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GLOBAL DYNAMICS IN A CHEMOTAXIS MODEL DESCRIBING
TUMOR ANGIOGENESIS WITH/WITHOUT MITOSIS IN

ANY DIMENSION∗

JIAWEI CHU† , HAI-YANG JIN‡ , AND TIAN XIANG§

Abstract. In this work, we study the following Neumann-initial boundary value problem for a
three-component chemotaxis model describing tumor angiogenesis:

ut=∆u−χ∇·(u∇v)+ξ1∇·(u∇w)+u(a−µuθ), x∈Ω,t>0,

vt=d∆v+ξ2∇·(v∇w)+u−v, x∈Ω,t>0,

0=∆w+u− ū,
∫
Ωw=0, ū := 1

|Ω|
∫
Ωu, x∈Ω,t>0,

∂u
∂ν

= ∂v
∂ν

= ∂w
∂ν

=0, x∈∂Ω,t>0,

u(x,0)=u0(x), v(x,0)=v0(x), x∈Ω,

in a bounded smooth but not necessarily convex domain Ω⊂Rn(n≥2) with model parameters
ξ1,ξ2,d,θ>0,a,χ,µ≥0. Based on subtle energy estimates, we first identify two positive constants
ξ0 and µ0 such that the above problem allows only global classical solutions with qualitative bounds
provided one of the following conditions holds:

(1) ξ1≥ ξ0χ
2; (2) θ=1, µ≥max

{
1, χ

8+2n
5+n

}
µ0χ

2
5+n ; (3) θ>1,µ>0.

Then, due to the obtained qualitative bounds, upon deriving higher order gradient estimates, we show
exponential convergence of bounded solutions to the spatially homogeneous equilibrium (i) for µ large
if µ>0, (ii) for d large if a=µ=0 and (iii) for merely d>0 if χ=a=µ=0. As a direct consequence
of our findings, all solutions to the above system with χ=a=µ=0 are globally bounded and they
converge to constant equilibrium, and therefore, no patterns can arise.
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1. Introduction and statement of main results
To describe the branching of capillary sprouts during angiogenesis, Orme & Chap-

lain [32] proposed the following reaction-advection-diffusion system
ut=d1∆u−χ∇·(u∇v)+ξ1∇·(u∇w),
vt=d2∆v+ξ2∇·(v∇w)+αu−βv,
wt=d3∆w+γu−δw,

(1.1)

with positive parameters d1,d2,d3,χ,ξ1,ξ2,β,δ,α,γ, where u,v and w denote the density
of endothelial cells (ECs), adhesive sites, and the matrix (including fibronectin, laminin,
and collagen IV), respectively. Different from the classical mathematical models of tu-
mor angiogenesis with chemotaxis as the principle mechanism of cell motion ([8, 36]),
the model (1.1) was proposed based on the experimental observations that during an-
giogenesis process ECs secrete a matrix consisting of fibronectin, laminin and collagen
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IV [34] and the movement of ECs is affected by the distribution of adhesive sites on
this matrix. More specifically, the following two processes are essentially incorporated
in (1.1) (see [32,34]):

• ECs secret matrix and adhesive sites;

• The spreading of matrix with the convection of ECs and adhesive sites with it.

That is, the movement of ECs is governed by a combination of random motility, chemo-
taxis and convection.

Before proceeding to our motivation and main results, we first recall some most
relevant results to the system (1.1) under homogeneous Neumann boundary conditions
and nonnegative initial data (IBVP).

(i) ξ1= ξ2=0: In this case, the first two components of (1.1) reduce to the well-
known classical (minimal) Keller-Segel chemotaxis model:{

ut=d1∆u−χ∇·(u∇v),
vt=d2∆v+αu−βv,

(1.2)

whose solution behaviors have been extensively studied in various perspectives
in the past five decades including boundedness, blow-up, large-time behavior
and pattern formation. One can find more details from survey articles [5,6,10]
and the references therein. More precisely, the boundedness and blowup of
solutions for (1.2) have been established in two or higher dimensions [11,31,41,
43] based on the following Lyapunov energy functional:

E1(u,v)=d1
∫
Ω

ulnu−χ
∫
Ω

uv+
βχ

2α

∫
Ω

v2+
χd2
2α

∫
Ω

|∇v|2.

(ii) ξ2=0: This case means that the convection effect of matrix on the adhesive
sites is neglected, and then the system (1.1) reduces to the following widely
studied attraction-repulsion Keller-Segel (ARKS) model

ut=d1∆u−χ∇·(u∇v)+ξ1∇·(u∇w),
vt=d2∆v+αu−βv,
wt=d3∆w+γu−δw.

(1.3)

The ARKS model (1.3) has been proposed to describe the aggregation of Mi-
croglia in Alzheimer’s disease in [28] and to describe quorum effect in chemo-
taxis [33]. In one-dimensional space, the existence of global boundedness of
classical solution [14, 27] and time-periodic patterns as well as steady states
patterns [25] were established. In high dimensional spaces (n≥2), it has been
found that the sign of Θ :=d2ξ1γ−d3χα plays an important role in determining
the solution behavior of (1.3). More precisely, if Θ≥0 (i.e., repulsion dominates
or cancels attraction), the 2D fully parabolic ARKS model [13,26] or higher D
parabolic-elliptic-elliptic simplification of the ARKS model [40] admits only
global bounded solutions. However, if Θ<0 (i.e., attraction prevails over re-
pulsion), based on the availability of Lyapunov functional, 2D critical and 3D
generic mass blow-up phenomenon have been detected (see [9, 15, 20, 21] for
more details). Recently, in the repulsion dominated case, i.e, Θ≥0, the global
stability of constant steady state has been studied in [16,23].
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(iii) ξ1,ξ2>0: Due to the strong coupling of chemotaxis and convection in a cascade-
like manner, which increases the complexity of mathematical analysis, the Lya-
punov functional as constructed for the system (1.3) does not work anymore.
To the best of our knowledge, the existing results on the system (1.1) seem
at a rather rudimentary stage: in one-dimensional space, the global existence
of classical solution was very recently established in [22] based on semigroup
estimate technique. Furthermore, based on an appropriate energy functional,
the 1D bounded solution was shown to converge to constant steady state un-
der some restrictions on the model parameters like ξ2 being small [18]. Very
recently, for a parabolic-parabolic-elliptic simplified model in a bounded convex
domain Ω⊂Rn(1≤n≤3), Tao & Winkler [39] used a Moser-type iteration to
derive the global boundedness of classical solution for large ξ1 without qualita-
tive information.

In summary of the above related results, some interesting questions naturally arise:

(Q1) It follows from [39] that large repulsive convection prevents blow-up phe-
nomenon in ≤3D (lower dimensional) convex domains. Hence, it is natural
to ask whether or not large repulsive convection can prevent blow-up of solu-
tion in any dimensional bounded smooth but not necessarily convex domains.

(Q2) In one-dimensional space, due to nice Sobolev embeddings, a small ξ2(∈ (0,1])
-independent upper bound of solution is available. This makes the small ξ2-
global stability toward constant equilibrium possible [18]. However, in higher
dimensions, solution bounds typically depend on ξ2 (actually with a complex
relation containing ξ2 and its inverse ξ−1

2 , cf. (1.7) and (1.8) for instance), and
thus the method used in [18] does not work anymore. Hence, it is challenging
to study long-time dynamics of bounded solutions in higher dimensions.

(Q3) Although there may be no significant increase in the rate of ECs mitosis during
the first stages of angiogenesis, the mitosis occurs after the first spouts have
formed [32]. Moreover, cell division also plays an essential role when repairing
and remodelling of large wounds [34]. Thus, it is interesting and practically
needed to explore the effect of mitosis for the system (1.1).

To study the impact of convection more deeply and to provide relatively complete
answers for the three questions above, for simplicity and clarity, based on the assumption
that matrix diffuses much faster than adhesive sites and endothelial cells, we shall use
a quasi-stationary approximation procedure as in [12, 42] (w̃=w− w̄, and then the w-
equation becomes d−1

3 w̃t=∆w̃+γd−1
3 (u− ū)−δd−1

3 w̃; then assuming γ has the same
order as d3 and δ has lower order than d3, and finally, sending d3→∞ and dropping the
tilde notation) to arrive at the following version of parabolic-parabolic-elliptic problem:



ut=∆u−χ∇·(u∇v)+ξ1∇·(u∇w)+u(a−µuθ), x∈Ω,t>0,

vt=d∆v+ξ2∇·(v∇w)+u−v, x∈Ω,t>0,

0=∆w+u− ū,
∫
Ω
w=0, ū := 1

|Ω|
∫
Ω
u, x∈Ω,t>0,

∂u
∂ν = ∂v

∂ν =
∂w
∂ν =0, x∈∂Ω,t>0,

u(x,0)=u0(x), v(x,0)=v0(x), x∈Ω,

(1.4)

where Ω⊂Rn is a bounded domain with smooth boundary. Here we keep the parameters
χ,ξ1,ξ2 as above and simplify other parameters in an obvious way, for convenience. The
kinetic term u(a−µuθ) with a,µ≥0,θ>0 is incorporated to exhibit the effect of ECs
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mitosis. We shall henceforth assume that

(u0,v0)∈C0(Ω̄)×W 1,∞ with u0≥0,v0≥0, and u0 ̸≡0. (1.5)

Then our main findings on qualitative boundedness and convergence are stated as fol-
lows.

Theorem 1.1 (Qualitative boundedness). Let Ω⊂Rn(n≥2) be a bounded and
smooth domain, the model parameters ξ1,ξ2,d,θ>0,a,χ,µ≥0, and, let the initial datum
(u0,v0) satisfy the regularity (1.5). Then there exist positive constants ξ0 and µ0 (cf.
(3.61) and (3.62) for details) depending on d,ξ2,n,u0,v0,Ω such that the IBVP (1.4)
admits a unique global classical solution provided one of the following conditions holds:

• (1) ξ1≥ ξ0χ2; (2) θ=1, µ≥max
{
1, χ

8+2n
5+n

}
µ0χ

2
5+n ; (3) θ>1,µ>0.

Moreover, the global solution is qualitatively bounded in the following way:

∥u(·,t)∥L∞ +∥v(·,t)∥W 1,∞ +∥w(·,t)∥W 1,∞ ≤M, ∀t>0, (1.6)

where, up to a multiplier depending only on n,u0,v0 and Ω, the positive constant M
is explicitly expressible in terms of the model parameters d,a,θ,χ1,ξ1,ξ2,µ, see Lemmas
3.1, 3.5, 3.6 and 3.7. In particular, the qualitative bounds for ∥v∥L∞ and ∥∇w∥L∞ ,
crucial to derive large-time behaviors of bounded solutions for (1.4), are bounded as
follows:

∥v(·,t)∥L∞ ≤K1


(
1+ 1

ξ2

)(
1+ξ2+( 1d )

n
2 ξ

1+n
2

2

)
, if µ=0,(

1+( 1µ )
1
θ + 1

ξ2

)(
1+( 1µ )

1
θ ξ2+( 1d )

n
2 [( 1µ )

1
θ ξ2]

1+n
2

)
, if µ>0,

:=M0,

(1.7)

and

∥∇w(·,t)∥L∞ ≤K2

(
1+
(
1+dΩM

2(n+1)
0

)
d−1χ2M1−n

0 +M c
1 (n)

) 1
n+1

, (1.8)

where Ki(i=1,2) depend only on n,u0,v0 and Ω, M c
1 (n)=M

c
1 is defined by

M c
1 (n)=



ξ1, if µ=0, ξ1≥ ξ0χ2,

Mµ(1), if θ=1, µ>max
{
1, χ

8+2n
5+n

}
µ0χ

2
5+n ,

Mµ(θ)+
(θ−1)

µ
n+2
θ−1

[
(1+ 1

dn+2 )(1+M0ξ2)M0χ
2
]n+1+θ

θ−1 , if θ>1,µ>0,

(1.9)

the function Mµ and the symbol dΩ=d1Ω, with 1Ω being the indicator whether Ω is
non-convex, are defined by

Mµ(θ)=

(
1+ξ1(

1

µ
)

1
θ +(

1

µ
)

1
θ

)
(
1

µ
)

n+1
θ , dΩ=d1Ω=

{
0, if Ω is convex,

d, if Ω is non-convex.
(1.10)

Remark 1.1. When Ω⊂R1 is an open interval, using simpler arguments than those
of [18,22], one can easily obtain global boundedness without any parameter restrictions.
For fixed parameters and initial data, we also mention that the infimums of ξ0 and µ0
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depend indeed on n
2 instead of n, see Lemma 3.6; this is comparable to the widely known

L
n
2 +-criterion [6,44]. Moreover, we note that the upper bounds for ∥v∥L∞ and ∥∇w∥L∞ ,

cf. (1.7) and (1.8), are bounded for large d and, in particular, it can be non-increasing
in d in the case that Ω is convex. This makes the study of global stability possible in
the case of a=µ=0. Finally, we remark, when θ=1 (resp. θ>1), our boundedness
holds for any ξ1≥0 as long as (2) is satisfied (resp. µ>0).

Thanks in particular to the qualitative bounds for ∥v∥L∞ and ∥∇w∥L∞ in (1.7) and
(1.8), upon successfully deriving higher order gradient estimates, we are able to prove
convergence and exponential convergence rate of bounded solutions in the following
ways.

Theorem 1.2 (Global stability). The global bounded classical solution (u,v,w)
obtained from Theorem 1.1 enjoys the following convergence properties:

(C1) In the case of a=µ=0, there exists d0(χ)≥0 with d0(0)=0 depending on
n,u0,v0,ξ1,ξ2,χ such that whenever d≥d0(χ) with χ>0, the global bounded
solution (u,v,w) converges uniformly to (ū0,ū0,0):

∥u(·,t)− ū0∥L∞ +∥v(·,t)− ū0∥L∞ +∥w(·,t)∥W 1,∞ →0 as t→∞. (1.11)

If, in addition, d>d0(χ), the above convergence is exponential: for some K3,ζ >
0,

∥u(·,t)− ū0∥L∞ +∥v(·,t)− ū0∥L∞ +∥w(·,t)∥W 1,∞ ≤K3e
−ζt, ∀t>0. (1.12)

(C2) In the case of a,µ>0, let Cp denote the Poincaré constant defined by

C−2
p =inf

{∫
Ω

|∇w|2 :
∫
Ω

w=0,

∫
Ω

w2=1

}
(1.13)

and let

Λ(z)=
dχ2+d2C2

pξ
2
1+C

2
pξ

2
2z

2d2a
θ−2
θ

. (1.14)

Then, whenever

µ>max

{
Λ

θ
2

(
sup
µ>1

M2
0

)
, Λ

θ
6+n

(
sup

0<µ≤1

(
M2

0µ
4+n
θ

))}
, (1.15)

the solution (u,v,w) converges exponentially to (( aµ )
1
θ ,( aµ )

1
θ ,0): for some K4,η >

0,

∥u(·,t)−(
a

µ
)

1
θ ∥L∞ +∥v(·,t)−(

a

µ
)

1
θ ∥L∞ +∥w(·,t)∥W 1,∞ ≤K4e

−ηt, ∀t>0.

(1.16)
In the above texts, the positive constants Ki(i=3,4),ζ,η depend on

n,u0,v0,Ω,d,a,θ, χ1,ξ1,ξ2,µ; we also have used the following short notations like

∥f(·,t)∥Lp =

(∫
Ω

|f(x,t)|pdx
) 1

p

=

(∫
Ω

|f(·,t)|p
) 1

p

.
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Remark 1.2.

(i) Compared to the global boundedness in [39], we first remove the technical
assumption that Ω is convex, and then we provide more qualitative information
by digging out the dependence of solution upper bounds on the involving model
parameters. Lastly, we extend lower dimensional spaces to any dimensional
ones.

(ii) Even though we cannot apply the arguments in [18] to obtain large-time be-
haviors of bounded solutions in that fashion, due to especially the qualitative
bounds for ∥v∥L∞ and ∥∇w∥L∞ in (1.7) and (1.8), upon successfully estab-
lishing higher order gradient estimates, we are able to show convergence and
exponential convergence of bounded solutions in qualitative ways.

As a direct consequence of our main results, we obtain unconditional boundedness
and convergence to constant steady states of (1.4) with χ=a=µ=0.

Corollary 1.1. All solutions (u,v,w) to the IBVP (1.4) with χ=0 are globally
bounded. Moreover, if a=µ=0, they converge exponentially to (ū0,ū0,0) as t→∞.

It can be easily seen from Theorem 1.1 that the dynamics of (1.4) with small ξ1>0
or simply ξ1=0 remain largely open. We shall leave this as a future project.

In the rest of this section, we outline the plan as well as main ideas of this article.

In Section 2, we first state the local well-posedness and extensibility criterion and
then derive some basic properties for (1.4). Next, we extend the interpolation-type
inequalities in [39, Lemma 4.2] to general setting in Lemma 2.4. Finally, we collect
some abstract functional inequalities including well-known smoothing Lp-Lq estimates
of the Neumann heat group in Ω, etc.

In Section 3, we aim to show the proof of qualitative boundedness in Theorem 1.1.
Our subtle analysis, inspired from [39], begins with the qualitative control of ∥v∥L∞ via
Moser-iteration in a careful manner, cf. Lemma 3.1. Then, thanks to the generalized
interpolation-type inequalities in Lemma 2.4, under one of the conditions in Theorem
1.1 and upon some skillful treatments, we successfully establish a key ODI (ordinary
differential inequality) for the time derivative of the coupled quantity ∥u∥kLk +∥∇v∥2kL2k

for some k>n/2, which allows us to derive qualitative bounds for ∥u∥Lk +∥∇v∥L2k , cf.
Lemma 3.5. Thereafter, with subtle analysis via semigroup estimates, elliptic estimates
and Sobolev embeddings, we finally conclude the desired uniform-in-time qualitative
bounds as stated in (1.6).

In Section 4, we proceed further to derive Schauder-type estimates of u and L2n-
estimate of ∇u so as to study long-time dynamics of bounded solutions to (1.4). Since
both the u- and v-equation in (1.4) have cross-diffusions, the derivation of boundedness
of ∥∇u∥L2n becomes lengthy and technical. Roughly speaking, motivated by [24, Section
3.3], we first establish an ODI for the time evolution of the coupled quantity ∥u∥2L2 +
∥∆v∥2L2 to obtain a bound for ∥∆v∥L2 . And then, we directly derive an ODI for ∥∇u∥2L2

so as to obtain a bound of ∥∇u∥L2 . This enables us to handle the emerging boundary
integral and thus allows us to derive an ODI involving ∥∆v∥2nL2n for the time derivative
of ∥∇u∥2nL2n . Finally, applying the widely known maximal Sobolev regularity to the
v-equation in (1.4), we obtain the boundedness of ∥∇u∥L2n , see Lemma 4.2.

With qualitative bounds in Section 3 and enhanced regularity properties in Section
4, in Section 5, we aim to study the large-time behavior of bounded solutions to (1.4). In
the absence of ECs mitosis (a=µ=0), based on the important fact that upper bounds
of ∥v∥L∞ and ∥∇w∥L∞ are bounded for d away from zero (cf. (1.7) and (1.8)), for d
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suitably large, we deduce a Lyapunov functional for the coupled quantity∫
Ω

u ln
u

ū
+
χ

2

∫
Ω

|∇v|2,

which enables us to derive the L2- convergence and decay rate of (u− ū0,∇v) to (0,0).
Then using the Gagliardo-Nirenberg inequality together with the enhanced regularity of
(u,v) and standard elliptic estimates, we achieve the convergence properties of bounded
solution (u,v,w) as in (1.11) and (1.12) of Theorem 1.2, see details in Section 5.1.

The convergence analysis for the case a,µ>0 follows in a similar manner. Indeed,
for µ satisfying (1.15), we are able to derive a Lyapunov functional for the coupled
quantity ∫

Ω

(u−b−bln u
b
)+

bχ2

2d

∫
Ω

(v−b)2, b := (
a

µ
)

1
θ ,

which yields the key starting L2-convergence of (u−b,v−b) to (0,0). Then we can
easily use the Gagliardo-Nirenberg interpolation inequality to lift this L2-convergence
to L∞-convergence. Finally, the convergence property of w follows from the elliptic
estimate applied to the w-equation in (1.4), thus achieving (1.16) of Theorem 1.2, see
Section 5.2 for details.

2. Local existence and preliminaries
In the sequel, the integral

∫
Ω
f(x)dx and ∥f∥Lp(Ω) will be abbreviated as

∫
Ω
f and

∥f∥Lp , respectively. The generic constants ci (defined within the proofs of lemmas) or
Ci (defined in the statements of lemmas) for i=1,2, ·· ·, depending on n,Ω and the initial
data u0,v0 but they are independent of t and of the model parameters χ,ξ1,ξ2,d,µ, will
vary line-by-line. The existence and uniqueness of local solutions of (1.4) can be easily
shown in a fixed-point theorem framework by means of the Amann’s theorems [3,4] and
the parabolic/elliptic regularity theory, as similarly demonstrated in [18,22,39,42].

Lemma 2.1 (Local existence). Let Ω⊂Rn(n≥1) be a bounded and smooth domain, the
model parameters χ,ξ1,ξ2,d>0,a,µ,θ≥0, and, let the initial data (u0,v0) satisfy (1.5).
Then there exist a maximal time Tmax∈ (0,∞] and a unique triple (u,v,w) of functions
with u and v positive which solves (1.4) classically on Ω̄×(0,Tmax), and satisfies

u∈C0(Ω̄× [0,Tmax))∩C2,1(Ω̄×(0,Tmax)),

v∈∩p>nC
0([0,Tmax);W

1,p(Ω))∩C2,1(Ω̄×(0,Tmax)),

w∈C2,0(Ω̄×(0,Tmax)).

Moreover, if Tmax<∞, then, for any p>max{n,2},

lim
t↗Tmax

sup{∥u(·,t)∥L∞ +∥v(·,t)∥W 1,p}=∞. (2.1)

Lemma 2.2 (Young’s inequality with ε). Let 1<p,q<∞, 1
p +

1
q =1. Then

XY ≤εXP +
Y q

q (εp)
q
p

(X,Y >0, ε>0).

Lemma 2.3. Let (u,v,w) be a solution of (1.4) obtained in Lemma 2.1. Then

|Ω|ū=∥u(·,t)∥L1 ≤m1, ∀t∈ (0,Tmax), (2.2)
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where

m1 :=

∥u0∥L1 , if a=µ=0,

∥u0∥L1 +(1+a)
1+θ
θ ( 1µ )

1
θ ( 2

θ+1 )
1
θ

θ
θ+1 |Ω|, if µ>0,

and

∥v(·,t)∥L1 ≤m1+∥v0∥L1 . (2.3)

Proof. Integrating the first and second equations of (1.4) over Ω respectively, one
has

d

dt

∫
Ω

u+µ

∫
Ω

uθ+1=a

∫
Ω

u, (2.4)

and

d

dt

∫
Ω

v+

∫
Ω

v=

∫
Ω

u. (2.5)

If a=µ=0, one can easily check that (2.2) and (2.3) hold by integrating (2.4) and (2.5).
Next, if µ>0, it follows from the Young’s inequality with ε in Lemma 2.2 that

(1+a)

∫
Ω

u≤ µ

2

∫
Ω

uθ+1+(1+a)
1+θ
θ (

1

µ
)

1
θ (

2

θ+1
)

1
θ

θ

θ+1
|Ω|,

which, upon being substituted into (2.4), gives

d

dt

∫
Ω

u+

∫
Ω

u+
µ

2

∫
Ω

uθ+1≤ (1+a)
1+θ
θ (

1

µ
)

1
θ (

2

θ+1
)

1
θ

θ

θ+1
|Ω|. (2.6)

Then multiplying (2.6) by the factor et and then integrating, we simply get∫
Ω

u≤ (1+a)
1+θ
θ (

1

µ
)

1
θ (

2

θ+1
)

1
θ

θ

θ+1
|Ω|+

∫
Ω

u0,

which entails (2.2). Then substituting (2.2) into (2.5), one has

d

dt

∫
Ω

v+

∫
Ω

v≤ (1+a)
1+θ
θ (

1

µ
)

1
θ (

2

θ+1
)

1
θ

θ

θ+1
|Ω|+

∫
Ω

u0. (2.7)

Solving this ODI or using Grönwall’s inequality again, then (2.7) implies (2.3).

For our later boundedness purpose, let us generalize the interpolation-type inequal-
ities in [39, Lemma 4.2] to the general case as follows.

Lemma 2.4. Let Ω⊂Rn(n≥1) be a bounded and smooth domain and let g,h∈C2(Ω̄)
with ∂g

∂ν |∂Ω= ∂h
∂ν |∂Ω=0. Then, for all p≥1,∣∣∣∣∫

Ω

|∇g|2p−2∇g ·∇(∇g ·∇h)
∣∣∣∣

≤
(√

n

2p
+1

)
∥∇g∥2p

L2(p+1)∥D2h∥Lp+1 , (2.8)
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and ∣∣∣∣∫
Ω

g∆h∇·(|∇g|2p−2∇g)
∣∣∣∣

≤
(
2(p−1)+

√
n
)
∥g∥L∞∥∇g∥p−1

L2(p+1)∥∆h∥Lp+1

(∫
Ω

|∇g|2p−2|D2g|2
) 1

2

, (2.9)

as well as ∫
Ω

|∇g|2(p+1)≤
(
2p+

√
n
)2∥g∥2L∞

∫
Ω

|∇g|2(p−1)|D2g|2. (2.10)

Proof. Using the following two facts

∇(∇g ·∇h)=D2g ·∇h+D2h ·∇g,

and

∇|∇g|2p=p|∇g|2(p−1)∇|∇g|2=2p|∇g|2(p−1)D2g ·∇g, (2.11)

we thus use the symmetry of D2g and integration by parts formula to derive that∫
Ω

|∇g|2p−2∇g ·∇(∇g ·∇h)

=

∫
Ω

|∇g|2p−2∇g ·
(
D2g ·∇h+D2h ·∇g

)
=

∫
Ω

|∇g|2p−2(D2g ·∇g) ·∇h+
∫
Ω

|∇g|2p−2∇g ·(D2h ·∇g)

=
1

2p

∫
Ω

∇|∇g|2p ·∇h+
∫
Ω

|∇g|2p−2∇g ·(D2h ·∇g)

=− 1

2p

∫
Ω

|∇g|2p ·∆h+
∫
Ω

|∇g|2p−2∇g ·(D2h ·∇g). (2.12)

Noting the fact |∆h|≤
√
n|D2h| and using Hölder’s inequality, from (2.12) we have∣∣∣∣∫

Ω

|∇g|2p−2∇g ·∇(∇g ·∇h)
∣∣∣∣≤√

n

2p

∫
Ω

|∇g|2p|D2h|+
∫
Ω

|∇g|2p|D2h|

=(

√
n

2p
+1)

∫
Ω

|∇g|2p|D2h|

≤(

√
n

2p
+1)∥∇g∥2p

L2(p+1)∥D2h∥Lp+1 ,

which is our desired estimate (2.8). Similarly, we infer that∣∣∣∣∫
Ω

g∆h∇·(|∇g|2p−2∇g)
∣∣∣∣

=

∣∣∣∣∫
Ω

g∆h∇(|∇g|2p−2) ·∇g+
∫
Ω

g∆h|∇g|2p−2∆g

∣∣∣∣
=

∣∣∣∣2(p−1)

∫
Ω

g∆h|∇g|2(p−2)∇g ·(D2g ·∇g)+
∫
Ω

g∆h|∇g|2p−2∆g

∣∣∣∣
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≤(2(p−1)+
√
n)

∫
Ω

|g| · |∆h| · |∇g|2p−2 · |D2g|

≤(2(p−1)+
√
n)∥g∥L∞∥∆h∥Lp+1∥∇g∥p−1

L2(p+1)∥|∇g|p−1|D2g|∥L2 ,

which gives rise to (2.9).
Finally, we use (2.11) to estimate the term

∫
Ω
|∇g|2(p+1) as follows:∫

Ω

|∇g|2(p+1)=

∫
Ω

|∇g|2p∇g ·∇g

=−
∫
Ω

g|∇g|2p∆g−
∫
Ω

g∇(|∇g|2p) ·∇g

=−
∫
Ω

g|∇g|2p∆g−2p

∫
Ω

g|∇g|2(p−1)∇g ·(D2g ·∇g)

≤ (2p+
√
n)

∫
Ω

|g| · |∇g|2p · |D2g|

≤ (2p+
√
n)∥g∥L∞

(∫
Ω

|∇g|2(p+1)

) 1
2
(∫

Ω

|∇g|2(p−1)|D2g|2
) 1

2

,

which upon simple algebraic manipulations entails (2.10).

Now, for convenience of reference, we collect the well-known smoothing Lp-Lq esti-
mates of the Neumann heat group in Ω, which can be found in [7, 41].

Lemma 2.5. Let (et∆)t≥0 be the Neumann heat semigroup in Ω, and let λ1>0 denote
the first nonzero eigenvalue of −∆ in Ω under Neumann boundary conditions. Then
there exist some positive constants ci (i=1,2,3,4) depending only on Ω such that:

(i) If 1≤ q≤p≤∞, then

∥et∆f∥Lp ≤ c1
(
1+ t−

n
2 ( 1

q−
1
p )
)
e−λ1t∥f∥Lq for all t>0 (2.13)

holds for all f ∈Lq(Ω) satisfying
∫
Ω
f =0.

(ii) If 1≤ q≤p≤∞, then

∥∇et∆f∥Lp ≤ c2
(
1+ t−

1
2−

n
2 ( 1

q−
1
p )
)
e−λ1t∥f∥Lq for all t>0

is valid for all f ∈Lq(Ω).

(iii) If 2≤ q≤p<∞, then

∥∇et∆f∥Lp ≤ c3
(
1+ t−

n
2 ( 1

q−
1
p )
)
e−λ1t∥∇f∥Lq for all t>0

is true for all f ∈W 1,p(Ω).

(iv) If 1<q≤p≤∞, then

∥et∆∇·f∥Lp ≤ c4
(
1+ t−

1
2−

n
2 ( 1

q−
1
p )
)
e−λ1t∥f∥Lq for all t>0 (2.14)

is valid for all f ∈ (W 1,p(Ω))n.

Lemma 2.6 ([16]). Let f(x,t) be a positive function for (x,t)∈Ω×(0,∞) and define
f̄ = 1

|Ω|
∫
Ω
f . Then it holds that

0≤ 1

2f̄
∥f− f̄∥2L1 ≤

∫
Ω

f ln
f

f̄
≤ 1

f̄
∥f− f̄∥2L2 .
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3. Qualitative boundedness: Proof of Theorem 1.1
In this section, we are devoted to proving the qualitative boundedness in terms of

model parameters as stated in Theorem 1.1. To this end, we first use the convection
effect to show the boundedness of ∥v∥L∞ based on some ideas in [39].

Lemma 3.1. Let (u,v,w) be the solution of (1.4) obtained from Lemma 2.1. Then

∥v(·,t)∥L∞

≤C0max

{
m1+∥v0∥L1 ,

1

ξ2
,∥v0∥L∞

}(
1+m1ξ2+(

1

d
)

n
2 (m1ξ2)

1+n
2

)
:=M0, (3.1)

for all t∈ [0,Tmax); here C0>0 is defined in (3.13), which depends only on n and Ω.

Proof. For p>1, multiplying the second equation of (1.4) by vp−1, integrating the
result over Ω by parts and combining the equation ∆w=−u+ ū, we obtain that

1

p

d

dt

∫
Ω

vp=d

∫
Ω

∆v ·vp−1+ξ2

∫
Ω

∇·(v∇w)vp−1+

∫
Ω

uvp−1−
∫
Ω

vp

=−(p−1)d

∫
Ω

vp−2|∇v|2−ξ2(p−1)

∫
Ω

vp−1∇v ·∇w+

∫
Ω

uvp−1−
∫
Ω

vp

=−(p−1)d

∫
Ω

vp−2|∇v|2+ ξ2(p−1)

p

∫
Ω

vp∆w+

∫
Ω

uvp−1−
∫
Ω

vp

=−(p−1)d

∫
Ω

vp−2|∇v|2+ ξ2(p−1)

p

∫
Ω

vp(−u+ ū)+
∫
Ω

uvp−1−
∫
Ω

vp,

which upon using the fact vp−2|∇v|2= 4
p2 |∇v

p
2 |2 gives

d

dt

∫
Ω

vp+
4d(p−1)

p

∫
Ω

|∇v
p
2 |2+ξ2(p−1)

∫
Ω

uvp+p

∫
Ω

vp

=ξ2(p−1)ū

∫
Ω

vp+p

∫
Ω

uvp−1. (3.2)

Applying Young’s inequality with ε (cf. Lemma 2.2) and the facts ∥u(·,t)∥L1 ≤m1 and
ū= 1

|Ω|
∫
Ω
u≤ m1

|Ω| , we infer

p

∫
Ω

uvp−1≤ ξ2(p−1)

∫
Ω

uvp+ξ
−(p−1)
2

∫
Ω

u

≤ ξ2(p−1)

∫
Ω

uvp+m1ξ
1−p
2 , (3.3)

and

ξ2(p−1)ū

∫
Ω

vp≤ ξ2m1(p−1)

|Ω|

∫
Ω

vp. (3.4)

A substitution of (3.3) and (3.4) into (3.2) shows that

d

dt

∫
Ω

vp+
4d(p−1)

p

∫
Ω

|∇v
p
2 |2+p

∫
Ω

vp≤ ξ2m1(p−1)

|Ω|

∫
Ω

vp+m1ξ
1−p
2 . (3.5)

For ε>0, there exists c1>0 depending only on n and Ω such that (cf. [40, 44])

∥U∥2L2 ≤ε∥∇U∥2L2 +c1(1+ε
−n

2 )∥U∥2L1 . (3.6)
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We choose U =v
p
2 and ε= 4d|Ω|

pξ2m1
in (3.6) to derive that

ξ2m1(p−1)

|Ω|

∫
Ω

vp

≤ 4(p−1)d

p

∫
Ω

|∇v
p
2 |2+ ξ2m1c1(p−1)

|Ω|

(
1+

(
ξ2m1p

4d|Ω|

)n
2

)(∫
Ω

v
p
2

)2

≤ 4(p−1)d

p

∫
Ω

|∇v
p
2 |2+c2p(1+p

n
2 )

(∫
Ω

v
p
2

)2

, (3.7)

where c2 :=
ξ2m1c1

|Ω| max{1,
(

ξ2m1

4d|Ω|

)n
2 }. Then substituting (3.7) into (3.5) and noting the

fact (1+p
n
2 )≤2(1+p)

n
2 , we obtain

d

dt

∫
Ω

vp+p

∫
Ω

vp≤2c2p(1+p)
n
2

(∫
Ω

v
p
2

)2

+m1ξ
1−p
2 ,

which implies that

d

dt

(
ept
∫
Ω

vp
)
≤2eptc2p(1+p)

n
2

(∫
Ω

v
p
2

)2

+eptm1ξ
1−p
2 . (3.8)

For any T ∈ (0,Tmax), we integrate (3.8) over [0,t] for 0≤ t≤T to obtain∫
Ω

vp(·,t)≤
∫
Ω

vp0+2c2(1+p)
n
2 sup
0≤t≤T

(∫
Ω

v
p
2 (·,t)

)2

+
m1ξ

1−p
2

p
,

which immediately yields(∫
Ω

vp(·,t)
) 1

p

≤

[
2c2(1+p)

n
2 sup
0≤t≤T

(∫
Ω

v
p
2 (·,t)

)2

+m1ξ
1−p
2 + |Ω|∥v0∥pL∞

] 1
p

≤ (max{2c2,m1ξ2,|Ω|})
1
p (1+p)

n
2p

{
sup

0≤t≤T

(∫
Ω

v
p
2 (·,t)

) 2
p

+
1

ξ2
+∥v0∥L∞

}
.

Therefore, it follows with c3 :=3max{2c2,m1ξ2,|Ω|,1} that

max

{
sup

0≤t≤T

(∫
Ω

vp(·,t)
) 1

p

,
1

ξ2
, ∥v0∥L∞

}

≤ c
1
p

3 (1+p)
n
2p max

{
sup

0≤t≤T

(∫
Ω

v
p
2 (·,t)

) 2
p

,
1

ξ2
, ∥v0∥L∞

}
. (3.9)

Upon setting

H(p) :=max

{
sup

0≤t≤T

(∫
Ω

vp(·,t)
) 1

p

,
1

ξ2
, ∥v0∥L∞

}
,
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then (3.9) becomes

H(p)≤ c
1
p

3 (1+p)
n
2pH(

p

2
), ∀p≥2.

Taking p=2j (j=1,2, ·· ·), we obtain inductively that

H(2j)≤ c2
−j

3 (1+2j)
n
2 ·2−j

H(2j−1)

≤ c2
−j+2−(j−1)

3 (1+2j)
n
2 ·2−j

(1+2j−1)
n
2 ·2−(j−1)

H(2j−2)

≤ c

2∑
i=0

2−(j−i)

3 ·
j∏

k=j−2

(1+2k)
1

2k
·n2H(2j−3)

·· ··· ·

≤ c

j−1∑
i=0

2−(j−i)

3 ·
j∏

k=1

(1+2k)
1

2k
·n2H(1)

= c
1− 1

2j

3

j∏
k=1

(1+2k)
1

2k
·n2H(1). (3.10)

On the one hand, using the fact that ln(1+z)≤
√
z for all z≥0, we have

ln

j∏
k=1

(1+2k)
1

2k =

j∑
k=1

ln(1+2k)

2k
≤

∞∑
k=1

(
1√
2

)k

≤6, ∀j=1,2, ·· · ,

and so,

lim
j→∞

j∏
k=1

(1+2k)
1

2k
·n2 ≤e3n. (3.11)

Then the combination of (3.10), (3.11) and (2.3) with c2 :=
ξ2m1c1

|Ω| max{1,( ξ2m1

4d|Ω| )
n
2 } gives

∥v(·,t)∥L∞ ≤ lim
j→∞

H(2j)

≤ c3e3nH(1)

=3max{2c2,m1ξ2, |Ω|,1}e3nmax

{
sup

0≤t≤T

∫
Ω

v(·,t), 1

ξ2
, ∥v0∥L∞

}
≤3e3n (1+ |Ω|+m1ξ2+2c2)max

{
m1+ ∥v0∥L1 ,

1

ξ2
, ∥v0∥L∞

}
≤C0max

{
m1+∥v0∥L1 ,

1

ξ2
,∥v0∥L∞

}(
(1+m1ξ2+(

1

d
)

n
2 (m1ξ2)

1+n
2

)
(3.12)

for all t∈ [0,T ], where

C0 :=3e3nmax

{
1+ |Ω|,1+ 2c1

|Ω|
,

2c1
(4|Ω|)n

2 |Ω|

}
. (3.13)

Since T ∈ (0,Tmax) is arbitrary and the upper bound in (3.12) is independent of T , the
desired estimate (3.1) follows from (3.12) and (3.13).
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3.1. Qualitative Lp-estimates. In this subsection, by means of the key esti-
mate on ∥v∥L∞ in (3.12), we shall establish further coupled Lp-energy estimates with
dependence on key parameters. Here, we shall stress that our arguments are applicable
to both cases: a,µ>0 and a=µ=0.

Lemma 3.2. For p>1, the local-in-time solution (u,v,w) of (1.4) obtained in Lemma
2.1 satisfies

d

dt

∫
Ω

up+
p(p−1)

2

∫
Ω

up−2|∇u|2+ ξ1(p−1)

2

∫
Ω

up+1+
pµ

2

∫
Ω

uθ+p

≤χ
2p(p−1)

2

∫
Ω

up|∇v|2+M1(p), for t∈ (0,Tmax), (3.14)

where

M1(p) :=


ξ1m

p+1
1

(p−1)
p+1 ·

(
2p

|Ω|(p+1)

)p
+
(

1
µ

) p
θ
(

2ap
p+θ

) p
θ apθ

p+θ |Ω|, a,µ>0,

ξ1m
p+1
1

(p−1)
p+1 ·

(
2p

|Ω|(p+1)

)p
, a=µ=0.

(3.15)

Proof. For p>1, multiplying the first equation of (1.4) by up−1 and integrating
the result over Ω by parts, we conclude that

1

p

d

dt

∫
Ω

up+(p−1)

∫
Ω

up−2|∇u|2+µ
∫
Ω

uθ+p

=χ(p−1)

∫
Ω

up−1∇u ·∇v−ξ1(p−1)

∫
Ω

up−1∇u ·∇w+a

∫
Ω

up

=χ(p−1)

∫
Ω

up−1∇u ·∇v+ ξ1(p−1)

p

∫
Ω

up∆w+a

∫
Ω

up,

which together with the fact ∆w= ū−u gives

1

p

d

dt

∫
Ω

up+(p−1)

∫
Ω

up−2|∇u|2+µ
∫
Ω

uθ+p+
ξ1(p−1)

p

∫
Ω

up+1

=χ(p−1)

∫
Ω

up−1∇u ·∇v+ ξ1(p−1)

p
ū

∫
Ω

up+a

∫
Ω

up. (3.16)

Applications of Hölder’s inequality and Young’s inequality yield that

χ(p−1)

∫
Ω

up−1∇u ·∇v≤ (p−1)

2

∫
Ω

up−2|∇u|2+ χ2(p−1)

2

∫
Ω

up|∇v|2, (3.17)

and noting from ū= 1
|Ω|
∫
Ω
u≤ m1

|Ω| that

ξ1(p−1)

p
ū

∫
Ω

up≤ ξ1(p−1)m1

p|Ω|

∫
Ω

up

≤ ξ1(p−1)

2p

∫
Ω

up+1+ξ1m
p+1
1

(p−1)

p(p+1)

(
2p

|Ω|(p+1)

)p

, (3.18)

as well as, in the case of a,µ>0,

a

∫
Ω

up≤ µ

2

∫
Ω

up+θ+

(
2ap

µ(p+θ)

) p
θ aθ

p+θ
|Ω|. (3.19)
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Substituting (3.17), (3.18) and (3.19) into (3.16) and noting the definition of M1(p) in
(3.15), we end up with (3.14) directly, thus proving this lemma.

Lemma 3.3. For k≥1, the local-in-time classical solution of (1.4) obtained in Lemma
2.1 satisfies, for t∈ [0,Tmax), that

d

dt

∫
Ω

|∇v|2k+2k

∫
Ω

|∇v|2k+2kd

∫
Ω

|∇v|2k−2|D2v|2+k(k−1)d

∫
Ω

|∇v|2k−4|∇|∇v|2|2

≤2kξ2

∫
Ω

|∇v|2k−2∇v ·∇(∇v ·∇w)−2kξ2

∫
Ω

v∆w∇·(|∇v|2k−2∇v)

+2k(2(k−1)+
√
n)

∫
Ω

u|∇v|2k−2|D2v|+dk
∫
∂Ω

|∇v|2k−2 ∂|∇v|2

∂ν
. (3.20)

Proof. For k≥1, differentiating the second equation of (1.4) and multiplying the
result by |∇v|2k−2∇v, we obtain via integration by parts that

1

2k

d

dt

∫
Ω

|∇v|2k=
∫
Ω

|∇v|2k−2∇v ·∇(d∆v+ξ2∇·(v∇w)−v+u)

=d

∫
Ω

|∇v|2k−2∇v ·∇∆v+ξ2

∫
Ω

|∇v|2k−2∇v ·∇(∇·(v∇w))

+

∫
Ω

|∇v|2k−2∇v ·∇u−
∫
Ω

|∇v|2k

=: I1+I2+I3−
∫
Ω

|∇v|2k. (3.21)

Using the identity ∇v ·∇∆v= 1
2∆|∇v|2−|D2v|2 and integrating by parts, we compute

I1=
d

2

∫
Ω

|∇v|2k−2∆|∇v|2−d

∫
Ω

|∇v|2k−2|D2v|2

=
d

2

∫
∂Ω

|∇v|2k−2 ∂|∇v|2

∂ν
− (k−1)d

2

∫
Ω

|∇v|2k−4|∇|∇v|2|2−d

∫
Ω

|∇v|2k−2|D2v|2. (3.22)

Similarly, we use integration by parts to rewrite I2 as follows:

I2= ξ2

∫
Ω

|∇v|2k−2∇v ·∇(∇v ·∇w+v∆w)

= ξ2

∫
Ω

|∇v|2k−2∇v ·∇(∇v ·∇w)+ξ2
∫
Ω

|∇v|2k−2∇v ·∇(v∆w)

= ξ2

∫
Ω

|∇v|2k−2∇v ·∇(∇v ·∇w)−ξ2
∫
Ω

v∆w∇·(|∇v|2k−2∇v). (3.23)

As for I3, using the fact |∆v|≤
√
n|D2v| and the identity (2.11), we have

I3=

∫
Ω

|∇v|2k−2∇v ·∇u

=−
∫
Ω

u∇|∇v|2k−2 ·∇v−
∫
Ω

u|∇v|2k−2∆v

=−2(k−1)

∫
Ω

u|∇v|2k−4∇v ·(D2v ·∇v)−
∫
Ω

u|∇v|2k−2∆v

≤ (2(k−1)+
√
n)

∫
Ω

u|∇v|2k−2|D2v|. (3.24)
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A substitution of (3.22), (3.23) and (3.24) into (3.21) shows (3.20).

Next, we use the L∞-bound of v provided by Lemma 3.1 to control the terms on
the right-hand side of (3.20).

Lemma 3.4. For k≥1, the local-in-time classical solution of (1.4) obtained in Lemma
2.1 satisfies, for t∈ [0,Tmax), that

d

dt

∫
Ω

|∇v|2k+2k

∫
Ω

|∇v|2k+ k

2
(3d−dΩ)

∫
Ω

|∇v|2k−2|D2v|2

+k(k−1)(d−dΩ)
∫
Ω

|∇v|2k−4|∇|∇v|2|2

≤C1

dk
(1+M0ξ2)

k+1Mk−1
0

∫
Ω

uk+1+C1dΩM
2k
0 , (3.25)

where C1>0 depends only on n,k,u0,v0 and Ω and dΩ is defined by (1.10).

Proof. By (2.8) and (2.10) and the fact ∥v(·,t)∥L∞ ≤M0 in (3.1), one obtains that

J1 :=2kξ2

∫
Ω

|∇v|2k−2∇v ·∇(∇v ·∇w)

≤2kξ2(

√
n

2k
+1)∥∇v∥2kL2(k+1)∥D2w∥Lk+1

=2kξ2(

√
n

2k
+1)

(∫
Ω

|∇v|2(k+1)

) k
k+1

∥D2w∥Lk+1

≤2kξ2(

√
n

2k
+1)(2k+

√
n)

2k
k+1 ∥v∥

2k
k+1

L∞

(∫
Ω

|∇v|2(k−1)|D2v|2
) k

k+1

∥D2w∥Lk+1

≤2kξ2(

√
n

2k
+1)(2k+

√
n)

2k
k+1M

2k
k+1

0

(∫
Ω

|∇v|2(k−1)|D2v|2
) k

k+1

∥D2w∥Lk+1 (3.26)

for all t∈ (0,Tmax). On the other hand, by the uniqueness of the elliptic problem

−∆w=u− ū in Ω,
∂w

∂ν
=0 on ∂Ω,

∫
Ω

w=0, (3.27)

the well-known W 2,p-elliptic estimate (cf. [1, 2, 19], indeed, ∆−1 :Lp→W̄ 2,p
0 , the sub-

space ofW 2,p with average zero, is a homeomorphism) shows, for some c5= c5(n,k,Ω)>
0, that

∥∆w∥Lk+1 ≤
√
n∥D2w∥Lk+1 ≤ c4

√
n∥u− ū∥Lk+1 ≤2c4

√
n∥u∥Lk+1 := c5∥u∥Lk+1 . (3.28)

Then we substitute (3.28) into (3.26) to get

J1≤2c5kξ2(
1

2k
+

1√
n
)(2k+

√
n)

2k
k+1M0

2k
k+1

(∫
Ω

|∇v|2(k−1)|D2v|2
) k

k+1

∥u∥Lk+1 . (3.29)

Furthermore, using (2.9), (2.10) and the fact (3.28), one can derive

J2 :=−2kξ2

∫
Ω

v∆w∇·(|∇v|2k−2∇v)

≤2kξ2(2(k−1)+
√
n)∥v∥L∞∥∇v∥k−1

L2(k+1)

(∫
Ω

|∇v|2k−2|D2v|2
) 1

2

∥∆w∥Lk+1



J. CHU, H. JIN, AND T. XIANG 1071

≤2kξ2(2(k−1)+
√
n)(2k+

√
n)

k−1
k+1 ∥v∥

2k
k+1

L∞

(∫
Ω

|∇v|2k−2|D2v|2
) k

k+1

∥∆w∥Lk+1

≤2c5kξ2(2(k−1)+
√
n)(2k+

√
n)

k−1
k+1M0

2k
k+1

(∫
Ω

|∇v|2k−2|D2v|2
) k

k+1

∥u∥Lk+1 .

(3.30)

In addition, applying Hölder’s inequality together with (2.10), we have

J3 :=2k(2(k−1)+
√
n)

∫
Ω

u|∇v|2k−2|D2v|

≤2k(2(k−1)+
√
n)

(∫
Ω

u2|∇v|2(k−1)

) 1
2
(∫

Ω

|∇v|2(k−1)|D2v|2
) 1

2

≤2k(2(k−1)+
√
n)∥u∥Lk+1∥∇v∥k−1

L2(k+1)

(∫
Ω

|∇v|2(k−1)|D2v|2
) 1

2

≤2k(2(k−1)+
√
n)(2k+

√
n)

k−1
k+1M0

k−1
k+1

(∫
Ω

|∇v|2(k−1)|D2v|2
) k

k+1

·∥u∥Lk+1 .

(3.31)

Now, summing over (3.29), (3.30) and (3.31), we infer

J1+J2+J3≤ c6
(∫

Ω

|∇v|2(k−1)|D2v|2
) k

k+1

∥u∥Lk+1 , (3.32)

where

c6=2c5kξ2(
1

2k
+

1√
n
)(2k+

√
n)

2k
k+1M0

2k
k+1

+2c5kξ2(2(k−1)+
√
n)(2k+

√
n)

k−1
k+1M0

2k
k+1

+2k(2(k−1)+
√
n)(2k+

√
n)

k−1
k+1M0

k−1
k+1

≤6c5kξ2(2k+
√
n)

2k
k+1M

2k
k+1

0 +2k(2k+
√
n)

2k
k+1M

k−1
k+1

0

=2k(1+3c5ξ2M0)(2k+
√
n)

2k
k+1M

k−1
k+1

0 . (3.33)

Therefore, by means of Young’s inequality, we infer from (3.32) and (3.33) that

J1+J2+J3

≤ k

2
d

∫
Ω

|∇v|2(k−1)|D2v|2+ ck+1
6

k+1

(
2

d(k+1)

)k∫
Ω

uk+1

≤ k

2
d

∫
Ω

|∇v|2(k−1)|D2v|2+ 22k+1

dk
(1+3c5ξ2M0)

k+1(2k+
√
n)2kMk−1

0

∫
Ω

uk+1. (3.34)

To control the boundary integral on (3.20), we first state the following well-known fact
due to homogeneous Neumann conditions:

∂|∇v|2

∂ν
≤2σΩ|∇v|2 on ∂Ω, (3.35)
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where σΩ=σ1Ω with σ being the maximum curvature of ∂Ω and 1Ω being the indicator
whether Ω is non-convex defined by

1Ω=

{
0, if Ω is convex [29, Lemma 5.3],

1, if Ω is non-convex [30, Lemma 4.2].

Now, combining (3.35) and using the trace inequality ∥ψ∥L2(∂Ω)≤ε∥∇ψ∥L2(Ω)+
Cε∥ψ∥L2(Ω) for any ε>0 (cf. [37, Remark 52.9] and [45, (3.19)]), we have

kd

∫
∂Ω

|∇v|2k−2 ∂|∇v|2

∂ν
≤2kdσΩ∥|∇v|k∥2L2(∂Ω)

≤k(k−1)dΩ

∫
Ω

|∇v|2(k−2)|∇|∇v|2|2+c7dΩ
∫
Ω

|∇v|2k, (3.36)

where dΩ is defined by (1.10). By (2.10), Young’s inequality with ε and the fact
∥v(·,t)∥L∞ ≤M0 in (3.1), we infer that

c7dΩ

∫
Ω

|∇v|2k≤ kdΩ

2(2k+
√
n)

2
M2

0

∫
Ω

|∇v|2(k+1)+c8dΩM
2k
0

≤ k

2
dΩ

∫
Ω

|∇v|2(k−1)|D2v|2+c8dΩM2k
0 . (3.37)

Finally, substituting (3.34), (3.36) and (3.37) into (3.20) and then keeping key param-
eters like ξ2 and M0, we accomplish our desired estimate (3.25).

Lemma 3.5. Let Ω⊂Rn(n≥1) and (u,v,w) be the solution of (1.4) obtained in Lemma
2.1. Then, for any k≥1, there exist two positive constants ξ∗(k) and µ∗(k) defined
respectively by (3.52) and (3.57) such that whenever one of the following conditions
holds:

(1) ξ1≥ ξ∗(k)χ2; (2) θ=1, µ≥max
{
1, χ

8+2n
5+n

}
µ∗(k)χ

2
5+n ; (3) θ>1, µ>0, (3.38)

there exist three positive constants C2,C3,C4 independent of t,χ,µ,d and ξi (i=1,2) but
depending on u0,v0,θ,a,k,n and Ω such that, for t∈ (0,Tmax),∫

Ω

uk≤C2

(
1+mk

1+M1(k)+(1+dΩM
2k
0 )d−1χ2M2−k

0 +M c
2 (k)

)
:=C2M2(k), (3.39)

and ∫
Ω

|∇v|2k≤ C3M2(k)

(1+M0ξ2)−kd−1χ2M2−k
0

, (3.40)

as well as, if k>n,

∥w(·,t)∥W 1,∞ ≤C4M
1
k
2 (k), (3.41)

where M c
2 is defined by

M c
2 (k) :=



0, if ξ1≥ ξ∗(k)χ2,

0, θ=1, if µ≥max
{
1, χ

8+2n
5+n

}
µ∗(k)χ

2
5+n ,

(θ−1)

µ
k+1
θ−1

[
(1+ 1

dk+1 )(1+M0ξ2)M0χ
2
] k+θ

θ−1 , if θ>1, µ>0.

(3.42)
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Proof. We apply the estimate (2.10) and the fact ∥v(·,t)∥L∞ ≤M0 to deduce that

χ2k(k−1)

2

∫
Ω

uk|∇v|2≤ε1
∫
Ω

uk+1+c9χ
2(k+1)ε−k

1

∫
Ω

|∇v|2(k+1)

≤ε1
∫
Ω

uk+1+c10χ
2(k+1)M2

0 ε
−k
1

∫
Ω

|∇v|2(k−1)|D2v|2, (3.43)

where ε1>0 to be chosen in (3.47) below. On the one hand, using the widely known
Gagliardo-Nirenberg inequality (cf. [40, Section 3]), we can find a constant c11>0 only

depending on k,n and Ω and α=
k
2−

1
2

k
2−

1
2+

1
n

∈ (0,1) such that∫
Ω

uk=∥u k
2 ∥2L2 ≤ c11(∥∇u

k
2 ∥2αL2∥u

k
2 ∥2(1−α)

L
2
k

+∥u k
2 ∥2

L
2
k
)

≤ c11
(
k2

4

∫
Ω

uk−2|∇u|2
)α

m
k(1−α)
1 +c11m

k
1

≤ k(k−1)

2

∫
Ω

uk−2|∇u|2+c12mk
1 . (3.44)

Then substituting (3.43) and (3.44) into (3.14) with p=k, one has

d

dt

∫
Ω

uk+

∫
Ω

uk+
ξ1(k−1)

2

∫
Ω

uk+1+
kµ

2

∫
Ω

uθ+k

≤ε1
∫
Ω

uk+1+c10χ
2(k+1)M2

0 ε
−k
1

∫
Ω

|∇v|2(k−1)|D2v|2+c12mk
1+M1(k). (3.45)

On the other hand, it follows from Lemma 3.4 and the fact dΩ≤d that

d

dt

∫
Ω

|∇v|2k+2k

∫
Ω

|∇v|2k+kd
∫
Ω

|∇v|2k−2|D2v|2

≤C1

dk
(1+M0ξ2)

k+1Mk−1
0

∫
Ω

uk+1+C1dΩM
2k
0 . (3.46)

Let us first set

c13=
C1c10
k

, ε1=(1+M0ξ2)M0χ
2(kc13)

1
k+1 , (3.47)

and then we put

δ(ε1)=
c10χ

2(k+1)M2
0 ε

−k
1

kd
=
c10
k

(1+M0ξ2)
−kd−1χ2M2−k

0 (kc13)
− k

k+1 , (3.48)

and

y(t) :=

∫
Ω

uk+δ(ε1)

∫
Ω

|∇v|2k. (3.49)

Then we multiply (3.46) by δ(ε1) and add the result to (3.45) to obtain

y′(t)+y(t)+
ξ1(k−1)

2

∫
Ω

uk+1+
kµ

2

∫
Ω

uθ+k

≤

{
c13

(
1

d
(1+M0ξ2)M0χ

2

)k+1

ε−k
1 +ε1

}∫
Ω

uk+1+c14
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=(kc13)
1

k+1

(
1+

1

kdk+1

)
(1+M0ξ2)M0χ

2

∫
Ω

uk+1+c14, (3.50)

where

c14= c12m
k
1+M1(k)+δ(ε1)C1dΩM

2k
0 . (3.51)

To show that the first term on the right-hand side of (3.50) can be absorbed by the
terms involving

∫
Ω
uk+1 or

∫
Ω
uθ+k, we first define

ξ∗(k)=
2(kc13)

1
k+1

k−1

(
1+

1

kdk+1

)
(1+M0ξ2)M0. (3.52)

Case 1: ξ1≥ ξ∗(k)χ2. In this case, notice that M0 is independent of ξ1 by (3.1) and
(2.2), in view of (3.50) along with (3.51) and (3.52), we deduce that

y′(t)+y(t)≤ c12mk
1+M1(k)+δ(ε1)C1dΩM

2k
0 . (3.53)

Solving this ODI and using (3.48) and (3.49), we get that∫
Ω

uk+
c10
k

(1+M0ξ2)
−kd−1χ2M2−k

0 (kc13)
− k

k+1

∫
Ω

|∇v|2k

≤∥u0∥kLk +c15(1+M0ξ2)
−kd−1χ2M2−k

0 ∥∇v0∥2kL2k

+c12m
k
1+M1(k)+c15(1+M0ξ2)

−kd−1χ2Mk+2
0 dΩ

≤ c16
[
1+mk

1+M1(k)+(1+dΩM
2k
0 )d−1χ2M2−k

0

]
. (3.54)

Case 2: θ=1 and µ>0 is suitably large alone. In this case, we first observe from
(3.1) and (2.2) that M0 is bounded by O(1)(1+µ−(2+n/2)), and therefore,

(1+M0ξ2)M0≤O(1)

(
1+

(
1

µ

)4+n
)
.

This enables us to infer that

µ̂∗(k)=
2(kc13)

1
k+1

k

(
1+

1

kdk+1

)
sup

0<µ<1

{
µ4+n(1+M0ξ2)M0

}
<+∞ (3.55)

and

µ̃∗(k)=
2(kc13)

1
k+1

k

(
1+

1

kdk+1

)
sup
µ≥1

{(1+M0ξ2)M0}<+∞. (3.56)

Now, we define

µ∗(k)=max
{
(µ̂∗(k))

1
5+n , µ̃∗(k)

}
<+∞. (3.57)

Then, under (2) of (3.38), we see from (3.57) that

µ≥max
{
1, χ

8+2n
5+n

}
µ∗(k)χ

2
5+n ≥max

{
(µ̂∗(k))

1
5+n χ

2
5+n , µ̃∗(k)χ

2
}
,
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and so (3.55) together with (3.56) implies

µ≥ 2(kc13)
1

k+1

k

(
1+

1

kdk+1

)
(1+M0ξ2)M0χ

2. (3.58)

Then in light of (3.50) along with (3.51) and (3.58), we derive an identical ODI as (3.53)
for any ξ1≥0, and then we get the same estimate as (3.54).

Case 3: θ>1 and µ>0. Let

c17 := sup
s>0

{
(kc13)

1
k+1

(
1+

1

kdk+1

)
(1+M0ξ2)M0χ

2sk+1− kµ

2
sk+θ

}
=

(θ−1)

k+θ

(
2(k+1)

k(k+θ)µ

) k+1
θ−1
[
(kc13)

1
k+1

(
1+

1

kdk+1

)
(1+M0ξ2)M0χ

2

] k+θ
θ−1

. (3.59)

Then, combining (3.59) and (3.50) along with (3.51), we end up with

y′(t)+y(t)≤ c12mk
1+M1(k)+δ(ε1)C1dΩM

2k
0 +c17|Ω|,

which in conjunction with (3.54), (3.59) and (3.48) allows us to deduce that∫
Ω

uk+
c10
k

(1+M0ξ2)
−kd−1χ2M2−k

0 (kc13)
− k

k+1

∫
Ω

|∇v|2k

≤ c16
[
1+mk

1+M1(k)+(1+dΩM
2k
0 )d−1χ2M2−k

0

]
+c18

(θ−1)

µ
k+1
θ−1

[(
1+

1

dk+1

)
(1+M0ξ2)M0χ

2

] k+θ
θ−1

. (3.60)

The desired qualitative (Lk,L2k)-bounds of (u,∇v) in (3.39) and (3.40) result from
(3.54) and (3.60) upon simple algebraic manipulations. Finally, if k>n, then the W 2,k-
estimate (3.28) and the Sobolev embedding W 2,k ↪→W 1,∞ together imply (3.41).

3.2. Qualitative (L∞,W 1,∞)-boundedness of (u,v). Before proceeding, based
on (3.52) and (3.57), we first define

ξ0= inf
k>n

2

ξ∗(k)= inf
k>n

2

{
2(kc13)

1
k+1

k−1

(
1+

1

kdk+1

)}
(1+M0ξ2)M0 (3.61)

and, with µ̂∗(k) and µ̃∗(k) defined by (3.55) and (3.56),

µ0= inf
k>n

2

µ∗(k)= inf
k>n

2

{
max

{
(µ̂∗(k))

1
5+n , µ̃∗(k)

}}
. (3.62)

Lemma 3.6. Let Ω⊂Rn(n≥2) and (u,v,w) be the local solution of (1.4) obtained in
Lemma 2.1. Suppose that one of the following conditions holds:

(1) ξ1>ξ0χ
2; (2) θ=1, µ>max

{
1, χ

8+2n
5+n

}
µ0χ

2
5+n ; (3) θ>1, µ>0. (3.63)

Then the L∞-norm of the u-solution component is uniformly bounded on (0,Tmax). In
particular, if one of the following conditions holds:

(1) ξ1≥ ξ∗(3n)χ2; (2) θ=1, µ≥max
{
1, χ

8+2n
5+n

}
µ∗(3n)χ

2
5+n ; (3) θ>1,µ>0, (3.64)
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then there exists C5>0 independent of t,χ,µ,d and ξi(i=1,2) but depending on n,u0,v0
and Ω such that the local solution (u,v,w) of (1.4) obtained in Lemma 2.1 satisfies, for
t∈ (0,Tmax), that

∥u(t)∥L∞ ≤C5M3(3n)

:=C5


1+M

1
3n
2 (3n)+ξ1M

2
3n
2 (3n)+

χM
2
3n
2 (3n)

((1+M0ξ2)−3nd−1χ2M2−3n
0 )

1
3n
, if a=µ=0,

1+
(

1
µ

) 1
θ

+ξ1M
2
3n
2 (3n)+

χM
2
3n
2 (3n)

((1+M0ξ2)−3nd−1χ2M2−3n
0 )

1
3n
, if a,µ>0,

(3.65)

where M2(·) is defined by (3.42).

Proof. By the definitions of ξ0 and µ0 respectively in (3.61) and (3.62), it is easy
to see that the corresponding case of (3.63) implies that of (3.38) for some k> n

2 . Then
an application of Lemma 3.5 shows

∥u(·,t)∥Lk ≤ c19M
1
k
2 (k), ∥∇v(·,t)∥L2k ≤ c20

(
M2(k)

(1+M0ξ2)−kd−1χ2M2−k
0

) 1
2k

. (3.66)

Therefore, the W 2,k-estimate (3.28) yields

∥w(·,t)∥W 2,k ≤ c20∥u(·,t)− ū∥Lk ≤2c20∥u(·,t)∥Lk ≤2c19c20M
1
k
2 (k),

and so the Sobolev embedding W 2,k ↪→W 1,q for some q>n shows

∥w(·,t)∥W 1,q ≤ c21M
1
k
2 (k), q=

4nk

k+3(n−k)+
. (3.67)

We now use similar spirits as used in [17, 45] to derive the L∞-bound of u. To that
purpose, we use the variation-of-constants formula to the u-equation in (1.4) to write

u(·,t)=et(∆−1)u0+

∫ t

0

e(∆−1)(t−s)∇·{u(·,s)(ξ1∇w(·,s)−χ∇v(·,s))}ds

+

∫ t

0

e(∆−1)(t−s)
[
(a+1)u(·,s)−µuθ+1(·,s)

]
ds

=:u1(·,t)+u2(·,t)+u3(·,t).

We next estimate u1,u2 and u3. First, the nonnegativity of u shows, for t∈ (0,Tmax),

∥u(·,t)∥L∞ =sup
x∈Ω

u(x,t)≤ sup
x∈Ω

u1(x,t)+sup
x∈Ω

u2(x,t)+sup
x∈Ω

u3(x,t). (3.68)

By the order property of the Neumann heat semigroup (et∆)t>0 due to the maximum
principle, we estimate u1 and u3 in the following ways:

∥u1(·,t)∥L∞ =∥et(∆−1)u0∥L∞ ≤e−t∥u0∥L∞ ≤∥u0∥L∞ , (3.69)

and, the semigroup estimate (2.13) in Lemma 2.5 and (3.66) yield

u3(·,t)=
∫ t

0

e(∆−1)(t−s)
[
(a+1)u(·,s)−µuθ+1(·,s)

]
ds
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≤


∫ t

0
e(∆−1)(t−s)u(·,s)ds, if a=µ=0,∫ t

0
e(∆−1)(t−s)

(
a+1

(1+θ)µ

) 1
θ (a+1)θ

1+θ ds, if a≥0, µ>0,

≤ c21


M

1
k
2 (k)

∫ t

0
(1+(t−s)− n

2k )e−(t−s)ds, if a=µ=0,∫ t

0
e−(t−s)e∆(t−s)

(
1
µ

) 1
θ

ds, if a≥0, µ>0,

≤ c22


M

1
k
2 (k), if a=µ=0,(
1
µ

) 1
θ

, if a≥0, µ>0.

(3.70)

For convenience of reference, we list two Hölder-type interpolation inequalities:

∥fg∥Lr ≤∥f∥Lp∥g∥Lq with p,q,r≥1,
1

r
=

1

p
+

1

q
,

and

∥f∥Lr ≤∥f∥
(r−k)+

r

L∞ ∥f∥
k

k+(r−k)+

Lk |Ω|
(k−r)+

kr with k,r≥1.

Employing the semigroup estimate (2.14) in Lemma 2.5, Hölder’s interpolation inequal-
ities above and (3.67), we deduce, for k> n

2 , that∥∥∥∥ξ1∫ t

0

e(∆−1)(t−s)∇·(u∇w)ds
∥∥∥∥
L∞

≤ c23ξ1
∫ t

0

(
1+(t−s)−1+

k−(n−k)+

8k

)
e−(t−s)∥u∇w∥

L
4nk

3k+(n−k)+
ds

≤ c24ξ1
∫ t

0

(
1+(t−s)−1+

k−(n−k)+

8k

)
e−(t−s)∥u∥

L
2nk

k−(n−k)+
∥∇w∥

L
4nk

k+3(n−k)+
ds

≤ c25ξ1M

2k−2(n−k)++(2n−k+(n−k)+)
+

[k−(n−k)++(2n−k+(n−k)+)+]k
2 (k)

(
sup

s∈(0,t)

∥u(s)∥L∞

) (2n−k+(n−k)+)
+

2n

= c25ξ1

M
2n+k−(n−k)+

2nk
2 (k)

(
sups∈(0,t)∥u(s)∥L∞

) 2n−k+(n−k)+

2n

, if k<2n,

M
2
k
2 (k), if k≥2n,

≤


1
4 sups∈(0,t)∥u(s)∥L∞ +c26ξ

2n

k−(n−k)+

1 M
2n+k−(n−k)+

[k−(n−k)+]k

2 (k), if k<2n,

c25ξ1M
2
k
2 (k), if k≥2n,

(3.71)

where we used the fact that

∥u∥
L

2nk
k−(n−k)+

∥∇w∥
L

4nk
k+3(n−k)+

≤ c27∥u∥
k−(n−k)+

k−(n−k)++(2n−k+(n−k)+)+

Lk ∥u∥
(2n−k+(n−k)+)

+

2n

L∞ ∥∇w∥
L

4nk
k+3(n−k)+
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≤ c28M

2k−2(n−k)++(2n−k+(n−k)+)
+

[k−(n−k)++(2n−k+(n−k)+)+]k
2 ∥u∥

(2n−k+(n−k)+)
+

2n

L∞

and the finiteness of gamma integral due to the fact that k−(n−k)+>0:∫ t

0

(
1+(t−s)−1+

k−(n−k)+

8k

)
e−(t−s)ds=

∫ t

0

(
1+τ−1+

k−(n−k)+

8k

)
e−τdτ <∞.

Similarly, using the boundedness information in (3.66), we infer∥∥∥∥−χ∫ t

0

e(∆−1)(t−s)∇·(u∇v)(·,s)ds
∥∥∥∥
L∞

≤ c29χ
∫ t

0

(
1+(t−s)−1+ 2k−n

8k

)
e−(t−s)∥(u∇v)(·,s)∥

L
4nk

2k+n
ds

≤ c30χ
∫ t

0

(
1+(t−s)−1+ 2k−n

8k

)
e−(t−s)∥u(·,s)∥

L
4nk

2k−n
∥∇v(·,s)∥L2kds

≤ c31
χM

4k−2n+(5n−2k)+

k[2k−n+(5n−2k)+]

2 (k)(
(1+M0ξ2)−kd−1χ2M2−k

0

) 1
k

(
sup

s∈(0,t)

∥u(·,s)∥L∞

) (5n−2k)+

4n

≤


1
4 sups∈(0,t)∥u(s)∥L∞ +c32

χ
4n

2k−n M

2k+3n
k(2k−n)
2 (k)

((1+M0ξ2)−kd−1χ2M2−k
0 )

4n
k(2k−n)

, if k< 5n
2 ,

c31
χM

2
k
2 (k)

((1+M0ξ2)−kd−1χ2M2−k
0 )

1
k
, if k≥ 5n

2 .

(3.72)

In the case of k≥ 5n
2 , substituting (3.69), (3.70), (3.71) and (3.72) into (3.68), we ac-

complish that

∥u(t)∥L∞ ≤ c32


1+M

1
k
2 (k)+ξ1M

2
k
2 (k)+

χM
2
k
2 (k)

((1+M0ξ2)−kd−1χ2M2−k
0 )

1
k
, if µ=0,

1+
(

1
µ

) 1
θ

+ξ1M
2
k
2 (k)+

χM
2
k
2 (k)

((1+M0ξ2)−kd−1χ2M2−k
0 )

1
k
, if µ>0.

(3.73)

Similarly, in the case of k∈ [2n, 5n2 ), we have

∥u(t)∥L∞ ≤ c33


1+M

1
k
2 (k)+ξ1M

2
k
2 (k)+

χ
4n

2k−n M

2k+3n
k(2k−n)
2 (k)

((1+M0ξ2)−kd−1χ2M2−k
0 )

4n
k(2k−n)

, if µ=0,

1+
(

1
µ

) 1
θ

+ξ1M
2
k
2 (k)+

χ
4n

2k−n M

2k+3n
k(2k−n)
2 (k)

((1+M0ξ2)−kd−1χ2M2−k
0 )

4n
k(2k−n)

, if µ>0.

(3.74)

And in the case of k∈ (n2 ,2n), we get

∥u(t)∥L∞ ≤c34

1+
χ

4n
2k−nM

2k+3n
k(2k−n)

2 (k)(
(1+M0ξ2)−kd−1χ2M2−k

0

) 4n
k(2k−n)


+c34ξ

2n

k−(n−k)+

1 M
2n+k−(n−k)+

[k−(n−k)+]k

2 (k)+c34


M

1
k
2 (k), if µ=0,(
1
µ

) 1
θ

, if µ>0.
(3.75)
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Combining (3.73), (3.74) and (3.75), we see either one of (3.63) implies that ∥u(·,t)∥L∞

is uniformly bounded for t∈ (0,Tmax). In particular, if one of (3.64) holds, then the
desired qualitative bound of u in (3.65) follows upon setting k=3n in (3.73).

Lemma 3.7. Let Ω⊂Rn(n≥2) and (u,v,w) be the solution of (1.4) obtained in
Lemma 2.1. If one of (3.63) holds, then ∥∇v(·,t)∥L∞ is uniformly bounded on (0,Tmax).
In particular, if one of the following conditions holds:

(1) ξ1≥ ξ∗(3n)χ2; (2) θ=1, µ≥max
{
1, χ

8+2n
5+n

}
µ∗(3n)χ

2
5+n ; (3) θ>1,µ>0, (3.76)

then, for t∈ (0,Tmax), there exists C6>0 depending only on n,u0,v0 and Ω such that

∥∇v(·,t)∥L∞

≤C6

1+
ξ2M

1
2n
2 (3n)

d
(
(1+M0ξ2)−3nd−1χ2M2−3n

0

) 1
6n

+
ξ2
d
M0M

1
3n
2 (3n)+

M
1
3n
2 (3n)

d

, (3.77)

where M0 and M2(·) are defined by (3.1) and (3.39), respectively.

Proof. Using the time scaling t̃=dt, we rewrite the second equation in (1.4) as
follows:

vt̃=∆v− 1

d
v+

ξ2
d
∇w ·∇v+ ξ2

d
v(ū−u)+ 1

d
u.

Then an application of the variation-of-constants formula yields

v(·, t̃)=e(∆− 1
d )t̃v0+

ξ2
d

∫ t̃

0

e(∆− 1
d )(t̃−s)(∇w ·∇v)(·,s)ds

+
ξ2
d

∫ t̃

0

e(∆− 1
d )(t̃−s)v(·,s)(ū(s)−u(·,s))ds+ 1

d

∫ t̃

0

e(∆− 1
d )(t̃−s)u(·,s)ds. (3.78)

Under one of (3.63), we first see from Lemma 3.6 and its proof, for some k> n
2 , that

∥u(·, t̃)∥L∞ +∥∇v(·, t̃)∥L2k ≤ c35, ∀t̃>0. (3.79)

Then the elliptic estimate applied to ∆w= ū−u along with Lemma 3.1 shows that

∥v(·, t̃)∥L∞ +∥∇w(·, t̃)∥L∞ ≤ c36, ∀t̃>0. (3.80)

Then, with (3.79) and (3.80) at hand, we can apply the smoothing Lp-Lq semigroup
estimates in Lemma 2.5 to (3.78) to infer that ∥∇v(·,t)∥L∞ is uniformly bounded. We
next aim to derive a qualitative bound for ∥∇v(·,t)∥L∞ under one of (3.76). In this
circumstance, Lemma 3.5 allows us to see, for t̃∈ (0,dTmax), that

∥u(·, t̃)∥L3n ≤ c37M
1
3n
2 (3n), ∥∇v(·, t̃)∥L6n ≤ c38M

1
6n
2 (3n)(

(1+M0ξ2)−3nd−1χ2M2−3n
0

) 1
6n

. (3.81)

Next, with the aid of (3.81) and (3.41) with k=3n, and keeping in mind that
∥v(·, t̃)∥L∞ ≤M0 by Lemma 3.1, we utilize the Hölder inequality and the semigroup
estimates in Lemma 2.5 to (3.78) to deduce that

∥∇v(·, t̃)∥L∞ ≤∥∇e(∆− 1
d )t̃v0∥L∞ +

ξ2
d

∫ t̃

0

∥∇e(∆− 1
d )(t̃−s)(∇w ·∇v)(·,s)∥L∞ds
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+
ξ2
d

∫ t̃

0

∥∇e(∆− 1
d )(t̃−s)v(·,s)(ū(s)−u(·,s))∥L∞ds

+
1

d

∫ t̃

0

∥∇e(∆− 1
d )(t̃−s)u(·,s)∥L∞ds

≤c40∥∇v0∥L∞ +
c40ξ2
d

∫ t̃

0

(1+(t̃−s)− 2
3 )e−λ1(t̃−s)∥∇v∥L6n∥∇w∥L6nds

+
c40ξ2
d

∫ t̃

0

(1+(t̃−s)− 2
3 )e−λ1(t̃−s)∥v∥L∞∥ū−u∥L3nds

+
c40
d

∫ t̃

0

(1+(t̃−s)− 2
3 )e−λ1(t̃−s)∥u∥L3nds

≤c41

1+
ξ2M

1
2n
2 (3n)

d
(
(1+M0ξ2)−3nd−1χ2M2−3n

0

) 1
6n

+
(1+ξ2M0)

d
M

1
3n
2 (3n)

 ,
which is our desired qualitative bound in (3.77) since t̃∈ (0,dTmax) was arbitrary.

Proof of Theorem 1.1. Based on the extensibility criterion (2.1) in Lemma 2.1,
the qualitative boundedness described in Theorem 1.1 can be traced out from Lemma
3.1, Lemma 3.6 and Lemma 3.7. The qualitative bound for ∥v∥L∞ in (1.7) can be easily
seen from Lemma 3.1. The bounds for ∥∇w∥L∞ in (1.8) come mainly from Lemma 3.5
with k=n+1.

4. Higher order regularity of solutions

In Section 3, we have established the qualitative boundedness and thus global ex-
istence of solutions. To study large-time behavior of global bounded solutions, we need
further to enhance regularity properties of bounded solutions.

Lemma 4.1. Let (u,v,w) be the global and bounded classical solution of (1.4) obtained
in Theorem 1.1. Then there exist σ∈ (0,1) and C7>0 such that

∥u(·,t)∥
Cσ, σ

2 (Ω̄×[t,t+1])
≤C7, ∀t≥1. (4.1)

Proof. In light of Theorem 1.1, the global classical solution (u,v,w) satisfies

u>0, v >0, u+v+ |∇v|+ |∇w|≤M on Ω×(0,∞). (4.2)

We now rewrite the first equation of (1.4) in the following form:

ut=∇·D(x,t,∇u)+R(x,t), (x,t)∈Ω×(0,∞),

where D(x,t,η)=η−χ(u∇v)(x,t)+ξ1(u∇w)(x,t) and R(x,t)=(au−µuθ+1)(x,t).

In view of the boundedness in (4.2) and the Young inequality, we readily deduceD(x,t,η) ·η≥ 1
2 |η|

2− (χ+ξ1)
2M4

2 , |D(x,t,η)|≤ |η|+(χ+ξ1)M
2,

|R(x,t)|≤aM+µMθ+1, ∀(x,t,η)∈Ω×(0,∞)×Rn.

Then (4.1) follows from the Hölder regularity for parabolic equations [35, Theorem 1.3].
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Lemma 4.2. There exists a constant C8>0 such that the global bounded solution of
(1.4) obtained in Theorem 1.1 fulfills

∥∇u(·,t)∥L2n ≤C8, ∀t≥1. (4.3)

Proof. Inspired from [24, Section 3.3], we first establish an L2-bound for ∆v. To
this end, we first recall from (4.2) and (3.14) with p=2 of Lemma 3.2 that

d

dt

∫
Ω

u2+

∫
Ω

u2+

∫
Ω

|∇u|2≤ c42. (4.4)

Next, we take ∇ to the v-equation, and then take dot product with −∇∆v, and finally
use the w-equation and repeatedly use integration by parts to derive from (1.4) that

1

2

d

dt

∫
Ω

|∆v|2+
∫
Ω

|∆v|2+d
∫
Ω

|∇∆v|2

=−ξ2
∫
Ω

∇(∇v ·∇w+ ūv−uv) ·∇∆v−
∫
Ω

∇u ·∇∆v

=−ξ2
∫
Ω

(
D2v ·∇w+D2w ·∇v

)
·∇∆v+ξ2

∫
Ω

(u− ū)∇v ·∇∆v

+

∫
Ω

(ξ2v−1)∇u ·∇∆v. (4.5)

Based on (4.4) and (4.5), by the boundedness (4.2), the elliptic estimate ∥D2w∥L2 ≤
c43∥u∥L2 ≤ c44, the Gagliardo-Nirenberg interpolation inequality and the H3-elliptic es-
timate (cf. [44, (4.19)]), we obtain that

−ξ2
∫
Ω

(
D2v ·∇w+D2w ·∇v

)
∇∆v

≤Mξ2∥D2v∥L2∥∇∆v∥L2 +
d

7
∥∇∆v∥2L2 +c45

≤ c46
(
∥D3v∥

2
3

L2∥v∥
1
3

L2 +∥v∥L2

)
∥∇∆v∥L2 +

d

7
∥∇∆v∥2L2 +c45

≤ c47∥v∥
2
3

H3∥∇∆v∥L2 +
d

6
∥∇∆v∥2L2 +c47

≤ c48 (∥∆v∥H1 +∥v∥L2)
2
3 ∥∇∆v∥L2 +

d

6
∥∇∆v∥2L2 +c47

≤ c49 (∥∇∆v∥L2 +∥v∥L2)
2
3 ∥∇∆v∥L2 +

d

6
∥∇∆v∥2L2 +c47

≤ d

5
∥∇∆v∥2L2 +c50. (4.6)

In easier ways, we again use the boundedness (4.2) to estimate

ξ2

∫
Ω

(u− ū)∇v ·∇∆v+

∫
Ω

(ξ2v−1)∇u ·∇∆v

≤ 3d

5

∫
Ω

|∇∆v|2+ (1+Mξ2)
2

2d

∫
Ω

|∇u|2+c51. (4.7)

Substituting (4.6) and (4.7) into (4.5), we conclude that

d

dt

∫
Ω

|∆v|2+2

∫
Ω

|∆v|2≤ (1+Mξ2)
2

d

∫
Ω

|∇u|2+2c50+2c51. (4.8)
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An obvious combination from (4.4) and (4.8) enables one to derive that

d

dt

∫
Ω

(
(1+Mξ2)

2

d
u2+ |∆v|2

)
+

∫
Ω

(
(1+Mξ2)

2

d
u2+ |∆v|2

)
≤ c52,

which along with H2-elliptic estimate yields a uniform H2-bound for v:

∥D2v(·,t)∥L2 +∥∆v(·,t)∥L2 ≤ c53, ∀t≥1. (4.9)

Next, we proceed to derive an L2-bound for ∇u. For this, we compute from (1.4) that

d

dt

∫
Ω

|∇u|2+
∫
Ω

|∇u|2+2

∫
Ω

|∆u|2

=2χ

∫
Ω

(∇u ·∇v+u∆v)∆u−2ξ1

∫
Ω

(
∇u ·∇w+uū−u2

)
∆u

−2

∫
Ω

(au−µuθ+1)∆u+

∫
Ω

|∇u|2. (4.10)

Using the boundedness (4.2), (4.9), the Gagliardo-Nirenberg inequality and the H2-
elliptic estimate, we deduce that

2χ

∫
Ω

(∇u∇v+u∆v)∆u−2ξ1

∫
Ω

(
∇u∇w+uū−u2

)
∆u

−2

∫
Ω

(au−µuθ+1)∆u+

∫
Ω

|∇u|2

≤
∫
Ω

|∆u|2+
[
1+4M2(χ2+ξ21)

]∫
Ω

|∇u|2+4M2χ2

∫
Ω

|∆v|2+c54

≤
∫
Ω

|∆u|2+c55
(
∥D2u∥

1
2

L2∥u∥
1
2

L2 +∥u∥L2

)2
+c55

≤
∫
Ω

|∆u|2+c56∥D2u∥L2 +c56

≤
∫
Ω

|∆u|2+c57 (∥∆u∥L2 +∥u∥L2)+c57

≤2

∫
Ω

|∆u|2+c58.

Substituting this into (4.10) entails a simple ODI as follows:

d

dt

∫
Ω

|∇u|2+
∫
Ω

|∇u|2≤ c58,

yielding immediately a uniform L2-bound for ∇u:

∥∇u(·,t)∥L2 ≤ c59, ∀t≥1. (4.11)

We are now ready to show the uniform boundedness of ∥∇u(·,t)∥L2n . Again, we
apply integration by parts to compute from (1.4) that

1

2n

d

dt

∫
Ω

|∇u|2n=
∫
Ω

|∇u|2n−2∇u ·∇∆u−χ
∫
Ω

|∇u|2n−2∇u ·∇(∇·(u∇v))
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+ξ1

∫
Ω

|∇u|2n−2∇u ·∇(∇·(u∇w))

+

∫
Ω

|∇u|2n−2∇u ·∇(au−µuθ+1)=:

4∑
i=1

Ji. (4.12)

For J1, noticing the fact that 2∇u ·∇∆u=∆|∇u|2−2|D2u|2 and the L2-boundedness
of ∇u in (4.11), we employ the way to control boundary integral as done in (3.36) and
the Gagliardo-Nirenberg inequality to estimate that

J1=
1

2

∫
Ω

|∇u|2n−2∆|∇u|2−
∫
Ω

|∇u|2n−2|D2u|2

=
1

2

∫
∂Ω

|∇u|2n−2 ∂|∇u|2

∂ν
− (n−1)

2

∫
Ω

|∇u|2n−4|∇|∇u|2|2−
∫
Ω

|∇u|2n−2|D2u|2

≤− (n−1)

3

∫
Ω

|∇u|2n−4|∇|∇u|2|2− 1

2

∫
Ω

|∇u|2n−2|D2u|2+c60. (4.13)

By the inequality |∆u|≤
√
n|D2u| and the boundedness (4.2) and (4.9), we use integra-

tion by parts to bound J2 as follows:

J2=χ

∫
Ω

∇|∇u|2n−2 ·∇u∇·(u∇v)+χ
∫
Ω

|∇u|2n−2∆u∇·(u∇v)

=χ(n−1)

∫
Ω

|∇u|2(n−2)∇|∇u|2 ·∇u(∇u ·∇v+u∆v)

+χ

∫
Ω

|∇u|2n−2∆u(∇u ·∇v+u∆v)

≤Mχ(n−1)

∫
Ω

|∇u|2n−3|∇|∇u|2|(|∇u|+ |∆v|)

+Mχ
√
n

∫
Ω

|∇u|2n−2|D2u|(|∇u|+ |∆v|)

≤ (n−1)

8

∫
Ω

|∇u|2n−4|∇|∇u|2|2+ 1

8

∫
Ω

|∇u|2n−2|D2u|2

+4(2n−1)M2χ2

∫
Ω

|∇u|2n+4(2n−1)M2χ2

∫
Ω

|∇u|2n−2|∆v|2. (4.14)

In a similar way, since |∆w|= |u− ū|≤2M , and using Young’s inequality, we estimate
J3 as follows:

J3=−ξ1

∫
Ω

∇|∇u|2n−2 ·∇u∇·(u∇w)−ξ1

∫
Ω

|∇u|2n−2∆u ·∇(u∇w)

≤Mξ1(n−1)

∫
Ω

|∇u|2n−3|∇|∇u|2|(|∇u|+ |∆w|)+Mξ1
√
n

∫
Ω

|∇u|2n−2|D2u|(|∇u|+ |∆w|)

≤ (n−1)

8

∫
Ω

|∇u|2n−4|∇|∇u|2|2+ 1

8

∫
Ω

|∇u|2n−2|D2u|2

+4(2n−1)M2ξ21

∫
Ω

|∇u|2n+16(2n−1)M4ξ21

∫
Ω

|∇u|2n−2

≤ (n−1)

8

∫
Ω

|∇u|2n−4|∇|∇u|2|2+ 1

8

∫
Ω

|∇u|2n−2|D2u|2+2(4n−1)M2ξ21

∫
Ω

|∇u|2n+c61.

(4.15)
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At last, the term J4 can be easily computed:

J4=a

∫
Ω

|∇u|2n−µ(θ+1)

∫
Ω

uθ|∇u|2n. (4.16)

Substituting (4.13), (4.14), (4.15) and (4.16) into (4.12) and using Young’s inequality,
one has a differential inequality of the form:

d

dt

∫
Ω

|∇u|2n+2n

∫
Ω

|∇u|2n+ (n−1)n

6

∫
Ω

|∇u|2n−4|∇|∇u|2|2

+
n

2

∫
Ω

|∇u|2n−2|D2u|2

≤c62
∫
Ω

|∇u|2n+c62
∫
Ω

|∇u|2n−2|∆v|2+c62

≤c63
∫
Ω

|∇u|2n+c63
∫
Ω

|∆v|2n+c63. (4.17)

Since ∥u(·,t)∥L∞ ≤M in (4.2), Young’s inequality enables one to deduce that

2c63

∫
Ω

|∇u|2n=2c63

(
−(n−1)

∫
Ω

u|∇u|2n−4∇|∇u|2 ·∇u−
∫
Ω

u|∇u|2n−2∆u

)
≤2c63M

(
(n−1)

∫
Ω

|∇u|2n−3|∇|∇u|2|+
√
n

∫
Ω

|∇u|2n−2|D2u|
)

≤ n(n−1)

6

∫
Ω

|∇u|2n−4|∇|∇u|2|2+ n

2

∫
Ω

|∇u|2n−2|D2u|2+c64
∫
Ω

|∇u|2n−2

≤ n(n−1)

6

∫
Ω

|∇u|2n−4|∇|∇u|2|2+ n

2

∫
Ω

|∇u|2n−2|D2u|2

+c63

∫
Ω

|∇u|2n+c65,

which, upon being substituted into (4.17), allows us to conclude

d

dt

∫
Ω

|∇u|2n+2n

∫
Ω

|∇u|2n≤ c63
∫
Ω

|∆v|2n+c66.

Solving this simple differential inequality via integrating factor method, we get∫
Ω

|∇u(·,t)|2n≤ c66
2n

+

∫
Ω

|∇u(·,1)|2n+c63e−2nt

∫ t

1

e2ns
∫
Ω

|∆v(·,s)|2nds, ∀t≥1.

(4.18)
Next, we apply the widely known maximal Sobolev regularity to the v-equation to
bound the third term on the right. To this end, with the help of the w-equation, we
first rewrite the v-equation in (1.4) in the following form:

vt=d∆v−v+ξ2∇v ·∇w+ξ2v(ū−u)+u. (4.19)

Let h(x,t) := ξ2∇v ·∇w+ξ2v(ū−u)+u. Then it follows from the boundedness (4.2)
that

|h|≤M2ξ2+2M2ξ2+M =3M2ξ2+M on Ω×(0,∞). (4.20)
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Now, an application of the maximal Sobolev regularity to (4.19) with (4.20) shows that∫ t

1

e2ns
∫
Ω

|∆v(·,t)|2n≤ c67
(
e2n
∫
Ω

|∆v(·,1)|2n+
∫ t

1

e2ns
∫
Ω

|h|2n
)

≤ c67
(
e2n
∫
Ω

|∆v(·,1)|2n+ (3M2ξ2+M)2n|Ω|
2n

e2nt
)
,

which, substituted into (4.18), gives, for ∀t≥1,∫
Ω

|∇u(·,t)|2n≤ c66
2n

+

∫
Ω

|∇u(·,1)|2n+c63c67
(∫

Ω

|∆v(·,1)|2n+ (3M2ξ2+M)2n|Ω|
2n

)
,

yielding our desired gradient estimate (4.3).

5. Global stability: Proof of Theorem 1.2
Given the enhanced regularity properties in the preceding section, we shall examine

the long-time dynamics of bounded solutions as obtained in Theorem 1.1. Under certain
conditions, we shall show convergence and exponential convergence of bounded solutions
to the unique constant steady state as time goes to infinity.

5.1. Case 1: a=µ=0. In this case, the system (1.4) becomes

ut=∆u−χ∇·(u∇v)+ξ1∇·(u∇w), x∈Ω,t>0,

vt=d∆v+ξ2∇·(v∇w)+u−v, x∈Ω,t>0,

0=∆w+u− ū0,
∫
Ω
w=0, x∈Ω,t>0,

∂u
∂ν = ∂v

∂ν =
∂w
∂ν =0, x∈∂Ω,t>0,

u(x,0)=u0(x), v(x,0)=v0(x), x∈Ω.

(5.1)

Lemma 5.1. The global classical solution of (5.1) satisfies the following identity:

d

dt

(∫
Ω

uln
u

ū
+
χ

2

∫
Ω

|∇v|2
)
+

∫
Ω

|∇u|2

u
+dχ

∫
Ω

|∆v|2+χ
∫
Ω

|∇v|2+ξ1
∫
Ω

|∆w|2

=2χ

∫
Ω

∆w ·∆v−χξ2
∫
Ω

∇·(v∇w)∆v.
(5.2)

Proof. Multiplying the first equation of (5.1) by lnu− lnū, we have

d

dt

∫
Ω

uln
u

ū
+

∫
Ω

|∇u|2

u
=χ

∫
Ω

∇u ·∇v−ξ1
∫
Ω

∇u ·∇w. (5.3)

We multiply the second equation of (5.1) by −∆v to obtain

1

2

d

dt

∫
Ω

|∇v|2+d
∫
Ω

|∆v|2+
∫
Ω

|∇v|2=
∫
Ω

∇u ·∇v−ξ2
∫
Ω

∇·(v∇w)∆v. (5.4)

Then multiplying (5.4) by χ and adding it to (5.3), and using the facts u= ū0−∆w and∫
Ω
∆v=0=

∫
Ω
∆w due to homogeneous boundary conditions, we obtain

d

dt

(∫
Ω

u ln
u

ū
+
χ

2

∫
Ω

|∇v|2
)
+

∫
Ω

|∇u|2

u
+dχ

∫
Ω

|∆v|2+χ
∫
Ω

|∇v|2

=2χ

∫
Ω

∇u ·∇v−ξ1
∫
Ω

∇u ·∇w−χξ2
∫
Ω

∇·(v∇w)∆v

=2χ

∫
Ω

∆w ·∆v−ξ1
∫
Ω

|∆w|2−χξ2
∫
Ω

∇·(v∇w)∆v,
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which gives rise to (5.2).

In the limiting case of χ=0, there is no bad term to be estimated by (5.2), we can
directly jump to (5.15) below, and hence its proof is simpler. We proceed to treat the
hard case of χ>0, for that purpose, we denote

A=A(d)= sup
(x,t)∈Ω×(0,∞)

v(x,t), B=B(d)= sup
(x,t)∈Ω×(0,∞)

|∇w(x,t)|. (5.5)

Then by the qualitative bounds for v and ∇w in (1.7) and (1.8) with (1.9) and (1.10),
we see that they are bounded for large d and hence

d0(χ)= inf

{
d̂0>0 :

(
d− (2+Aξ2)

2
χ

4ξ1
− B2ξ22

4

)
χ≥0 for all d≥ d̂0

}
<+∞. (5.6)

This allows us to include the limiting case of χ=0, which corresponds to d0(0)=0.

Lemma 5.2. Assume ξ1≥ ξ0χ2 and d≥d0(χ). Then the global classical solution
(u,v,w) of (5.1) satisfies the following estimate:∫ t

1

∫
Ω

|∇u|2

u
≤C9, ∀t>1. (5.7)

In addition, if d>d0(χ), then there exists ζ1>0 such that

∥u(·,t)− ū0∥L1 +∥∇v(·,t)∥L2 ≤C10e
−ζ1t, ∀t>0. (5.8)

Proof. Using the definitions of A and B in (5.5), we infer from (5.2) of Lemma 5.1
that

d

dt

(∫
Ω

u ln
u

ū
+
χ

2

∫
Ω

|∇v|2
)
+

∫
Ω

|∇u|2

u
+dχ

∫
Ω

|∆v|2+χ
∫
Ω

|∇v|2+ξ1
∫
Ω

|∆w|2

=2χ

∫
Ω

∆w ·∆v−χξ2
∫
Ω

v∆w ·∆v−ξ2χ
∫
Ω

∇v ·∇w ·∆v

≤ (2+Aξ2)χ

∫
Ω

|∆w||∆v|+Bχξ2
∫
Ω

|∇v||∆v|. (5.9)

Using Young’s inequality, we readily derive

(2+Aξ2)χ

∫
Ω

|∆w||∆v|≤ ξ1
∫
Ω

|∆w|2+ (2+Aξ2)
2χ2

4ξ1

∫
Ω

|∆v|2, (5.10)

and

Bχξ2

∫
Ω

|∇v||∆v|≤ (1−ε1)χ
∫
Ω

|∇v|2+ B2χξ22
4(1−ε1)

∫
Ω

|∆v|2, (5.11)

where, due to d≥d0(χ) with d0(χ) defined by (5.6), ε1∈ [0,1) is defined by

ε1=

0, if d=d0(χ),

1
2

(
d− (2+Aξ2)

2χ
4ξ1

− B2ξ22
4

)(
d− (2+Aξ2)

2χ
4ξ1

)−1

, if d>d0(χ).
(5.12)

A substitution of (5.10) and (5.11) into (5.9) gives

d

dt

(∫
Ω

uln
u

ū
+
χ

2

∫
Ω

|∇v|2
)
+

∫
Ω

|∇u|2

u
+ε1χ

∫
Ω

|∇v|2
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+

(
d− (2+Aξ2)

2χ

4ξ1
− B2ξ22

4(1−ε1)

)
χ

∫
Ω

|∆v|2≤0. (5.13)

Since d≥d0(χ), using the definitions of d0 and ε1 in (5.6) and (5.12), one has(
d− (2+Aξ2)

2χ

4ξ1
− B2ξ22

4(1−ε1)

)
χ≥0,

which, substituted into (5.13), yields

d

dt

(∫
Ω

uln
u

ū
+
χ

2

∫
Ω

|∇v|2
)
+

∫
Ω

|∇u|2

u
+ε1χ

∫
Ω

|∇v|2≤0. (5.14)

Then an integration with respect to t over (1,t) shows that∫
Ω

uln
u

ū
+
χ

2

∫
Ω

|∇v|2+
∫ t

1

∫
Ω

|∇u|2

u
≤
∫
Ω

u(·,1)ln u(·,1)
ū0

+
χ

2

∫
Ω

|∇v(·,1)|2. (5.15)

A use of Lemma 2.6 along with the fact ū= ū0 entails∫
Ω

uln
u

ū
≥ 1

2ū0
∥u− ū0∥2L1 ≥0, (5.16)

and ∫
Ω

u(·,1)ln u(·,1)
ū0

≤ 1

ū0
∥u(·,1)− ū0∥2L2 . (5.17)

Substituting (5.16) and (5.17) into (5.15), we obtain (5.7) directly.
On the other hand, using Lemma 2.6 again and noting the fact that ∥u∥L∞ ≤M ,

we use the Poincaré inequality to derive that∫
Ω

uln
u

ū
≤ 1

ū
∥u− ū∥2L2 ≤

c68
ū0

∥∇u∥2L2 ≤
c68M

ū0

∫
Ω

|∇u|2

u
,

which yields

ū0
c68M

∫
Ω

u ln
u

ū
≤
∫
Ω

|∇u|2

u
. (5.18)

Substituting (5.18) into (5.14), and recalling the fact ε1>0 due to d>d0(χ), then we
find a positive constant c69 :=min{ ū0

c68M
,2ε1} such that

d

dt

(∫
Ω

uln
u

ū
+
χ

2

∫
Ω

|∇v|2
)
+c69

(∫
Ω

uln
u

ū
+
χ

2

∫
Ω

|∇v|2
)
≤0,

which immediately entails, for t≥1,∫
Ω

uln
u

ū
+
χ

2

∫
Ω

|∇v|2≤
(∫

Ω

u(·,1)ln u(·,1)
ū0

+
χ

2

∫
Ω

|∇v(·,1)|2
)
e−c69(t−1). (5.19)

Then the combination of (5.16), (5.17) and (5.19) implies (5.8).

Lemma 5.3. Under Lemma 5.2, the u,w-components of the global bounded classical
solution of (5.1) fulfill the following properties:
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(uc1) If d≥d0(χ), then (u,w) decays to (ū0,0) uniformly:

∥u(·,t)− ū0∥L∞ +∥w(·,t)∥W 1,∞ →0 as t→∞. (5.20)

(uc2) If d>d0(χ), then (u,w) decays exponentially to (ū0,0): for some ζ2>0,

∥u(·,t)− ū0∥L∞ +∥w(·,t)∥W 1,∞ ≤C11e
−ζ2t, ∀t>0. (5.21)

Proof. Notice from Theorem 1.1 that ∥u(·,t)∥L∞ is uniformly bounded, and thus
the space-time estimate (5.7) along with Poincaré’s inequality ensures∫ ∞

1

∫
Ω

|u− ū0|2≤ c69
∫ ∞

1

∫
Ω

|∇u|2≤ c70. (5.22)

Then the uniform continuity of ∥u− ū0∥2L2 implied by (4.1) shows that

∥u− ū0∥L2 →0 as t→∞. (5.23)

Thus, with the boundedness of ∥∇u∥L2n in (4.3), the Gagliardo-Nirenberg inequality
gives

∥u(·,t)− ū0∥L∞ ≤c71
(
∥∇u(·,t)∥

n
n+1

L2n ∥u(·,t)− ū0∥
1

n+1

L2 +∥u(·,t)− ū0∥L2

)
≤c72

(
∥u(·,t)− ū0∥

1
n+1

L2 +∥u(·,t)− ū0∥L2

)
→0 as t→∞. (5.24)

This establishes the u-convergence in (5.20). We also provide here an alterative short
proof based on [38, Lemma 3.10]. Indeed, assume to the contrary, then there would
exist some sequences (xj)j∈N⊂Ω and (tj)j∈N⊂ (0,∞) satisfying tj →∞ as j→∞ such
that

|u(xj ,tj)− ū0|≥ c73, ∀j∈N.

The uniform continuity of u due to Lemma 4.1 warrants there exist r>0 and δ>0 such
that, for any j∈N,

|u− ū0|≥
c73
2

on Br(xj)∩Ω×(tj ,tj+δ). (5.25)

The smoothness of ∂Ω shows that

|Br(xj)∩Ω|≥ c74, ∀xj ∈Ω. (5.26)

Therefore, for all j∈N, it follows from (5.25) and (5.26) that∫ tj+δ

tj

∫
Ω

|u− ū0|2≥
∫ tj+δ

tj

∫
Br(xj)∩Ω

|u− ū0|2≥
c273c74δ

4
, (5.27)

which clearly contradicts the following fact due to (5.22):∫ tj+δ

tj

∫
Ω

|u− ū0|2≤
∫ ∞

tj

∫
Ω

|u− ū0|2→0 as j→∞.

This contradiction gives rise to (5.21).
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In the case of d>d0(χ), we shall apply Lemma 4.2 and (5.8) to show the L∞-
exponential decay (5.21). Indeed, employing the Gagliardo-Nirenberg inequality, the
L1-exponential decay (5.8) and the boundedness of ∥∇u∥L2n in Lemma 4.2, we conclude
that

∥u(·,t)− ū0∥L∞ ≤c75
(
∥∇u(·,t)∥

2n
2n+1

L2n ∥u(·,t)− ū0∥
1

2n+1

L1 +∥u(·,t)− ū0∥L1

)
≤c76e−

ζ1
2n+1 t,

which shows our u-exponential decay estimate (5.20).

Finally, by the W 2,n+1-estimate applied to (3.27) and the embedding W 2,n+1 ↪→
W 1,∞, we obtain that

∥w(·,t)∥W 1,∞ ≤ c77∥w(·,t)∥W 2,n+1 ≤ c78∥u(·,t)− ū0∥L∞ ,

hence, the convergence for w follows directly from the convergence of u.

Lemma 5.4. Under Lemma 5.2, the v-component of the global bounded classical
solution of (5.1) enjoys the following convergence properties:

(vc1) If d≥d0(χ), then v decays to ū0 uniformly:

∥v(·,t)− ū0∥L∞ →0 as t→∞. (5.28)

(vc2) If d>d0(χ), then v decays exponentially to ū0 uniformly: for some ζ3>0,

∥v(·,t)− ū0∥L∞ ≤C12e
−ζ3t, ∀t>0. (5.29)

Proof. We first rewrite the v-equation in (5.1) as

(v− ū0)t=d∆(v− ū0)+ξ2∇·((v− ū0)∇w)+ξ2ū0∆w+u− ū0−(v− ū0). (5.30)

Multiplying (5.30) by v− ū0, integrating over Ω by parts and using the fact ∆w= ū0−u
by (5.1), we compute that

1

2

d

dt

∫
Ω

(v− ū0)2+d
∫
Ω

|∇v|2+
∫
Ω

(v− ū0)2

=
ξ2
2

∫
Ω

(v− ū0)2∆w+ξ2ū0

∫
Ω

(v− ū0)∆w+

∫
Ω

(u− ū0)(v− ū0)

=
ξ2
2

∫
Ω

(v− ū0)2(ū0−u)+ξ2ū0
∫
Ω

(v− ū0)(ū0−u)+
∫
Ω

(u− ū0)(v− ū0). (5.31)

The fact ∥u− ū0∥L∞ →0 as t→∞ by (5.20) shows there exists t1>0 such that

∥u(·,t)− ū0∥L∞ ≤ 1

2ξ2
, t≥ t1. (5.32)

On the other hand, using Young’s inequality, we derive

ξ2ū0

∫
Ω

(v− ū0)(ū0−u)≤
1

8

∫
Ω

(v− ū0)2+2ξ22 ū
2
0

∫
Ω

(u− ū0)2, (5.33)

and ∫
Ω

(u− ū0)(v− ū0)≤
1

8

∫
Ω

(v− ū0)2+2

∫
Ω

(u− ū0)2. (5.34)
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Combining (5.32),(5.33), (5.34) and (5.31), we conclude, for all t≥ t1, that

d

dt

∫
Ω

(v− ū0)2+2d

∫
Ω

|∇v|2+
∫
Ω

(v− ū0)2≤4(1+ξ22 ū
2
0)

∫
Ω

(u− ū0)2,

which, upon being solved and the fact (5.23), implies

∥v(·,t)− ū0∥2L2 ≤∥v(·,1)− ū0∥2L2e−(t−1)+4(1+ξ22 ū
2
0)

∫ t

1

e−(t−s)

∫
Ω

(u(·,s)− ū0)2→0

as t→∞. (5.35)

Then, with the L2-convergence (5.35) at hand, replacing v with u in the Gagliardo-
Nirenberg inequality (5.24), we readily obtain (5.28).

In the case of d>d0(χ), to show v decays exponentially, we first see from (5.1) that

v̄− ū0=(v̄0− ū0)e−t, ∀t>0. (5.36)

Now, we use Poincaré’s inequality and the exponential decays (5.8) and (5.36) to deduce

∥v(·,t)− ū0∥L2 ≤∥v− v̄∥L2 +∥v̄− ū0∥L2

≤ c79∥∇v∥L2 + |v̄0− ū0||Ω|
1
2 e−t

≤ c80e−min{ζ1, 1}t, ∀t>0.

Now, since ∥∇v∥L2n is uniformly-in-time bounded by Theorem 1.1, replacing v with
u in the Gagliardo-Nirenberg inequality (5.24), we readily improve this L2-exponential
decay to L∞-exponential decay of v as in (5.29).

5.2. Case 2: a,µ>0 In this subsection, we shall study the large-time behavior
of solution for the complete system (1.4) with a,µ>0. For convenience, we rewrite it
here: 

ut=∆u−χ∇·(u∇v)+ξ1∇·(u∇w)+u(a−µuθ), x∈Ω,t>0,

vt=d∆v+ξ2∇·(v∇w)+u−v, x∈Ω,t>0,

0=∆w+u− ū,
∫
Ω
w=0, x∈Ω,t>0,

∂u
∂ν = ∂v

∂ν =
∂w
∂ν =0, x∈∂Ω,t>0,

u(x,0)=u0(x), v(x,0)=v0(x), x∈Ω.

(5.37)

Lemma 5.5. Let Cp denote the Poincaré constant defined by (1.13) and (u,v,w) be
the solution of the system (5.37). Then

∥∇w∥L2 ≤Cp∥u−b∥L2 , ∥∆w∥L2 ≤∥u−b∥L2 , ∥w∥W 2,2 ≤C13∥u−b∥L2 , b=(
a

µ
)

1
θ .

(5.38)
Proof. By the w-equation in (5.37) and Poincaré’s inequality due to

∫
Ω
w=0, we

infer ∫
Ω

|∇w|2=
∫
Ω

(u−b)w+(b− ū)
∫
Ω

w≤∥u−b∥L2∥w∥L2 ≤Cp∥u−b∥L2∥∇w∥L2 ,

which shows

∥∇w∥L2 ≤Cp∥u−b∥L2 . (5.39)
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Next, we deduce from the third equation in (5.37) and the fact that
∫
Ω
∆w=0 that∫

Ω

|∆w|2=
∫
Ω

(b−u)∆w+(ū−b)
∫
Ω

∆w

=−
∫
Ω

(u−b)∆w≤
(∫

Ω

(u−b)2
) 1

2
(∫

Ω

|∆w|2
) 1

2

,

which along with the W 2,2-elliptic estimate applied to (3.27) yields

∥w∥W 2,2 ≤ c81∥∆w∥L2 ≤ c82∥u−b∥L2 .

This together with (5.39) gives rise to (5.38).

Lemma 5.6. The classical solution of (5.37) satisfies

d

dt

∫
Ω

(u−b−bln u
b
)+µ

∫
Ω

(u−b)(uθ−bθ)≤ bχ2

2

∫
Ω

|∇v|2+
bξ21C

2
p

2

∫
Ω

(u−b)2. (5.40)

Proof. We use integration by parts to deduce from (5.37) that

d

dt

∫
Ω

(u−b−bln u
b
)+b

∫
Ω

|∇u|2

u2
+µ

∫
Ω

(u−b)(uθ−bθ)

=bχ

∫
Ω

∇u ·∇v
u

−bξ1
∫
Ω

∇u ·∇w
u

. (5.41)

Using Young’s inequality, one has

bχ

∫
Ω

∇u ·∇v
u

≤ b

2

∫
Ω

|∇u|2

u2
+
bχ2

2

∫
Ω

|∇v|2, (5.42)

and, due to (5.38) of Lemma 5.5,

−bξ1
∫
Ω

∇u ·∇w
u

≤ b

2

∫
Ω

|∇u|2

u2
+
bξ21
2

∫
Ω

|∇w|2≤ b

2

∫
Ω

|∇u|2

u2
+
bξ21C

2
p

2

∫
Ω

(u−b)2. (5.43)

Then we substitute (5.42) and (5.43) into (5.41) to obtain (5.40).

Lemma 5.7. The global bounded classical solution of (5.37) fulfils

d

dt

∫
Ω

(v−b)2+
∫
Ω

(v−b)2+d
∫
Ω

|∇v|2≤

(
1+

ξ22M
2
0C

2
p

d

)∫
Ω

(u−b)2. (5.44)

Proof. From (5.37), we use integration by parts, the fact ∥v(·,t)∥L∞ ≤M0 in (3.1),
the Hölder inequality and Young’s inequality to estimate

d

dt

∫
Ω

(v−b)2+2

∫
Ω

(v−b)2+2d

∫
Ω

|∇v|2

=−2ξ2

∫
Ω

v∇v ·∇w+2

∫
Ω

(u−b)(v−b)

≤2ξ2M0∥∇v∥L2∥∇w∥L2 +

∫
Ω

(u−b)2+
∫
Ω

(v−b)2

≤d
∫
Ω

|∇v|2+ ξ22M
2
0

d

∫
Ω

|∇w|2+
∫
Ω

(u−b)2+
∫
Ω

(v−b)2,
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which in conjunction with (5.38) shows (5.44).

We are now ready to show the exponential decay of global bounded solutions.
Lemma 5.8. Let (u,v,w) be the global solution of (5.37) obtained in Theorem 1.1. If
µ>0 satisfies (1.15), then (u,v,w) decays exponentially to (b,b,0): for some σ>0,

∥u(·,t)−b∥L∞ +∥v(·,t)−b∥L∞ +∥w(·,t)∥W 1,∞ ≤C14e
− σ

2(n+1)
t, t>0. (5.45)

Proof. By the estimate for M0 in (3.1) or (1.7), we first infer that

M2
0 ≤O(1)

(
1+

(
1

µ

) 4+n
θ

)
,

and then, we find that our assumption on µ in (1.15) along with (1.14) implies

µ>

[(
1+

C2
pξ

2
2M

2
0

d

)
χ2

d +C2
pξ

2
1

]
2bθ−2

⇐⇒µ>

(
dχ2+d2C2

pξ
2
1+C

2
pξ

2
2M

2
0

2d2a
θ−2
θ

) θ
2

. (5.46)

Now, multiplying (5.44) by bχ2

2d and adding the resulting inequality to (5.40), we obtain

d

dt

(∫
Ω

(u−b−bln u
b
)+

bχ2

2d

∫
Ω

(v−b)2
)
+
bχ2

2d

∫
Ω

(v−b)2

≤−µ
∫
Ω

(u−b)(uθ−bθ)+ b

2

[(
1+

C2
pξ

2
2M

2
0

d

)
χ2

d
+C2

pξ
2
1

]∫
Ω

(u−b)2. (5.47)

Notice, since θ≥1, by examining monotonicity, one easily sees that

sup
z∈(0,b)∪(b,∞)

(z−b)2

(z−b)(zθ−bθ)
=

1

bθ−1
⇐⇒−(z−b)(zθ−bθ)≤−bθ−1(z−b)2, ∀z>0.

Applying this inequality to (5.47), we immediately arrive at

d

dt

(∫
Ω

(u−b−bln u
b
)+

bχ2

2d

∫
Ω

(v−b)2
)
+
bχ2

2d

∫
Ω

(v−b)2

+bθ−1

µ−
[(

1+
C2

pξ
2
2M

2
0

d

)
χ2

d +C2
pξ

2
1

]
2bθ−2

∫
Ω

(u−b)2≤0. (5.48)

We first integrate (5.48) from 1 to t and then we use our derived condition (5.46) and
the elementary algebraic fact that z−b−bln z

b ≥0 for z>0 to obtain that∫ t

1

∫
Ω

(u−b)2<c83, ∀t≥1. (5.49)

Given (5.49), using the same arguments as in Lemma 5.3 for u, one can easily show that

∥u(·,t)−b∥L∞ →0 as t→∞. (5.50)
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Next, observing the following elementary fact that

lim
z→b

(z−b)2

z−b−bln z
b

=2b,

we infer from (5.50) there exists t2>0 such that

b

[
u(·,t)−b−bln u(·,t)

b

]
≤ [u(·,t)−b]2≤3b

[
u(·,t)−b−bln u(·,t)

b

]
, ∀t≥ t2. (5.51)

Substituting (5.51) into (5.48), we end up with an important ODI:

d

dt

(∫
Ω

(u−b−b ln
u

b
)+

bχ2

2d

∫
Ω

(v−b)2
)
+σ

(∫
Ω

(u−b−b ln
u

b
)+

bχ2

2d

∫
Ω

(v−b)2
)
≤0, ∀t≥ t2,

(5.52)

where, due to (5.46),

σ :=min

1, bθ

µ−
[(

1+
C2

pξ
2
2M

2
0

d

)
χ2

d +C2
pξ

2
1

]
2bθ−2


>0.

Solving the ODI (5.52), we simply get the following exponential decay estimate:∫
Ω

(u−b−bln u
b
)+

∫
Ω

(v−b)2≤ c84e−σ(t−t2), ∀t≥ t2,

which combined with (5.51) gives

∥u(·,t)−b∥L2 +∥v(·,t)−b∥L2 ≤ c85e−
σ
2 (t−t2), ∀t≥ t2. (5.53)

Now, it is easy to improve this L2-convergence to L∞-convergence as in Lemma 5.3.
Indeed, by the boundedness of ∥∇u∥L2n in (4.3) and the Gagliardo-Nirenberg inequality,
(5.53) entails

∥u(·,t)−b∥L∞ ≤ c86
(
∥∇u(·,t)∥

n
n+1

L2n ∥u(·,t)−b∥
1

n+1

L2 +∥u(·,t)−b∥L2

)
≤ c87e−

σ
2(n+1)

t, ∀t≥ t2. (5.54)

Similarly, using the W 1,∞-boundedness of v guaranteed by Theorem 1.1, we use the
Gagliardo-Nirenberg inequality to improve the L2-convergence of v in (5.53) to its L∞-
convergence as follows:

∥v(·,t)−b∥L∞ ≤ c88∥v(·,t)∥
n

n+2

W 1,∞∥v(·,t)−b∥
2

n+2

L2 ≤ c89e−
σ

n+2 (t−t2), ∀t≥ t2. (5.55)

As for the W 1,∞-convergence of w, applying the W 2,n+1-estimate to (3.27) along the
embedding W 2,n+1 ↪→W 1,∞ and using (5.54), we see that w decays to zero exponen-
tially:

∥w(·,t)∥W 1,∞ ≤ c90∥w(·,t)∥W 2,n+1 ≤ c91∥∆w∥Ln+1 ≤ c92 (∥u(·,t)−b∥L∞ + |b− ū|)

≤2c92∥u(·,t)−b∥L∞ ≤ c93e−
σ

2(n+1)
t, ∀t≥ t2. (5.56)
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Our desired exponential convergence (5.45) follows from (5.54), (5.55) and (5.56).

Proof of Theorem 1.2. The respective convergence and exponential convergence
in (C1) and (C2) of Theorem 1.2 have been fully contained in Lemmas 5.3, 5.4, and 5.8.
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