
COMMUN. MATH. SCI. © 2023 International Press

Vol. 21, No. 4, pp. 1097–1134

EXISTENCE OF SOLUTIONS FOR A BI-SPECIES KINETIC MODEL
OF A CYLINDRICAL LANGMUIR PROBE∗

MEHDI BADSI† AND LUDOVIC GODARD-CADILLAC‡

Abstract. In this article, we study a collisionless kinetic model for plasmas in the neighborhood of
a cylindrical metallic Langmuir probe. This model consists of a bi-species Vlasov-Poisson equation in
a domain contained between two cylinders with prescribed boundary conditions. The interior cylinder
models the probe while the exterior cylinder models the interaction with the plasma core. We prove
the existence of a weak-strong solution for this model in the sense that we get a weak solution for the
two Vlasov equations and a strong solution for the Poisson equation. The first parts of the article are
devoted to explaining the model and proceed to a detailed study of the Vlasov equations. This study
then leads to a reformulation of the Poisson equation as a 1D non-linear and non-local equation and
we prove it admits a strong solution using an iterative fixed-point procedure.

Keywords. Cylindrical Langmuir probe; stationary Vlasov-Poisson equations; boundary value
problem; non-local semi-linear Poisson equation.

AMS subject classifications. 35Q83; 82D10.

1. Introduction
The Langmuir probe is a measurement device that is used to determine the local

properties of a plasma, such as its density, temperature and plasma potential, known as
plasma parameters. It is used in a wide range of applications. In practice, to determine
the plasma parameters, the probe voltage is varied within a sufficiently large range and
the collected current is recorded. The curve of the collected current versus the applied
probe voltage is called the characteristic of the probe. It is the main object of interest
in the probe modeling theory. The modeling of probes has been the aim of a lot of
physical theories and several works aim at studying in detail these theories (see for
instance [1–3]). For a kinetic modeling of the Langmuir probe, we refer the reader to
the monograph of Laframboise [4] for a general overview where both cylindrical and
spherical probe models based on the stationary Vlasov-Poisson equations are proposed.
Some discussions on the particles orbits and numerical simulations can also be found.

At the mathematical level, existence theories for kinetic equations modeling plasma
particles interacting with a probe in a two dimensional setting is not well-known. There
are nevertheless several results concerning stationary solutions for the Vlasov-Poisson
equations. The more relevant within the context of probe is the work of Greengard and
Raviart [5] which deals with the one dimensional stationary solutions of Vlasov-Poisson
boundary value problem where a very complete analysis of particles trajectories is made.
An extension of this work by Degond et al. to the case of a cylindrically symmetric
diode can be found in [6]. On the contrary to the model that we study here, their work
considers one species of particles and the analysis of existence uses a maximum principle
for the Poisson equation. Our approach is different and is based on explicit expression of
the macroscopic densities. This approach gives a good understanding of the trajectories
of the particles and of the effective electrical potential as it is a constructive approach.
This is also of particular interest in view of the numerical simulations. We also mention
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the work of Bernis [7] which is concerned with the existence of stationary solution with
cylindrical symmetry for the Vlasov-Poisson equations in the whole space. Others works
on stationary Vlasov-Poisson equations can be found in the non-exhaustive list [8–12].

In this work, we consider the modeling of a cylindrical probe immersed in a plasma
made of one species of ions and of electrons, and its analysis. We use a collision-
less kinetic description to model the transport of particles under the action of the self
consistent electric potential. The unknowns are assumed to obey the stationary Vlasov-
Poisson equations written in polar coordinates. To model the interaction with the probe,
we assume that particles are emitted from the core plasma while at the probe particles
are absorbed. The probe potential is fixed to some arbitrary value while in the plasma
the electric potential is taken equal to a reference potential value. To construct weak
solutions of the Vlasov equation, we assume the rotational invariance of the distribu-
tion functions of incoming boundary particles so that the solutions also are. We then
use the method of characteristics and the conservation of the local energy and angular
momentum to decompose the phase space for each species of particles. This decomposi-
tion of the phase space yields the definition of two distinct regions: one corresponds to
trajectories of particles that reach the probe, the other one corresponds to trajectories
that do not reach the probe. Because this decomposition is made in full generality, it
introduces the study of the potential barrier (both its height and position) that sepa-
rates the trajectories of the particles that reach the probe from the others. On closed
trajectories (not connected to the boundaries), our solution is taken to be zero though
it could be any other distribution function.

The study of these different regions of the phase space eventually gives a compact
reformulation of the source term in the Poisson equation that involves non-linear and
non-local terms. To deal with non-local terms, the strategy consists first in replacing
them by parameters. In such a situation, the existence of a solution follows by standard
variational arguments. In a second time, we adjust these parameters in such a way that
we can recover the initial non-local equation. We proceed by using a fixed-point proce-
dure so that the parameters are expected to converge towards the associated terms. The
main technical difficulty lies in obtaining the convergence of the solution itself during
this fixed-point procedure. The convergence is obtained using three main ingredients:
a general L∞ estimate on the macroscopic density that is uniform in the electric poten-
tial, a Hölder estimate on the non-linear term and continuity properties on the non-local
terms. These estimates are obtained provided the incoming distribution functions obey
some appropriate integrability properties in velocities which is reminiscent of the work
of [5]. The obtained sequence is then proved to converge towards a solution of the orig-
inal problem. The qualitative description of the solution and its numerical simulation
will be the purpose of a future work.

2. Modeling the probe

We consider a non-collisional and unmagnetized plasma made of one species of ions
and of electrons, and in which a cylindrical probe is immersed. The radius of the probe
is rp>0 and the length of its axis is L>0.We assume L≫ rp so that an invariance along
the probe axis is assumed. Then, we only model the planar motion of particles in the
open set Ω={(x,y)∈R2 : r2p<x

2+y2<r2b} where rb>rp is an outer boundary radius
(see Figure 2.1). Outside the radius rb lies the plasma core whose density is assumed
to have a rotational invariance.

2.1. The Vlasov-Poisson equations in polar coordinates. In cartesian
coordinates, particles positions are denoted x := (x,y) and velocities are denoted v :=
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Fig. 2.1. Sketch of a trajectory of a particle into a radial force field entering at r= rb with a
velocity v.

(vx,vy). In polar coordinates, particles positions write x=(x,y)= rer with r=
√
x2+y2

and er=(cosθ,sinθ), and particles velocities write v := (vx,vy)=vrer+vθeθ with vr=
v ·er, vθ=v ·eθ and eθ=(−sinθ,cosθ). The unknowns are the nonnegative particle
distribution functions of ions and electrons in the phase space (r,vr,vθ)∈ [rp,rb]×R2

and the electrostatic potential which are assumed to have a rotational invariance. They
are thus denoted fi(r,vr,vθ), fe(r,vr,vθ) and ϕ(r) and are assumed to obey the Vlasov-
Poisson equations, which in polar coordinates, write:

vr∂rfi−
vrvθ
r
∂vθfi+

(
v2θ
r
− q

mi
∂rϕ

)
∂vrfi=0, ∀(r,vr,vθ)∈ (rp,rb)×R2 (2.1)

vr∂rfe−
vrvθ
r
∂vθfe+

(
v2θ
r
+

q

me
∂rϕ

)
∂vrfe=0, ∀(r,vr,vθ)∈ (rp,rb)×R2 (2.2)

−1

r

d

dr

(
r
dϕ

dr

)
(r)=

q

ε0

∫
R2

(
fi(r,vr,vθ)−fe(r,vr,vθ)

)
dvrdvθ, ∀r∈ (rp,rb), (2.3)

where q>0 is the electrical elementary charge, ε0>0 is the vacuum electrical per-
mittivity and mi>me>0 are respectively the mass of one ion and of one electron.
Equations (2.1)-(2.3) model the transport of the charged particles under the action of
the self-consistent electrostatic potential. For the sake of conciseness, we denote for all
r∈ [rp,rb] the macroscopic charge densities of ions and electrons by:

ni(r)= q

∫
R2

fi(r,vr,vθ)dvrdvθ, ne(r)= q

∫
R2

fe(r,vr,vθ)dvrdvθ. (2.4)

In the context of the Langmuir probe theory [1, 4] the radial current density is an
important quantity to be computed. For each species s= i,e and all r∈ [rp,rb] it is
defined by:

Js(r)= js(r)er, (2.5)

js(r) := q

∫
R2

fs(r,vr,vθ)vrdvrdvθ. (2.6)
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2.2. Boundary conditions in the plasma and at the probe. We assume
that far away from the outer boundary radius r>rb there exists an ionizing source of
particles (the plasma core) that makes both ions and electrons enter at r= rb. We model
these incoming particles from the plasma core by the following boundary condition

∀(vr,vθ)∈R−
∗ ×R, fi(rb,vr,vθ)=f

b
i (vr,vθ), fe(rb,vr,vθ)=f

b
e (vr,vθ), (2.7)

where f bi :R−
∗ ×R→R+ and f be :R−

∗ ×R→R+ denote arbitrarily given distribution func-
tions of the incoming particles. These functions are independent of θ in accordance with
the rotational invariance. They are also symmetric with respect to the angular velocity
vθ to ensure the absence of ortho-radial current. The zero-potential reference is taken
to be at r= rb:

ϕ(rb)=0. (2.8)

We assume the probe to be non-emitting, that is at r= rp, no particles are emitted in
the direction to the plasma. We also consider that the potential of the probe is fixed at
a value ϕp∈R. The boundary conditions at r= rp then write

∀(vr,vθ)∈R+
∗ ×R, fi(rp,vr,vθ)=0, fe(rp,vr,vθ)=0, (2.9)

ϕ(rp)=ϕp. (2.10)

Remark 2.1. Since f bi (vr,vθ) and f be (vr,vθ) are both symmetric with respect to
vθ then the solutions of the Vlasov Equations (2.1) and (2.2) are also symmetric with
respect to vθ. There is not any ortho-radial current:

∫
R2 fs(r,vr,vθ)vθdvrdvθ=0, for

each species s= i,e and for all r∈ [rp,rb].

2.3. Dimensionless equations. Consider the following physical constants
λ=

√
ε0kbTe/(q2N0) (Debye length) and cs=

√
kbTe/mi (ion acoustic speed) where

Te≫Ti is a reference electron temperature, N0>0 is a reference plasma density and kb
denotes the Boltzmann constant. We define the rescaled variables

r̂=
r

rp
, v̂r=

vr
cs
, v̂θ=

vθ
cs
. (2.11)

We also define the rescaled particle distribution functions and the rescaled electrostatic
potential

f̂i(r̂, v̂r, v̂θ)=
c2s
N0

fi(r,vr,vθ), f̂e(r̂, v̂r, v̂θ)=
c2s
N0

fe(r,vr,vθ), ϕ̂(r̂)=
qϕ(r)

kbTe
. (2.12)

The rescaled unknowns verify the dimensionless Vlasov-Poisson equations which
after dropping the dimensionless notation .̂ write:

vr∂rfi−
vrvθ
r
∂vθfi+

(
v2θ
r
−∂rϕ

)
∂vrfi=0, ∀(r,vr,vθ)∈ (1,rb)×R2, (2.13)

vr∂rfe−
vrvθ
r
∂vθfe+

(
v2θ
r
+

1

µ
∂rϕ

)
∂vrfe=0, ∀(r,vr,vθ)∈ (1,rb)×R2, (2.14)

− λ
2

r

d

dr

(
r
dϕ

dr

)
(r)=ni(r)−ne(r), ∀r∈ (1,rb), (2.15)
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where µ=me/mi is the mass ratio and λ=λ/rp is a normalized Debye length. An
additional re-scaling of the velocities space for the electronic Vlasov Equation (2.14) is
given by the change of variables and unknowns

v̂r=
√
µvr, v̂θ=

√
µvθ, f̂e(r,v̂r, v̂θ)=µfe(r,vr,vθ) (2.16)

which yields again after dropping the notation .̂ the same Vlasov Equation (2.14) with
µ=1. In the Poisson Equation (2.15), the dimensionless macroscopic densities are then
given by

ni(r)=

∫
R2

fi(r,vr,vθ)dvrdvθ, ne(r)=

∫
R2

fe(r,vr,vθ)dvrdvθ (2.17)

and the dimensionless radial currents are given by

ji(r)=

∫
R2

fi(r,vr,vθ)vrdvrdvθ, je(r)=
1
√
µ

∫
R2

fe(r,vr,vθ)vrdvrdvθ. (2.18)

The factor 1/
√
µ is natural in view of the difference of mobility between ions and

electrons. The obtained problem is

vr∂rfi− vrvθ
r ∂vθfi+

(
v2θ
r −∂rϕ

)
∂vrfi=0, ∀(r,vr,vθ)∈ (1,rb)×R2,

vr∂rfe− vrvθ
r ∂vθfe+

(
v2θ
r +∂rϕ

)
∂vrfe=0, ∀(r,vr,vθ)∈ (1,rb)×R2,

−λ
2

r
d
dr

(
r dϕdr

)
(r)=ni(r)−ne(r), ∀r∈ (1,rb),

fi(rb,vr,vθ)=f
b
i (vr,vθ), fe(rb,vr,vθ)=f

b
e (vr,vθ), ∀(vr,vθ)∈R−

∗ ×R,
fi(1,vr,vθ)=0, fe(1,vr,vθ)=0, ∀(vr,vθ)∈R+

∗ ×R
ϕ(rp)=ϕp, ϕ(rb)=0.

(2.19)

Since in the proof of the existence of solutions the physical parameter λ is of little
interest, we consider in the following λ=1. We nevertheless mention that in the qual-
itative description of the solutions the physical regime λ small is important because a
boundary layer known as the Debye sheath exists in the vicinity of the probe. See for
instance [4, 13–15] for further physical and mathematical details.

3. Main result
We first define the notion of solutions that we consider for the Vlasov-Poisson

equations with the boundaries and then state our main result. In this regard, we need
some notations, we introduce the set of outgoing particles, the set of incoming particles:

Σout :=
(
{rb}×R+×R

)
∪
(
{1}×R−×R

)
, Σinc :=

(
{rb}×R−

∗ ×R
)
∪
(
{1}×R+

∗ ×R
)

and denote the domain of work Q := (1,rb)×R2. Observe that Σout=∂Q\Σinc. Define
also

µs :=

{
1 if s= i,

−1 if s=e.

Solutions of the Vlasov equations with boundaries are not necessarily classical even
though the incoming boundary data f bi and f be are smooth. This is due to the geometry
of the characteristic curves (they are defined in Section 4) and the boundary conditions
(2.7),(2.9). A discontinuity in the solution at the boundary can occur and be propagated
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by the characteristics into the interior of the domain. Therefore, we shall generically
consider weak solutions for the Vlasov equations.

Definition 3.1 (Weak solution to Vlasov equation). Let ϕ∈W 1,∞(1,rb). Let s= i,e.
Let fs∈L1(Q) and f bs ∈L1(Σinc). We say that fs is a weak solution of the Vlasov
equation with the boundary condition f bs if for every ψ∈C1

(
Q
)
compactly supported on

Q and such that ψ|Σout =0, the following equality holds:∫ rb

1

∫ +∞

−∞

∫ +∞

−∞
fs(r,vr,vθ)Ψ(r,vr,vθ)dvrdvθdr

=

∫ +∞

−∞

∫ 0

−∞
f bs (vr,vθ)ψ(rb,vr,vθ)vrdvrdvθ (3.1)

where

Ψ(r,vr,vθ)=vr∂rψ(r,vr,vθ)+

(
v2θ
r
−µs∂rϕ(r)

)
∂vrψ(r,vr,vθ)

− vr
r
∂vθ (vθψ)(r,vr,vθ).

This weak formulation of the Vlasov equation (3.1) can be reformulated in terms of
duality brackets:

⟨Ψ,fs⟩L∞(Q),L1(Q)=
〈(
vrψ|Σinc

)
,f bs
〉
L∞(Σinc),L1(Σinc)

The solution for the studied Vlasov-Poisson problem are weak solutions for the
Vlasov equation and point-wise solution for the Poisson equation:

Definition 3.2 (Weak-strong solution of the Vlasov-Poisson problem). Let ϕp∈R.
Let f bi and f be be two integrable functions on Σinc. We say that a triplet (fi,fe,ϕ) is a
weak-strong solution of the Vlasov-Poisson Langmuir problem (2.19) if:

• ϕ∈W 2,∞(1,rb) and fi,fe∈L1(Q).

• fi and fe are weak solutions of the Vlasov equations in the sense of Definition
3.1.

• ϕ satisfies the Poisson Equation (2.15) pointwise almost everywhere in [1,rb]
and the Dirichlet boundary conditions (2.8),(2.10).

In the above definition the boundary data are assumed to be in L1. The regularity
ϕ∈W 2,∞(1,rb) is sufficient to ensure the existence and uniqueness of the characteristic
curves defined in Section 4.

Concerning our main result, we make use of, for technical reasons, extra integra-
bility conditions on the incoming fluxes. For that purpose we define the Banach space
L1
L(L

∞
w (wdw)) as being the space of measurable functions of R2 such that the following

norm is finite:

∥f∥L1
L(L∞

w (wdw)) :=

∫
R
sup
w∈R

∣∣wf(w,L)∣∣dL. (3.2)

We also define the Banach space L1
w(L

∞
L ;dw/|w|γ) where 0<γ<1 from the following

norm:

∥f∥L1
w(L∞

L ;dw/|w|γ) :=

∫
R
sup
L∈R

∣∣f(w,L)∣∣ dw
|w|γ

. (3.3)
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Note that these two norms are finite if, for instance, we have the following estimate:

∀ (w,L)∈R2, |f(w,L)|≤ 1

|w|+ |L|2+1
.

The main result of this article is the following:

Theorem 3.1. Let ϕp∈R. Let f bi and f be be two non-negative integrable functions
defined on R−×R symmetrical for the second variable. Suppose moreover that, with
s= i,e,

∥f bs∥L1
L(L∞

w (wdw))<+∞ and ∥f bs∥L1
w(L∞

L ;dw/|w|γ)<+∞.

for some 0<γ<1.
Then the Vlasov-Poisson problem (2.19) with boundary values f bi and f be admits a

solution in the sense of Definition 3.2.

4. The linear Vlasov equations
We consider for this section only the linear Vlasov Equations (2.13) and (2.14) where

for now the potential ϕ is fixed independently of the influence of the particles. The aim
of the work done in this section is to reformulate the Vlasov equations to reduce the
initial problem to a non-linear 1D Poisson equation. We assume that ϕ∈W 2,∞(1,rb),
so that its derivative is Lipschitz continuous.

4.1. Ionic phase diagram. The characteristics associated with the Vlasov
Equation (2.13) are the solutions to the ordinary differential equations

d

dt
r(t)=vr(t),

d

dt
vr(t)=

vθ(t)
2

r(t)
− dϕ

dr
(r(t)),

d

dt
vθ(t)=

−vr(t)vθ(t)
r(t)

.

(4.1)

Since dϕ/dr is Lipschitz continuous, for each initial condition (r0,vr,0,vθ,0)∈ (1,rb)×R2,
Equation (4.1) admits a unique solution (r,vr,vθ)∈C1((tinc(r0,vr,0,vθ,0),tout(r0,vr,0,vθ,0));

[1,rb]×R2) where

tinc(r0,vr,0,vθ,0) := inf{t′≤0 : r(t)∈ (1,rb) ∀t∈ (t′,0)},
tout(r0,vr,0,vθ,0) :=sup{t′≥0 : r(t)∈ (1,rb) ∀t∈ (0,t′)}

denote respectively the incoming time and the outgoing time of the characteristics in the
interval (1,rb). They can be either finite of infinite. Additionally, one has two constants
of motion: the total energy and the angular momentum. Indeed, the characteristics
satisfy for all t∈ (tinc(r0,vr,0,vθ,0),tout(r0,vr,0,vθ,0)),

d

dt

(
v2r(t)+v

2
θ(t)

2
+ϕ(r(t))

)
=0,

d

dt
(r(t)vθ(t))=0.

Therefore the characteristics are contained in the following level sets defined for L∈R
and e∈R by

CL,e :=
{
(r,vr,vθ)∈ (1,rb)×R2 : rvθ=L and

v2r+v
2
θ

2
+ϕ(r)=e

}
.
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These sets give a description of the phase space according to the values of L and e. In
this regard, it is convenient to introduce for L∈R the effective potential defined by

∀r∈ [1,rb] UL(r) :=
L2

2r2
+ϕ(r). (4.2)

Since UL is a continuous function on [1,rb], it reaches its maximum value at some point
in [1,rb]. Its maximum value is denoted

UL := max
r∈[1,rb]

UL(r).

The maximal value UL defines a global potential barrier for which a particle located at

r∈ (1,rb) with velocity vr and vθ=
L
r such that

v2r
2 +UL(r)<UL cannot cross a point a

such that UL(a)=UL. Indeed, arguing by contradiction, one would have by conservation

of the total energy
v2r
2 +UL(r)=

v2a
2 +UL(a) for some va∈R and thus

v2r
2 +UL(r)≥UL

which is a contradiction. Since we cannot make any assumption on the monotonicity
of the function UL, it may have many oscillations. In such a case, there exist several
local potential barriers which yield the existence of trapping sets for the particles as
sketched in Figure 4.1. To construct a solution, we shall thus carefully decompose the
phase space (r,vr) for each L∈R. Namely, we shall distinguish between characteristics
that intersect the boundaries from those which do not and correspond to trapping sets
(see for example [16] for a definition of a trapping set). An illustration of the phase
space (r,vr) corresponding to an effective potential UL having several extrema is given
in Figure 4.1.

Characteristics that originate from r= rb. Of particular interest, are those
characteristics that originate from the boundary r= rb because they correspond to tra-
jectories of particles coming from the plasma. One has two cases:

• Characteristics with energy level e>UL. A point of the phase space

(r,vr) such that e=
v2r
2 +UL(r)>UL is on a characteristic that crosses r= rb.

Especially, if vr<−
√

2(UL−UL(r)) there is a unique characteristic curve

passing through (r,vr) that originates from rb with a negative velocity vb=
−
√
v2r+2(UL(r)−UL(rb)).

• Characteristics with energy level e∈ [UL(rb),UL]. If UL has several

local maxima, the level curves of equation
v2r
2 +UL(r)=e may be associated

with either closed characteristics or characteristics that originate from r= rb.
To distinguish between them, we consider the number

ri(L,e) :=min{a∈ [1,rb] : UL(s)≤e,∀s∈ [a,rb]}. (4.3)

By continuity of the function UL this number is well defined and the interval
[ri(L,e),rb] is the largest interval containing the point rb in which UL is be-

low the energy level e∈ [UL(rb),UL] . If (r,vr) is such that
v2r
2 +UL(r)=e∈

[UL(rb),UL] there is a unique characteristic curve passing through (r,vr) that
originates from rb with a negative velocity vb=−

√
v2r+2(UL(r)−UL(rb)) if and

only if r>ri(L,e).

The above discussion leads to the following decomposition of the phase space between
characteristics that have high energy and characteristics that have low energy:

Db
i (L) :=Db,1(L)∪Db,2(L), (4.4)
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vr

UL= e

rr(L,e)

r

UL

UL

Fig. 4.1. Schematic (r,vr) phase space decomposition corresponding to an effective potential UL.
Dotted lines correspond to trajectories of energy level greater than UL. The dashed line corresponds

to a separatrix curve of equation
v2
r
2
+UL(r)=UL. The solid lines correspond to trajectories of energy

level lower than UL.

Db,1
i (L)=

{
(r,vr)∈ (1,rb)×R : vr<−

√
2(UL−UL(r))

}
, (4.5)

Db,2
i (L)=

{
(r,vr)∈ (1,rb)×R :UL(rb)<

v2r
2
+UL(r)︸ ︷︷ ︸
=:e

<UL , r>ri(L,e)

}
. (4.6)

For each point (r,vr)∈Db
i (L) there exists a unique characteristic curves that

passes through (r,vr) and originates from r= rb with a negative velocity vb=
−
√
v2r+2(UL(r)−UL(rb)).

Characteristics that are closed or originate from r=1. Other trajectories
are either closed or originate from r=1. They correspond to point of the phase space
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(r,vr) which are in the complement set of Db
i (L), that is

Dpc
i (L)=((1,rb)×R)\Db

i (L).

The function fi defined by (4.7) is taken to be zero on closed characteristics. It could
have been any arbitrary function that one may interpret as the trace of some transient
solution. Accordingly with [4], we assumed these closed characteristics to be unpopu-
lated. From a mathematical point of view, considering the distribution function to be
non-zero would add some additional terms in the expression of the macroscopic density
that we discard for the sake of conciseness of this work.

Then one has for L∈R the phase space decomposition

(1,rb)×R=Db
i (L)∪Dpc

i (L).

Using this phase space decomposition and the fact that the solutions of the Vlasov
Equation (2.13) are constant on the characteristics, we define

fi(r,vr,vθ) :=

{
0 if (r,vr)∈Dpc

i (L) with L= rvθ,

f bi

(
−
√
v2r+2(UL(r)−UL(rb)); rvθrb

)
if (r,vr)∈Db

i (L) with L= rvθ.

(4.7)

In view of the above construction, one has the following:

Proposition 4.1. Consider f bi :R−
∗ ×R→R+ a distribution of velocities for incoming

positively charged particles (ions) that is essentially bounded. Therefore fi defined by
(4.7) is a weak solution of the Vlasov equation in the weak sense given by Definition
3.1.

Proof. See the Appendix B.

One can express the macroscopic density explicitly in terms of the effective potential
UL. This will be of great help for the analysis.

Proposition 4.2. Consider f bi :R−
∗ ×R→R+ a distribution of velocities for incoming

positively charged particles (ions). With fi defined by (4.7) the macroscopic density is
given by

rni(r)=

∫ +∞

−∞

∫ −
√

2(UL−UL(rb))

−∞

|wr|√
w2

r −2(UL(r)−UL(rb))
fb
i

(
wr,

L

rb

)
dwr dL

+2

∫ +∞

−∞
1{UL(rb)−UL(r)<0}

∫
W−

i,1(r,L)

|wr|√
w2

r −2(UL(r)−UL(rb))
fb
i

(
wr;

L

rb

)
dwr dL

+2

∫ +∞

−∞
1{UL(rb)−UL(r)≥0}

∫
W−

i,2(r,L)

|wr|√
w2

r −2(UL(r)−UL(rb))
fb
i

(
wr;

L

rb

)
dwr dL (4.8)

where

W−
i,1(r,L) :=

{
wr ∈R : −

√
2(UL−UL(rb))<wr<−

√
2(UL(r)−UL(rb))

and r>ri

(
L,
w2
r

2
+UL(rb)

)}
,

W−
i,2(r,L) :=

{
wr ∈R : −

√
2(UL−UL(rb))<wr<0 and r>ri

(
L,
w2
r

2
+UL(rb)

)}
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and the radial current density is given by:

ji(r)=
1

r

∫ L=+∞

L=−∞

∫ −
√

2(UL−UL(rb))

−∞
f bi

(
wr;

L

rb

)
wrdwrdL. (4.9)

Note that we only integrate non-negative quantities so that the manipulated integrals
are always well-defined (finite or not). Assumptions on the distribution f bi that make
rni(r) be a finite quantity are discussed in the next section.

Proof. Let r∈ (1,rb). One has by definition and using Fubini-Tonelli theorem

ni(r) :=

∫
R2

fi(r,vr,vθ)dvrdvθ=

∫
R

∫
R
fi (r,vr,vθ) dvθdvr.

Using the change of variable L= rvθ, one has

rni(r)=

∫
R

∫
R
fi

(
r,vr,

L

r

)
dLdvr=

∫
R

∫
R
fi

(
r,vr,

L

r

)
dvrdL.

In view of the definition of fi at (4.7), the macroscopic density only integrates on the
two sets

Db,1
i (r) :=

{
(vr,L)∈R2 : vr<−

√
2(UL−UL(r))

}
,

Db,2
i (r) :=

{
(vr,L)∈R2 : UL(rb)−UL(r)<

v2r
2
<UL−UL(r)

and r>ri

(
L,
v2r
2
+UL(r)

)}
.

Using the definition of fi, one therefore obtains

rni(r)=

∫ +∞

−∞

∫ −
√

2(UL−UL(r))

−∞
f bi

(
−
√
v2r+2(UL(r)−UL(rb));

L

rb

)
dvrdL

+

∫
Db,2

i (r)

f bi

(
−
√
v2r+2(UL(r)−UL(rb));

L

rb

)
dvrdL.

For the foregoing computation, one sets

I1 :=

∫ +∞

−∞

∫ −
√

2(UL−UL(r))

−∞
f bi

(
−
√
v2r+2(UL(r)−UL(rb));

L

rb

)
dvrdL

I2 :=

∫
Db,2

i (r)

f bi

(
−
√
v2r+2(UL(r)−UL(rb));

L

rb

)
dvrdL.

For the first integral I1, one uses the change of variable wr=−
√
v2r+2(UL(r)−UL(rb))

so that one gets

I1=

∫ +∞

−∞

∫ −
√

2(UL−UL(rb))

−∞

|wr|√
w2
r−2(UL(r)−UL(rb))

f bi

(
wr,

L

rb

)
dwrdL.
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Regarding the definition of the set Db,2
i (r), one splits it in two parts according to the

sign of UL(rb)−UL(r). Consider for L∈R being fixed, the two sets of radial velocities

Vi,1(r,L) :=
{
vr ∈R : |vr|<

√
2(UL−UL(r)) and r>ri

(
L,
v2r
2
+UL(r)

)}
,

Vi,2(r,L) :=
{
vr ∈R :

√
2(UL(rb)−UL(r))< |vr|<

√
2(UL−UL(r))

and r>ri

(
L,
v2r
2
+UL(r)

)}
.

One therefore splits the second integral I2 into I2= I2,1+I2,2 with

I2,1 :=

∫ +∞

−∞
1{UL(rb)−UL(r)<0}

∫
Vi,1(r,L)

f bi

(
−
√
v2r+2(UL(r)−UL(rb));

L

rb

)
dvrdL,

I2,2 :=

∫ +∞

−∞
1{UL(rb)−UL(r)≥0}

∫
Vi,2(r,L)

f bi

(
−
√
v2r+2(UL(r)−UL(rb));

L

rb

)
dvrdL.

One now computes the first integral I2,1. One remarks that the set V1(r,L) is symmetric
with respect to vr=0 and that so is the integrand. By symmetry one therefore has

I2,1=2

∫ +∞

−∞
1{UL(rb)−UL(r)<0}

∫
V−

i,1(r,L)

f bi

(
−
√
v2r+2(UL(r)−UL(rb));

L

rb

)
dvrdL

where one now considers only the negative velocities:

V−
i,1(r,L) :=

{
vr ∈R : −

√
2(UL−UL(r))<vr<0 and r>ri

(
L,
v2r
2
+UL(r)

)}
.

Using the change of variable wr=−
√
v2r+2(UL(r)−UL(rb)), one gets

I2,1=2

∫ +∞

−∞
1{UL(rb)−UL(r)<0}

∫
W−

i,1(r,L)

|wr|√
w2
r−2(UL(r)−UL(rb))

f bi

(
wr;

L

rb

)
dwrdL

where the set W−
i,1(r,L) is the image of V−

i,1(r,L) by the change of variable vr 7→wr,
namely:

W−
i,1(r,L) :=

{
wr ∈R : −

√
2(UL−UL(rb))<wr<−

√
2(UL(r)−UL(rb))

and r>ri

(
L,
w2
r

2
+UL(rb)

)}
.

One now computes the second integral I2,2. The set Vi,2(r,L) is decomposed as
Vi,2(r,L) :=V+

i,2(r,L)∪V−
i,2(r,L) where

V+
i,2(r,L)=

{
vr ∈R :

√
2(UL(rb)−UL(r)<vr<

√
2(UL−UL(r))

and r>ri

(
L,
v2r
2
+UL(r)

)}
,

V−
i,2(r,L)=

{
vr ∈R : −

√
2(UL−UL(r))<vr<−

√
2(UL(rb)−UL(r))
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and r>ri

(
L,
v2r
2
+UL(r)

)}
.

This yields the following splitting of the integral I2,2,

I2,2=

∫ +∞

−∞
1{UL(rb)−UL(r)≥0}

∫
V+

i,2(r,L)

f bi

(
−
√
v2r+2(UL(r)−UL(rb));

L

rb

)
dvrdL

+

∫ +∞

−∞
1{UL(rb)−UL(r)≥0}

∫
V−

i,2(r,L)

f bi

(
−
√
v2r+2(UL(r)−UL(rb));

L

rb

)
dvrdL.

For each integral, one uses again the change of variable wr=−
√
v2r+2(UL(r)−UL(rb))

so that one eventually obtains

I2,2=2

∫ +∞

−∞
1{UL(rb)−UL(r)≥0}

∫
W−

i,2(r,L)

|wr|√
w2
r−2(UL(r)−UL(rb))

f bi

(
wr;

L

rb

)
dwrdL

where the set W−
i,2(r,L) is the image of the set V−

i,2(r,L) by the change of variable
vr 7→wr, namely:

W−
i,2(r,L)=

{
wr ∈R : −

√
2(UL−UL(rb))<wr<0 and r>ri

(
L,
w2
r

2
+UL(rb)

)}
.

Gathering all the integrals together yields the expression of the macroscopic den-
sity (4.8). For the current density, using a similar decomposition of the integral and
symmetry arguments one is led to the expression (4.9).

Remark 4.1. In the expression of the macroscopic density (4.8), the first integral
corresponds to the density carried by characteristics that travel from r= rb to r=1.
These characteristics also carry some current density. The other integrals correspond to
a density carried by characteristics that start from r= rb and go back to r= rb because
they correspond to low energy levels. Particles on these characteristics do not have
enough energy to overcome the global potential barrier UL. On these characteristics
there is no current. This eventually explains why the current density (4.9) has only one
contribution.

4.2. Electronic phase diagram. Concerning the electronic phase diagram,
the reasoning is similar as for the ionic phase diagram except that, since the electronic
charge is now negative, the particles interact with the external electric field with an
opposite sign. In other words, dϕ/dr is replaced by −dϕ/dr. We make use of this
analogy to simplify the presentation of the electronic phase diagram.

The characteristics associated with the Vlasov Equation (2.14) are the solutions to
the ordinary differential equations

d

dt
r(t)=vr(t),

d

dt
vr(t)=

vθ(t)
2

r(t)
+
dϕ

dr
(r(t)),

d

dt
vθ(t)=

−vr(t)vθ(t)
r(t)

.

(4.10)

Since dϕ/dr is Lipschitz continuous, for each initial condition (r0,vr,0,vθ,0)∈ (1,rb)×R2

there exists a unique solution (r,vr,vθ)∈C1((tinc(r0,vr,0,vθ,0),tout(r0,vr,0,vθ,0)); [1,rb]×
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R2) to Equation (4.10), where

tinc(r0,vr,0,vθ,0)= inf{t′≤0 : r(t)∈ (1,rb) ∀t∈ (t′,0)},
tout(r0,vr,0,vθ,0)=sup{t′≥0 : r(t)∈ (1,rb) ∀t∈ (0,t′)}

denote respectively the incoming time and the outgoing time of the characteristics in
the interval (1,rb). They are finite or infinite. One has two constants of motion: the
total energy and the angular momentum. Indeed, the characteristics satisfy for all
t∈ (tinc(r0,vr,0,vθ,0), tout(r0,vr,0,vθ,0)),

d

dt

(
v2r(t)+v

2
θ(t)

2
−ϕ(r(t))

)
=0,

d

dt
(r(t)vθ(t))=0.

Therefore the characteristics are contained in the following level sets defined for L∈R
and e∈R by

CL,e :=
{
(r,vr,vθ)∈ (1,rb)×R2 : rvθ=L and

v2r+v
2
θ

2
−ϕ(r)=e

}
.

These sets are used to describe the phase space according to the values of L and e. In
this regard, it is convenient to introduce for L∈R the effective potential defined by

∀r∈ [1,rb], VL(r)=
L2

2r2
−ϕ(r).

The continuity of VL follows from the continuity of ϕ. The function VL therefore reaches
reaches its maximum at some point in [1,rb]. It maximum value is denoted

VL := max
r∈[1,rb]

VL(r).

Similarly as for the ions, it defines a potential barrier and without further monotony
assumption on VL, there may exist several local potential barriers. To construct a weak
solution, we shall thus carefully decompose the phase (r,vr) for each L∈R. Namely, we
shall distinguish between characteristics that intersect the boundaries from those which
do not and correspond to trapping sets. The construction is analogous to the previous
one for the ions. We refer the reader to the previous section for the details. We define

re(L,e) :=min{a∈ [1,rb] : VL(s)≤e,∀s∈ [a,rb]} (4.11)

and consider the following sets

Db
e(L) :=Db,1(L)∪Db,2(L),

Db,1
e (L) :=

{
(r,vr)∈ (1,rb)×R : vr<−

√
2(VL−VL(r))

}
,

Db,2
e (L) :=

{
(r,vr)∈ (1,rb)×R :VL(rb)<

v2r
2
+VL(r)︸ ︷︷ ︸
=:e

<VL , r>re(L,e)

}
,

Dpc
e (L) :=(0,1)×R\Db

e(L).
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One has the following decomposition:

(1,rb)×R=Dpc
e (L)∪Db

e(L).

The domain Db
e(L) corresponds to characteristics that originate from the boundary

r= rb. The domain Dpc
e (L) corresponds to characteristics curves that either originate

from the probe or are closed and do not intersect the boundaries. Using this phase
space decomposition and the fact that the solutions of the Vlasov Equation (2.13) are
constant on the characteristics, we define

fe(r,vr,vθ) :=

{
0 if (r,vr)∈Dpc

e (L) with L= rvθ,

f be

(
−
√
v2r+2(VL(r)−VL(rb)); rvθrb

)
if (r,vr)∈Db

e(L) with L= rvθ.

(4.12)

Following the same reasoning as for the ions one has,

Proposition 4.3. Consider f be :R−
∗ ×R→R+ a distribution of velocities for incoming

negatively charged particles (electrons) that is essentially bounded. The function fe
defined by (4.12) is a weak solution of the Vlasov equation in the sense of Definition
3.1.

Proposition 4.4. Consider f be :R−
∗ ×R→R+ a distribution of velocities for incom-

ing negatively charged particles (electrons). With fe defined by (4.12) the macroscopic
density is given by

rne(r)=

∫ +∞

−∞

∫ −
√

2(VL−VL(rb))

−∞

|wr|√
w2
r−2(VL(r)−VL(rb))

f be

(
w,

L

rb

)
dwrdL

+2

∫ +∞

−∞
1{VL(rb)−VL(r)<0}

∫
W−

e,1(r,L)

|wr|√
w2
r−2(VL(r)−VL(rb))

f be

(
wr;

L

rb

)
dwrdL

+2

∫ +∞

−∞
1{VL(rb)−VL(r)≥0}

∫
W−

e,2(r,L)

|wr|√
w2
r−2(VL(r)−VL(rb))

f be

(
wr;

L

rb

)
dwrdL

(4.13)

where

W−
e,1(r,L) :=:=

{
wr ∈R : −

√
2(VL−VL(rb))<wr<−

√
2(VL(r)−VL(rb))

and r>re

(
L,
w2
r

2
+VL(rb)

)}
,

W−
e,2(r,L)=

{
wr ∈R : −

√
2(VL−VL(rb))<wr<0 and r>re

(
L,
w2
r

2
+VL(rb)

)}
and the radial current density is given by:

je(r)=
1

r
√
µ

∫ L=+∞

L=−∞

∫ −
√

2(VL−VL(rb))

−∞
f be

(
wr;

L

rb

)
wrdwrdL.

5. Reformulation of the nonlinear Poisson equation
In this section, we consider f be :R−

∗ ×R→R+ a distribution of velocities for incom-
ing positively charged particles (ions) and f be :R−

∗ ×R→R+ a distribution of velocities
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for incoming negatively charged particles (electrons). It is natural to be interested
in hypothesis on these incoming fluxes so that the quantities ni(r) and ne(r) defined
respectively at (4.8) and (4.13) are finite so that their difference makes sense. Neverthe-
less, we delay this study to the next section. We first need to state the Poisson problem
associated to the Vlasov equations of the Langmuir probe and give a satisfactory refor-
mulation of the problem. Recall that we are interested in solutions ϕ∈W 2,∞(1,rb) to:

− d

dr

(
r
dϕ

dr

)
(r)= r(ni−ne)(r),

ϕ(1)=ϕp ϕ(rb)=0,
(5.1)

where ni is given by (4.8) (Proposition 4.2) and ne is given by (4.13) (Proposition 4.4).
The main difficulty to obtain existence of solutions lies in the presence of non-local
terms in the definition of the right-hand side of (5.1). The idea is to reformulate the
problem and to replace the non-local terms by parameters. In the next section, we prove
a general existence result whatever value the parameters have. Secondly, we make a
good choice for these parameters so that we get back to the original equation.

To ease the reading, the variable of integration wr will now be simply denoted as
w since it is now understood that we fully concentrate on the radial behavior.

5.1. Reformulation of the problem.

5.1.1. A first reformulation. To deal with the problem raised by the presence
of non-local terms (with respect to ϕ) in the formulation of ni and ne, we proceed first
to a reformulation of the problem. This involves the replacement of the non-locality
by parameters that are adjusted later on. To this purpose, we first define, for any
measurable function ψ defined on [1,rb], the function ρ̃[ψ] :R→ [1,rb] by the following
formula:

ρ̃[ψ](e) := inf
{
a∈ [1,rb] : for a.e s∈ [a,rb], ψ(s)≤e

}
. (5.2)

It can be directly checked from the Definitions (4.3) and (4.11) that

ri(L,e)= ρ̃[UL](e), and re(L,e)= ρ̃[VL](e).

The function ρ̃ can be understood as a generalization of ri(L,e) and re(L,e). It will
be studied for itself later on to make use of its properties. It is possible to rewrite the
quantity rni(r) obtained at (4.8) as follows:

rni(r) :=

∫ +∞

−∞

∫ −
√

2(UL−UL(rb))

−∞

|w|√
w2−2(UL(r)−UL(rb))

f bi

(
w,

L

rb

)
dwdL

+2
∫ +∞
−∞ 1{UL(rb)−UL(r)<0}

∫ −
√

2(UL(r)−UL(rb))

−
√

2(UL−UL(rb))

|w|fb
i (w;L/rb)√

w2−2(UL(r)−UL(rb))
1
r≥ρ̃[UL]

(
w2

2 +UL(rb)
)dwdL

+2
∫ +∞
−∞ 1{UL(rb)−UL(r)≥0}

∫ 0

−
√

2(UL−UL(rb))

|w|fb
i (w;L/rb)√

w2−2(UL(r)−UL(rb))
1
r≥ρ̃[UL]

(
w2

2 +UL(rb)
)dwdL.

(5.3)

Similarly, the quantity rne(r) obtained at (4.13) rewrites:

rne(r) :=

∫ +∞

−∞

∫ −
√

2(VL−VL(rb))

−∞

|w|√
w2−2(VL(r)−VL(rb))

f be

(
w,

L

rb

)
dwdL
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+2
∫ +∞
−∞ 1{VL(rb)−VL(r)<0}

∫ −
√

2(VL(r)−VL(rb))

−
√

2(VL−VL(rb))

|w|fb
e (w;L/rb)√

w2−2(VL(r)−VL(rb))
1
r≥ρ̃[VL]

(
w2

2 +VL(rb)
)dwdL

+2
∫ +∞
−∞ 1{VL(rb)−VL(r)≥0}

∫ 0

−
√

2(VL−VL(rb))

|w|fb
e (w;L/rb)√

w2−2(VL(r)−VL(rb))
1
r≥ρ̃[VL]

(
w2

2 +VL(rb)
)dwdL.

(5.4)

5.1.2. The non-linear term. To have a formulation that is shorter and easier
to manipulate, we introduce the function

β : R× [1,rb]×R −→ R

(ν,r,L) 7−→ 2ν+L2

(
1

r2
− 1

r2b

)
.

(5.5)

We now recall the definition of the positive part of a number x∈R (x)+ :=max{x,0}
and the negative part (x)− :=max{−x,0}. We then use the function β above (5.5) to
define:

Γ : R× [1,rb]×R×R −→ R

(ν,r,w,L) 7−→


(w)−√

w2−β(ν,r,L)
if w2>β(ν,r,L),

0 otherwise.

(5.6)

Using these definitions, we can rewrite the formulation of rni given at (5.3) in a more
compact way as follows:

rni(r)= rni,1(r)+rni,2(r)+rni,3(r)

with

rni,1(r) :=

∫ +∞

−∞

∫ −
√

2UL−L2/r2b

−∞
Γ
(
ϕ(r),r,w,L

)
f bi

(
w,

L

rb

)
dwdL (5.7)

rni,2(r) :=2
∫ +∞
−∞ 1{β(ϕ(r),r,L)>0}

∫ −
√
β(ϕ(r),r,L)

−
√

2UL−L2/r2b
Γ
(
ϕ(r),r,w,L

)
f bi

(
w, Lrb

)
1
r≥ρ̃[UL]

(
w2

2 + L2

2r2
b

)dwdL,
(5.8)

rni,3(r) :=2
∫ +∞
−∞ 1{β(ϕ(r),r,L)≤0}

∫ 0

−
√

2UL−L2/r2b
Γ
(
ϕ(r),r,w,L

)
f bi

(
w, Lrb

)
1
r≥ρ̃[UL]

(
w2

2 + L2

2r2
b

)dwdL.
(5.9)

Note that we used UL(rb)=L
2/2r2b (consequence of ϕ(rb)=0). Similarly we can rewrite

the formulation of rne given at (5.4) by

rne(r) := rne,1(r)+rne,2(r)+rne,3(r)

with

rne,1(r) :=

∫ +∞

−∞

∫ −
√

2VL−L2/r2b

−∞
Γ
(
−ϕ(r),r,w,L

)
f be

(
w,

L

rb

)
dwdL

rne,2(r) :=2
∫ +∞
−∞ 1{β(−ϕ(r),r,L)>0}

∫ −
√
β(−ϕ(r),r,L)

−
√

2VL−L2/r2b
Γ
(
−ϕ(r),r,w,L

)
f be

(
w, Lrb

)
1
r≥ρ̃[VL]

(
w2

2 + L2

2r2
b

)dwdL,
rne,3(r) :=2

∫ +∞
−∞ 1{β(−ϕ(r),r,L)≤0}

∫ 0

−
√

2VL−L2/r2b
Γ
(
−ϕ(r),r,w,L

)
f be

(
w, Lrb

)
1
r≥ρ̃[VL]

(
w2

2 + L2

2r2
b

)dwdL.
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Using the positive part function (·)+ allows us to sum the two last terms (5.8) and (5.9)
and obtain this more simple formulation:

rni,2(r)+rni,3(r)=2

∫ +∞

−∞

∫ −
√

β(ϕ(r),r,L)+

−
√

2UL−L2/r2
b

Γ
(
ϕ(r),r,w,L

)
fb
i

(
w,

L

rb

)
1
r≥ρ̃[UL]

(
w2

2
+ L2

2r2
b

)dwdL

=2

∫ +∞

−∞

∫ −
√

β(ϕ(r),r,L)+

−∞
Γ
(
ϕ(r),r,w,L

)
fb
i

(
w,

L

rb

)
1
w2+L2

r2
b

<2UL
1
r≥ρ̃[UL]

(
w2

2
+ L2

2r2
b

)dwdL

=2

∫ +∞

−∞

∫ +∞

−∞
Γ
(
ϕ(r),r,w,L

)
fb
i

(
w,

L

rb

)
1
w2+L2

r2
b

<2UL
1
r≥ρ̃[UL]

(
w2

2
+ L2

2r2
b

)dwdL,

where for the last equality we used the fact that Γ is equal to 0 whenever w2≤β(ν,r,L)
or w≥0. Concerning the first term, we write

rni,1(r)=

∫ +∞

−∞

∫ +∞

−∞
Γ
(
ϕ(r),r,w,L

)
f bi

(
w,

L

rb

)
1
w2+L2

r2
b

≥2UL
dwdL

=

∫ +∞

−∞

∫ +∞

−∞
Γ
(
ϕ(r),r,w,L

)
f bi

(
w,

L

rb

)
1
w2+L2

r2
b

≥2UL
1
r≥ρ̃[UL]

(
w2

2 + L2

2r2
b

)dwdL,
where for the last equality we use the following property of ρ̃:

UL≤e ⇐⇒ ρ̃[UL](e)=1.

If we now make the sum of these two terms and use the general property 1A+1Ac =1,
we are led to

rni(r)=

∫
R2

Γ
(
ϕ(r),r,w,L

)
f bi

(
w,

L

rb

)(
1+1

w2+L2

r2
b

<2UL

)
1
r≥ρ̃[UL]

(
w2

2 + L2

2r2
b

)dwdL.
(5.10)

Similarly,

rne(r)=

∫
R2

Γ
(
−ϕ(r),r,w,L

)
f be

(
w,

L

rb

)(
1+1

w2+L2

r2
b

<2VL

)
1
r≥ρ̃[VL]

(
w2

2 + L2

2r2
b

)dwdL.
(5.11)

5.2. Replacement of the non-locality by parameters. Now that we have
a compact formulation of the right-hand side of (5.13), there remains to prove the
existence result. Nevertheless, one difficulty arises due to the presence of “non-local”
terms in the equation. Throughout this article, we say that a given expression depending
on r and ϕ : [1,rb]→R is “local”, if at a given point r∈ [1,rb], this expression depends
only on r, ϕ(r) and on the derivatives of ϕ evaluated at point r (or any quantity that
can be computed knowing ϕ only on arbitrarily small neighborhood of point r). In this
case, the “non-local” terms in (5.1) are UL, VL, ρ̃[UL](e) and ρ̃[VL](e). Indeed, these
terms are computed using a max operator which involves the knowledge of the value of
the function ϕ on a full interval.

The strategy is to temporarily get rid of these non-local terms and replace them by
parameters. We then prove a very general result of existence using standard variational
techniques. Since the minimization argument of Section 6.2 does not allow the presence
of non-local terms, the parameters then are adjusted later on in Section 6.3 in such a
way that the initial problem is recovered.
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5.2.1. The max-parameters. The first parameters that we introduce, called
max-parameters, are used to remove the dependency of ni and ne with respect to UL
and VL respectively. These parameters are denoted respectively UL and VL (the Gothic
version of the letters U and V ). We are going to solve a relaxed problem involving these
parameters UL and VL supposed fixed and, later in the proof, we adjust the value of
these parameters in such a way that for almost every L,

UL=UL, and, VL=VL.

It is then natural with such a strategy to define, in the view of (5.10),

rni[U](r) :=

∫
R2

Γ
(
ϕ(r),r,w,L

)
f bi

(
w,

L

rb

)(
1+1

w2+L2

r2
b

<2UL

)
1
r≥ρ̃[UL]

(
w2

2 + L2

2r2
b

)dwdL.
(5.12)

We do observe that in the particular case UL=UL (and we prove a posteriori that such
a case exists), we recover the initial studied quantity: rni[UL=UL](r)= rni(r). We
define analogously the quantity rne[VL](r) from (5.11) by replacing VL by VL.

5.2.2. The barrier parameters. The second terms that are non-local with
respect to the function ϕ are ri(L,e) and re(L,e) that give the position of the bar-
rier of potential. Recall that we rewrote these terms using ρ̃. We consider now the
“barrier-parameters”, denoted Ri(w,L) and Re(w,L). We introduce rni[UL,Ri](r)
with the same formula as for (5.12) except that the indicator function for the case

r≥ ρ̃[UL]
(
w2

2 +UL(rb)
)
is replaced by the indicator function associated to r>Ri(w,L).

The function (w,L) 7→Ri(w,L) is chosen to be any fixed function (in this sense it is seen
as a parameter) and once again, we recover the previous expression in the particular

case (proved a posteriori to exist) where Ri(w,L)= ρ̃[UL]
(
w2

2 +UL(rb)
)
for all r,w,L.

An analogous construction gives the definition of rne[V,Re](r).

5.3. The semi-linear problem.

5.3.1. A local equation with parameters. Now that have replaced all the
non-local terms by parameters in (5.1), we are reduced to studying the equation:

∀r∈ [1,rb], − d

dr

(
r
dϕ

dr

)
(r)= g̃

(
ϕ(r), r

)
, (5.13)

where g̃ :R× [1,rb]→R is defined by

g̃(ν,r) :=gi(ν,r)−ge(ν,r), (5.14)

with

gi(ν,r) :=

∫
R2

Γ
(
ν,r,w,L

)
f bi

(
w,

L

rb

)(
1+1

w2+L2

r2
b

<2UL

)
1r≥Ri(w,L)dwdL (5.15)

and

ge(ν,r) :=

∫
R2

Γ
(
−ν,r,w,L

)
f be

(
w,

L

rb

)(
1+1

w2+L2

r2
b

<2VL

)
1r≥Re(w,L)dwdL. (5.16)

With such a formulation at hand, we can expect to obtain the existence of a solution
using standard variational arguments.



1116 SOLUTIONS FOR A KINETIC MODEL OF A CYLINDRICAL LANGMUIR PROBE

5.3.2. A change of variable. One last transformation consists in setting, for
x∈ [0,1],

ψ(x) :=ϕ
(
(rb)

x
)
−ϕp(1−x)

so that ψ(0)=ϕ(1)−ϕp=0 and ψ(1)=ϕ(rb)=0. With the change of variable r=(rb)
x,

we get

−ψ′′(x)=−(rb)
x log(rb)

2
(
ϕ′
(
(rb)

x
)
+(rb)

xϕ′′
(
(rb)

x
))

=−(rb)
x log(rb)

2 d

dr

(
r
dϕ

dr

)
(r).

The studied equation (5.13) is therefore equivalent to

∀x∈ [0,1], −d
2ψ

dx2
(x)=g

(
ψ(x), x

)
, (5.17)

where

g(ν,x) :=(rb)
x log(rb)

2 g̃
(
ν+ϕp(1−x), (rb)x

)
. (5.18)

It is possible to recover ϕ from ψ with the formula

∀r∈ [1,rb], ϕ(r)=ψ

(
log(r)

log(rb)

)
+ϕp

(
1− log(r)

log(rb)

)
. (5.19)

One interest of this last formulation (5.17) is that it directly involves the second deriva-
tive of ψ (which is easier to manipulate) and the Sobolev space H1

0 ([0,1]). This for-
mulation also allows to proceed to qualitative description of the solutions ψ invoking
convexity arguments (such a study will be done in forthcoming articles).

6. Existence of a solution

6.1. A priori estimates. The first main question concerning (5.17) is the
definition problem for the function g and, the equivalent function g̃. Recall that g̃ is the
difference between gi defined at (5.15) and ge defined at (5.16). It is possible to prove
with elementary computations that

sup
ν∈R

sup
r∈[1,rb]

∫ +∞

−∞

∫ +∞

−∞

∣∣Γ(ν,r,w,L)∣∣dwdL =+∞.

It is therefore not enough to ask f bi and f be to be in L∞ if one wants the functions gi
and ge to be finite. Similar manipulations give that assuming f bi and f be to be in L1 is
not enough and extra integrability assumptions are required.

To start with, we prove the following estimate:

Lemma 6.1 (Functions gi and ge are finite). Let f :R2→R measurable and let p∈ [1,2).
Then,

sup
ν∈R

sup
r∈[1,rb]

∫ +∞

−∞

∫ +∞

−∞

|w|p∣∣w2−L2
(

1
r2 −

1
r2b

)
−2ν

∣∣ p2 ∣∣f(w,L)∣∣dwdL
≤ 2∥f∥L1 +

4

2−p
∥f∥L1

L(L∞
w (wdw)),
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where L1
L(L

∞
w (wdw)) is defined at (3.2).

Proof. Let p∈ [1,2) and let b∈ (0,1/2]. Let L,ν ∈R and let r∈ [1,rb]. We define
the set

OL,ν
b,r :=

{
w∈R :

∣∣∣∣w2−L2

(
1

r2
− 1

r2b

)
−2ν

∣∣∣∣≤ bw2

}
.

By definition of OL,ν
b,r ,∫

R\OL,ν
b,r

|w|p∣∣w2−L2
(

1
r2 −

1
r2b

)
−2ν

∣∣ p2 ∣∣f(w,L)∣∣dw ≤ 1

b
p
2

∫ +∞

−∞

∣∣f(w,L)∣∣dw. (6.1)

On the other hand,

w∈OL,ν
b,r ⇐⇒ (b−1)w2≤L2

( 1
r2

− 1

r2b

)
+2ν≤ (b+1)w2

⇐⇒
L2
(

1
r2 −

1
r2b

)
+2ν

1+b
≤w2≤

L2
(

1
r2 −

1
r2b

)
+2ν

1−b
.

(6.2)

We see that, for λ a positive number,∫ λ

λ√
1+b

|w|p−1dw∣∣w2−λ2
∣∣ p2 ≤λp−1

∫ λ

λ√
1+b

dw∣∣(λ+w)(λ−w)∣∣ p2 ≤ λp−1∣∣λ+ λ√
1+b

∣∣ p2
∫ λ

λ√
1+b

dw∣∣λ−w∣∣ p2
=

1

1− p
2

∣∣1− 1√
1+b

∣∣1− p
2∣∣1+ 1√

1+b

∣∣ p2 ≤ 1

1− p
2

. (6.3)

Similarly,∫ λ√
1−b

λ
|w|p−1dw∣∣w2−λ2

∣∣ p2 ≤ λp−1

√
1−bp−1

∫ λ√
1−b

λ
dw∣∣(λ+w)(w−λ)

∣∣ p2 ≤ λ
p
2
−1

2
p
2
√
1−bp−1

∫ λ√
1−b

λ
dw

|w−λ|
p
2

=
1

2
p
2

(
1− p

2

) ∣∣1−√
1−b

∣∣1− p
2

√
1−b

p
2

≤ 1

1− p
2

, (6.4)

where for the last inequality we used b≤1/2. We note that (6.2) implies that OL,ν
b,r is

non-empty if and only if L2(1/r2−1/r2b )+2ν≥0. In this case we can choose λ such
that λ2=L2(1/r2−1/r2b )+2ν. Then the computations (6.3) and (6.4) imply∫

OL,ν
b,r

|w|p∣∣w2−L2
(

1
r2 −

1
r2b

)
−2ν

∣∣ p2 ∣∣f(w,L)∣∣dw
≤
(
sup
w

|w|
∣∣f(w,L)∣∣)∫

OL,ν
b,r

|w|p−1∣∣w2−L2
(

1
r2 −

1
r2b

)
−2ν

∣∣ p2 dw
≤ 2

1− p
2

(
sup
w

|w|
∣∣f(w,L)∣∣). (6.5)

If we now gather (6.1) and (6.5) and integrate these two estimates for the variable L:∫ +∞

−∞

∫ +∞

−∞

|w|p∣∣w2−L2
(

1
r2 −

1
r2b

)
−2ν

∣∣ p2 ∣∣f(w,L)∣∣dwdL
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≤ 1

b
p
2

∥f∥L1 +
2

1− p
2

∫ +∞

−∞

(
sup
w

|w|
∣∣f(w,L)∣∣)dL.

Plugging this back into (6.6) concludes the proof (choosing b=1/2).

Corollary 6.1. Suppose that the functions f bi and f be are in L1∩L1
L(L

∞
w (wdw)).

Then, the functions gi and ge defined at (5.15) (5.16) are well-defined and bounded with
a bound that depends only on ∥f b∥L1 and ∥f b∥L1

L(L∞
w (wdw)).

This implies that g̃=gi−ge is also well-defined and bounded and so is the function
g given at (5.18).

Proof. The definition of Γ at (5.6) implies∫ +∞

−∞

∫ +∞

−∞

∣∣Γ(ν,r,w,L)∣∣∣∣f(w,L)∣∣dwdL
≤
∫ +∞

−∞

∫ +∞

−∞

|w|∣∣w2−L2
(

1
r2 −

1
r2b

)
−2ν

∣∣ 12 ∣∣f(w,L)∣∣dwdL. (6.6)

The fact that gi and ge are well-defined, and bounded is then a direct corollary of
Lemma 6.1 with p=1.

Now that the functions ge and gi are well-defined, we study their regularity:

Lemma 6.2 (Regularity of the function g̃). Suppose that the functions f bi and
f be are in L1(R2). Suppose also that there exists 0<γ<1 such that f bi and f be be-
long to L1

L(L
∞
w (wdw))∩L1

w(L
∞
L ;dw/|w|γ). Recall the these spaces are defined by the

norms (3.2) and (3.3). Define the functions gi and ge with (5.15) (5.16). Then we have
for all ν,ν′∈R such that |ν′−ν|≤1 and for all r∈ [1,rb),∣∣gi(ν′,r)−gi(ν,r)∣∣

≤ C(r)

γ(1−γ)

(
1+∥f bi ∥L1 +∥f bi ∥L1

L(L∞
w (wdw))+∥f bi ∥L1

w(L∞
L ;dw/|w|γ)

)
|ν′−ν|

γ
2(γ+1) ,

where C is a function of r that blows up as r→ rb. The same estimate holds for the
function ge and then for the function g̃.

Proof. Let ν′<ν ∈R such that ν−ν′≤1 and let r∈ [1,rb). We consider the number
1<p<2 such that γ=(p−1)/(3−p). We define

Pr,pν,ν′ :=

{
(w,L)∈R2 :

∣∣∣∣w2−L2

(
1

r2
− 1

r2b

)
−2ν′

∣∣∣∣≥ ν−ν′

|w|2
p−1
3−p

}
.

Step 1: Regularity property on Pr,pν,ν′ . By convexity inequality, we have that for all
a>0 and for all h≥0,

1√
a
− 1√

a+h
≤ h

2
√
a
3 .

Thus,

Ir,pν,ν′ :=
∫
Pr,p

ν,ν′

∣∣∣Γ(ν′,r,w,L)−Γ(ν,r,w,L)
∣∣∣∣∣∣∣f bi (w, Lrb)

∣∣∣∣(1+1
w2+L2

r2
b

<2UL

)
1r≥Ri(w,L)dwdL
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≤
∫
Pr,p

ν,ν′

|w| (ν−ν′)∣∣w2−L2
(

1
r2 −

1
r2b

)
−2ν′

∣∣ 32
∣∣∣∣f bi (w, Lrb

)∣∣∣∣dwdL
≤
∫
R2

|w|p (ν−ν′)
p−1
2∣∣w2−L2

(
1
r2 −

1
r2b

)
−2ν′

∣∣ p2
∣∣∣∣f bi (w, Lrb

)∣∣∣∣dwdL, (6.7)

where for the last inequality we used the definition of Pr,pν,ν′ since it implies

|w|1−p (ν−ν′) 3
2−

p
2∣∣w2−L2

(
1
r2 −

1
r2b

)
−2ν′

∣∣ 32− p
2

≤1.

We now simply make use of Lemma 6.1 to obtain that the term studied at (6.7) is
bounded by

Ir,pν,ν′ ≤C
∥f bi ∥L1 +∥f bi ∥L1

L(L∞
w (wdw))

2−p
(ν−ν′)

p−1
2

=C
(
∥f bi ∥L1 +∥f bi ∥L1

L(L∞
w (wdw))

)γ+1

γ−1
(ν−ν′)

γ
γ+1 . (6.8)

Step 2: Regularity property on R2 \Pr,pν,ν′ . We need first to separate the analysis
into two cases. For that purpose, we introduce

N r
ν,ν′ :=

{
(w,L)∈R2 :w2−L2

(
1

r2
− 1

r2b

)
−2ν′>0

}
.

The positiveness of Γ gives∫
Nr

ν,ν′\P
r,p

ν,ν′

∣∣∣Γ(ν′,r,w,L)−Γ(ν,r,w,L)
∣∣∣∣∣∣∣fb

i

(
w,

L

rb

)∣∣∣∣(1+1
w2+L2

r2
b

<2UL

)
1r≥Ri(w,L)dwdL

≤
∫
Nr

ν,ν′\P
r,p

ν,ν′

∣∣∣Γ(ν′,r,w,L)
∣∣∣∣∣∣∣fb

i

(
w,

L

rb

)∣∣∣∣dwdL. (6.9)

On the other hand, outside N r
ν,ν′ we have Γ≡0. Thus,

∫
R2\
(
N r

ν,ν′∪Pr,p

ν,ν′

) ∣∣∣Γ(ν′,r,w,L)−Γ(ν,r,w,L)
∣∣∣∣∣∣∣f bi (w, Lrb)

∣∣∣∣(1+1
w2+L2

r2
b

<2UL

)
1r≥Ri(w,L)dwdL

≤
∫
R2\
(
N r

ν,ν′∪Pr,p

ν,ν′

) ∣∣∣Γ(ν,r,w,L)∣∣∣∣∣∣∣f bi (w, Lrb
)∣∣∣∣dwdL. (6.10)

Therefore, the two cases (6.9) and (6.10) reduce to studying

Jrν,ν′ :=

∫
R2\Pr,p

ν,ν′

|w|∣∣w2−L2
(

1
r2 −

1
r2b

)
−2ν′

∣∣ 12
∣∣∣∣f bi (w, Lrb

)∣∣∣∣dwdL. (6.11)

By the Hölder inequality (with q>2 and 1/q+1/q′=1),

Jrν,ν′ ≤
(∫

R2\Pr,p

ν,ν′

∣∣∣∣f bi (w, Lrb)
∣∣∣∣dwdL) 1

q
(∫

R2

|w|q
′∣∣w2−L2

(
1
r2

− 1

r2
b

)
−2ν′

∣∣ q′2
∣∣∣∣f bi (w, Lrb)

∣∣∣∣dwdL) 1
q′
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≤ 1

2−q′

(∫
R2\Pr,p

ν,ν′

∣∣∣∣f bi (w, Lrb
)∣∣∣∣dwdL) 1

q (
∥f bi ∥L1 +∥f bi ∥L1

L(L∞
w (wdw))

) 1
q′
, (6.12)

where Lemma 6.1 is used for the last inequality. The announced Hölder estimate is
given by the study of

Kr,p
ν,ν′ :=

∫
R2\Pr,p

ν,ν′

∣∣∣∣f bi (w, Lrb
)∣∣∣∣dwdL.

We now observe that

(w,L) /∈Pr,pν,ν′ ⇐⇒ w2−2ν′− ν−ν′

|w|2
p−1
3−p

<L2

(
1

r2
− 1

r2b

)
<w2−2ν′+

ν−ν′

|w|2
p−1
3−p

.

The Fubini theorem then gives:

Kr,p
ν,ν′ =2

∫ +∞

−∞

∫ (M2
w,ν,ν′ )

1/2
+

(M1
w,ν,ν′ )

1/2
+

∣∣∣∣f bi (w, Lrb
)∣∣∣∣dLdw, (6.13)

where

M1
w,ν,ν′ :=

(
1

r2
− 1

r2b

)−1(
w2−2ν′− ν−ν′

|w|2
p−1
3−p

)
and

M2
w,ν,ν′ :=

(
1

r2
− 1

r2b

)−1(
w2−2ν′+

ν−ν′

|w|2
p−1
3−p

)
.

The number 2 in factor of (6.13) comes from the use of the symmetry f bi (w,L)=f
b
i (w−

L). Equation (6.13) gives

Kr,p
ν,ν′ ≤2

∫ +∞

−∞

∣∣∣(M2
w,ν,ν′)

1/2
+ −(M1

w,ν,ν′)
1/2
+

∣∣∣ sup
L∈R

∣∣f bi (w,L)∣∣dw
≤C(r)

√
ν−ν′

∫ +∞

−∞
sup
L∈R

∣∣f bi (w,L)∣∣ dw

|w|
p−1
3−p

=C∥f bi ∥L1
w(L∞

L ;dw/|w|γ)
√
ν−ν′ ,

where for the last equality we used that p has been chosen to have γ=(p−1)/(3−
p). The function C(r) is equal (up to a multiplicative constant) to 1/(r−1−r−1

b )1/2.
Plugging this estimate back into (6.12) and choosing q=2/(p−1)>2 gives

Jrν,ν′ ≤
C(r)

p−1

(
∥f bi ∥L1 +∥f bi ∥L1

L(L∞
w (wdw))

) 3−p
2 ∥f bi ∥

p−1
2

L1
w(L∞

L ;dw/|w|γ) (ν−ν
′)

p−1
4

≤ C(r)

γ

(
∥f bi ∥L1 +∥f bi ∥L1

L(L∞
w (wdw))

) 1
γ+1 ∥f bi ∥

γ
γ+1

L1
w(L∞

L ;dw/|w|γ) (ν−ν
′)

γ
2(γ+1) . (6.14)

Conclusion of the proof: If we now gather the two estimates obtained respectively
in Step 1 with (6.8) and Step 2 with (6.14), we get (using ν−ν′≤1),∣∣gi(ν,r)−gi(ν′,r)∣∣
≤ C(r)

γ(1−γ)

(
1+∥f bi ∥L1 +∥f bi ∥L1

L(L∞
w (wdw))+∥f bi ∥L1

w(L∞
L ;dw/|w|γ)

)
(ν−ν′)

γ
2(γ+1) . (6.15)

A similar reasoning works for the function ge.
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6.2. Existence with minimization argument. It is a standard technique to
build solution to Poisson equations when under semi-linear form (5.17) with variational
argument. Indeed, being a solution to (5.17) is equivalent to being a critical point of
the following functional:

J (ψ) :=

∫ 1

0

{
1

2

∣∣∣∣dψdx (x)
∣∣∣∣2−G(ψ(x), x)

}
dx, (6.16)

where G(ν,r) :=
∫ ν
0
g(s,r)ds.

We now recall

H1
0 ([0,1]) :=

{
ψ : [0,1]→R : ψ(0)=0, ψ(1)=0, and

∫ 1

0

∣∣∣∣dψdx (x)
∣∣∣∣2dx<+∞

}
.

The Poincaré inequality implies that H1
0 ([0,1])⊆L2([0,1]) and the Rellich-Kondrachov

theorem states that this injection is compact. We are interested in the following mini-
mization problem:

Does there exist ψ⋆∈H1
0 ([0,1]) such that J (ψ⋆)= inf

ψ∈H1
0 ([0,1])

J (ψ) ? (6.17)

Lemma 6.3 (Existence of a minimizer). The function J satisfies the following in-
equality:

1

2

∫ 1

0

∣∣∣∣dψdx (x)
∣∣∣∣2dx ≤2J (ψ)+

1

2π
∥g∥2L∞ . (6.18)

In consequence, the minimization problem (6.17) admits a solution ψ⋆∈H1
0 ([0,1])

and this function is a solution of (5.17).

Proof. First, we observe that∫ 1

0

∣∣∣G(ψ(x), x)∣∣∣dx=∫ 1

0

∣∣∣∣∫ ψ(x)

0

g
(
ν, x
)
dν

∣∣∣∣dx
≤∥g∥L∞(R×[0,1])∥ψ∥L1([0,1])≤∥g∥L∞∥ψ∥L2

where the last inequality is the Cauchy-Schwarz inequality. We continue this estimate
using the Young inequality (with ε>0) and the Poincaré inequality (the constant of
Poincaré of [0,1] being 1/π) in that order:

J (ψ)≥ 1

2

∫ 1

0

∣∣∣∣dψdx (x)
∣∣∣∣2dx−∥g∥L∞∥ψ∥L2

≥ 1

2

∫ 1

0

∣∣∣∣dψdx (x)
∣∣∣∣2dx− 1

4ε
∥g∥2L∞ −ε∥ψ∥2L2

≥
(
1

2
− ε

π

)∫ 1

0

∣∣∣∣dψdx (x)
∣∣∣∣2dx− 1

4ε
∥g∥2L∞ . (6.19)

The announced inequality (6.18) is then obtained by taking ε=π/4 in (6.19).
Consider now (ψn), a sequence of functions belonging to H1

0 ([0,1]) that minimizes
the studied quantity J . Equation (6.18) implies that dψn/dx is a bounded sequence in
L2. Therefore there exists ψ⋆∈H1

0 ([0,1]) such that, up to an omitted extraction,

dψn
dx

−→ dψ⋆

dx
, weakly in L2, (6.20)
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and, by compact embedding,

ψn −→ ψ⋆, strongly in L2.

This last convergence result implies, using the Lebesgue dominated convergence theo-
rem, ∫ 1

0

G
(
ψn(x), x

)
dx −→

∫ 1

0

G
(
ψ⋆(x), x

)
dx, as n→+∞.

Moreover, the convergence (6.20), since ψ 7→
∫ 1

0
|ψ|2 is convex on H1

0 ([0,1]), gives∫ 1

0

∣∣∣∣dψ⋆dx (x)

∣∣∣∣2dx≤ liminf
n→+∞

∫ 1

0

∣∣∣∣dψndx (x)

∣∣∣∣2dx.
These two facts together imply, since ψn is a minimizing sequence for J ,

J (ψ⋆)≤ inf
ψ∈H1

0 ([0,1])
J (ψ),

which eventually gives the existence of a minimizer for J . The function ψ⋆ satisfies
Equation (5.17) because, as a minimizer, it is a critical point of the functional J .

6.3. Passing to the limit in the parameters. We have now the existence
result for Equation (5.17), and then for (5.13), for any choice of parameters Ul, VL,
Ri(w,L) and Re(w,L). To conclude to the existence of a solution for the initial prob-
lem (5.1), there remains to adjust these parameters in the view of Section 5.2.

6.3.1. Study of the barrier parameters problem. The idea to adjust
the barrier parameters Ri(w,L) and Re(w,L) in such a way that for almost every
(w,L)∈R2,

Ri(w,L)= ρ̃[UL]

(
w2

2
+
L2

2r2b

)
, and Re(w,L)= ρ̃[VL]

(
w2

2
+
L2

2r2b

)
, (6.21)

is to do a fixed-point procedure. For that purpose, we need to study more precisely ρ̃
defined at (5.2) to obtain continuity properties.

For ϕ : [1,rb]→R to be a continuous function, we define

ϕ†(r) := max
r′∈[r,rb]

ϕ(r′). (6.22)

The function ϕ† is the smallest non-increasing function such that ϕ†≥ϕ.

Lemma 6.4. Let e∈R and let ϕ : [1,rb]→R be a continuous function. We have

ρ̃[ϕ](e)= ρ̃[ϕ†](e).

Proof. To start with, we recall that

ρ̃[ϕ](e)=min
{
a∈ [1,rb] :∀s≥a, ϕ(s)≤e

}
.

We point out that if e≥maxϕ then,

{a∈ [1,rb] :∀s≥a, ϕ(s)≤e
}
=[1,rb], (6.23)
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so that we have ρ̃[ϕ](e)=1. In this situation we also have e≥maxϕ=ϕ†(1)≥ϕ†(r),
where the last inequality is given by the monotony of ϕ†. Therefore (6.23) also hold for
ϕ† and then ρ̃[ϕ†](e)=1.

We now focus on the case e<maxϕ. This implies that ρ̃[ϕ](e)>1. For this case,
we first observe that, since ϕ≤ϕ†, by definition of ρ̃,

ρ̃[ϕ](e)≤ ρ̃[ϕ†](e). (6.24)

For the reverse inequality, we start by observing that (by continuity of ϕ) the definition
of ρ̃ is equivalent to the two following propositions:

∀r≥ ρ̃[ϕ](e), e≥ϕ(r), (6.25)

and

∃δ>0, ∀r∈
[
ρ̃[ϕ](e)−δ; ρ̃[ϕ](e)

]
, ϕ(r)>e. (6.26)

Indeed, (6.25) holds for all the elements of the set {a∈ [1,rb] :∀s≥a, ϕ(s)≤e
}

while (6.26) characterizes the fact that ρ̃[ϕ](e) is the smallest element of this set. By
continuity and since ρ̃[ϕ](e)>1, Equations (6.25) and (6.26) give that,

ϕ
(
ρ̃[ϕ](e)

)
=e. (6.27)

Equations (6.25) and (6.27) together imply

max
r≥ρ̃[ϕ](e)

ϕ(r)=ϕ
(
ρ̃[ϕ](e)

)
.

Thus,

ϕ†
(
ρ̃[ϕ](e)

)
=ϕ
(
ρ̃[ϕ](e)

)
. (6.28)

On the other hand, since ϕ† is non-increasing, Equation (6.24) implies

ϕ†
(
ρ̃[ϕ](e)

)
≥ϕ†

(
ρ̃[ϕ†](e)

)
. (6.29)

Suppose now by the absurd that ρ̃[ϕ†](e)>ρ̃[ϕ](e), then (6.26) and (6.29) (since ϕ† is
non-increasing) give

ϕ†
(
ρ̃[ϕ](e)

)
>ϕ†

(
ρ̃[ϕ†](e)

)
This last inequation with (6.27) and (6.28) lead to

e=ϕ
(
ρ̃[ϕ](e)

)
=ϕ†

(
ρ̃[ϕ](e)

)
>ϕ†

(
ρ̃[ϕ†](e)

)
=e,

which is eventually contradictory.

We have also the following continuity property for the † application:

Lemma 6.5 (Application † is Lipschitz). Let ϕ and ψ be two continuous functions on
[1,rb]. We have

∥ϕ†−ψ†∥L∞ ≤∥ϕ−ψ∥L∞ . (6.30)

Proof. Let r∈ [1,rb], we have

|ϕ†(r)−ψ†(r)|=
∣∣∣ max
y∈[r,rb]

ϕ(y)− max
y∈[r,rb]

ψ(y)
∣∣∣≤ max

y∈[r,rb]
|ϕ(y)−ψ(y)|≤∥ϕ−ψ∥L∞
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taking the max at the left-hand side above gives (6.30).

We are now in position to give the convergence result for the non-linearity ρ̃:

Lemma 6.6 (Convergence property for ρ̃). Let (ϕn) be a sequence of continuous
functions that is uniformly converging towards ϕ. Then for almost every e∈R,

ρ̃[ϕn](e) −→ ρ̃[ϕ](e).

Proof. Since we have ϕn→ϕ in L∞, then by Lemma 6.5 we have ϕ†n→ϕ† in
L∞. Let e∈R, suppose that there exists r∈ [1,rb] such that ϕ†(r)>e. By uniform
convergence, there exists δ>0 such that for all n∈N large enough: ϕ†n(r)≥e+δ. By
definition of ρ̃, we deduce that r≤ ρ̃[ϕ†n](e). In the view of Lemma 6.4, this gives
r≤ ρ̃[ϕn](e). By taking the liminf we conclude:

ϕ†(r)>e =⇒ r≤ liminf
n→+∞

ρ̃[ϕn](e).

Thus, with ϕ† being non-increasing,

inf {r∈ [1,rb] :ϕ
†(r)=e}≤ liminf

n→+∞
ρ̃[ϕn](e).

Similarly,

sup{r∈ [1,rb] :ϕ
†(r)=e}≥ limsup

n→+∞
ρ̃[ϕn](e).

Since ϕ† is non-increasing, if we have meas
{
r∈ [1,rb] :ϕ

†(r)=e
}
=0 then this set is a

singleton. In this case, the two estimates above give the convergence of ρ̃[ϕn](e).
We now remark the following general fact: if f :Rd→R is a measurable function,

then the set of y∈R such that meas{x∈Rd :f(x)=y}>0 is a set of measure 0. Indeed,
using the layer-cake representation [17, chap.1] (direct corollary of the Fubini theorem),

0=

∫
Rd

0dx=

∫
Rd

meas
{
y∈R :f(x)=y

}
dx

=

∫
Rd×R

1{(x,y)∈Rd×R :f(x)=y}dxdy

=

∫
R
meas

{
x∈Rd :f(x)=y

}
dy. (6.31)

From this we conclude that the set of e∈R such that meas
{
r∈ [1,rb] :ϕ

†(r)=e
}
>0 has

indeed its measure equal to 0 and therefore the announced convergence holds for almost
every e∈R.

Corollary 6.2. For almost every (w,L)∈R2,

ρ̃

[
ϕn+

L2

2 · 2

](
w2

2
+
L2

2r2b

)
−→ ρ̃

[
ϕ+

L2

2 · 2

](
w2

2
+
L2

2r2b

)
. (6.32)

Proof. Let L∈R be fixed. If ϕn→ϕ in L∞([1,rb]) then ϕn+
L2

2·2 converges in L∞

to ϕ+ L2

2·2 . As a consequence of the previous lemma, the set of w∈R, such that (6.32)
does not hold, is of measure 0. Corollary 6.2 then follows (using the Fubini theorem).

Recall that ϕ(r)+ L2

2r2 =UL(r) so that the convergence above is exactly the one
needed to adjust the parameter Ri(w,L) in the view of (6.21). The arguments are

similar for Re(w,L) with −ϕ(r)+ L2

2r2 =VL(r).
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6.3.2. Passing to the limit with the parameters. We can now consider pass-
ing to the limit with barrier-parameters and obtain (6.21). For that purpose, we suppose
that the functions f bi and f be are in L1∩L1

L(L
∞
w (wdw)) and also in L1

w(L
∞
L ;dw/|w|γ)

for some 0<γ<1.
We also have to adjust the max-parameters to obtain

UL=UL := max
r∈[1,rb]

ϕ(r)+
L2

2r2
, and VL=VL := max

r∈[1,rb]
−ϕ(r)+ L2

2r2
.

For that purpose, we proceed with an iterative fixed-point argument. We construct
sequences of parameters (Rn

i (w,L))n∈N, (R
n
e (w,L))n∈N, (U

n
L)n∈N and (Vn

L(w,L))n∈N,
a sequence of functions gn :R× [0,1]→R, a sequence ψn : [0,1]→R and a sequence ϕn :
[1,rb]→R as follows. The first element of the sequences can be chosen freely without
importance. Suppose that for n∈N, we have already built the nth term of the sequences:
Rn
i (w,L), R

n
e (w,L), U

n
L and Vn

L(w,L), gn, ψn and ϕn. We define for all (w,L)∈R2,

Rn+1
i (w,L) := ρ̃

[
ϕn+

L2

2 · 2

](
w2

2
+
L2

2r2b

)
, (6.33)

Rn+1
e (w,L) := ρ̃

[
−ϕn+

L2

2 · 2

](
w2

2
+
L2

2r2b

)
, (6.34)

Un+1
L :=UnL = max

r∈[1,rb]
ϕn(r)+

L2

2r2
, (6.35)

Vn+1
L :=V nL = max

r∈[1,rb]
−ϕn(r)+

L2

2r2
. (6.36)

We now define gn+1 :R× [0,1]→R using (5.18) where the associated function g̃n+1 is de-
fined by (5.14) (5.15) (5.16) with parameters Un+1

L , Vn+1
L , Rn+1

i (w,L) and Rn+1
e (w,L).

We now define the function ψn+1 : [0,1]→R as being a minimizer on H1
0 ([0,1]) of J de-

fined at (6.16) with function G=Gn+1 defined by
∫ x
0
gn+1(ν,x

′)dx′. Such a minimizer
exists and is a solution to (5.17), as stated by Lemma 6.3.

Note that there may exist infinitely many minimizers so that this step of the proof
requires the axiom of choice. From ψn+1 we define ϕn+1 with (5.19) and ϕn+1 is a
solution to (5.13) with function g̃n+1.

The sequences being well-defined, we study their limit. The fact that ψn sat-
isfy (5.17) implies in particular that for all n∈N,∥∥∥∥ d2dx2ψn

∥∥∥∥
L∞

≤∥gn∥L∞

≤C sup
ν,r

∫
R2

Γ(ν,r,w,L)f bi

(
w,

L

rb

)
dwdL+C sup

ν,r

∫
R2

Γ
(
−ν,r,w,L

)
f be

(
w,

L

rb

)
dwdL

≤C
(
∥f bi ∥L1 +∥f be∥L1 +∥f bi ∥L1

L(L∞
w (wdw))+∥f be∥L1

L(L∞
w (wdw))

)
(6.37)

where the last estimate is given by Lemma 6.1. In particular, d2ψn/dx
2 is a bounded

sequence in L∞. By compact embedding, we obtain that, up to an omitted extraction
of subsequence, the function ψn converges in H1

0 towards some function ψ⋆. As a conse-
quence, ϕn converges towards ϕ⋆ where ϕ⋆ is deduced from ψ⋆ with (5.19). By Sobolev
embedding, the convergence of ϕn also takes place in L∞ and therefore Corollary 6.2
implies

ρ̃

[
ϕn+

L2

2 · 2

](
w2

2
+
L2

2r2b

)
−→ ρ̃

[
ϕ⋆+

L2

2 · 2

](
w2

2
+
L2

2r2b

)
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for almost every (w,L)∈R2. As a consequence of (6.33), we also have Rn
i (w,L) con-

verging for almost every (w,L)∈R2 towards a limit R⋆
i (w,L) and

R⋆
i (w,L)= ρ̃

[
ϕ⋆+

L2

2 · 2

](
w2

2
+
L2

2r2b

)
.

Similarly,

Rn
e (w,L) −→ R⋆

e(w,L)= ρ̃

[
−ϕ⋆+ L2

2 · 2

](
w2

2
+
L2

2r2b

)
.

For almost every (w,L)∈R2. Concerning the convergence of the max-parameters, we
write ∣∣U⋆L−UnL ∣∣=∣∣∣∣( max

r∈[1,rb]
ϕ⋆(r)+

L2

2r2

)
−
(

max
r∈[1,rb]

ϕn(r)+
L2

2r2

)∣∣∣∣
≤ max
r∈[1,rb]

∣∣∣∣(ϕ⋆(r)+ L2

2r2

)
−
(
ϕn(r)+

L2

2r2

)∣∣∣∣=∥ϕ⋆−ϕn∥L∞ .

Thus, the convergence of ϕn towards ϕ⋆ in L∞ implies the convergence of UnL to U⋆L for
all L∈R. Using (6.35), we get

UnL −→ U⋆L :=U
⋆
L= max

r∈[1,rb]
ϕ⋆(r)+

L2

2r2
.

A similar reasoning with (6.36) gives the analogous result for Vn
L.

We now define g⋆ with (5.18) where the chosen parameters are U⋆L, V
⋆
L, R

⋆
i (w,L)

and R⋆
e(w,L). The Lebesgue dominated convergence theorem gives that for all ν,x

we have gn(ν,x) converging towards g⋆(ν,x). Invoking now Lemma 6.2, we get that
the family of functions (ν 7→gn(ν,x))n∈N is uniformly equi-continuous for every fixed
x∈ [0,1). Therefore, by Arzelà-Ascoli theorem, we have for all x∈ [0,1),

sup
ν

∣∣gn(ν,x)−g⋆(ν,x)∣∣−→0, as n→+∞.

Thus,

∀x∈ [0,1), gn(ψn(x),x)−→g⋆(ψ⋆(x),x).

Using again the bound (6.37), we get that the convergence above also takes place in L2.
Therefore, with the Equation (5.17), we deduce that d2ψn/dx

2 converges strongly in L2

towards d2ψ⋆/dx2 and the following equality holds:

∀x∈ [0,1), −d
2ψ⋆

dx2
(x)=g⋆

(
ψ⋆(x), x

)
.

Thus, ψ⋆ is a solution to (5.17) with function g⋆ and ϕ⋆ is a solution to (5.13) with
function g̃⋆. Since the convergence of (ψn) towards ψ

⋆ takes place in H1
0 , the Dirichlet

boundary conditions for ψ⋆ are satisfied and so is the case for ϕ⋆.

Corollary 6.3. The Langmuir problem written in terms of Poisson Equation (5.1)
admits a solution and therefore the initial Langmuir-Vlasov-Poisson problem (2.19) ad-
mits a weak-strong solution in the sense given by Definition 3.2.
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Appendix A.

Lemma A.1 (Countability of the locus of left strict local maxima). Let f :R→R be
a function. Let

Af :={a∈R :∃δ>0, ∀x∈ (a−δ,a)f(x)<f(a)}. (A.1)

Then Af is at most countable.

Proof. If Af is empty the conclusion follows. Otherwise, let a∈Af . By definition,
there exists δa>0 such that for all x∈ (a−δa,a), f(x)<f(a). It is equivalent to the
existence of na∈N∗ such that for all x∈ (a− 1

na
,a), f(x)<f(a). One then considers

the map a∈Af 7→na. Therefore one has Af =
⋃

n∈N∗
An where An :={a∈Af :na=n}.

Let n∈N∗. If a,a′∈An are such that a ̸=a′ then necessarily (a′−a)sgn(a′−a)≥ 1
n .

Otherwise this would yield that f(a)<f(a′) and f(a)>f(a′) and one would get a
contradiction. Invoking the density of Q in R, for each a∈An one can choose a rational
number pa such that a− 1

2n <pa<a. Then for each a ̸=a′ the numbers pa and pa′ are
distinct because (a′−a)sgn(a′−a)≥ 1

n . Therefore the map a∈An 7→pa∈Q is injective
and thus An is at most countable by countability of Q. Eventually Af is at most
countable as the the union of at most countable sets.

Proposition A.1 (Additional properties for the transformation †). Let p∈ [1,+∞]
and ϕ∈W 1,p(1,rb). Consider ϕ† defined by (6.22) and the set

A†
ϕ :={b∈ (1,rb) : ∃δ>0, ∀x∈ (b−δ,b) ,ϕ(x)<ϕ(b) and ϕ†(b)=ϕ(b)}.

One has then has following:

(a) ϕ† is continuous in [1,rb].

(b) Let 1≤a<b≤ rb such that ϕ†−ϕ>0 on (a,b). Then ϕ† is constant on (a,b).

(c) {x∈ (1,rb) : ϕ
†(x)−ϕ(x)>0}= ∪

n∈I
(an,bn) where (bn)n∈I is a bijection from a

subset I⊆N into A†
ϕ and the sequence (an)nN is given by

∀n∈ I, an := inf{a∈ (1,rb) : ∀x∈ (a,bn),ϕ(x)<ϕ
†(bn)}.

Moreover, for all n∈ I such that ϕ†(bn) is not the maximum value of ϕ, one
has ϕ(an)=ϕ

†(an)=ϕ
†(bn). The intervals ((an,bn))n∈I are disjoints.

(d) ϕ†∈W 1,p(1,rb), (ϕ
†)′= 1

{ϕ†=ϕ}
ϕ′, and ∥(ϕ†)′∥Lp ≤∥ϕ′∥Lp .

Proof.

(a) Let x,y∈ [1,rb] and assume without loss of generality that x<y. The function ϕ†

being nonincreasing, one has

∣∣ϕ†(x)−ϕ†(y)∣∣= ∣∣∣∣∣maxϕ(x′)
x′∈[x,rb]

−maxϕ(x′′)
x′′∈[y,rb]

∣∣∣∣∣=maxϕ(x′)
x′∈[x,rb]

−maxϕ(x′′)
x′′∈[y,rb]

.
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If max
[x,rb]

ϕ=max
[y,rb]

ϕ then the difference in the above equality vanishes. Otherwise, one has

max
[x,rb]

ϕ>max
[y,rb]

ϕ and therefore max
[x,rb]

ϕ=max
[x,y]

ϕ. It yields,

∣∣ϕ†(x)−ϕ†(y)∣∣= max
x′∈[x,y]

ϕ(x′)−maxϕ(x′′)
x′′∈[y,rb]

≤ max
x′∈[x,y]

ϕ(x′)−ϕ(y)≤ max
x′∈[x,y]

(ϕ(x′)−ϕ(y)),

where one has used the fact that ϕ(y)≤maxϕ(x′′)
x′′∈[y,rb]

. The conclusion then follows from

the continuity of ϕ.

(b) Let 1≤a<b≤ rb such that for all x∈ (a,b), ϕ(x)<ϕ†(x). Moving b if necessary,
one assumes that ϕ(b)=ϕ†(b). One shows that for all x∈ (a,b), ϕ†(x) := max

x′∈[x,rb]
ϕ(x′)=

max
x′∈[b,rb]

ϕ(x′)=:ϕ†(b). Assume for the sake of the contradiction it is not the case. Then

there is x∈ (a,b) such that max
x′∈[x,rb]

ϕ(x′)> max
x′∈[b,rb]

ϕ(x′). Therefore there is c∈ (x,b)

such that ϕ(c)> max
x′∈[b,rb]

ϕ(x′)=ϕ†(b)=ϕ(b). One can thus consider the point c given by

c=argmax
r∈[x,b]

ϕ(r) (this point exists by continuity of ϕ). At this point, one has ϕ(c)=

max
[x,b]

ϕ=max
[c,b]

ϕ=max
[c,rb]

ϕ where the last equality holds because ϕ(c)> max
x′∈[b,rb]

ϕ(x′). One

eventually remarks that by definition one has max
[c,rb]

ϕ=ϕ†(c) and thus ϕ(c)=ϕ†(c) which

yields a contradiction.

(c) In virtue of Lemma A.1, the set of points in (1,rb) that are strict left local maxima of

ϕ is at most countable so is the case for the subset A†
ϕ. Therefore there exists a bijection

b : I→A†
ϕ where I⊆N. One now justifies the existence of the sequence (an)n∈I . For each

n∈ I the set {a∈ (1,rb) : ∀x∈ (a,bn) ϕ(x)<ϕ
†(bn)} is not empty since bn corresponds

to a strict local maxima of ϕ that is ϕ†(bn)=ϕ(bn). Since it is moreover lower bounded,
the infimum exists. Therefore the sequence (an)n∈N is well-defined. Since ϕ†(bn) is
not a maximum value of ϕ., by continuity of the function ϕ, one has ϕ(an)=ϕ

†(bn).
Using the property (a) and (b), ϕ† is constant in the interval [an,bn], one has then
ϕ†(an)=ϕ(an)=ϕ

†(bn). One now proves that the intervals ((an,bn))n∈I are disjoints.
If n,m∈ I are such that n ̸=m then bn ̸= bm because b is bijective. One assumes without
loss of generality that bn<bm. Then necessarily bn≤am, otherwise if bn>am, one has
on the one hand ϕ(bn)<ϕ

†(bm)=ϕ(bm) and on the other hand ϕ(am)<ϕ†(bn)=ϕ(bn).
But one has also by definition ϕ(am)=ϕ†(bm)=ϕ(bm), therefore one has both ϕ(bm)<
ϕ(bn) and ϕ(bn)<ϕ(bm) which is a contradiction, thus bn≤am. Consequently, the open
intervals (an,bn) are disjoints. One shows the equality of the sets. By definition of the
sequences (an)n∈I and (bn)n∈I one has ∪

n∈I
(an,bn)⊂{x∈ (1,rb) : ϕ

†(x)−ϕ(x)>0}. For

the reverse embedding, one takes x∈ (1,rb) such that ϕ†(x)>ϕ(x). By continuity there
exists 1≤a<x<b≤ rb such that for all y∈ (a,b), ϕ†(y)>ϕ(y). Therefore consider the
two numbers

a∗=inf{a′≤a : ϕ†(y)>ϕ(y)∀y∈ (a′,x)},

b∗=sup{b′≥ b : ϕ†(y)>ϕ(y)∀y∈ (x,b′)}.
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By continuity of the function ϕ†−ϕ, one has ϕ†(a∗)=ϕ(a∗) and ϕ†(b∗)=ϕ(b∗). More-
over, using the point (a) and (b), ϕ† is constant on the interval [a∗,b∗]. There-
fore for all y∈ [a∗,b∗], ϕ†(y)=ϕ†(b∗)=ϕ(b∗). Thus, it implies that for all y∈ (a∗,b∗),

ϕ(y)<ϕ†(y)=ϕ†(b∗)=ϕ(b∗) thus b∗∈A†
ϕ. Since the set A†

ϕ is at most countable there
exists n∈ I such that b∗= bn. By construction one also has a∗=an which shows that
{x∈ (1,rb) : ϕ

†(x)−ϕ(x)>0}⊂ ∪
n∈I

(an,bn).

(d) Using the point (a) ϕ† is a continuous function on the compact set [1,rb], it is
therefore bounded and thus in Lp(1,rb). Let ψ∈C∞

c (1,rb), then one has∫ rb

1

ϕ†(x)ψ′(x)dx=

∫
{ϕ†−ϕ>0}

ϕ†(x)ψ′(x)dx+

∫
{ϕ†=ϕ}

ϕ(x)ψ′(x)dx.

Using the point (c), one has {ϕ†−ϕ>0}= ∪
n∈I

(an,bn) where I⊆N and the two sequences

(an)n∈I and (bn)n∈I are such that an<bn, ϕ
†(an)=ϕ(an)=ϕ(bn)=ϕ

†(bn) for all n∈ I.
If I is finite then {ϕ†−ϕ>0} is a finite union of disjoints intervals. The conclusion then
follows after decomposing the integral into a finite sum of integrals on each interval and
using integration by parts. If I is not finite then I=N and {ϕ†−ϕ>0} is countable
union of the disjoint intervals (an,bn). One therefore obtains∫

{ϕ†−ϕ>0}
ϕ†(x)ψ′(x)dx=

∑
n∈N

∫ bn

an

ϕ†(x)ψ′(x)dx,

where the above sum is convergent because it is absolutely convergent. Indeed for N ∈

N, the partial sum SN =

N∑
n=0

∫ bn

an

|ϕ†(x)ψ′(x)|dx is nondecreasing and upper bounded:

for all N ∈N, SN ≤
∫ rb
1

|ϕ†(x)ψ′(x)|dx<+∞. Using the fact that ϕ† is constant in the
interval [an,bn], one has∫

{ϕ†−ϕ>0}
ϕ†(x)ψ′(x)dx=

∑
n∈N

ϕ†(bn)(ψ(bn)−ψ(an)).

On the complementary set {ϕ†=ϕ}= ∩
n∈N

(1,rb)\(an,bn), one has also

∫
{ϕ†=ϕ}

ϕ(x)ψ′(x)dx=

(∑
n∈N

ϕ†(bn)(ψ(an)−ψ(bn))

)
−
∫
{ϕ†=ϕ}

ϕ′(x)ψ(x)dx. (A.2)

Gathering the two integrals together, the boundary terms eventually cancel and one
obtains ∫ rb

1

ϕ†(x)ψ′(x)dx=−
∫ rb

1

1{ϕ†=ϕ}(x)ϕ
′(x)ψ(x)dx.

Since ϕ′ is in Lp(1,rb) so is the case for the function 1{ϕ†=ϕ}ϕ
′. One thus deduces

that ϕ† is in W 1,p(1,rb) and that its weak derivative is given almost everywhere in
(1,rb) by (ϕ†)′=1{ϕ†=ϕ}ϕ

′. One therefore easily gets the inequality ∥(ϕ†)′∥Lp ≤∥ϕ′∥Lp .
It concludes the proof.
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Appendix B. Proof of Proposition 4.1.

Proof. Let f bi be an essentially bounded function, therefore fi defined by (4.7)
belongs to L1

loc(Q). Let ψ∈C1(Q) compactly supported on Q and such that ψ|Σout =0.
Consider the function Ψ defined for all (r,vr,vθ)∈Q by

Ψ(r,vr,vθ)=vr∂rψ(r,vr,vθ)+

(
v2θ
r
−∂rϕ(r)

)
∂vrψ(r,vr,vθ)−

vr
r
∂vθ (vθψ)(r,vr,vθ)

where the function ϕ is in the space W 2,∞(1,rb). One has using the Fubini theorem,∫
Q

Ψ(r,vr,vθ)fi(r,vr,vθ)dvrdvθdr=

∫ rb

1

∫
R

∫
R
Ψ(r,vr,vθ)fi(r,vr,vθ)dvθdvrdr.

Using the change of variable L= rvθ in the integral with respect to vθ one obtains,∫
Q

Ψ(r,vr,vθ)fi(r,vr,vθ)dvrdvθdr=

∫ rb

1

∫
R

∫
R
Ψ

(
r,vr,

L

r

)
fi

(
r,vr,

L

r

)
1

r
dLdvrdr

=

∫ +∞

−∞

∫
[1,rb]×R

1

r
Ψ

(
r,vr,

L

r

)
fi

(
r,vr,

L

r

)
dvrdrdL.

For L∈R being fixed, the function (r,vr) 7→fi(r,vr,L) vanishes on Dpc
i (L), one therefore

has ∫
Q

Ψ(r,vr,vθ)fi(r,vr,vθ)dvrdvθdr

=

∫ +∞

−∞

∫
Db

i (L)

1

r
Ψ

(
r,vr,

L

r

)
f bi

(
−
√
v2r+2(UL(r)−UL(rb)),

L

rb

)
dvrdrdL

=

∫ +∞

−∞

∫
Db,1

i (L)

1

r
Ψ

(
r,vr,

L

r

)
f bi

(
−
√
v2r+2(UL(r)−UL(rb)),

L

rb

)
dvrdrdL

+

∫ +∞

−∞

∫
Db,2

i (L)

1

r
Ψ

(
r,vr,

L

r

)
f bi

(
−
√
v2r+2(UL(r)−UL(rb)),

L

rb

)
dvrdrdL

where the sets Db,1
i (L) and Db,2

i (L) are defined respectively in (4.5) and (4.6). To
continue the computation one considers for (r,L)∈ (1,rb)×R the two sets of radial
velocities

Db,1
i (r,L) :=

{
vr ∈R : vr<−

√
2(UL−UL(r))

}
,

Db,2
i (r,L) :=

{
vr ∈R :UL(rb)<

v2r
2
+UL(r)<UL , r>ri

(
L,
v2r
2
+UL(r)

)}
.

For each couple (r,L), these sets amount to picking the radial velocities that are on
characteristics originating from the boundary r= rb. One thus obtains∫

Q

Ψ(r,vr,vθ)fi(r,vr,vθ)dvrdvθdr

=

∫ rb

1

∫ +∞

−∞

∫
Db,1

i (r,L)

1

r
Ψ

(
r,vr,

L

r

)
f bi

(
−
√
v2r+2(UL(r)−UL(rb)),

L

rb

)
dvrdLdr︸ ︷︷ ︸

:=I1



M. BADSI AND L. GODARD-CADILLAC 1131

+

∫ rb

1

∫ +∞

−∞

∫
Db,2

i (r,L)

1

r
Ψ

(
r,vr,

L

r

)
f bi

(
−
√
v2r+2(UL(r)−UL(rb)).

L

rb

)
dvrdLdr︸ ︷︷ ︸

:=I2

.

To ease the reading, one sets for (r,L)∈ (1,rb)×R,

I1(r,L) :=

∫
Db,1

i (r,L)

1

r
Ψ

(
r,vr,

L

r

)
f bi

(
−
√
v2r+2(UL(r)−UL(rb)),

L

rb

)
dvr,

I2(r,L) :=

∫
Db,2

i (r,L)

1

r
Ψ

(
r,vr,

L

r

)
f bi

(
−
√
v2r+2(UL(r)−UL(rb)),

L

rb

)
dvr.

One first computes I1, so let (r,L)∈ (1,rb)×R, one has

I1(r,L)=

∫ −
√

2(UL−UL(r))

−∞

1

r
Ψ

(
r,vr,

L

r

)
f bi

(
−
√
v2r+2(UL(r)−UL(rb)),

L

rb

)
dvr.

Using the change of variable wr=−
√
v2r+2(UL(r)−UL(rb)) yields

I1(r,L)=

∫ −
√

2(UL−UL(rb))

−∞

1

r

Ψ
(
r,−
√
w2
r−2(UL(r)−UL(rb)), Lr

)
−
√
w2
r−2(UL(r)−UL(rb))

f bi

(
wr,

L

rb

)
wrdwr.

The integrand in I1 has an apparent singularity at each point r∈ (1,rb) such that UL(r)=
UL. This singularity is integrable because the product Ψf bi is bounded. To go further,

one considers for (wr,L)∈R2 such that wr<−
√
2(UL−UL(rb)), the restriction of the

function ψ to a characteristic curve of equation vr=±
√
w2
r−2(UL(r)−UL(rb)). Then,

we set

ψ± : r∈ (1,rb) 7→
1

r
ψ

(
r,±
√
w2
r−2(UL(r)−UL(rb)),

L

r

)
. (B.1)

Using the chain rule, one verifies that for all r∈ (1,rb),

d

dr

(
1

r
ψ±
)
(r)=

1

r

Ψ
(
r,±
√
w2
r−2(UL(r)−UL(rb)); Lr

)
±
√
w2
r−2(UL(r)−UL(rb))

. (B.2)

One therefore obtains (permuting the derivative and the integral) that

I1(r,L)=
d

dr

∫ −
√

2(UL−UL(rb))

−∞

1

r
ψ−(r)f bi

(
wr,

L

rb

)
wrdwr

 .
After an integration with respect to L and with respect to r, one eventually gleans

I1=

∫ rb

1

d

dr

∫ +∞

−∞

∫ −
√

2(UL−UL(rb))

−∞

1

r
ψ−(r)f bi

(
wr,

L

rb

)
wrdwrdL

dr
=

∫ +∞

−∞

∫ −
√

2(UL−UL(rb))

−∞

1

rb
ψ−(rb)f

b
i

(
wr,

L

rb

)
wrdwrdL
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=

∫ +∞

−∞

∫ −
√

2(UL−UL(rb))

−∞

1

rb
ψ

(
rb,wr,

L

rb

)
f bi

(
wr,

L

rb

)
wrdwrdL,

where one has used the fact that ψ−(1)=0 because ψ vanishes on Σout. One deals with
the computation of I2. One sees that I2 splits as

I2=

∫ rb

1

∫ +∞

−∞
1{UL(rb)−UL(r)<0}I2(r,L)dLdr+

∫ rb

1

∫ +∞

−∞
1{UL(rb)−UL(r)≥0}I2(r,L)dLdr.

For the sake of conciseness, one restricts the computation in the case where for all
L∈R, UL(r)>UL(rb) for all r∈ (1,rb). The other case can be treated with similar
computations. So consider

I2=

∫ rb

1

∫ +∞

−∞

∫
Db,2

i (r,L)

1

r
Ψ

(
r,vr,

L

r

)
f bi

(
−
√
v2r+2(UL(r)−UL(rb)),

L

rb

)
dvrdLdr

where

Db,2
i (r,L)=

{
vr ∈R : |vr|<

√
2
(
UL−UL(r)

)
, r>ri

(
L,
v2r
2
+UL(r)

)}
.

One recalls that this set is associated with characteristics curves that originate from

r= rb and go back to r= rb. One remarks that the condition r>ri

(
L,

v2r
2 +UL(r)

)
is

equivalent to U†
L(r)≤

v2r
2 +UL(r) where U

†
L is the smallest nonincreasing function such

that U†
L≥UL. It is in particular given by (6.22). Therefore one has,

Db,2
i (r,L)=

{
vr ∈R : |vr|<

√
2
(
UL−UL(r)

)
, |vr|≥

√
2
(
U†
L(r)−UL(r)

)}
.

One decomposes this set into Db,2
i (r,L)=Db,2,+

i (r,L)∪Db,2,−
i (r,L) with

Db,2,+
i (r,L)=

{
vr ∈R :

√
2
(
U†
L(r)−UL(r)

)
≤vr<

√
2
(
UL−UL(r)

)}
,

Db,2,−
i (r,L)=

{
vr ∈R :−

√
2
(
UL−UL(r)

)
<vr≤−

√
2
(
U†
L(r)−UL(r)

)}
.

Using the change of variable wr=−
√
v2r+2(UL(r)−UL(rb)) one gets

I2=
∫ rb
1

∫ +∞
−∞

∫ −
√

2(U†
L(r)−UL(rb))

−
√

2(UL−UL(rb))

Ψ
(
r,−

√
w2

r−2(UL(r)−UL(rb)),
L
r

)
−
√
w2

r−2(UL(r)−UL(rb))
f bi

(
wr,

L
rb

)
wrdwrdLdr

−
∫ rb
1

∫ +∞
−∞

∫ −
√

2(U†
L(r)−UL(rb))

−
√

2(UL−UL(rb))

Ψ
(
r,
√
w2

r−2(UL(r)−UL(rb)),
L
r

)
√
w2

r−2(UL(r)−UL(rb))
f bi

(
wr,

L
rb

)
wrdwrdLdr.

Using again the identity (B.2), one obtains

I2=

∫ rb

1

∫ +∞

−∞

∫ −
√

2(U†
L(r)−UL(rb))

−
√

2(UL−UL(rb))

d

dr

(
1

r
(ψ−−ψ+)(r)

)
f bi

(
wr,

L

rb

)
wrdwrdLdr.

One now justifies the regularity of U†
L in order to use the chain rule. Since ϕ belongs to

W 2,∞(1,rb), it belongs in particular toW 1,∞(1,rb). Therefore for all L∈R, the function
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UL is in the spaceW 1,∞(1,rb). One can thus apply the property (d) of Lemma A.1 with

p=+∞. So one has U†
L∈W 1,∞(1,rb). Since moreover, for all r∈ (1,rb), UL(r)>UL(rb),

one has also U†
L(r)>UL(rb). Thus, for each L∈R, one obtains using the chain rule that

for almost every r∈ (1,rb),

d

dr

∫ −
√

2(U†
L(r)−UL(rb))

−
√

2(UL−UL(rb))

1

r
(ψ−−ψ+)(r)f bi

(
wr,

L

rb

)
wrdwr

=
−(U†

L)′(r)

r
√

2(U†
L(r)−UL(rb))

[
ψ

(
r,−
√

2(U†
L(r)−UL(r)),

L
r

)
−ψ

(
r,
√

2(U†
L(r)−UL(r)),

L
r

)]

+

∫ −
√

2(U†
L(r)−UL(rb))

−
√

2(UL−UL(rb))

d

dr

(
1

r
(ψ−−ψ+)(r)

)
f bi

(
wr,

L

rb

)
wrdwr.

One remarks that the first term, which is a product, vanishes almost everywhere in
(1,rb): in the set where U†

L and UL are equal, the term in brackets vanishes because

the difference vanishes. In the complementary set, (U†
L)

′ vanishes almost everywhere
because of the property (d) of Lemma A.1. Thus, integrating with respect to L and r
one gets

I2=

∫ rb

1

d

dr

∫ +∞

−∞

∫ −
√

2(U†
L(r)−UL(rb))

−
√

2(UL−UL(rb))

1

r
(ψ−−ψ+)(r)f bi

(
wr,

L

rb

)
wrdwrdLdr.

The integration with respect to r eventually gives only the boundary term at r= rb
because the other one vanishes since ψ vanishes on Σout. One eventually gleans

I2=

∫ +∞

−∞

∫ 0

−
√

2(UL−UL(rb))

1

rb
ψ

(
rb,wr,

L

rb

)
f bi

(
wr,

L

rb

)
wrdwrdL

where one uses the equality U†
L(rb)=UL(rb) and the fact that ψ|Σout =0. Gathering the

integrals I1 and I2 together, one eventually concludes∫
Q

Ψ(r,vr,vθ)fi(r,vr,vθ)dvrdvθdr= I1+I2

=

∫ +∞

−∞

∫ 0

−∞

1

rb
ψ

(
rb,wr,

L

rb

)
f bi

(
wr,

L

rb

)
wrdwrdL

=

∫ +∞

−∞

∫ 0

−∞
ψ (rb,wr,vθ)f

b
i (wr,vθ)wrdwrdvθ.
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