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SEMICONDUCTOR FULL QUANTUM HYDRODYNAMIC MODEL
WITH NON-FLAT DOPING PROFILE: (I)

STABILITY OF STEADY STATE∗

HAIFENG HU† AND KAIJUN ZHANG‡

Abstract. This is the first part of our series of studies concerning the full quantum hydrody-
namic model for semiconductors with non-flat doping profile. In this paper, we are concerned with
the existence, uniqueness and asymptotic stability of subsonic steady states to the model in a bounded
interval, which is subject to physical boundary conditions. The main results are proved by Stampac-
chia’s truncation method, the Leray-Schauder Fixed Point Theorem, Schauder’s Fixed Point Theorem
and intricate energy estimates.
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1. Introduction

In the mathematical modeling of the nano-size semiconductor devices (e.g. HEMTs,
MOSFETs, RTDs and superlattice devices), the quantum effects (like particle tunnel-
ing through potential barriers and particle buildup in quantum wells) take place and
can not be simulated by classical hydrodynamic models. Therefore, the quantum hy-
drodynamical (QHD) equations are important and dominative in the description of the
motion of electrons or holes transport under the self-consistent electric field.

The QHD conservation laws have the same form as the classical hydrodynamic
equations (for simplicity, we treat the flow of electrons in the self-consistent electric
field for unipolar devices):

∂tn+∂xk
jk=0, (1.1a)

∂tjl+∂xk
(ukjl−Pkl)=n∂xl

ϕ− jl
τm

, l=1,2,3, (1.1b)

∂te+∂xk
(uke−ulPkl+qk)= jk∂xk

ϕ+Ce, (1.1c)

λ2∆ϕ=n−D(x), (1.1d)

where n>0 is the electron density, u=(u1,u2,u3) is the velocity, j=(j1,j2,j3) is the
momentum density, P =(Pkl) is the stress tensor, ϕ is the self-consistent electrostatic
potential, e is the energy density, q=(q1,q2,q3) is the heat flux. Indices k,l equal 1,2,3,
and repeated indices are summed over using the Einstein convention. Equation (1.1a)
expresses conservation of electron number, (1.1b) expresses conservation of momentum,
and (1.1c) expresses conservation of energy. The last terms in (1.1b) and (1.1c) represent
electron scattering (the collision terms may include the effects of electron-phonon and
electron-impurity collisions, intervalley and interband scattering), which is modeled by
the standard relaxation time approximation with momentum and energy relaxation
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times τm>0 and τe>0. The energy relaxation term Ce is given by

Ce=− 1

τe

(
1

2
n|u|2+ 3

2
n(θ−θL)

)
,

where θ>0 is the electron temperature and θL>0 is the temperature of the semicon-
ductor lattice in energy units. The transport Equations (1.1a)∼(1.1c) are coupled to
Poisson’s Equation (1.1d) for the self-consistent electrostatic potential, where λ>0 is
the Debye length, D=Nd−Na is the doping profile, Nd>0 is the density of donors,
and Na>0 is the density of acceptors.

The QHD Equations (1.1a)∼(1.1c) are derived as a set of nonlinear conservation
laws by a moment expansion of the Wigner-Boltzmann equation [32] and an expansion
of the thermal equilibrium Wigner distribution function to O(ε2), where ε>0 is the
scaled Planck’s constant. However, to close the moment expansion at the first three
moments, we must define, for example, j, P , e and q in terms of n, u and θ. According
to the closure assumption [6], up to order O(ε2), we define the momentum density j,
the stress tensor P =(Pkl), the energy density e and the heat flux q as follows:

j=nu, Pkl=−nθδkl+
ε2

2
n∂xk

∂xl
lnn,

e=
3

2
nθ+

1

2
n|u|2− ε2

4
n∆lnn, q=−κ∇θ− 3ε2

4
n∆u,

with the Kronecker symbol δkl and the heat conductivity κ>0. The quantum correction
to the stress tensor was first stated in the semiconductor context by Ancona and Iafrate
[1], and Ancona and Tiersten [2]. Since

ε2

2
div(n(∇⊗∇)lnn)=ε2n∇

(
∆
√
n√
n

)
,

it can be interpreted as a force including the Bohm potential ε2∆
√
n/

√
n [5]. The

quantum correction to the energy density was first derived by Wigner [32]. The heat
conduction term consists of a classical Fourier law −κ∇θ plus a new quantum contribu-
tion −3ε2n∆u/4 which can be interpreted as a dispersive heat flux [7, 12]. For details
on the more general quantum models for semiconductor devices, one can refer to the
references [13,23,33].

Interestingly, most quantum terms cancel out in the energy Equation (1.1c). In
fact, by substituting the above expressions for Ce, j, P , e and q into (1.1), a com-
putation yields the multi-dimensional full quantum hydrodynamic (FQHD) model for
semiconductors as follows.

nt+div(nu)=0, (1.2a)

(nu)t+div(nu⊗u)+∇(nθ)−ε2n∇

(
∆
√
n√
n

)
=n∇ϕ− nu

τm
, (1.2b)

nθt+nu ·∇θ+ 2

3
nθdivu− 2

3
div(κ∇θ)− ε2

3
div(n∆u)

=
2τe−τm
3τmτe

n|u|2− n(θ−θL)
τe

, (1.2c)

λ2∆ϕ=n−D(x). (1.2d)
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Compared with the classical full hydrodynamic (FHD) model, the new feature of the
FQHD model is the Bohm potential term

−ε2n∇

(
∆
√
n√
n

)

in the momentum Equation (1.2b) and the dispersive velocity term

−ε
2

3
div(n∆u)

in the energy Equation (1.2c). Both of them are called quantum correction terms (or
dispersive terms) and belong to the third-order derivative terms of the system (1.2).

In the past two decades, the study concerning the semiconductor quantum mod-
els and the related quantum systems has become popular. For one-dimensional case,
Jüngel and Li [15,16] investigated the unipolar isentropic QHD model with the Dirichlet-
Neumann boundary condition and the flat doping profile; they proved the existence,
uniqueness and exponential stability of the subsonic steady state for the quite gen-
eral pressure-density function. Nishibata and Suzuki [24] reconsidered this QHD model
with isothermal simplification and the vanishing Bohmenian-type boundary condition,
and generalized Jüngel and Li’s results to the non-flat doping profile case. Hu, Mei and
Zhang [9] extended Nishibata and Suzuki’s results to the bipolar QHD model in the non-
constant doping profile setting. Huang, Li and Matsumura [11] proved the existence and
exponential stability of steady state to the Cauchy problem for the isentropic unipolar
QHD model. All the above-mentioned results addressed the quantum effect presented
everywhere in the device. However, Di Michele, Mei, Rubino and Sampalmieri [20] de-
rived a hybrid QHD model to account for the practical case, that is, the quantum effect
is localized in small regions of the semiconductor device, whereas the other parts of the
device can be treated classically; they further proved the existence and uniqueness of
weak solutions to the hybrid QHD model. In recent times, Di Michele, Mei, Rubino
and Sampalmieri [22] further extended their results in [20] to a new hybrid QHD model
with discontinuous pressure function and relaxation time.

As for multi-dimensional case, Jüngel [14] first considered the unipolar steady-state
isentropic QHD model for potential flows on a bounded domain, the existence of solu-
tions was proved under the assumption that the electric energy was small compared to
the thermal energy, where Dirichlet boundary conditions were addressed. This result
was then generalized to the bipolar case by Liang and Zhang [18]. Unterreiter [31]
proved the existence of the thermal equilibrium solution of the bipolar isentropic QHD
model confined to a bounded domain by variational method. This result was heuristi-
cally developed by Di Michele, Mei, Rubino and Sampalmieri [21] to a new model of
the bipolar isentropic hybrid quantum hydrodynamics; they considered two different
kinds of hybrid behaviour. Regarding the unipolar QHD model for irrotational flow in
spatially periodic domain, the global existence of the dynamic solutions and the expo-
nential convergence to their equilibria were artfully proved by Li and Marcati in [17].
Furthermore, the weak solutions with large initial data for the quantum hydrodynamic
system were obtained by Antonelli and Marcati in [3, 4]. Li, Zhang and Zhang [19]
investigated the large-time behavior of solutions to the initial value problem of the isen-
tropic QHD model in the whole space R3 and obtained the algebraic time-decay rate.
Pu and Guo [27] studied the Cauchy problem of quantum hydrodynamic equations with
viscosity and heat conduction in R3; the global existence around a constant steady-state
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was shown by the energy method. This result was developed by Pu and Xu [28], they
obtained the optimal convergence rates to the constant equilibrium solution by the pure
energy method and negative Sobolev space estimates. Pu and Li [29] further extended
the result in [28] to the bounded domain with physical boundary conditions. Very re-
cently, Ra and Hong [30] proved the existence, uniqueness and exponential decay for
the Cauchy problem in R3 of the FQHD model in the semiconductor setting.

To the best of our knowledge, the initial-boundary value problem of the FQHD
model with the physical boundary conditions is still open in the semiconductor setting.
Therefore, in this paper, we study the one-dimensional version of the FQHD model (1.2)
over a bounded interval Ω=(0,1) in assuming that τm= τe=κ=λ=1 for simplicity;
namely, we consider

nt+jx=0, (1.3a)

jt+

(
j2

n
+nθ

)
x

−ε2n

[(√
n
)
xx√
n

]
x

=nϕx−j, (1.3b)

nθt+jθx+
2

3
nθ

(
j

n

)
x

− 2

3
θxx−

ε2

3

[
n

(
j

n

)
xx

]
x

=
1

3

j2

n
−n(θ−θL), (1.3c)

ϕxx=n−D(x), t>0, x∈Ω=(0,1), (1.3d)

with initial conditions

(n,j,θ)(0,x)=(n0,j0,θ0)(x), (1.4)

and boundary conditions

n(t,0)=nl, n(t,1)=nr, (1.5a)(√
n
)
xx
(t,0)=

(√
n
)
xx
(t,1)=0, (1.5b)

θ(t,0)=θl, θ(t,1)=θr, (1.5c)

ϕ(t,0)=0, ϕ(t,1)=ϕr, (1.5d)

where the boundary data nl,nr,θl,θr and ϕr are positive constants. The vanishing
Bohmenian-type boundary condition (1.5b) means that the quantum Bohm potential
vanishes on the boundary, which is derived in [6, 26] and is also physically reason-
able. The other boundary conditions in (1.5) are called Ohmic contact boundary con-
ditions. In order to establish the existence of a classical solution, we further assume
the initial data (n0,j0,θ0) is compatible with the boundary data (1.5a)∼(1.5c) and
nt(t,0)=nt(t,1)=0, namely,

n0(0)=nl, n0(1)=nr, θ0(0)=θl, θ0(1)=θr,

j0x(0)= j0x(1)=
(√
n0
)
xx
(0)=

(√
n0
)
xx
(1)=0. (1.6)

In realistic semiconductor devices, the doping profile will be a non-flat function of
the spatial variable. For instance, it has two steep slopes in n+−n−n+ diodes [6].
Therefore, we should only assume the continuity and positivity to cover the actual
devices, that is,

D∈C(Ω), inf
x∈Ω

D(x)>0. (1.7)
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An explicit formula of the electrostatic potential

ϕ(t,x)=Φ[n](t,x) :=

∫ x

0

∫ y

0

(
n(t,z)−D(z)

)
dzdy+

(
ϕr−

∫ 1

0

∫ y

0

(
n(t,z)−D(z)

)
dzdy

)
x,

(1.8)

follows from (1.3d) and (1.5d). Further consideration of the solvability of the initial-
boundary value problem (IBVP) (1.3)∼(1.5) leads to the following properties

inf
x∈Ω

n>0, inf
x∈Ω

θ>0, (1.9a)

inf
x∈Ω

S[n,j,θ]>0, S[n,j,θ] :=θ− j2

n2
, (1.9b)

which attract our main interest. The condition (1.9a) represents the positivity of the
electron density and temperature. The other one (1.9b) is called the subsonic condition.
Needless to say, if we want to construct the solution in the physical region where the
conditions (1.9) hold, then the initial data (1.4) must first satisfy the same conditions

inf
x∈Ω

n0>0, inf
x∈Ω

θ0>0, inf
x∈Ω

S[n0,j0,θ0]>0. (1.10)

The strength of the boundary data defined by

δ := |nl−nr|+ |θl−θL|+ |θr−θL|+ |ϕr|, (1.11)

plays a crucial role in the proofs of our main results in what follows.
The aim of this paper is to investigate the existence, uniqueness and asymptotic

stability of subsonic steady states, solving the boundary value problem (BVP) below:

j̃x=0, (1.12a)

S[ñ, j̃, θ̃]ñx+ ñθ̃x−ε2ñ

[(√
ñ
)
xx√
ñ

]
x

= ñϕ̃x− j̃, (1.12b)

j̃θ̃x−
2

3
j̃θ̃
(
lnñ
)
x
− 2

3
θ̃xx−

ε2

3

[
ñ

(
j̃

ñ

)
xx

]
x

=
1

3

j̃2

ñ
− ñ(θ̃−θL), (1.12c)

ϕ̃xx= ñ−D(x), ∀x∈Ω, (1.12d)

and

ñ(0)=nl, ñ(1)=nr, (1.13a)(√
ñ
)
xx
(0)=

(√
ñ
)
xx
(1)=0, (1.13b)

θ̃(0)=θl, θ̃(1)=θr, (1.13c)

ϕ̃(0)=0, ϕ̃(1)=ϕr. (1.13d)

Throughout the rest of this paper, we will use the following notations. For a nonnegative
integer l≥0, H l(Ω) denotes the l-th order Sobolev space in the L2 sense, equipped with
the norm ∥·∥l. In particular, H0=L2 and ∥·∥ :=∥·∥0. For a nonnegative integer k≥0,
Ck(Ω) denotes the k-times continuously differentiable function space, equipped with the

norm |f |k :=
∑k

i=0 supx∈Ω |∂ixf(x)|. The positive constants C, C1, ·· · only depend on nl,
θL and |D|0. If the constants C, C1, ·· · additionally depend on some other quantities
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α, β, ·· ·, we write C(α,β,·· ·), C1(α,β,·· ·), ·· ·. The notations Yl
m and Z denote the

function spaces defined by

Yl
m([0,T ]) :=

[m/2]⋂
k=0

Ck([0,T ];H l+m−2k(Ω)), m=2,3,4,and l=0,2,

Z([0,T ]) :=C2([0,T ];H2(Ω)).

We are now in a position to formulate our main results.

Theorem 1.1 (Existence and uniqueness of steady states). Suppose that the doping
profile and the boundary data satisfy conditions (1.7) and (1.13). For arbitrary positive
constants nl and θL, there exist three positive constants δ1, ε1(≤1) and C such that if δ≤
δ1 and 0<ε≤ε1, then the BVP (1.12)∼(1.13) has a unique solution (ñ, j̃, θ̃,ϕ̃)∈H4(Ω)×
H4(Ω)×H3(Ω)×C2(Ω) satisfying the condition (1.9) and the uniform estimates

0<b2≤ ñ≤B2, 0<
1

2
θL≤ θ̃≤ 3

2
θL, (1.14a)

∥ñ∥2+∥(ε∂3xñ,ε2∂4xñ)∥+ |ϕ̃|2≤C, (1.14b)

|j̃|+∥θ̃−θL∥3≤Cδ, (1.14c)

where the positive constants B and b are defined as follows

B :=
3

2

√
nle

2|D|0/θL , b :=
1

2

√
nle

−(B2+2|D|0)/θL . (1.15)

Theorem 1.2 (Asymptotic stability of steady states). Assume that the doping profile
and the boundary data satisfy conditions (1.7) and (1.5). Let the initial data (n0,j0,θ0)∈
H4(Ω)×H3(Ω)×H2(Ω) and satisfies the conditions (1.6) and (1.10). For arbitrary pos-
itive constants nl and θL, there exist four positive constants δ2, ε2, γ and C such that if
0<ε≤ε2 and δ+∥(n0− ñ,j0− j̃,θ0− θ̃)∥2+∥(ε∂3x(n0− ñ),ε∂3x(j0− j̃),ε2∂4x(n0− ñ))∥≤
δ2, then the IBVP (1.3)∼(1.5) has a unique global solution (n,j,θ,ϕ) satisfying the
condition (1.9) in

[
Y4([0,∞))∩H2

loc(0,∞;H1(Ω))
]
×
[
Y3([0,∞))∩H2

loc(0,∞;L2(Ω))
]
×[

Y2([0,∞))∩H1
loc(0,∞;H1(Ω))

]
×Z([0,∞)). Moreover, the solution verifies the addi-

tional regularity ϕ− ϕ̃∈Y2
4([0,∞)) and the decay estimate

∥(n− ñ,j− j̃,θ− θ̃)(t)∥2
+∥(ε∂3x(n− ñ),ε∂3x(j− j̃),ε2∂4x(n− ñ))(t)∥+∥(ϕ− ϕ̃)(t)∥4

≤C
(
∥(n0− ñ,j0− j̃,θ0− θ̃)∥2

+∥(ε∂3x(n0− ñ),ε∂3x(j0− j̃),ε2∂4x(n0− ñ))∥
)
e−γt, ∀t∈ [0,∞). (1.16)

Remark 1.1. It is worth mentioning that the uniform estimates (1.14) and (1.16) in
Theorems 1.1 and 1.2 are fairly useful for further discussing the semi-classical limit (ε→
0) of both steady states and global-in-time solutions. However, the rigorous verification
of the semi-classical limit is somewhat lengthy and technical, whence we refer the reader
to a sequel [10] to the present paper for details.

We conclude this section by illustrating the main ideas in the proofs of Theorems
1.1 and 1.2. Though both of the proofs are lengthy, the basic ideas are easily compre-
hensible.
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Firstly, the proof of Theorem 1.1 is carried out in five steps. In Step1 we reduce
the steady-state problem (1.12)∼(1.13) to an easily-handled one via the transformation
w̃=

√
ñ. Step2 introduces a fixed point operator T by decoupling the reformulated

problem into a semilinear problem (P1) and a linear nonlocal problem (P2). Thus
Schauder’s Fixed Point Theorem applies to T , which a fixed point argument in Step5
guarantees that Theorem 1.1 holds. Step3 and Step4 are respectively devoted to proving
the solvability of (P1) and (P2) via the Leray-Schauder Fixed Point Theorem.

As far as the proof of Theorem 1.2 is concerned, similarly to Theorem 1.1, the
transformation w=

√
n is introduced to simplify the original problem (1.3)∼(1.5). Sub-

sequently, we solve the reformulated problem by the standard continuation principle.
In the continuation argument, we first state the local existence, and then establish the
uniform a priori estimate via energy methods.

The organization of this paper is as follows. The proof of Theorem 1.1 is given in
Section 2. The proof of Theorem 1.2 is given in Section 3, including the local existence
lemma, basic estimate, higher-order estimates and decay estimate.

2. Existence and uniqueness of steady states

In this section, we show Theorem 1.1. The proof is based on Schauder’s Fixed
Point Theorem (cf. Corollary 11.2 in [8]), the Leray-Schauder Fixed Point Theorem (cf.
Theorem 11.3 in [8]), the truncation method and energy estimates.

Proof. (Proof of Theorem 1.1.) In order to make the proof clear, we will divide
it into a sequence of steps.

Step1. Reformulation. The transformation w̃ :=
√
ñ and a standard calculation

equivalently reduce the BVP (1.12)∼(1.13) to the following BVP with a constant sub-
sonic current density j̃ determined shortly in (2.5):ε

2w̃xx=h(w̃, θ̃), (2.1a)

2

3
θ̃xx− j̃θ̃x+

2

3
j̃θ̃(lnw̃2)x− w̃2(θ̃−θL)=g(w̃, θ̃;ε), x∈Ω, (2.1b)

and boundary conditions

w̃(0)=wl, w̃(1)=wr, (2.2a)

θ̃(0)=θl, θ̃(1)=θr, (2.2b)

where

F (a1,a2,a3) :=
a22
2a21

+a3+a3 lna1, wl :=
√
nl, wr :=

√
nr, (2.3a)

ϕ̃(x)=G[w̃2](x) :=

∫ 1

0

G(x,y)(w̃2−D)(y)dy+ϕrx, G(x,y) :=

{
x(y−1), x<y,

y(x−1), x>y,

(2.3b)

h(w̃, θ̃) := w̃

[
F (w̃2, j̃, θ̃)−F (nl, j̃,θl)− ϕ̃−

∫ x

0

θ̃x lnw̃
2dy+ j̃

∫ x

0

w̃−2dy

]
, (2.3c)

g(w̃, θ̃;ε) :=−1

3

j̃2

w̃2
+
ε2

3
j̃

(
12w̃3

x

w̃3
− 14w̃xw̃xx

w̃2
+

2w̃xxx

w̃

)
. (2.3d)
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Taking x=1 in Equation (2.1a), the boundary condition (1.13b) yields the current-
voltage relationship

F (nr, j̃,θr)−F (nl, j̃,θl)−ϕr−
∫ 1

0

θ̃x lnw̃
2dy+ j̃

∫ 1

0

w̃−2dy=0, (2.4)

which further implies that j̃ can be expressed by the following explicit formula

j̃=J [w̃2, θ̃] :=2
(
b̄+

∫ 1

0

θ̃x lnw̃
2dy
)
K[w̃2, θ̃]−1, (2.5)

K[w̃2, θ̃] :=

∫ 1

0

w̃−2dy+

√(∫ 1

0

w̃−2dy
)2

+2
(
b̄+

∫ 1

0

θ̃x lnw̃2dy
)(
n−2
r −n−2

l

)
,

b̄ :=ϕr−θr+θl−θr lnnr+θl lnnl.

The uniqueness of j̃ is guaranteed by the subsonic condition (1.9b).

Step2. Defining the fixed point operator. We will apply Schauder’s Fixed Point
Theorem in a closed convex subset

U [N1,N2] :=
{
q∈C2(Ω)

∣∣∣∥q−θL∥1≤N1δ, ∥qxx∥≤N2δ, q(0)=θl, q(1)=θr

}
(2.6)

of the Banach space C2(Ω) to solve the BVP (2.1)∼(2.2), where N1 and N2 are positive
constants to be determined later (cf. (2.42)). The fixed point operator

T : U [N1,N2]−→H3(Ω)

q 7−→Q (2.7)

is defined as follows. Given q∈U [N1,N2], we assert that the semilinear elliptic problem

(P1)

{
ε2uxx=h(u,q), x∈Ω, (2.8a)

u(0)=wl, u(1)=wr, (2.8b)

for the unknown u is uniquely solvable; namely, we have

Claim1. Given q∈U [N1,N2], if δ and ε are small enough, then
(P1) has a unique solution u=u[q]∈H4(Ω) satisfying the uniform es-
timates (in ε)

0<b≤u(x)≤B, (2.9a)

∥u∥2+∥(ε∂3xu,ε2∂4xu)∥≤C, (2.9b)

where the positive constants b and B are given by (1.15), and the pos-
itive constant C only depends on nl, θL and |D|0.

Subsequently, let us define T q=Q wheneverQ uniquely solves the linear nonlocal elliptic
problem

(P2)


2

3
Qxx−JQx+

2

3
J∗(lnu

2)xθL

+
2

3
J(lnu2)x(Q−θL)−u2(Q−θL)=g(u,q;ε), x∈Ω, (2.10a)

Q(0)=θl, Q(1)=θr, (2.10b)

where u=u[q] is derived from q via Claim1, and J =J [u2,q], J∗=2
(
b̄+∫ 1

0
Qx lnu

2dx
)
K[u2,q]−1. As for (P2), we have



HAIFENG HU AND KAIJUN ZHANG 1223

Claim2. Given (u,q) in Claim1, if δ is small enough, then (P2)
admits a unique solution Q∈H3(Ω) satisfying the uniform estimate (in
ε)

∥Q−θL∥1≤C1δ+C2(b,B,N1)δ
2, (2.11a)

∥Qxx∥≤C3(b,B,N1)δ, (2.11b)

∥Qxxx∥≤C4(b,B,N1,N2)δ, (2.11c)

where the positive constant C1 only depends on nl, θL and |D|0.

We will set about demonstrating Claims 1 and 2 by applying the Leray-Schauder Fixed
Point Theorem, in Steps 3 and 4 respectively.

Step3. Proof of Claim1. To avoid singularity, we proceed by the truncation
method to reduce (P1) to the truncated problem

(tP )

{
ε2uxx=h(uαβ ,q), x∈Ω, (2.12a)

u(0)=wl, u(1)=wr, (2.12b)

where

uαβ :=max
{
β,min{α,u}

}
, 0<

1

2
b=:β<α :=2B.

Firstly, we will employ the Leray-Schauder Fixed Point Theorem in H1(Ω) to solve
(tP ). For all r∈H1(Ω), the fixed point operator T1 is defined by letting R=T1r be the
unique solution in H3(Ω) of the linear problem{

ε2Rxx=h(rαβ ,q), x∈Ω, (2.13a)

R(0)=wl, R(1)=wr. (2.13b)

Standard arguments give that the operator T1 is continuous and compact. It only
remains to show that there exists a positive constant M1 such that ∥v∥1≤M1 for all
v∈H1(Ω) and λ∈ [0,1] satisfying v=λT1v. The equation v=λT1v is equivalent to the
semilinear problem {

ε2vxx=λh(vαβ ,q), x∈Ω, (2.14a)

v(0)=λwl, v(1)=λwr. (2.14b)

Multiplying the identity (2.14a) by (v−λw̄) and integrating over Ω, where w̄(x)=wl(1−
x)+wrx, yields the estimate

∥v∥1≤C
(
1+

1

ε

)
, (2.15)

provided δ is small enough. We can now take M1=C(1+ε
−1) because the constant

C does not depend on λ∈ [0,1]. Applying the Leray-Schauder Fixed Point Theorem in
H1(Ω), we conclude that T1 has a fixed point u∈H3(Ω), which in turn solves (tP ).

Secondly, we have to show that the solution u to (tP ) has strictly positive lower and
upper bounds so as to remove the truncation. We will apply a variant of Stampacchia’s
maximum argument to reach this target, which further implies the equivalence between
(tP ) and (P1). Observe that for all q∈U [N1,N2], we have

0<
1

2
θL≤ q(x)≤ 3

2
θL, ∥qx∥≤N1δ, ∥qxx∥≤N2δ, (2.16)
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whenever δ is sufficiently small. Taking −
((

ln(u2αβ/n̄)
)
+

)k
∈H1

0 (Ω) as test function in

Equation (2.12a), where n̄=max{nl,nr}, (·)+=max{0, ·} and k=1,2,3,·· ·, gives:∫ 1

0

2ε2k
[(uαβ)x]

2

uαβ

(
ln
u2αβ
n̄

)k−1

+

dx=

∫ 1

0

−h(uαβ ,q)
(
ln
u2αβ
n̄

)k

+

dx. (2.17)

It is important to note that the left-hand side of the identity (2.17) is nonnegative. As
for the right-hand side of (2.17), assuming a priori that δ≪1, it can be calculated as
follows:

(2.17)r=

∫ 1

0

−uαβ
[
F (u2αβ , J̄ ,q)−q lnn̄+q lnn̄−F (nl, J̄ ,θl)−G[u2αβ ]

−
∫ x

0

qx lnu
2
αβdy+ J̄

∫ x

0

u−2
αβdy

](
ln
u2αβ
n̄

)k

+

dx

=−
∫ 1

0

uαβq

(
ln
u2αβ
n̄

)k+1

+

dx

+

∫ 1

0

(
ϕrx−

∫ 1

0

G(x,y)D(y)dy− J̄
∫ x

0

u−2
αβdy+

J̄2

2nl

)
uαβ

(
ln
u2αβ
n̄

)k

+

dx

+

∫ 1

0

(
θl lnnl−q lnn̄+θl−q+

∫ x

0

qx lnu
2
αβdy

)
uαβ

(
ln
u2αβ
n̄

)k

+

dx

+

∫ 1

0

(∫ 1

0

G(x,y)︸ ︷︷ ︸
≤0

u2αβ(y)dy−
J̄2

2u4αβ

)
uαβ

(
ln
u2αβ
n̄

)k

+

dx

≤−
∫ 1

0

1

2
θLuαβ

(
ln
u2αβ
n̄

)k+1

+

dx+

∫ 1

0

(
C(N1)δ+ |D|0

)
uαβ

(
ln
u2αβ
n̄

)k

+

dx

+

∫ 1

0

C(N1)δuαβ

(
ln
u2αβ
n̄

)k

+

dx

≤−
∫ 1

0

1

2
θLuαβ

(
ln
u2αβ
n̄

)k+1

+

dx+

∫ 1

0

1

2
θLuαβ

(
ln
u2αβ
n̄

)k

+

4|D|0
θL︸ ︷︷ ︸

Young’s inequality

dx

≤−
∫ 1

0

1

2
θLuαβ

(
ln
u2αβ
n̄

)k+1

+

dx

+

∫ 1

0

1

2
θLuαβ

[
k

k+1

(
ln
u2αβ
n̄

)k+1

+

+
1

k+1

(
4|D|0
θL

)k+1
]
dx

=− 1

k+1

1

2
θL

∫ 1

0

uαβ

(
ln
u2αβ
n̄

)k+1

+

dx+
1

k+1

1

2
θL

(
4|D|0
θL

)k+1∫ 1

0

uαβ︸︷︷︸
≤α

dx

≤ θL
2(k+1)

[
−
∫ 1

0

uαβ

(
ln
u2αβ
n̄

)k+1

+

dx+α

(
4|D|0
θL

)k+1
]
. (2.18)

where J̄ =J [u2αβ ,q] satisfies the estimate |J̄ |≤C(α,β,N1)δ; we have also used the esti-
mate (2.16), non-positivity of Green’s function G(x,y) and Young’s inequality. Substi-
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tuting (2.18) into (2.17) yields∥∥∥∥( ln u2αβn̄
)

+

∥∥∥∥
Lk+1(Ω)

≤
(
α√
n̄

) 1
k+1 4|D|0

θL
. (2.19)

After passage to the limit as k→∞, it follows that∥∥∥∥( ln u2αβn̄
)

+

∥∥∥∥
L∞(Ω)

≤ 4|D|0
θL

, (2.20)

which in turn implies

uαβ ≤
√
n̄e2|D|0/θL ≤B. (2.21)

Analyses similar to those in (2.17)∼(2.21) show that∥∥∥∥(ln u2αβn
)

−

∥∥∥∥
L2k(Ω)

≤
2
(
B2+2|D|0

)
θL

, k=1,2,3, ·· · , (2.22)

provided δ≪1. Taking the limit as k→∞ gives∥∥∥∥( ln u2αβn
)

−

∥∥∥∥
L∞(Ω)

≤
2
(
B2+2|D|0

)
θL

. (2.23)

Because
(
ln(u2αβ/n)

)
− is nonpositive, it follows from (2.23) that

uαβ ≥
√
ne−(B2+2|D|0)/θL ≥ b. (2.24)

Effectively we have chosen −u−1
αβ

((
ln(u2αβ/n)

)
−

)2k−1

as test function in (2.12a) to es-

tablish the above lower bound, where n=min{nl,nr} and (·)−=min{0,·}. Then (2.21)
combined with (2.24) gives uαβ =u, which in turn implies the existence result of (P1)
and the uniform estimate (2.9a).

Thirdly, the uniform estimate (2.9b) can be established by drawing on energy meth-
ods; a bootstrap argument gives the H4-regularity of u. More precisely, performing the
following procedures ∫ 1

0

[
(2.8a)× 1

u

]
x

×uxdx, (2.25)

and ∫ 1

0

[
(2.8a)× 1

u

]
x

×
(
uxx
u

)
x

dx, (2.26)

by integration by parts, yields

∥ux∥1, ∥ε(uxx/u)x∥≤C. (2.27)

Furthermore, noting that

ε∂3xu=εu

(
uxx
u

)
x

+ε
uxuxx
u

,
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and taking the L2-norm gives

∥ε∂3xu∥≤C. (2.28)

Similarly, applying the differential operator ∂2x to the Equation (2.8a) and taking the
L2-norm yields

∥ε2∂4xu∥≤C, (2.29)

where the generic constant C in (2.27)∼(2.29) only depends on nl, θL and |D|0.
Finally, we can prove the uniqueness result of (P1) based on the uniform estimate

(2.9). To this end, we assume that u1, u2 are two solutions to (P1), and introduce zi=
lnu2i , Ji=J [e

zi ,q], Si= q−J2
i /e

2zi , φi=G[e
zi ], i=1,2, for simplicity. A straightforward

calculation in terms of the procedure[
(2.8a)× 1

u1

]
x

−
[
(2.8a)× 1

u2

]
x

(2.30)

forms the working equation for the difference z=z1−z2, that is

−
(
J2
1

e2z1
− J2

2

e2z2

)
z1x+S2zx−

ε2

2

[
zxx+

z21x
2

− z22x
2

]
x

=(φ1−φ2)x−
(
J1
ez1

− J2
ez2

)
. (2.31)

The following estimates are a matter of straightforward computation based on the L∞

estimate (2.9a) and the explicit formula (2.5):

|Ji|≤C(b,B,N1)δ, |J1−J2|≤Cδ∥zx∥. (2.32)

Multiplying (2.31) by zx, integrating over Ω and using boundary conditions

zi(0)= lnnl, zi(1)= lnnr,

(
zixx+

z2ix
2

)
(0)=

(
zixx+

z2ix
2

)
(1)=0, (2.33)

we write∫ 1

0

S2z
2
xdx+

∫ 1

0

ε2

2
z2xxdx+

∫ 1

0

(ez1 −ez2)z︸ ︷︷ ︸
≥0

dx

=

∫ 1

0

(
J2
1

e2z1
− J2

2

e2z2

)
z1xzxdx−

∫ 1

0

ε2(z1x+z2x)

4
zxzxxdx−

∫ 1

0

(
J1
ez1

− J2
ez2

)
zxdx. (2.34)

The left-hand side of the identity (2.34) can easily be bounded below by θL
4 ∥zx∥2+

ε2

2 ∥zxx∥
2. The right-hand side of (2.34) can be estimated by Hölder’s inequality,

Poincaré’s inequality and the Cauchy-Schwarz inequality, together with estimates (2.9)
and (2.32), as follows:

(2.34)r≤C
(
|J1−J2|∥zx∥+ |J2|∥z∥∥zx∥

)
+Cε2∥zx∥∥zxx∥

≤C(B,b,N1)δ∥zx∥2+
ε2

4
∥zxx∥2+Cε2∥zx∥2

=
(
C(B,b,N1)δ+Cε

2
)
∥zx∥2+

ε2

4
∥zxx∥2. (2.35)
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Thus if δ and ε are small enough, we have ∥zx∥1=0, which implies u1=u2.

Step4. Proof of Claim2. The unique solvability of (P2) can be proved in much
the same way as in Step3. In particular, the Leray-Schauder Fixed Point Theorem in
H1(Ω) applies. Fix (u,q) derived from Claim1, for all q1∈H1(Ω), define the fixed point
operator T2 by letting Q1=T2q1 be the unique solution in H3(Ω) of the linear problem

2

3
Q1xx−JQ1x+

2

3
J1∗(lnu

2)xθL

+
2

3
J(lnu2)x(q1−θL)−u2(Q1−θL)=g(u,q;ε), x∈Ω, (2.36a)

Q1(0)=θl, Q1(1)=θr, (2.36b)

where J =J [u2,q] and J1∗=2
(
b̄+
∫ 1

0
q1x lnu

2dx
)
K[u2,q]−1. The same line of reasoning

as T1 shows that T2 is continuous and compact. Thus it suffices to verify that there is
a positive constant M2 such that ∥Θ∥1≤M2 for all Θ∈H1(Ω) and λ∈ [0,1] satisfying
the equation Θ=λT2Θ, which is equivalent to the linear nonlocal problem

2

3
Θxx−JΘx+

2

3
λJ∗(lnu

2)xθL

+
2

3
λJ(lnu2)x(Θ−θL)−u2(Θ−λθL)=λg(u,q;ε), x∈Ω, (2.37a)

Θ(0)=λθl, Θ(1)=λθr, ∀λ∈ [0,1], (2.37b)

J :=J [u2,q], J∗ :=2

(
b̄+

∫ 1

0

Θx lnu
2dx

)
K[u2,q]−1.

Rewrite the Equation (2.37a) in terms of Θλ=Θ−λθ̄, where θ̄(x)=θl(1−x)+θrx, and
then multiply by Θλ, integrate over Ω, to get

2

3
∥Θλx∥2+b2∥Θλ∥2

≤− 2

3
λθLJ∗

∫ 1

0

Θλx lnu
2dx−

∫ 1

0

[
2

3
λJ lnu2

(
Θ2

λ

)
x
+JΘλxΘλ

]
dx

− 2

3
λJ

∫ 1

0

lnu2
[
(λθ̄−θL)Θλ

]
x
dx−λ

∫ 1

0

[
Jθ̄x+u

2(θ̄−θL)+g(u,q;ε)
]
Θλdx

≤− 4λθL
3K[u2,q]

(
b̄+

∫ 1

0

(
Θλx+λθ̄x

)
lnu2dx

)∫ 1

0

Θλx lnu
2dx+C(b,B,N1)δ∥Θλ∥21

+µ∥Θλ∥21+C(µ,b,B,N1)δ
2
(
δ2+∥λθ̄−θL∥2

)
+C(µ,b,B)δ2

≤− 4λθL
3K[u2,q]

(∫ 1

0

Θλx lnu
2dx

)2

︸ ︷︷ ︸
≤0

+
[
µ+C(b,B,N1)δ

]
∥Θλ∥21

+C(µ,b,B,N1)δ
2
(
δ2+∥λθ̄−θL∥2

)
+C(µ,b,B,θL)δ

2

≤
[
µ+C(b,B,N1)δ

]
∥Θλ∥21+C(µ,b,B,N1)δ

2
(
δ2+∥λθ̄−θL∥2

)
+C(µ,b,B,θL)δ

2, (2.38)

where we have used estimates (2.9) and |J |≤C(b,B,N1)δ. Thus if µ and δ are sufficiently
small, we obtain

∥Θλ∥21≤C(b,B,θL)δ2+C(b,B,N1)δ
2
(
δ2+∥λθ̄−θL∥2

)
, (2.39)
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which further implies

∥Θ∥1=∥Θλ+λθ̄∥1≤∥Θλ∥1+λ∥θ̄∥1

≤
√
C(b,B,θL)+C(b,B,N1)(1+θ2L)+2θL=M2. (2.40)

The Leray-Schauder Fixed Point Theorem and standard theory of elliptic regularity
guarantee that (P2) admits a solution Q∈H3(Ω). Besides, a similar argument to that
in (2.38) gives the uniqueness result of (P2). And lastly, taking Θ=Q and λ=1 in
(2.39) automatically gives

∥Q−θL∥1≤∥Q− θ̄∥1+∥θ̄−θL∥1
≤C(b,B,θL)δ+C(b,B,N1)δ

2

=C1δ+C2(b,B,N1)δ
2, (2.41)

which is exactly the estimate (2.11a). In light of estimates |J |, |J∗|≤C(b,B,N1)δ, (2.9)
and (2.11a), it follows from taking L2-norm of ∂kx(2.10a) for k=0,1 that the estimates
(2.11b) and (2.11c) hold.

Step5. End of the proof. Based on the estimate (2.11) we can at last determine the
constants N1 and N2. Precisely, to set

N1 :=2C1, N2 :=C3(b,B,2C1), (2.42)

it is easy to see that if δ≤ C1

C2(b,B,2C1)
, then T maps U [N1,N2] into itself. Similar

arguments to those in Step3 and Step4 show that T is continuous and the image
T
(
U [N1,N2]

)
is precompact, if we note that the embedding H3(Ω) ↪→C2(Ω) is com-

pact. Thus, Schauder’s Fixed Point Theorem applies. Denote by θ̃ the fixed point of T
in U [N1,N2] and consequently (ñ, j̃, θ̃,ϕ̃)∈H4(Ω)×H4(Ω)×H3(Ω)×C2(Ω) is a solution

to the BVP (1.12)∼(1.13), where ñ= w̃2=
(
u[θ̃]

)2
, j̃=J [w̃2, θ̃] and ϕ̃=G[w̃2]. Repeat-

ing the computations developed above shows that the solution to the BVP (1.12)∼(1.13)
is unique, and satisfies the properties (1.9) and uniform estimates (1.14).

3. Asymptotic stability of steady states
In this section, our basic strategy for proving Theorem 1.2 is the standard contin-

uation principle because we are merely concerned with the small amplitude solution
around the steady state.

Similarly to Section 2, we also introduce the transformation w :=
√
n to reduce the

IBVP (1.3)∼(1.5) to the equivalent one:

2wwt+jx=0, (3.1a)

jt+2S[w2,j,θ]wwx+
2j

w2
jx+w

2θx−ε2w2

(
wxx

w

)
x

=w2ϕx−j, (3.1b)

w2θt+jθx+
2
3w

2θ

(
j
w2

)
x

− 2
3θxx−

ε2

3

[
w2

(
j
w2

)
xx

]
x

= 1
3

j2

w2 −w2(θ−θL), (3.1c)

ϕxx=w
2−D(x), ∀t>0, ∀x∈Ω, (3.1d)

with initial conditions

(w,j,θ)(0,x)=(w0,j0,θ0)(x), w0 :=
√
n0, (3.2)
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and boundary conditions

w(t,0)=wl, w(t,1)=wr, (3.3a)

wxx(t,0)=wxx(t,1)=0, (3.3b)

θ(t,0)=θl, θ(t,1)=θr, (3.3c)

ϕ(t,0)=0, ϕ(t,1)=ϕr. (3.3d)

Based on this, we proceed to introduce the perturbed variables close to the steady state,
that is,

ψ(t,x) :=w(t,x)− w̃(x), η(t,x) := j(t,x)− j̃,
χ(t,x) :=θ(t,x)− θ̃(x), σ(t,x) :=ϕ(t,x)− ϕ̃(x), (3.4)

thereby obtaining the working equations which are more amenable to energy estimates:



2(ψ+ w̃)ψt+ηx=0, (3.5a)[
η+ j̃

(ψ+ w̃)2

]
t

+
1

2

{[
η+ j̃

(ψ+ w̃)2

]2
−
(
j̃

w̃2

)2
}

x

+χ
[
ln(ψ+ w̃)2

]
x

+θ̃
[
ln(ψ+ w̃)2− lnw̃2

]
x
+χx−ε2

[
(ψ+ w̃)xx
ψ+ w̃

− w̃xx

w̃

]
x

=σx−
[

η+ j̃

(ψ+ w̃)2
− j̃

w̃2

]
, (3.5b)

(ψ+ w̃)2χt−
2

3
χxx+

2

3
θ̃ηx−

4j̃θ̃

3w̃
ψx

−ε
2

3

{
(ψ+ w̃)2

[
η+ j̃

(ψ+ w̃)2

]
xx

− w̃2

(
j̃

w̃2

)
xx

}
x

=H(t,x), (3.5c)

σxx=(ψ+2w̃)ψ, (3.5d)

with initial conditions

ψ(0,x)=ψ0(x) :=w0(x)− w̃(x), η(0,x)=η0(x) := j0(x)− j̃,
χ(0,x)=χ0(x) :=θ0(x)− θ̃(x), (3.6)

and boundary conditions

ψ(t,0)=ψ(t,1)=0, (3.7a)

ψxx(t,0)=ψxx(t,1)=0, (3.7b)

χ(t,0)=χ(t,1)=0, (3.7c)

σ(t,0)=σ(t,1)=0, (3.7d)

where the right-hand side of the Equation (3.5c) is defined by

H(t,x) :=
4θ̃(ψ+ w̃)x
3(ψ+ w̃)

η− w̃2χ+H1(t,x), (3.8)

and

H1(t,x) :=
4χ(ψ+ w̃)x
3(ψ+ w̃)

η−(ψ+2w̃)(χ+ θ̃−θL)ψ
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−(χ+ θ̃)xη− j̃χx−
2ηx
3
χ+

4j̃θ̃(ψ+ w̃)x
3w̃2

ψ+
4j̃(ψ+ w̃)x
3(ψ+ w̃)

χ

+
4j̃θ̃(ψ+2w̃)(ψ+ w̃)x

3w̃2(ψ+ w̃)
ψ+

η+2j̃

3(ψ+ w̃)2
η− j̃2(ψ+2w̃)

3w̃2(ψ+ w̃)2
ψ. (3.9)

For simplicity of notation, we set hereafter for some T >0 that

X(0,T ) :=
{
(ψ,η,χ,σ)

∣∣ ψ∈Y4([0,T ])∩H2(0,T ;H1(Ω)),

η∈Y3([0,T ])∩H2(0,T ;L2(Ω)),

χ∈Y2([0,T ])∩H1(0,T ;H1(Ω)), σ∈Y2
4([0,T ])

}
, (3.10)

and for all t∈ [0,T ] that

nε(t) :=∥(ψ,η,χ)(t)∥2+∥(ε∂3xψ,ε∂3xη,ε2∂4xψ)(t)∥, Nε(T ) := sup
t∈[0,T ]

nε(t). (3.11)

Before giving the proof of Theorem 1.2, we first state a local existence lemma for
the IBVP (3.5)∼(3.7). Its proof is strongly reminiscent of that in [24, 25], because the
dispersive velocity term here will not bring about any essential trouble. Therefore, we
omit the details.

Lemma 3.1 (Local existence). Suppose the initial data (ψ0,η0,χ0)∈H4(Ω)×H3(Ω)×
H2(Ω) and set

inf
x∈Ω

(ψ0+ w̃)>0, inf
x∈Ω

(χ0+ θ̃)>0, inf
x∈Ω

S
[
(ψ0+ w̃)

2,η0+ j̃,χ0+ θ̃
]
>0.

Also assume that the initial data are compatible with the boundary conditions (3.7).
Then there exists a constant T0>0 such that the IBVP (3.5)∼(3.7) admits a unique
solution (ψ,η,χ,σ)∈X(0,T0) satisfying

inf
x∈Ω

(ψ+ w̃)>0, inf
x∈Ω

(χ+ θ̃)>0, inf
x∈Ω

S
[
(ψ+ w̃)2,η+ j̃,χ+ θ̃

]
>0.

We are now ready to proceed to present the uniform a priori estimate for the local
solution of the IBVP (3.5)∼(3.7), which is the most complicated part in the continuation
principle.

Proposition 3.1 (Uniform a priori estimate). Suppose that for some T >0,
(ψ,η,χ,σ)∈X(0,T ) is a solution to the IBVP (3.5)∼(3.7). Then there exist positive
constants δ0, C and γ such that if Nε(T )+δ+ε≤ δ0, then it holds:

nε(t)+∥σ(t)∥4≤Cnε(0)e−γt, ∀t∈ [0,T ], (3.12)

where the constants δ0, C and γ are independent of δ, ε and T .

Based on Lemma 3.1 and Proposition 3.1, we are now in a position to complete the
proof of Theorem 1.2.

Proof. (Proof of Theorem 1.2.) Combining Lemma 3.1 with Proposition 3.1
directly yields the global existence and exponential decay estimate of the solution to
the IBVP (3.5)∼(3.7) according to the standard continuation principle, which in turn
implies manifestly Theorem 1.2 because of the transformations n=w2 and ñ= w̃2.
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Obviously, it only remains for us to show Proposition 3.1. Owing to the difficulties
caused by the quantum terms, the proof of Proposition 3.1 is technical, sophisticated
and rather lengthy. In the next lemma, we firstly state without proof some frequently-
used estimates of the local solution, as the proof of this lemma is just a tedious but
straightforward computation based on Sobolev’s inequalities and the system (3.5) itself.

Lemma 3.2. Under the same assumptions as in Proposition 3.1, the following esti-
mates hold for t∈ [0,T ],

|w̃|1+
∣∣(ε1/2w̃xx,ε

3/2w̃xxx

)∣∣
0
≤C, |j̃|+ |θ̃−θL|2≤Cδ, (3.13a)

|(ψ,η,χ)(t)|1+
∣∣(ε1/2ψxx,ε

1/2ηxx,ε
3/2ψxxx,ψt,ηt

)
(t)
∣∣
0
≤CNε(T ), (3.13b)

∥∂itσ(t)∥2≤C
[
∥∂itψ(t)∥+

i(i−1)

2
Nε(T )∥ψt(t)∥

]
, i=0,1,2, (3.13c)

∥σtx(t)∥≤∥η(t)∥, ∥σ(t)∥4≤C∥ψ(t)∥2, (3.13d)

∥∂lxηx(t)∥≤C∥ψt(t)∥l, ∥∂lxψt(t)∥≤C∥ηx(t)∥l, l=0,1,2, (3.13e)

∥ηtx(t)∥≤C∥(ψt,ψtt)(t)∥, ∥ηtxx(t)∥≤C∥(ψtt,ψtx,ψttx)(t)∥, (3.13f)

where the positive constant C is independent of δ, ε and T .

And then, the rest of proof of Proposition 3.1 will be divided into three parts, in-
cluding the basic estimate, higher-order estimates and decay estimate; each of them will
be treated in details in Subsection 3.1, Subsection 3.2 and Subsection 3.3, respectively.

3.1. Basic estimate. To prove Proposition 3.1, we start with establishing the
basic estimate.

Lemma 3.3. Suppose the same assumptions as in Proposition 3.1 hold. Then there
exist positive constants δ0, c and C such that if Nε(T )+δ+ε≤ δ0, it holds that for
t∈ [0,T ],

d

dt
Ξ(t)+cΠ(t)≤CΓ(t), (3.14)

where

Ξ(t) :=

∫ 1

0

{[
1

2w2
η2+ θ̃w2Ψ

(
w̃2

w2

)
+ε2ψ2

x+
1

2
σ2
x

]
+

3w2

4θ̃
χ2−α

(
j

w2
− j̃

w̃2

)
σx

}
dx,

(3.15)
here α∈ (0,1) is a small constant which will be determined later and Ψ(s) :=s−1− lns
for s>0,

Π(t) :=∥(ψ,εψx,η,χ,χx)(t)∥2, (3.16)

and

Γ(t) :=
(
Nε(T )+δ+ε

3/2
)
∥(ψx,ηx)(t)∥2+ε3∥(ψxx,ηxx)(t)∥2. (3.17)

Furthermore, if α is small enough, then the following equivalent relation holds true,

c∥(ψ,η,χ,εψx)(t)∥2≤Ξ(t)≤C∥(ψ,η,χ,εψx)(t)∥2, (3.18)

where the constants c and C are independent of δ, ε and T .
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Proof. Multiply the Equation (3.5b) by η, together with Equations (3.5a) and
(3.5d), we compute

∂t

[
1

2w2
η2+ θ̃w2Ψ

(
w̃2

w2

)
+ε2ψ2

x+
1

2
σ2
x

]
+

1

w̃2
η2+

2w̃x

w
χη+χxη=∂xR1(t,x)+R2(t,x),

(3.19)
where

R1(t,x) :=σσtx+ση− θ̃
(
lnw2− lnw̃2

)
η+ε2

[(
wxx

w
− w̃xx

w̃

)
η+2ψtψx

]
, (3.20)

R2(t,x) :=− η+2j̃

2w4
ηηx−

1

2

[(
j

w2

)2

−
(
j̃

w̃2

)2
]
x

η

− 2ψx

w
χη+ θ̃x

(
lnw2− lnw̃2

)
η+

(w+ w̃)j

w2w̃2
ψη+ε2

w̃xx

w̃w
ψηx. (3.21)

Applying the Cauchy-Schwartz inequality combined with estimates (3.13a) and (3.13b)
gives

R2(t,x)≤C
(
Nε(T )+δ+ε

3/2
)
|(ψ,η,ψx,ηx)(t,x)|2. (3.22)

Multiplying the Equation (3.5c) by 3χ/(2θ̃), we calculate

∂t

(
3w2

4θ̃
χ2

)
+

3w̃2

2θ̃
χ2+

1

θ̃
χ2
x−

2w̃x

w
ηχ−ηχx=∂xR3(t,x)+R4(t,x), (3.23)

where

R3(t,x) :=
1

θ̃
χχx−ηχ+

ε2

2θ̃

[
w2

(
j

w2

)
xx

− w̃2

(
j̃

w̃2

)
xx

]
χ, (3.24)

R4(t,x) :=
2ψx

w
ηχ− 3ηx

4θ̃
χ2+

θ̃x

θ̃2
χχx+

2j̃

w̃
ψxχ+

3

2θ̃
H1(t,x)χ

+
ε2θ̃x

2θ̃2

[
w2

(
j

w2

)
xx

− w̃2

(
j̃

w̃2

)
xx

]
χ− ε2

2θ̃

[
w2

(
j

w2

)
xx

− w̃2

(
j̃

w̃2

)
xx

]
χx.

(3.25)

A similar argument to that in (3.22) gives

R4(t,x)≤C
(
Nε(T )+δ+ε

3
)
|(ψ,η,ψx,ηx)(t,x)|2

+Cε|(χ,χx)(t,x)|2+Cε3|(ψxx,ηxx)(t,x)|2. (3.26)

Note that the steady-state density w̃ is non-flat owing to the non-flat doping profile
assumption, it is crucial to capture the dissipation rate of the perturbed density ψ in
the basic estimate. Therefore, multiplying the Equation (3.5b) by −σx, we have

−∂t
[(

j

w2
− j̃

w̃2

)
σx

]
+ θ̃(w+ w̃)

(
lnw2− lnw̃2

)
ψ+

w+ w̃

w
ε2ψ2

x+σ
2
x

=∂xR5(t,x)+R6(t,x), (3.27)
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where

R5(t,x) := θ̃
(
lnw2− lnw̃2

)
σx−ε2

(
wxx

w
− w̃xx

w̃

)
σx+ε

2w+ w̃

w
ψxψ, (3.28)

R6(t,x) :=−
(
j

w2
− j̃

w̃2

)
σtx+

1

2

[(
j

w2

)2

−
(
j̃

w̃2

)2
]
x

σx+
(
lnw2

)
x
χσx

− θ̃x
(
lnw2− lnw̃2

)
σx+χxσx+

(
j

w2
− j̃

w̃2

)
σx+ε

2 (w+ w̃)ψ

w2
ψ2
x

−ε2 w̃xx(w+ w̃)

ww̃
ψ2+ε2

(w+ w̃)w̃x

w2
ψxψ−ε2 (w+ w̃)x

w
ψxψ, (3.29)

and R6(t,x) can be estimated below

R6(t,x)≤(µ+Cδ)|σx(t,x)|2+C
(
Nε(T )+δ

)
|(ψ,ψx,ηx)(t,x)|2

+Cµ|(χ,χx,η)(t,x)|2+C|(η,σtx)(t,x)|2+C
(
Nε(T )+ε

)
|(ψ,εψx)(t,x)|2. (3.30)

The middle two terms on the left-hand side of the identity (3.27) can be bounded below
by c|(ψ,εψx)(t,x)|2, and∣∣∣∣−( j

w2
− j̃

w̃2

)
σx

∣∣∣∣≤C|(ψ,η,σx)(t,x)|2. (3.31)

Let µ and Nε(T )+δ+ε be small enough, we get

−∂t
[(

j

w2
− j̃

w̃2

)
σx

]
+c|(ψ,εψx)(t,x)|2

≤∂xR5(t,x)+C|(σtx,η,χ,χx)(t,x)|2+C
(
Nε(T )+δ

)
|(ψx,ηx)(t,x)|2. (3.32)

From ∫ 1

0

[
(3.19)+(3.23)+α(3.32)

]
dx,

here the constant α>0 will be determined shortly, we obtain

d

dt
Ξ(t)+

∫ 1

0

(
1

w̃2
η2+

3w̃2

2θ̃
χ2+

1

θ̃
χ2
x

)
dx+cα∥(ψ,εψx)(t)∥2

≤
∫ 1

0

[
R2(t,x)+R4(t,x)

]
dx+Cα∥(σtx,η,χ,χx)(t)∥2+Cα

(
Nε(T )+δ

)
∥(ψx,ηx)(t)∥2,

(3.33)

where we have used ∫ 1

0

∂x

[
R1(t,x)+R3(t,x)+αR5(t,x)

]
=0 (3.34)

because of boundary conditions (3.7). In light of estimates (3.13a), (3.13d), (3.22), (3.26)
and (3.31), the inequality (3.33) implies (3.14) and (3.18) by letting α and Nε(T )+δ+ε
be sufficiently small.
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3.2. Higher-order estimates. In order to close the uniform a priori estimate
(3.12), we have to establish the higher-order estimates. To make the most of homo-
geneous boundary conditions (3.7), we focus attention on calculating the higher-order
estimates of temporal and mixed derivatives. As for the higher-order estimates of spa-
tial derivatives, we observe that they can be bounded by those of temporal and mixed
derivatives via the working equations.

For simplicity of notation, we introduce

A−1(t) :=∥(ψ,η,χ,χx)(t)∥,

Ak(t) :=A−1(t)+

k∑
i=0

∥(∂itψt,∂
i
tψx,ε∂

i
tψxx)(t)∥, k=0,1.

From

∂kt

[
∂x(1.3b)

w
− ∂x(1.12b)

w̃

]
, k=0,1,

along with Equations (3.5a) and (3.5d), we have

2∂kt ψtt−2θ̃∂kt ψxx+ε
2∂kt ψxxxx+2∂kt ψt− w̃∂kt χxx−2w̃xx∂

k
t χ

=
2(η+ j̃)

(ψ+ w̃)3
∂kt ηxx−

2(η+ j̃)2

(ψ+ w̃)4
∂kt ψxx+2χ∂kt ψxx+ψ∂

k
t χxx

+ε2
(k+1)ψxx+2w̃xx

ψ+ w̃
∂kt ψxx+∂

k
t P (t,x)+Ok(t,x), k=0,1, (3.35)

where

P (t,x) :=−(ψ+ w̃)(ψ+2w̃)ψ−(w̃2−D)ψ− 2(ψ+ w̃)2x(χ+ θ̃)

(ψ+ w̃)w̃
ψ

+
2w̃2

x

w̃
χ+4w̃xχx−2(ψ+ w̃)xσx

+ θ̃xxψ+
6(ψ+ w̃)2x(η+ j̃)

2

(ψ+ w̃)5w̃5

[
w̃5−(ψ+ w̃)5

]
+

6w̃2
x(η+2j̃)

w̃5
η

−
2(η+ j̃)2

[
w̃4−(ψ+ w̃)4

]
(ψ+ w̃)4w̃4

w̃xx−
2(η+2j̃)η

w̃4
w̃xx−

ε2w̃2
xx

(ψ+ w̃)w̃
ψ

+
6(ψ+2w̃)x(η+ j̃)

2

w̃5
ψx+

2(χ+ θ̃)

w̃
ψ2
x+

2(ψ+2w̃)xχ

w̃
ψx+4(χ+ θ̃)xψx

− 2

ψ+ w̃
ψ2
t +

2

(ψ+ w̃)3
η2x−

8(ψ+ w̃)x(η+ j̃)

(ψ+ w̃)4
ηx+2

(
2w̃xθ̃

w̃
− ϕ̃x

)
ψx,

and

O0(t,x) :=0, O1(t,x) :=− 6(η+ j̃)

(ψ+ w̃)4
ψtηxx+

2

(ψ+ w̃)3
ηtηxx+

8(η+ j̃)2

(ψ+ w̃)5
ψtψxx

− 4(η+ j̃)

(ψ+ w̃)4
ηtψxx+2χtψxx+ψtχxx−

ε2(ψxx+2w̃xx)ψxx

(ψ+ w̃)2
ψt.
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It follows from estimates (3.13a)∼(3.13f) that

∥∂kt P (t)∥+∥Ok(t)∥≤C∥(∂kt ψ,∂kt χ,∂kt χx)(t)∥
+C

(
Nε(T )+δ+ε

1/2
)
∥(∂kt ψt,∂

k
t ψx,∂

k
t η)(t)∥, k=0,1, (3.36)

where we have used∣∣∣∣∣2
(
2w̃xθ̃

w̃
− ϕ̃x

)∣∣∣∣∣=
∣∣∣∣∣2
[
2j̃2

w̃5
w̃x− θ̃x+ε2

(
w̃xx

w̃

)
x

− j̃

w̃2

]∣∣∣∣∣≤C(δ+ε1/2)
to deal with the first factor in the last term of P (t,x).

For k=0,1, taking ∂kt to the Equation (3.5c) gives

(ψ+ w̃)2∂kt χt−
2

3
∂kt χxx+

2

3
θ̃∂kt ηx−

4j̃θ̃

3w̃
∂kt ψx

=∂xVk(t,x)+∂
k
tH(t,x)+Lk(t,x), k=0,1, (3.37)

where

Vk(t,x) :=
ε2

3
∂kt

{
(ψ+ w̃)2

[
η+ j̃

(ψ+ w̃)2

]
xx

− w̃2

(
j̃

w̃2

)
xx

}

=
ε2

3
∂kt ηxx−

2ε2j̃

3w̃
∂kt ψxx+∂

k
t K(t,x), k=0,1, (3.38)

K(t,x) :=
ε2

3

[
− 4(ψ+ w̃)x

ψ+ w̃
ηx+

6(ψ+ w̃)2x
(ψ+ w̃)2

η− 6j̃(ψ+2w̃)(ψ+ w̃)2x
(ψ+ w̃)2w̃2

ψ

+
6j̃(ψ+2w̃)x

w̃2
ψx−

2(ψ+ w̃)xx
ψ+ w̃

η+
2j̃(ψ+ w̃)xx
(ψ+ w̃)w̃

ψ

]
, (3.39)

L0(t,x) :=0, L1(t,x) :=−2(ψ+ w̃)ψtχt. (3.40)

Calculate ∂xVk(t,x) for later use,

∂xV0(t,x)=
ε2

3
ηxxx−

2ε2j̃

3w̃
ψxxx+

2ε2j̃w̃x

w̃2
ψxx+∂xK(t,x)︸ ︷︷ ︸
=:K1(t,x)

, (3.41)

and

∂xV1(t,x)=
ε2

3
ηtxxx−

2ε2(η+ j̃)

3(ψ+ w̃)
ψtxxx+K2(t,x), (3.42)

where

K2(t,x) :=
ε2

3

[
−4(ψ+ w̃)x

ψ+ w̃
ηtxx+

4(ψ+ w̃)xηxx
(ψ+ w̃)2

ψt−
4ηxx
ψ+ w̃

ψtx

+
10(ψ+ w̃)2x
(ψ+ w̃)2

ηtx−
20(ψ+ w̃)2xηx

(ψ+ w̃)3
ψt+

20(ψ+ w̃)xηx
(ψ+ w̃)2

ψtx
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− 6(ψ+ w̃)xx
ψ+ w̃

ηtx+
6(ψ+ w̃)xxηx

(ψ+ w̃)2
ψt−

6ηx
ψ+ w̃

ψtxx

− 12(ψ+ w̃)3x
(ψ+ w̃)3

ηt+
36(η+ j̃)(ψ+ w̃)3x

(ψ+ w̃)4
ψt−

36(η+ j̃)(ψ+ w̃)2x
(ψ+ w̃)3

ψtx

+
14(ψ+ w̃)x(ψ+ w̃)xx

(ψ+ w̃)2
ηt−

28(η+ j̃)(ψ+ w̃)x(ψ+ w̃)xx
(ψ+ w̃)3

ψt

+
14(η+ j̃)(ψ+ w̃)xx

(ψ+ w̃)2
ψtx+

14(η+ j̃)(ψ+ w̃)x
(ψ+ w̃)2

ψtxx

− 2(ψ+ w̃)xxx
ψ+ w̃

ηt+
2(η+ j̃)(ψ+ w̃)xxx

(ψ+ w̃)2
ψt

]
. (3.43)

It follows from estimates (3.13a)∼(3.13f) that

∥H(t)∥≤C∥(η,χ)(t)∥+C
(
Nε(T )+δ

)
∥(ψ,χx)(t)∥, (3.44a)

∥∂tH(t)∥+∥L1(t)∥≤C∥(ηt,χt)(t)∥+C
(
Nε(T )+δ

)
∥(ψt,ψtt,ψtx,χtx)(t)∥, (3.44b)

∥K(t)∥≤Cε3/2∥(ψ,ψt,ψx,η)(t)∥, (3.44c)

∥∂tK(t)∥≤Cε3/2∥ψt(t)∥+Cε2∥(ψtt,ψtx,ηt)(t)∥+C
(
Nε(T )+δ

)
ε∥εψtxx(t)∥, (3.44d)

∥K1(t)∥≤Cε1/2∥(ψ,η)(t)∥+Cε3/2∥(ψt,ψx)(t)∥+Cε2∥(ψtx,ψxx)(t)∥, (3.44e)

∥K2(t)∥≤Cε1/2∥(ψt,ηt)(t)∥+Cε3/2∥(ψtt,ψtx)(t)∥+Cε∥(εψttx,εψtxx)(t)∥. (3.44f)

In the next lemma, we observe that the higher-order estimates of spatial derivatives
can be controlled by those of temporal and mixed derivatives.

Lemma 3.4. Under the same assumptions as in Proposition 3.1, the following equiv-
alent relationship holds for t∈ [0,T ],

c
(
A1(t)+∥χt(t)∥

)
≤nε(t)≤C

(
A1(t)+∥χt(t)∥

)
, (3.45)

where the two positive constants c and C are independent of δ, ε and T .

Proof. It suffices to show the right side inequality in (3.45), because a similar and
much easier argument guarantees the left side one. In light of estimates (3.13a)∼(3.13f),
(3.36)|k=0, (3.44a) and (3.44e), together with Equations (3.35)|k=0 and (3.37)|k=0, we
compute

nε(t)=∥(ψ,η,χ)(t)∥2+∥(ε∂3xψ,ε∂3xη,ε2∂4xψ)(t)∥

≤CA1(t)+∥χxx(t)∥+∥ψxx(t)∥+∥ε∂3xψ(t)∥

+C∥(ψt,ψtt,ηxx,P,χ,χx,χxx,ψxx)(t)∥

≤C
(
A1(t)+∥ψxx(t)∥+∥ε∂3xψ(t)∥+∥χxx(t)∥

)
=C
(
A1(t)+∥ψxx(t)∥+∥ε∂3xψ(t)∥

)
+C

∥∥∥∥− 3

2

[
−(ψ+ w̃)2χt−

2θ̃

3
ηx+

4j̃θ̃

3w̃
ψx+

ε2

3
∂3xη−

2ε2j̃

3w̃
∂3xψ+K1+H

]
(t)

∥∥∥∥
≤C
(
A1(t)+∥χt(t)∥+∥ψxx(t)∥+∥ε∂3xψ(t)∥

)
. (3.46)
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From

−
∫ 1

0

(3.35)|k=0ψxxdx,

integration by parts yields

θL∥ψxx(t)∥2+∥ε∂3xψ(t)∥2

≤
[
µ+C

(
Nε(T )+δ+ε

3/2
)]
∥ψxx(t)∥2+Cµ

(
A2

1(t)+∥χt(t)∥2+ε2∥ε∂3xψ(t)∥2
)
, (3.47)

which further implies

∥ψxx(t)∥+∥ε∂3xψ(t)∥≤C
(
A1(t)+∥χt(t)∥

)
(3.48)

if µ and Nε(T )+δ+ε are small enough. Substitute (3.48) into (3.46), we complete the
proof.

For k=0,1, we proceed to estimate ∂kt ηt as follows.

Lemma 3.5. Under the same assumptions as in Proposition 3.1, the following esti-
mates hold for t∈ [0,T ],

∥ηt(t)∥≤C∥(ψ,η,χ,χx,ψx)(t)∥+C
(
Nε(T )+δ

)
∥ψt(t)∥+Cε1/2

(
A1(t)+∥χt(t)∥

)
,

(3.49)
and

∂tηt=ε
2wψtxxx+Y1(t,x), (3.50a)

∥Y1(t)∥≤C∥(ψ,η,χ,χx,ψt,ψx,ψtx,χtx)(t)∥
+C

(
Nε(T )+δ+ε

1/2
)
∥(ψtt,εψxx,εψtxx)(t)∥, (3.50b)

where Y1(t,x) is given by (3.53) and the positive constant C is independent of δ, ε and
T .

Proof. From Equation (3.5b), we have

ηt=ε
2w2

(
wxx

w
− w̃xx

w̃

)
x

+Y (t,x), (3.51)

where

Y (t,x) :=
2j

w
ψt−

w2

2

[(
j

w2

)2

−
(
j̃

w̃2

)2
]
x

−w2χ
(
lnw2

)
x

−w2θ̃
(
lnw2− lnw̃2

)
x
−w2χx+w

2σx−w2

(
j

w2
− j̃

w̃2

)
. (3.52)

Taking L2-norm of (3.51) and combining estimates (3.13a), (3.13b), (3.13d) and (3.48)
yield (3.49). Differentiating (3.51) in t, we obtain (3.50a),

Y1(t,x) :=−ε2wxψtxx−ε2wxxxψt+
2ε2wxxwx

w
ψt

−ε2wxxψtx+2ε2wψt

(
wxx

w
− w̃xx

w̃

)
x

+∂tY (t,x). (3.53)
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The same argument as in calculating (3.49) gives (3.50b).

We are now ready to calculate higher order estimates of temporal and mixed deriva-
tives. The following lemma will tell us that the Bohm potential term is a dissipative
term, which contributes the dissipation rate ∥ε∂kt ψxx(t)∥2 at the quantum level.

Lemma 3.6. Suppose the same assumptions as in Proposition 3.1 hold. Then there exist
positive constants δ0, c and C such that if Nε(T )+δ+ε≤ δ0, it holds that for t∈ [0,T ],

d

dt
Ξ
(k)
1 (t)+cΠ

(k)
1 (t)≤CΓ(k)

1 (t), k=0,1, (3.54)

where

Ξ
(k)
1 (t) :=

∫ 1

0

[(
∂kt ψ

)2
+2∂kt ψt∂

k
t ψ
]
dx, Π

(k)
1 (t) :=∥(∂kt ψx,ε∂

k
t ψxx)(t)∥2,

Γ
(k)
1 (t) :=∥(∂kt ψt,∂

k
t ψ,∂

k
t χ,∂

k
t χx)(t)∥2+

(
Nε(T )+δ+ε

1/2
)
A2

k(t), (3.55)

and the constants c and C are independent of δ, ε and T .

Proof. For k=0,1, from ∫ 1

0

(3.35)∂kt ψdx,

we compute

d

dt
Ξ
(k)
1 (t)+

∫ 1

0

[
2θ̃
(
∂kt ψx

)2
+
(
ε∂kt ψxx

)2]
dx=I(k)

1 (t), (3.56)

where

I(k)
1 (t) :=

∫ 1

0

{
2
(
∂kt ψt

)2−2θ̃x∂
k
t ψx∂

k
t ψ−

(
w̃x∂

k
t χx∂

k
t ψ+ w̃∂kt χx∂

k
t ψx

)
+2w̃xx∂

k
t χ∂

k
t ψ+

(
6wxj

w4
∂kt ηx∂

k
t ψ− 2ηx

w3
∂kt ηx∂

k
t ψ− 2j

w3
∂kt ηx∂

k
t ψx

)
−
[
8wxj

2

w5
∂kt ψx∂

k
t ψ− 4jηx

w4
∂kt ψx∂

k
t ψ− 2j2

w4

(
∂kt ψx

)2]
−
[
2χx∂

k
t ψx∂

k
t ψ+2χ

(
∂kt ψx

)2]−(ψx∂
k
t χx∂

k
t ψ+ψ∂kt χx∂

k
t ψx

)
+ε2

(k+1)ψxx+2w̃xx

w
∂kt ψxx∂

k
t ψ+

(
∂kt P +Ok

)
∂kt ψ

}
dx. (3.57)

Young’s inequality combined with estimates (3.13a), (3.13b), (3.13f), (3.36) and (3.49)
yields ∫ 1

0

[
2θ̃
(
∂kt ψx

)2
+
(
ε∂kt ψxx

)2]
dx≥ cΠ(k)

1 (t), (3.58)

and

I(k)
1 (t)≤µ∥∂kt ψx(t)∥2+Cµ∥(∂kt ψt,∂

k
t ψ,∂

k
t χ,∂

k
t χx)(t)∥2

+C
(
Nε(T )+δ+ε

1/2
)
A2

k(t). (3.59)
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Insert (3.58) and (3.59) into (3.56), let µ be small enough, to obtain (3.54).

We are now at the sharp end of establishing higher-order estimates because of the
dispersive velocity term. Precisely, the following lemma will reveal that the disper-
sive velocity term is another dissipative term at the quantum level, contributing the
dissipation rate ∥ε∂kt ψtx(t)∥2.

Lemma 3.7. Suppose the same assumptions as in Proposition 3.1 hold. Then there exist
positive constants δ0, c and C such that if Nε(T )+δ+ε≤ δ0, it holds that for t∈ [0,T ],

d

dt
Ξ
(k)
2 (t)+cΠ

(k)
2 (t)≤CΓ(k)

2 (t), k=0,1, (3.60)

where

Ξ
(k)
2 (t) :=

∫ 1

0

{(
∂kt ψt

)2
+

(
θ− j2

w4

)(
∂kt ψx

)2
+

1

2

(
ε∂kt ψxx

)2
− 3w3

2
∂kt χ∂

k
t ψt−k

[
9w5ε

8
χt

(
εψtxx

)
+

3w4ε2

8

(
εψtxx

)2]}
dx,

Π
(k)
2 (t) :=∥(∂kt ψt,ε∂

k
t ψtx)(t)∥2, Γ

(k)
2 (t) :=

(
µ+Nε(T )+δ+ε

1/2
)
∥∂kt ψx(t)∥2+Υ(k)(t),

Υ(0)(t) :=Cµ∥(ψ,η,χ,χx)(t)∥2+
(
Nε(T )+δ+ε

1/2
)
∥(ψtt,ψtx,εψxx,εψtxx,χt)(t)∥2,

Υ(1)(t) :=Cµ∥(χt,χtx)(t)∥2+∥(ψ,η,χ,χx,ψt,ψx)(t)∥2

+
(
Nε(T )+δ+ε

1/2
)
∥(ψtt,εψxx,εψtxx)(t)∥2. (3.61)

Here the constants c and C are independent of δ, ε and T ; µ is an arbitrary positive
constant to be determined and Cµ is a generic constant which only depends on µ.

Proof. For k=0,1, from ∫ 1

0

(3.35)∂kt ψtdx,

we calculate

d

dt

∫ 1

0

[(
∂kt ψt

)2
+

(
θ− j2

w4

)(
∂kt ψx

)2
+

1

2

(
ε∂kt ψxx

)2]
dx

+2∥∂kt ψt(t)∥2−
∫ 1

0

w∂kt χxx∂
k
t ψtdx=I(k)

2 (t), (3.62)

where

I(k)
2 (t) :=

∫ 1

0

{[
−2

(
θ− j2

w4

)
x

∂kt ψx∂
k
t ψt+

(
θ− j2

w4

)
t

(
∂kt ψx

)2]
+2w̃xx∂

k
t χ∂

k
t ψt+

2j

w3
∂kt ηxx∂

k
t ψt+ε

2 (k+1)ψxx+2w̃xx

w
∂kt ψxx∂

k
t ψt

+
[
∂kt P (t,x)+Ok(t,x)

]
∂kt ψt

}
dx, (3.63)
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and can be estimated below,

I(k)
2 (t)≤2µ∥∂kt ψt(t)∥2+Cµ∥(∂kt ψ,∂kt χ,∂kt χx)(t)∥2

+Cµ

(
Nε(T )+δ+ε

1/2
)(

∥(∂kt η,∂kt ψt,∂
k
t ψx,ε∂

k
t ψxx)(t)∥2+∥χt(t)∥2k

)
, (3.64)

with the aid of estimates (3.13a), (3.13b), (3.13f) and (3.36), and by virtue of Young’s
inequality.

The last integral on the left-hand side of (3.62) is heavily influenced by the dispersive
velocity term. Thus we have to make a great effort to contend with it. Specifically, due
to Equation (3.37), we compute

−
∫ 1

0

w∂kt χxx∂
k
t ψtdx=

∫ 1

0

w
3

2

[
−w2∂kt χt−

2

3
θ̃∂kt ηx+

4j̃θ̃

3w̃
∂kt ψx

+∂xVk(t,x)+∂
k
tH(t,x)+Lk(t,x)

]
∂kt ψtdx

=−
∫ 1

0

3

2
w3∂kt χt∂

k
t ψtdx−

∫ 1

0

wθ̃∂kt ηx∂
k
t ψtdx

+

∫ 1

0

2wj̃θ̃

w̃
∂kt ψx∂

k
t ψtdx+

∫ 1

0

3

2
w∂xVk(t,x)∂

k
t ψtdx

+

∫ 1

0

3

2
w
[
∂ktH(t,x)+Lk(t,x)

]
∂kt ψtdx

=T
(k)
1 (t)+T

(k)
2 (t)+T

(k)
3 (t)+T

(k)
4 (t)+T

(k)
5 (t). (3.65)

Here we point out that T
(k)
1 (t), T

(k)
4 (t) are much harder to treat than T

(k)
2 (t), T

(k)
3 (t),

T
(k)
5 (t), and the latter three integrals can be estimated as a whole:

T
(k)
2 (t)+T

(k)
3 (t)+T

(k)
5 (t)≥c∥∂kt ψt(t)∥2−C∥(∂kt ψ,∂kt η,∂kt χ,∂kt χx)(t)∥2

−C(Nε(T )+δ)∥∂kt ψx(t)∥2. (3.66)

Before estimating the remaining two integrals, we still need to do some auxiliary calcu-
lations via Equation (3.5a):

∂kt ψtt=− 1

2w
∂kt ηtx+Bk(t,x), k=0,1, (3.67)

where

B0(t,x) :=
1

2w2
ψtηx, B1(t,x) :=

1

w2
ψtηtx−

1

w3
ψ2
t ηx+

1

2w2
ψttηx,

satisfying

∥Bk(t)∥≤CNε(T )∥(∂kt ψt,ψt)(t)∥. (3.68)

Based on (3.67) and (3.68), integration by parts gives

T
(k)
1 (t)=− d

dt

∫ 1

0

3w3

2
∂kt χ∂

k
t ψtdx+

∫ 1

0

9w2ψt

2
∂kt χ∂

k
t ψtdx+

∫ 1

0

3w3

2
∂kt χ∂

k
t ψttdx

≥− d

dt

∫ 1

0

3w3

2
∂kt χ∂

k
t ψtdx−CNε(T )∥(∂kt ψt,ψt,∂

k
t χ)(t)∥2
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+

∫ 1

0

3w2

4
∂kt χx∂

k
t ηtdx+

∫ 1

0

3wwx

2
∂kt χ∂

k
t ηtdx. (3.69)

The two integrals in the last line of (3.69) both have to be estimated case-by-case
depending on k=0 and k=1.

Firstly, for k=0 we have∫ 1

0

3w2

4
χxηtdx≥−µ∥ηt(t)∥2−Cµ∥χx(t)∥2, (3.70a)

and for k=1 we compute via Equations (3.50a) and (3.37):∫ 1

0

3w2

4
χtx∂tηtdx=−

∫ 1

0

3w3ε2

4
χtxxψtxxdx

−
∫ 1

0

9w2wxε

4
χtx(εψtxx)dx+

∫ 1

0

3w2

4
χtxY1dx

≥
∫ 1

0

9w3ε2

8

[
−w2χtt−

2

3
θ̃ηtx+

4j̃θ̃

3w̃
ψtx+∂xV1+∂tH+L1

]
ψtxxdx

−Cε∥(εψtxx,χtx)(t)∥2−µ∥Y1(t)∥2−Cµ∥χtx(t)∥2

≥− d

dt

∫ 1

0

9w5ε

8
χt(εψtxx)dx−

d

dt

∫ 1

0

3w4ε2

8
(εψtxx)

2dx

−Cε∥(ηt,ψt,ψtt,ψtx,εψttx,εψtxx)(t)∥2

−µ∥Y1(t)∥2−Cµ∥χtx(t)∥2, (3.70b)

where we have used the following computations:

−
∫ 1

0

9w5ε2

8
χttψtxxdx

=− d

dt

∫ 1

0

9w5ε

8
χt(εψtxx)dx+

∫ 1

0

45w4ψtε

8
χt(εψtxx)dx+

∫ 1

0

9w5ε2

8
χtψttxxdx

≥− d

dt

∫ 1

0

9w5ε

8
χt(εψtxx)dx−Cε∥(εψttx,εψtxx,χtx)(t)∥2, (3.71)

and∫ 1

0

9w3ε2

8
∂xV1ψtxxdx=

∫ 1

0

9w3ε2

8

(
ε2

3
ηtxxx−

2ε2j

3w
ψtxxx+K2

)
ψtxxdx

≥− d

dt

∫ 1

0

3w4ε2

8
(εψtxx)

2dx−Cε∥(ηt,ψt,ψtt,ψtx,εψttx,εψtxx)(t)∥2,

(3.72)

Similarly to (3.70) , for k=0 we have∫ 1

0

3wwx

2
χηtdx≥−µ∥ηt(t)∥2−Cµ∥χ(t)∥2, (3.73a)

and for k=1 we obtain∫ 1

0

3wwx

2
χt∂tηtdx=

∫ 1

0

3wwx

2
χt

(
ε2wψtxxx+Y1

)
dx
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≥−
∫ 1

0

(
3w2wxε

2

2
χt

)
x

ψtxxdx−µ∥Y1(t)∥2−Cµ∥χt(t)∥2

≥−Cε1/2∥(εψtxx,χtx)(t)∥2−µ∥Y1(t)∥2−Cµ∥χt(t)∥2. (3.73b)

In addition, we proceed to compute via the expression (3.38) and Equation (3.5a):

T
(k)
4 (t)=−

∫ 1

0

(
3

2
w∂kt ψt

)
x

Vkdx

=−
∫ 1

0

3

2
w∂kt ψtxVkdx−

∫ 1

0

3

2
wx∂

k
t ψtVkdx

≥
∫ 1

0

wε2

2
∂kt ψtx

(
2w∂kt ψtx+2wx∂

k
t ψt+k4ψtψtx

)
dx

−C
(
Nε(T )+δ+ε

1/2
)
∥(∂kt η,∂kt ψ,∂kt ψt,∂

k
t ψx,ε∂

k
t ψtx,ε∂

k
t ψxx)(t)∥2

≥c∥ε∂kt ψtx(t)∥2−C
(
Nε(T )+δ+ε

1/2
)
∥(∂kt η,∂kt ψ,∂kt ψt,∂

k
t ψx,ε∂

k
t ψxx)(t)∥2,

(3.74)

where we have also used estimates (3.44c) and (3.44d).
Substituting all the above estimates into (3.62) and letting µ, Nε(T )+δ+ε be

sufficiently small yield (3.60) and (3.61).

Next, we shall pursue the higher-order estimates of χ, which is a relatively easier
task than those of ψ. However, the dispersive velocity term still makes the computations
more complicated.

Lemma 3.8. Suppose the same assumptions as in Proposition 3.1 hold. Then there
exist positive constants δ0, c and C such that if Nε(T )+δ+ε≤ δ0, it holds that for
t∈ [0,T ],

d

dt
Ξ3(t)+cΠ3(t)≤CΓ3(t), (3.75)

where

Ξ3(t) :=

∫ 1

0

(
1

3
χ2
x+

2θ̃

3
ηxχ

)
dx, Π3(t) :=∥χt(t)∥2,

Γ3(t) :=µ∥ψx(t)∥2+CµA
2
−1(t)+

(
Nε(T )+δ+ε

)(
A2

1(t)+∥χtx(t)∥2
)
, (3.76)

and

d

dt
Ξ4(t)+cΠ4(t)≤CΓ4(t), (3.77)

where

Ξ4(t) :=

∫ 1

0

w2

2
χ2
tdx, Π4(t) :=∥χtx(t)∥2,

Γ4(t) :=∥(ψ,η,χ,χx,ψx,χt)(t)∥2+
(
Nε(T )+δ+ε

)(
A2

1(t)+∥εψttx(t)∥2
)
. (3.78)

Here the constants c and C are independent of δ, ε and T ; µ is an arbitrary positive
constant to be determined and Cµ is a generic constant which only depends on µ.
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Proof. From ∫ 1

0

(3.37)|k=0χtdx,

we compute

d

dt
Ξ3(t)+

∫ 1

0

w2χ2
tdx=I3(t), (3.79)

where

I3(t) :=
∫ 1

0

[
−
(
2θ̃x
3
ηtχ+

2θ̃

3
ηtχx

)
+

4j̃θ̃

3w̃
ψxχt+∂xV0(t,x)χt+H(t,x)χt

]
dx, (3.80)

satisfying

I3(t)≤
∫ 1

0

∂xV0(t,x)χtdx+(µ+δ+ε)∥χt(t)∥2

+µ∥ψx(t)∥2+CµA
2
−1(t)+C

(
Nε(T )+δ+ε

)
A2

1(t). (3.81)

Integration by parts gives∫ 1

0

∂xV0(t,x)χtdx=−
∫ 1

0

V0(t,x)χtxdx

=−
∫ 1

0

(
ε2

3
ηxx−

2ε2j̃

3w̃
ψxx+K(t,x)

)
χtxdx

≤Cε
(
A2

1(t)+∥χtx(t)∥2
)
, (3.82)

by estimates (3.13e) and (3.44c). Inserting (3.82) into (3.81) yields

I3(t)≤ (µ+δ+ε)∥χt(t)∥2+CΓ3(t). (3.83)

Note that ∫ 1

0

w2χ2
tdx≥ cΠ3(t), (3.84)

whence substituting (3.83) and (3.84) into (3.79) produces (3.75).
From ∫ 1

0

(3.37)|k=1χtdx,

we calculate

d

dt
Ξ4(t)+

2

3
Π4(t)=I4(t), (3.85)

where

I4(t) :=
∫ 1

0

[
wψtχ

2
t +

(
2θ̃x
3
ηtχt+

2θ̃

3
ηtχtx

)
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+
4j̃θ̃

3w̃
ψtxχt+∂xV1(t,x)χt+

(
∂tH+L1

)
(t,x)χt

]
dx, (3.86)

satisfying

I4(t)≤
∫ 1

0

∂xV1(t,x)χtdx+
[
µ+C(Nε(T )+δ)

]
∥χtx(t)∥2

+Cµ∥(ηt,χt)(t)∥2+C(Nε(T )+δ)∥(ψt,ψtt,ψtx)(t)∥2. (3.87)

Integration by parts yields∫ 1

0

∂xV1(t,x)χtdx=−
∫ 1

0

V1(t,x)χtxdx

=−
∫ 1

0

(
ε2

3
ηtxx−

2ε2j̃

3w̃
ψtxx+∂tK(t,x)

)
χtxdx

≤Cε
(
∥χtx(t)∥2+∥ηt(t)∥2+A2

1(t)+∥εψttx(t)∥2
)
, (3.88)

which in turn implies

I4(t)≤
[
µ+C(Nε(T )+δ+ε)

]
∥χtx(t)∥2+CµΓ4(t). (3.89)

Substituting (3.89) into (3.85) gives (3.77).

3.3. Decay estimate. Based on Lemmas 3.3, 3.6, 3.7 and 3.8, we are able to
show Proposition 3.1, that is, the decay estimate (3.12) at length.

Proof. (Proof of Proposition 3.1.) For positive constants α (which is the same
as in (3.15)) and β, from

(3.14)+β
[
α(3.54)+(3.60)

]∣∣∣
k=0

+β
[
(3.75)+β(3.77)

]
+β3

[
α(3.54)+(3.60)

]∣∣∣
k=1

,

we have

d

dt
E(t)+D(t)≤0, ∀t∈ [0,T ], (3.90)

where

E(t) :=Ξ(t)+β
[
αΞ

(0)
1 (t)+Ξ

(0)
2 (t)

]
+β
[
Ξ3(t)+βΞ4(t)

]
+β3

[
αΞ

(1)
1 (t)+Ξ

(1)
2 (t)

]
, (3.91)

and

D(t) :=
[
cΠ(t)−CΓ(t)

]
+β
{
α
[
cΠ

(0)
1 (t)−CΓ(0)

1 (t)
]
+
[
cΠ

(0)
2 (t)−CΓ(0)

2 (t)
]}

+β
{[
cΠ3(t)−CΓ3(t)

]
+β
[
cΠ4(t)−CΓ4(t)

]}
+β3

{
α
[
cΠ

(1)
1 (t)−CΓ(1)

1 (t)
]
+
[
cΠ

(1)
2 (t)−CΓ(1)

2 (t)
]}
. (3.92)

Substitute the expressions (3.15)∼(3.17), (3.55), (3.61), (3.76) and (3.78) into (3.91)
and (3.92), and then take α, µ, β and Nε(T )+δ+ε sufficiently small in the following
order 0<Nε(T )+δ+ε≪β3≪β2≪β≪µ≪α≪1, to obtain

c
(
A2

1(t)+∥χt(t)∥2
)
≤E(t)≤C

(
A2

1(t)+∥χt(t)∥2
)
, (3.93)
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and

D(t)≥c
(
A2

1(t)+∥χt(t)∥2+∥(χtx,εψttx)(t)∥2
)

≥c
(
A2

1(t)+∥χt(t)∥2
)
, (3.94)

D(t)≤C
(
A2

1(t)+∥χt(t)∥2+∥(χtx,εψttx)(t)∥2
)
,

where the positive constants c and C are independent of δ, ε and T .
Applying (3.93) and (3.94) to (3.90), we have for some positive constant γ,

d

dt
E(t)+2γE(t)≤0, ∀t∈ [0,T ], (3.95)

which implies the decay estimate (3.12) by Gronwall’s inequality. Here we have also
used the elliptic estimate (3.13d) and the equivalent relationships (3.93), (3.45). The
proof now is complete.
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