 252 1
. . e e
+C2IA (2 o+ | Rallao (6.11)
Summing up (6.10) to (6.11) yields that

d . . c? . .
S (VAL VA ) |[Lr + — (VA 11,V Ajno) | e

S27)|(Ajer, Ajea)ll e+ (R, Ro) 2o + S I(diver, dives)[| < [|(V A1,V Ana) e

+[[(VA;(nidivw: ), VA; (nadives)) || o (6.12)

Adding up that inequality (multiplied by ne, for n>0) to (6.8) and (6.9), we conclude
that

(1A P, AP+ 1 (Ager, Byen) -+ nes (VA 1, Vgma) 20

Feap1 22| (A Pwy, Ay Puws)|| e + csv2% || (A ey, A .eg)nmmcbén(m‘nl,vAjnz)uLp

2 .
S NV(-8) A B (A A B+ 1A Fr A )+ (A1, Ayea)
4 . 4 . . . .
+%(—A)flv%nl+(2+§)(—A)71VAJ‘”2||LP+776s22j||(Aj€1,Aj€2)||Lv

e (1R Rl v livan) [0V A1,V A
+ H(VAJ-(nldivwl),VAj(ngdivwg))HLp).
As (—=A)~1! is a homogeneous Fourier multiplier of degree —2, for j > jo—1, we get
I((=2) "' VA 1, (=8) T VA na)l|e S277 [ (VAjn1, VA ) | 10
S27%0(VAm1, VA na)|| o

Choosing n small enough, and j, suitably large, we conclude that there exists a constant
co >0 such that for all j > jo—1,

(1A 7Pur AP+ Ager, Byen) -+ nea (VA m, T gma)llzr)
o (104 Pwr, A Pwn) o + | (Ager, Ajes) o +nesll (VA1 VA ) 10 )
SIATTAGEL AT AGES) 1o+ 1(A Py, A )| o +mes (||(R1,R2)HLp
+%||(divw1,divw2)||Loo [(VA;11, VA no) || e+ (VA (nidivwr ), VA (nadives)) HLp).

Then integrating in time ¢ yields that
GCOt || ((Aﬂ)wl,Aijg), (Ajel,Aj€2)7 (VAjnl,VAjng)) (t) ||LP

¢
||((A Pwl,A Puws), ( €1, ]62> (VA nl,VA ng))(O)HLp —l—/ e7S;(T)dr
0
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with S; = ZZ 1 S% where

SE=(AT' A ELATYA By |e, S2=1([(AjFL A Byl Lo, S5 =:||(R1,Ra)| Lo,

St =t ||(divwr, divws) || L [[(VAjn1, VA ns)| s,
and
Sg’ =:|| (VAj (nldivwl),VAj (nzdiV(Ug)) le.
On the other hand, due to

2

wi:ei——V(—A)_lni—FPwi, 7::].,27

v

we have j>jo—1

1(Ajwr,Ajws) | e
SI(Ajer, Ajea)ll Lo +[[(A;Pwi, AjPws)| e +272°|(A;Vny, A; Vi) | Lo

Therefore, we arrive for all j>jo—1 and t>0 at
(A jwr, A jwn, VA n1, VA n2) (8) | £

t
Sefcot||(Aj(xﬂ7AjW27vAjn1,vAjn2)(O)HLP +/ eicO(tiT)Sj (T)dT'
0

Multiplying both sides by <t>a2(%71)j, taking the supremum on [0,7], and summing up
over j = jo,

KO (man2)®  w +10* @rw)l  x

L (By) L (B )
t
5||(?’L1’0,1’L2,0)||h' N T ||(w1’o,w2 0 h N _, T Z sup ( t a/ eco(r_t)Q(%_l)ij(T)dT).
B2, Bp ] S5 0st<T 0

(6.13)

In order to bound the sum, for 0 <¢ <2, and taking advantage of Lemmas 2.6 and 2.2,
we get

¢ .
JZ sup ((6)° /O e =025 =i g, (1) ar)

0<t<L2
/22<——1>J5
Jj2Jjo
/(H( AT B IRy ANl (T, Vo) )dr.
Bpl Bpl?l Bzfl

Bounding A~ E;,A"'E,, F},F, as in the proof of Theorem 1.1 leads to

3 sup (<t>‘”‘ / teCO(T’t)Q(%_l)ij(T)dT)§X2(2). (6.14)
- 0

- 0<tL2
>jo — =
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To bound the supremum on [2,7], we split the integral on [0,t] into integrals on [0,1]
and [1,t], respectively. The [0,1] part of the integral is easy to handle, we have

Z sup (<t>o‘/olec(’(7t)2(gl)ij(T)dT)

= 2<t<T
Jj>jo ==

co 1 N .
<Z sup ( “eiTt/O 2(?71)35j(7)d7>

2<t<T
J>Jjo

/ S 2 (rydr

Jj=Jo
<X2(1). (6.15)

Finally, let us deal with the [1,¢] part of the integral for 2<¢<T. Using the fact that
(t)~7 when 7 >1 and Lemma 2.8 yields that

¢
Z sup (<t>o‘/ co(r= t)Z(f_l)]S ) 22( DI sup S5 (t). (6.16)
» 1
j

« 9<t< <t<
Zjozft*T J2Jjo 1st<T
To bound Sj, from the following decomposition:

(n14+n2) (w1 +w2) = (N1 +n2)(wy +w2)h+(n1 +n2)h(w1 +w2)e

+(n1+n2)e(w1+w2)é»
we get

[t A B " v L S+ ne) (@i +w)" )" x

LzBP ) LFE (B )
[t (ny+n2) (Wi +w) 1" w

L¥ (B},

+ [t (n1+n2) (wr +w2) " v
FBL )

Thanks to Lemma 2.2, we have

[t (e +n2) (@i +w2) " x Slinitnell. o~ [ (wrtw)|” v,
L’?‘O(sz,)l ) L%O(szfl) L%Q(Bpﬁ )
SX(t)D(t),
[t%(n+n2) (w1 +w2) "~ St (a+m)|” n witwe]t x
L¥(BS ) L (BF) LE (B2 )
SX(t)D(t),
[£%(n1 +n2) (w1 +w2) " x_,
LE(BS )
St (na+no) (wi+w2) "
L (B)
SPEETEH=D (g pmg)|8  [EEEFE O w0 tw)|E
L (By?%) L (By?)

ST (g oy )| [T =D @ +w)|t
L oo

T .27175) F( 2,1 )

<D(b),



FUYI XU AND NINGNING GAO 1049

LN L Nog
where we have used the embedding B22,1+ <—>Bp'jl+ for all p>2,s€R.
Then

ZQ(ﬁ—l)j sup S} (t) SX2(t)+D(t).
>0 tstst

In what follows, we bound the term 205 —1j sup taSJQ» (t). First, we deal with the
J=Jjo 1<t<T

term Lq(n1+n2)A(w; +ws) in Fy. Employing the following decomposition
Ll(m +TL2).A((JJ1 +0J2) = L1 (Tll +TL2)A(LU1 +WQ)h +L1(TL1 +TL2).A(OJ1 +w2)é,

and Lemma 2.3, we get

||taL1(n1+n2)A(w1+w2)h||’i v, Slnitne|l. x Hto‘Vz(leer)Hf N
LE(BS, ) F (B LE (B, )
Slnitnell. v V(e +wo)|”
LF (B, LE(B7)
SX(t)D(t),

and

||taL1(n1 +n2)A(w1 JFW?)KHE LNy

LEBS )
SR (g +np)|| - w [EOFTEIOVR w0 )],
L (B} LF(Bsh )

SIECHEHO(n 4ny)| . n OO w)E

LE(Bl) LE B2 )

S mang)l )l )
LF(Byh ) LE(By)

% ||t%(31+%+1—s)(wl+w2)”€ N

LF (B

SD(1),
which implies that

G

1t L1 (n1 +n2)A( <D2(t)+ X2(t).

2 e
LeB), )

Similarly,

)|

[ Lo (121 = n2) A( SD*()+X3(t).

N1
2 T Iesp )

To handle the term [[t*(£242). V(<1£<2)|* | use the following decomposition:

LEB., )
w1 +wo w1 +wo w1 +wo w1 +wo w1 +ws w1 +ws
( )-V( )=( )-V( )"+ ( Y )
2 2 2 2 2 2
w1 +ws w1 +wo
(e gty
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LN LN
Using Lemma 2.2, and the embedding Bﬁf <—>Bp‘:1+ for all p>2,s€R, we have

o W1t wo w1 +ws
(T2 gty
LE (B, )
w1 +ws o w1+ w2
e I T e ST
L¥ (B ) L¥(BS)
SX()D(1),
e (L2 gLy
2 2 L), )
Sl (AT gty
- 2 2 Ly (B,))
1igi 4N 11 o), W1+ w2 g4+ N _gy, W1+ w2
Sgztertz )V(T)Hf .g|\tz(l+2 )(T)H{ N
LF(By%) LFE (B2 )
<||t%(sl+%+1_e)(w1+w2)”e N ||t%(s1+%—e)(w1+w2>”e N
~ 2 LB ) 2 L(B2 )
SD(t),
and
w1 +w w1 +w
[t () V(D) v
2 20 IFE )
w1 +wo a(.d1+(.d2
SIV(—; 1 A i 5 |-
L (B ZICEA
SX()D(1).
Hence
n_1y4 o, W1 tws w1 tws
ST sup (P2 V(I () S X3+ D)
= 1<t<T LeBr, )
Similarly,

D267 sup [*(F5R) VRS, (0SX(0)+D(0).

. 1<t<T 2 2 Ly, )

By virtue of Lemma 2.2 and Lemma 2.3(i), we obtain

[t L3(n1+n2)V(n1 +n2)||" 4

LN
LFE (B )

SIEEFEF D Ly +np) | [[BEEOFEFITOV ()

- H~ N
LF(Byh) LFE B )
SUEFEFE g bna)[2
LE(B)
2
S(ECEF I mang) | )l )
21 L3 (B)

< D2(t).
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Similarly,
ny—mn
[t La(n1 —n2)V( 12 )1 Ny SD(b).
LE(BS )
Hence, we end up with
Y7 gup t*S3(t) S X3 (t)+ D*(t).

(3
Z 27 1<t<T

J=jo

For the term S% and S}l, according to Lemma 2.6, we get

> 25 sup 1 Rallis
1<t<T

B
SIEETEFOV @ dw)| oy OOV )| v,
LE(B) LE (B )
(I F D gma)[C )]t )
L (By% LE(B)
g Ve )" )
oo(B Pl)

(I 9 )y
L%C(B2?1

<SD(b),

LN
and we have the embedding B, < L
3ol -n sup ¢ Ve 1 IV A1 Lo

Jj=jo
< t2(51+ +1— E)V(A} o t2 (si+&+1- s)vn N
H 1||L (L )” HZOO(BN 1)
SRt E - E>Vw1||~ N [[t2CE Ty | N
T(Bppl) Ly (B, )
SDA(t).
To bound the term with S’?7 by Lemma 2.2, we have
HtO‘V(nldivw?)H}Z N, St nldlvwlﬂ N
L (B LE(BS)
Sl IItO‘VMII N
L¥ (B, L (BP)
SX(@)D(1),
and
. St nidivei "
Lz (BF)

[tV (nldwwl)llz

T p 1
<[ErltE ey
Lg (Bp”l)

<D%(t).

Therefore, we conclude that
t
(0 [ enmtr025 D5, (ryar) s X3+ D2(0)

> sup (0 [ e
S5, 2<t<T 1

Ht2(81+ > 119 dive, ||

Ly (B

N

1)

(6.17)
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Plugging (6.14), (6.17) into (6.13) yields that

KO (nn2)” o +10* wrw)®  w,

£ (Bpn &

pp‘l )
Sl(na,0,m2,0) 1" & +[[(wr,0,w2,0)[|" &, +X3(t) +D?(2). (6.18)
BP P

p,1 p,1

Step 3: Decay estimates with gain of regularity for the high frequencies of w;
and wy. In order to bound the last terms of D(t), we shall use the fact that w;(i=1,2)
satisfy the following two equations

8tw1 —Awl = F1 — c2Vn1, (619)
Orwa — Awg = Fy — *Vng +2VA ™ In,. (6.20)

To obtain the desired estimates, we reformulate (6.19)-(6.20) in terms of the weighted
unknowns % Awy,t* Aws

0y (1" Awy ) — A(t* Awy) = at“ L Awy +t* A(Fy — c*Vny),
and
Oy (t* Aws) — A(t* Aws ) = at® t Aws 4+t A(Fy — ¢*Vng +2VA ™ ny).
Obviously, t* Awi |t—¢ =t* Aws|t=o =0. Then, we deduce, from Remark 2.1, that

I7%(V2wr, VZw) 1"~

LE®)y )
ST (V2o Vew)[® o T (FL R N
L& (B ) LBy )
I (Vna, V)| HITOVAT It
L (B FBS )
Since a>1, we get
177 (V2 V2wo)[I* oy S N wnw)” xS @nw)l” x
(B (B ©BY )
I7(Vny, Vi) S (Ve Vi) |® xS (em)l”
LBy ) (B L (B)
[ToVAT g |" o S27F0YVne |t SIKT) el
L (B ) L (B ) L= (By))
It is clear that |[7%(Fy,F)[|"  »_, is exactly same as Step 2, we conclude that
LEBy )
17 (Vwr, Vo )I”  w SX*(8)+D(t). (6.21)
L(By)

Finally, adding up (6.7), (6.18) and (6.21) yields for all ¢t >0,
D(t) SD(O) + || (Vn170,w170,Vn270,w270)||h_ N_, +X2(t) —|—D2(t). (622)

p,1
As Theorem 1.1 ensures that X (¢) is small, one can conclude that (1.8) is fulfilled for
all time if D(0),[|(Vn1,0,w1,0, Vn2,0,w20)[|" x_, are small enough. This completes the
3 P

p,1

proof of Theorem 1.2.
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