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EXISTENCE AND UNIQUENESS FOR “GOOD” BOUSSINESQ
EQUATIONS WITH QUASI-PERIODIC INITIAL DATA*

YIXIAN GAOf, YONG LI ¥, AND CHANG SU$

Abstract. This paper studies the local well-posedness for the “good” Boussinesq equation subject
to quasi-periodic initial conditions. By constructing a delicately and subtly iterative process together
with an explicit combinatorial analysis, we show that there exists a unique solution for such a model
in a small region of time. The size of this region depends on both the given data and the frequency
vector. Moreover the local solution has an expansion with exponentially decaying Fourier coefficients.
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1. Introduction
The aim of this paper is to investigate the existence and uniqueness for the “good”
Boussinesq equation

Utt+uxxzz_ufcz_(u2)zm:0, lUGR, t>0 (11)

with respect to quasi-periodic initial data

u(0,2) =ug(x) = Z c(0,n)exp(izn-w):= Z c(n)exp(izn - w), (1.2)

neL nezv
Ou(0,x) =uy(x) = Z O0ic(0,n)exp(izn - w) = Z d(n)exp(izn-w), (1.3)
nez nezv

where
n=Mmy, ,n,) €L, w=(wi, ,w,)ER”.

Equation (1.1) governs small nonlinear oscillations in an elastic beam, which is also
known as the “nonlinear string equation” (see [9]).

When investigating the bidirectional propagation of small amplitude and long wave-
length capillary-gravity waves on the surface of shallow water, in 1872 Boussinesq [4]
gave the classical Boussinesq equation

3v2 R
Utt—ghovngho <2;L)0+30vzx> 9 .’EER, t>07 (14)
Tx
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1248 EXISTENCE AND UNIQUENESS FOR BOUSSINESQ EQUATIONS

where v(t,z) is the perturbation of free surface, hg is the mean depth, and g is the
gravitational constant. In nondimensional units, Equation (1.4) can be reduced to

utt_uw:vww_uww_(UQ)wz:07 $€R7 t>0, (15)

which is called “bad” Boussinesq equation. This was the first mathematical model for
the phenomenon of solitary waves observed by Scott—Russell [25]. It admits the special
travelling-wave solutions

u(z,t) = %(02 ~1)sech? ( v 622’ L (z—ct)) :

where the constant ¢ stands for velocity of the wave. Such solutions are also called
solitary waves. However the “bad” Boussinesq Equation (1.5) is ill-posed because of the
exponential growth of the Fourier components. In order to investigate the initial value
problem, Deift et al. [8] imposed exponentially decaying of the initial functions and
applied the techniques of inverse scattering theory to the following Boussinesq equation

Ut — SUgpr + 12(u2)m =0.

The other way to solve the ill-posed problems is that we can change the sign of the
fourth order derivative term in Equation (1.5) from negative to positive, i.e., the uy
and Uz, terms have the same sign, and is called “good” Boussinesq equation and is
linearly well-posed. The “good” Boussinesq equation was suggested by Zakharov [33] as
a model of nonlinear vibrations along a string, and also by Turitsyn [30] for describing
electromagnetic waves in nonlinear dielectric materials; some more details can be found
in [18,24,26,32] and the references therein.

The local well-posedness of the Cauchy problem for the “good” Boussinesq Equation
(1.1) has a relatively recent history. Bona and Sachs [3] considered the following Cauchy
problem associated with Boussinesq equations

Ut +uwzxa: —Ugy + ( (u> TT — (1 6)
uw(0,2) =ug(x), Owu(0,z)= ( ). '
By using Kato’s abstract theory for quasi-linear evolution equation, they concluded local
well-posedness with respect to initial data (uo,u1) € H*(R) x H*~2(R) for s> 5. At the
same time, they also showed that the solution with initial data close to isolated wave
ones is orbital stable and always exists. Tsutsumi and Matahashi [29] established local
and global well-posedness of the Cauchy problem (1.6) with (ug,u1) € H*(R) x H~1(R).
Linares [19] further applied Strichartz-type estimates to investigate local well-posedness
of the Cauchy problem (1.6) when initial data (ug,u;)€ L?(R) x H~(R). Farah [11]
improved the local well-posedness results above by proving that the Cauchy problem
(1.6) is locally well-posed when (ug,u1) belong to H*(R) x H*!(R) with s>—%. The
main proof is based on defining suitable Bourgain-type spaces to the linear part of
the equation, and using them to derive the appropriate bilinear estimates. Moreover,
Constantin and Molinet [6] demonstrated the existence and uniqueness of local solutions
of the generalized Boussinesq equation for initial data of low regularity. They also
discussed the existence of global solutions and the occurrence of blow-up phenomena.
Taniuchi [27] showed that a two-dimensional Boussinesq equation with non-decaying
initial data admits a unique global solution on the whole plane. In addition, we refer
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the readers to the articles [5,12,14,17] for well-posedness associated with the “good”
Boussinesq equation.

In recent years there has been extensive interest in nonlinear partial differential
equations with respect to either periodic or quasi-periodic or almost periodic initial
data. Venakides [31] calculated weak limit of solutions of the following KdV equation

Up + Uy — 6UUE =0

for the periodic initial value if € tends to 0. In the neighborhood of a point (z,t), he
obtained that the solution w(z,t,€) could be approximated either by a constant or a
periodic or a quasi-periodic solution for such a model. Tadahiro [21,22], respectively,
studied the Cauchy problem of a class of nonlinear Schrédinger equations with the limit
periodic function and almost periodic function as initial value. For the almost peri-
odic case, under a set of frequencies w = {w; }3?';1, he presented that the corresponding
Cauchy problem was locally well-posed in the algebras A, (R) consisting of almost peri-
odic functions with absolutely convergent Fourier series. Moreover, he also provided the
first example of blasting solutions for such a model with general almost periodic initial
values in finite time. In addition, Tsugawa [28] gave well-posedness of the KAV equation
with quasi-periodic initial value by using the Fourier restriction norm method introduced
by Bourgain. Recently, applying the Diophantine conditions and an exponential decay
assumption on the generalized Fourier components, Damanik and Goldstein [7] con-
structed local and global solutions to the KdV equation corresponding to quasi-periodic
initial data.

Let us review the achievements related to the “good” Boussinesq equation subject
to periodic initial data. In spite of the “good” Boussinesq Equation (1.1) having the Lax
pair formula and being linear stable, Kalantarov and Ladyzhenskaya proved [13] that
in the periodic case and Dirichlet boundary case solutions may blow-up in a finite time.
Given minimal regularity assumptions on periodic initial data, Fang and Grillakis [10]
established local and global existence results (using the conservation of energy) for
the Cauchy problem (1.6) by using Fourier series and a fixed-point argument. Later,
Oh and Stefanov [20] considered local well-posedness of the Cauchy problem (1.6) with
periodic initial data and f(u) =uP. They reduced the Sobolev index to s > f%. Recently,
Barostichi [1] also studied local well-posedness for initial data in Gevrey spaces on the
circle. Different with the case in [10] and [1], the energy is indefinite in our case and
the solution may blow up. To the best of our knowledge, there are few results on well-
posedness for the “good” Boussinesq equation under quasi-periodic initial data. In this
work, we intend to prove the existence and uniqueness for “good” Boussinesq equation
with quasi-periodic initial data.

More precisely, we have the following theorem.

THEOREM 1.1.  Let we€RY be a Diophantine wave vector. Suppose that the Fourier
coefficients associated with initial data (1.2)—(1.3) satisfy

Kln|

), 1) < Bexp(-"),

|e(n)| < Bexp(—

where B,k are two positive constants. Then there exists to>0 such that for t € (0,to),
x €R, one can construct a function

u(t,z)= Z c(t,n)exp(izn - w),

nezv
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which satisfies Equation (1.1) and initial conditions (1.2)—(1.3). Moreover,

c(t,m) :%c(n) (exp (itA) +exp (—itA)) — %c’(n) (exp (itA) —exp (—itA))
7%/ exp(i(t—t)\) —exp (i(t — 7)) Z (m-w)(n-w)c(t,m)c(t,n—m)dr
0 meL
with A= ((n-w)?*+ (n-w)?) 5 , and
Kln|

[e(t,n)| <2Bexp(=— =)

Furthermore, if

v(t, )= h(t,n)exp(izn-w)

nezv

is also a solution of Equation (1.1) with initial conditions (1.2)—(1.3) satisfying that for
some positive constants Cy,p,

[h(t,n)| < Crexp(—plnl),

then there exists t1 >0 such that v(t,x) =u(t,x) for 0<t<t;, xeR.

Contrast with the global result for KdV equation in [7], Damanik and Goldstein can
apply the fundamental property of the Schrédinger operators (conservation of spectrum)
by Lax [15] to extend the local result to global result. The Boussinesq equation doesn’t
possess these properties. In fact, using the method of Levine [16], Kalantarov and
Ladyzhenskaya [13] showed that for a large set of initial values there is no smooth
solution of Equation (1.1) for all time. This nonexistence is generally referred to blow-up
rather than collapse, while the blow-up for “good” Boussinesq was proved by Sachs [23]
in H~! for certain initial data (the energy is indefinite).

The nonlinear interaction between high- and very-low-frequency parts of solutions
make the well-posedness problem difficult in the study of the Boussinesq equation.
To avoid this difficulty, in the periodic data case, one can apply the conservation
law: fTudz:c for any solution of the Boussinesq equation. It is not enough for the
quasi-periodic case, while the main difficulty with quasi-periodic initial data is in the
complicated nature of the conservation laws. Furthermore, the spectrum in the quasi-
periodic case is known to typically have a dense set of gaps. In our analysis, the major
difficulty is to keep the Fourier coefficients of local solutions to have exponential decay.
In order to overcome this problem, we apply an explicit combinatorial analysis of the
iteration of the integral transformation.

This paper is organized as follows. Section 2 shows the exponential decay of Fourier
coeflicients of local solutions for the “good” Boussinesq equation. An integral transform
is introduced to reduce the different equation for the Fourier coefficients into integral
equations. A Picard iteration sequence for the Fourier coefficients is constructed. Due
to the complex representation of iterative terms, we introduce inductive tree branches,
and attach an appropriate lattice to each tree branch for keeping the terms in iterative
equations. Another step is to define some weights which enable us to develop estimation
techniques for iterative equations. Finally, we make a combination analysis of the
explicit iteration of integral transformation. Although the derivation process is quite
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complicated, the exponential decay of the Fourier coefficients is in good agreement
with the combined growth factor produced in the iterative process. There is no small
denominator problem in the estimation as well. Therefore our derivation does not
involve any Diophantine condition. The aim of Section 3 is to present that the Fourier
coefficients of solutions for the “good” Boussinesq equation indeed exist and are unique.
In Section 4, we give the proof of Theorem 1.1. More precisely, we prove the existence
and uniqueness of local solutions for the “good” Boussinesq equation with quasi-periodic
initial data.

Before ending this section, let us mention that Binder et al. [2] recently investigate
the Cauchy problem for the KdV equation with almost periodic initial data and obtained
the existence, uniqueness, and almost periodicity in time of solutions. Their result can
also apply to all small analytic quasi-periodic initial data with Diophantine frequency
vector. However, it is not clear whether it is valid for the general quasi-periodic initial
data for the Boussinesq equation.

2. Exponential decay of Fourier coefficients
Suppose that the function

u(t,x)= Z c(t,n)exp(izn-w) (2.1)

nezv

is a solution of Equation (1.1) with respect to initial conditions (1.2)—(1.3). Meanwhile
we assume that (u?),, has the following expansion

(u?) g0 = Z A(t,n)exp(izn - w). (2.2)
nezr

The main purpose of this section is to establish the exponential decay of the Fourier
coefficients c(t,n) under some assumptions. Moreover we denote by |-| the £}-norm on
R as follows

W= lyil, y=(1,...0) ER”.

The following lemma gives the expressions of the Fourier coefficients c(¢,n).

LEMMA 2.1.  For some constant to >0, let c(t,n), A(t,n) be continuous functions of
te[0,t0), n€Z”. Assume that

sup > (14> +[n|*)(le(t,n)| +|A(t,n)]) < . (2.3)
nezv

Then the Fourier coefficients c(t,n) associated with the ansatz (2.1) can be expressed as
the following integral forms

2

Pexp (i1 —1)) —exp (iX(t—7))
+/0 —2)\i Al

c(tm) = (;c(n) _ 2Ac'(n)> exp(iM) + <1c(n) 4 21/\0'(71)> exp(—iM)

7,m)dr, (2.4)

where A= ((n-w)?+ (n~w)4)% with w ERY. Moreover the functions usy, —Upzrs, —Uzz,
(u?)ze are continuous with respect to (t,z) €[0,t) x R.
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Proof.  Substituting the ansatz (2.1)—(2.2) into Equation (1.1) yields

2¢(t,n
Z Mexp(ixnwu)+ Z (in-w)*c(t,n)exp(izn  w)

de?
nezv nezv
- Z in-w)?c(t,n)exp(izn-w) Z A(t,n)exp(izn-w)=0.
nezy nezv

This is equivalent to

d2c(t,n)

e +((n-w)'+(n-w)?)c(t,n)— A(t,n) =0. (2.5)

The corresponding characteristic equation for the homogeneous equation of (2.5) is
7+ (n-w)+(n-w)>=0.

Thus the homogeneous equation has two solutions exp(iAt) and exp(—iAt). By variation
of constants formula, we obtain

CA(t
c(t,n)=cyexp(irt) + caexp(—iAt) —|—/ . (r,m)dr,
0

W(r)
where
A(t,T):=det (Z})((I;((lliz)) ZXP(( 11);;)) ) =exp(iA(T—1t)) —exp(iA(t—7)),
)

o exp(i\T exp(—iAT) o
W(r) :=det (i)\exp(l)n') —idexp(—iAt) ) 2.

Using initial conditions (1.2)—(1.3), we have

Lexp(iX(T —t)) —exp(iX(t— 7))
—21

c(t,n)=c1 exp(i/\t)+02exp(fi)\t)+/ A(r,n)dr,
0

where
1 i 1 i,
= gc(n) 53¢ (n '(n), c3= ic(n) + TG (n).
Moreover, all series involved converge absolutely and uniformly under condition (2.3).

This completes the proof. ]

In the following lemma, we further present forms clearer than (2.4) for the Fourier
coefficients c¢(t,n) associated with the ansatz (2.1).

LEMMA 2.2.  Let ¢(t,n) be the Fourier coefficients associated with the ansatz (2.1).
Then for n,m eZ”, one has the following integral equations

c(t,m)= %c(n) (exp (itA) +exp (—itA)) — ic (n) (exp (itA) —exp (—itA))

fifot (exp(i(T—t)A) —exp (i(t = 7)) D ez (M-w) (n-w)c(t,m)c(t,n —m)dr, (2.6)

where A= ((n-w)? +(n-w)h)2 with w eR”.
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Proof. The key of the proof is to give the expression of A(t,n) in (2.2). Observe
that

(uQ)M =2(Ug Uy + Ugr ).

Moreover, it follows from (2.1) that

Uy = Zc(t,n)(in ‘w)exp(izn - w),

n

and

Ugy = Zc(t,n)(in -w)?exp(izn-w)=— Zc(t,n)(n -w)?exp(izn - w).

n

Hence,
Ugtiz =YY ((m-w)?—(m-w)(n w))c(t,m)c(t,n —m)exp(izn w),

Ugy U= Z Z —(m-w)?c(t,m)c(t,n —m)exp(irn w).
n m
Consequently, we get

(U)o = QZZ —(m-w)(n-w)c(t,m)c(t,n —m)exp(izn-w).

n m

This shows that

A(t,n)==2) (m-w)(n-w)c(t,m)c(t,n—m).

m

The proof is completed. 0

By Lemma 2.2, we can obtain the integral Equation (2.6). In order to prove the
existence and uniqueness of solutions for Equation (2.6), we will construct the Picard
iteration sequence for ¢(¢,n). Moreover we have to assume that the Fourier coefficients
c(n),cd’ (n) associated with initial data (1.2)—(1.3) have exponential decay. Namely, there
exist two constants B >0, 0 <k <1 such that for all n€Z",

et < Besp (- “51), 1)< pesp (-5 (2.7

with we€R”. Thus we have to start the iteration from an exponentially decaying col-
lection of Fourier coefficients and keep this property in check.
Let A=((n-w)2+ (n-w)*)2. Construct a sequence {c(t,n)}, k>0 as follows:

co(t,m) :%c(n) (exp (itA) +exp (—itA)) — %c’(n) (exp (itA) —exp (—itA)), (2.8)
and for k=1,2,---,

I
N
o |
20
S
N~—
|
I\D‘ —
>
S
SN—
~_
—
m._..
S
|
@
L
=
>
S~—
|
5
€

ck(t,n)
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./0 (eit’\—e_it)‘) Z Cr—1(T,m1)cp—1(T,m2)dr. (2.9)

my,mo €LY
mi+mao=n

For some constant to >0, we will show inductively that the functions ¢ (t,n) are
well-defined and continuous with respect to ¢ €[0,%p). On the other hand, we need to
prove that the sequence {ci(t,n)} converges absolutely and uniformly on the interval
0<t<ty. However it is very difficult to prove the absolute and uniform convergence of
the sequence {cx(t,m)}. Through the observation of ¢x(t,n), we find that it has 6 terms
for k=1, 38 terms for k=2, 1446 terms for k=3. In fact, let Ng=2 and Ny =2+ N?Z_,
for all k> 1. It follows from (2.9) that Ny stands for the number of the terms appearing
in ¢y, from which one can see that there are infinite number of terms as k tends to oc.

As a result, we intend to represent ¢ (t,m). By virtue of the summation in (2.9), we
first label these terms of the iterative equation via points on a tree. The branches
of the tree originate from points on the lattice Z” and split under the condition
mq +mo = constant. Our next goal is to introduce the branches « by induction, and
then attach an appropriate lattice Z” to each branch for keeping the terms of the iter-
ative equation. Finally, we define some weights which enable us to develop estimation
techniques for iterative equations. Although the definition of these objects seems to be
quite complicated, it is naturally generated by the induction of the number of iterations
of the equation.

Now let us introduce some definitions. Denote by “x” the cartesian product. We
set

" ={0,1},
7P =70 g x 9 ={0,1}U{(0,0),(0,1),(1,0),(1,1)}
:{0717(050)’(0’1)’(170)7(171)}5

W =gV gty g*-D  E=34,..., (2.10)
and
/g ify=0o0r 1€ 2®,
7" X LY if y€ 2@ ,4=(0,0) or (0,1) or
o) = (1,0) or (1,1), (2.11)
gm(k—l,'vgk*l)) « 9tk — Lg ) ifye g™ k>3,

k— k— — _
y=(F AT et x g,

For m®) e m*7) | we further define

c(m) if y=0€ 2™ m® =mem*7),
c(m) if y=1€ 2™ m® =mem*7),
c(my)e(ms) if v=(0,0)€ 2 ,m® = (m1,m>) €M),
c(ma)c' (ms) if v=(0,1) €2, m® = (m1,m2) e M7,
e(m®) = { ¢ (m1)e(my) if 7=(1,0)€ 7, m® = (m1,m3z) €M,

¢ (m1) (ms) i 7=(L D€ S, = ma) €,
e(mi*)e(my" V) it m® em N k>3,

~= (,ng ) ,y(k—l))e@(kfl)X9<k71)7m<k)

= (m* ) m )Gim(k‘l’”’gkfl))xim““ L)

(2.12)



and

where

I
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1 if y=0o0r 1€ 2M m® em®7),
7iu(m(2>)-w : 7(2) —
W TTTERCIE if ye2'*,v=(0,0) or (0,1)

or (1,0) or (1,1),m® e M7,
—i (k)y. — — . _ _
pm e p(m V) fmS ) it ye 90y = (Y A8TY)

24/ 1+ (p(m(R)).w)2
€%V x 9=V k>3
m® = (m" Y mg)
emE—1" ) 18T
(2.13)
(m):ij, m=(mq,---,my), m;€EZ™ n, NeN,. (2.14)
j

Moreover, for t >0, we also define

I(t,m™)=

1 . 1 .
2xp (it ) + 3 exp (—itA,,,x))
ify=0e 9™, m® em®),

—i i
_ -t it _
P exp (itA,,, (0 ) + X

miF

if y=1€ 2™, m™ eam®*,

exp (—itA,,, )

1 explr =0 ) —exp(t =) )

(exp (iTAm, ) +exp (—iTAm, ) (€xp (iT Amy ) +€xXp (—iT A, ) )dT
if v€ 2@ ,v=(0,0), m® = (mi,ms) e M7,

/0 (exp (7 — ) Ari) — exp ((t—T)A,c2))

(exp (iTAm, ) +exp (—iTAm, ) (exp (iT Amy ) +€xXp (—iTAm, ) )dT
if ye 2@ ,v=(0,1), m® = (m1,m2) € 9)2(2‘7),
—i

o | Pl ) —exp (=) )

(exp (iTAm, ) +exp (—iTAm, ) (€xp (iT Amy ) +€xXp (—iT A, ) )dT
if y€ 2@ ,y=(1,0), m® = (mi,m2) eM>?,

—i

Domy

T | @l =0 —exp((t =)0
(exp (iTAm, ) +exp (—iTAm, ) (€xp (iT Amy ) +€xXp (—iT A, ) )dT

ifye 9@)77: (171)7 m<2) = (mlva) € m(l‘r)v
t
/ (exp (i(T — ) Ay 00) —exp (i(t = T)A 0 NI (1,m ™) < I(r,m V) dr
0
if ye 7™ k>3,y=(F V48 ) e g* D gt

_ _ (k—1) (k—1)
m(k):(mgk 1),m<2k 1))€m(k—1,71 ) s oppk=172 )7

(2.15)
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where

At = ((n(m™)-w)? + (u (m(k)) @), A = (((m®)-w)* + (n(m®)-w)*) 2,

Ay = (M- w)?+ (my - w)*) 7, = ((m2-w)?*+(my-w)*)7.

The following lemma addresses that cg(t,m) can be expressed by the functions
eEMN (MR, FEN) (mE)) and 157 (t,m*)) defined above.

LEMMA 2.3.  For k=1,2,---, the function cx_1(t,n) defined in (2.8)~(2.9) is the k-th
term of the sequence {dy(t,n)}, that is,

S € m) ) )1 (m®) = e (k). (2.16)

NYED(K) 1 (k) com (k)
u(mF))=n

Proof. In view of definitions (2.8)—(2.9) and (2.10)—(2.15), we will prove the lemma
by an inductive argument.
For k=1, it follows that for n € Z",

_ Z Z 6(1"")(m(l))f(l’w(m(l))](l"\’)(t,m(l))

DM (1) com (1)
n(m)=n

_ Z 6(1’0)(m(1))f(1’0)(m(l))l(l’o) (t,m(l))

u(mM)=n

+ Z Q(I’D(m(l))f(l‘l)(mu))l(l’l)(mm(l))

u(m)=n
:%c(n) (exp (itX) +exp (—itX)) — ﬁc '(n) (exp (it\) —exp (—itA))
=co(t,n). (2.17)

Tt is clear that (2.16) holds for k=1.
Suppose that (2.16) could hold for k=¢, with /€N and £>2. For k=/¢+1, one has

desa(t,n) = Z Z @(Z+1,7)(m(4+1))f(2+1,7) (m(f+1))](€+1n) (t,m(e_H))

~eDUHL) 1y (€41) con (£+1,7)
p(mE+))=n

— Z Z ¢ty (m(é-&-l))f(é-&-l,’v) (m(€+1))[(z+1,7) (t,'m,(“'l))

~EDMD) py (441) cop (€+1,7)
w(m (D))=

+ Z Z €(€+1,7) (m(f-&-l))f(ﬁ-&-l,'v) (m(é-&-l))[(l’.-&-lfy) (t,m(“'l))

YD) x D) (6+1) c o (£41,7)
u(mUE+))=n

_ Z Z 6(1’7)(m(l))f(l’w(m(l))](l’w(t m(l))
DM (1) com (1,7)
n(m)=n

t

n-w (exp (i(r —£)A) —exp (i(t—T)\)

72 1+ (n-w)? Jo

> ( > Y e m) 5“>I“+1”5“>(r,m§”>>

;Mg €LY O] 13 (0)
i imamn 1 €2 ) et
(f))

p(my’)=my
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® ® ©
. ( Z Z ¢s )(mgf))f(ﬁrlrrz )(méf))j(“l,‘vz )(T’mél))) dr
¥57 €2 (0 n(en§?)

p(m)=m,

1 . . 1, . .
:gc(n) (exp (itA) +exp (—itA)) — ¢ (n) (exp (itX) —exp (—itX)) — m

/0 (exp(i(T —t)A\) —exp (i(t —7)N))- Z de(Tyma)de(T,m2)dT
Bt

=c(t,n), mezZ’. (2.18)

in-w

This completes the proof of Lemma 2.3. O

By Lemma 2.3, if we want to prove the absolute and uniform convergence of the
sequence {cx(t,m)}, we just need to consider the absolute and uniform convergence
of the sequence {dj(t,n)} given by (2.16). Equivalently, we may verify that the series
> e (dg41(t,m) —di(t,m)) converges absolutely and uniformly on the interval ¢ € [0, ).
For this, we have to give the upper bounds on |dg11(t,n) —dg(t,n)|,k €N,.

The term |dg(¢t,m)| will be bounded from above in the following corollary.

COROLLARY 2.1. Let B>0, 0<k<1 be two constants and weR”. If 0<t<
323(:8)”\«4’ then
i (t.m)| <2Bexp(~17),
Proof. The proof will be divided into the following three steps.

Step 1: Formula (2.16) shows that dy,(t,m) consists of the functions €*) (m(¥)),
FEN (M) and 1*Y) (t,m*). Thus we must introduce the following functions for

estimating the above-mentioned functions.
Let us define

1 if’yzOorlG_@(k),
2 if ye 2@ 4 =(0,0) or (0,1) or (1,0) or (1,1),
o(v)= (k—1) (k—1)y - ) (2.19)
o(viv )tolyy ) fyeP k23,
=T ) e g,
0 if y=0or 1€ 2™,
o) 1 if ye 2 ,4=(0,0) or (0,1) or (1,0) or (1,1), (2.20)
v)= :
AT e T+ iy e 2™ k23,
=) e 2" g,
m ify=0o0r 1€ 2™ m® =mez”,
g
|ma |+ |ma| if ye 2@ 4 =(0,0) or (0,1) or (1,0) or (1,1),
m® = (m1,my),
m® = m{ [+ m Y] ity e 2™ k>3, (2.21)

=) e 2" x g,
k—1 k—1
m® = (m{""V m{Y)

—1

(k=1))
b

et ) L o198
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1 it m® em®™? y=0or 1€ 2",
lu(m?] if k=2,m® em*Y 4@,
()R RmEY) i mS emED k> 3y = (3",

’Yék 1)) E_@(k 1) % _@(k 1)7
. k— k—
W= (i m )

P(m®) = (2.22)

m

cm—1 ) o gpe-1a5 )

1 if y=0 or 1e9®
F(v) = v=(0,0) or (0,1) or (1,0) or (1,1)€ 2™, (2.23)
(NFERFOETY) k23 =" AT €T x Y,
In the following lemma, we will give the upper bounds on the functions ¢*-7) (m(k)),
LEMMA 2.4. Let m®) e m*Y) . One has

0
(k)

e(m )| < B exp(~ 17
(1)
|f(mM)|=1 ifv=0 or 1€ 2W mM com),
Fm®)| < fw|u(m )| if 7€ 2% .7=(0,0) or (0.1) or (1,0)

or (1,1),m® e m7),

|f(m®))|=1 ifvy=0 or1€2W k>3 m* com),
£ < || D P(m ) iFy=m" A ) eg® U x g,

k>3m® em®),
(III) Assume that w is Diophantine, that is
|n-w|>0n|7°, VYnezZ’\{0}.

Under the condition of u(m™))=mn, we have

[1(t,mM)[ <1 ifye 2W x=0,mM cmtv),

1t m D)<~ |nf? if e 2D y=1,mM e,

| 1(t.m®)| <2t if y€ 2,y =(0,0,m® = (my,m,) e M),
1(t.m®)[<2t-67 n|? ifve2®,v=(0,1),m® :(ml,m2>esm<2ﬂ>7
1(t,m®)[<2t-07 " n|’ if v€ 7™,y =(1,0),m® = (mi,m,) €M7,
|1(t,m®))[ <2t (07" n|’)? if y€ 7@,y =(1,1),m® = (m1,m,) e M7,
1(t,;m™)| <1 if y=0€ 2" k>34 =0,m®* emt),
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11(t,m ™) <67 n)’ ify=1€2® k>3 ~=1m®" ek,
(Qt)e(’Y)

3@) (9—1|n|6)0('y) if’Y: (’ygkfl)f‘/ékfl)) c @(k—l) « @(k—l)7

|1(t,m™)| <
k>3,m®) emb),

Proof.
(I) The proof is based on (2.10)—(2.12), (2.19), (2.21) and the decay assumption
(2.7). Let us consider the following three cases.

Case 1: k=1. For m(Y) =m e MY it follows that

(€(m )| =[e(m)] < Besp(-"7) ify=0e 50,

i

e(m )= (m)] < Besp(~ 1) ity =160,

Case 2: k=2. If m(® = (mq,ms) €M 4y=0 or 1€ 2®, we have the same
estimations as the case k=1. Moreover,

|¢<m<2>>|:|c<m1>||c<m2>|gBeXM_@)BeXP(_@)
SBQexp(—H'mT(Q)') if v=(0,0)e 2,
IC(m‘”)I=Ic<m1>llc’(mz)|SBeXp<—@)Bexp(—M)
§B2exp(—M) if y=(0,1)e2?,
|€(m(2))|:|C/(m1)||c(m2)|SBGXP(_@)BGJXP(—M)
§B2exp(—”|mT(2)|) if v=(1,0)e 2¥,
K[ma|

[€m®) | =[¢ (m)[|¢ (ma)| < Bexp(—1T]) Blufexp(~ 2]

2
f'"‘()') if v=(1,1) e 2.

<Bexp(

Case 3: k>3. If y=0 or 1 or (0,0) or (0,1) or (1,0) or (1,1)€ 2™, the up-

per bounds of |¢(m®))| are the same as the case k=2. Let 7:(7§k‘1),~y§k‘1))e

2F=1 5 =1 mk) = (mgk_l),m;k_l)) e =191 ) ook —145 "), By a induc-
tive argument, we conclude

e(m®)| =[emP )| |e(ms )]

(k=1) m|m(k71)| (k=1) n\m(k71)|
< B (- MM e (M2,
- B (k—1) (k—1)

_ gotr )ttt 1))exp(_fi(|m1 |+ |my |))

2
,{‘m(k)|

— Bg(v) exp( .
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(IT) The terms |f(m®))| can be bounded from above by (2.13)-(2.14), (2.20) and
(2.22). We consider the following three cases.

Case 1': k=1. It is clear that
lfmM) =1 it m® em) y=0or 1€ 2V

Case 2: k=2. For m® e M) y=0 or 1€ 2(?), one has |f(m?)|=1. More-
over, if m® € M) ~=(0,0) or (0,1) or (1,0) or (1,1) € 2, then

in(m®) - w

<lip(m®) -w| < |w m®)].
S | < lm )l < nm )

£ m®)]=| -

Case 3: k>3. For v=0 or 1 or (0,0) or (0,1) or (1,0) or (1,1)€ 2 we can
obtain the same estimations as the case k=2.

For P Y= ( (kfl) ékfl )E gk=1) « @(k—l) m*) = (mgkil),mékfl)) c
k=18 (k=145 Y) by induction, we have

[Fm®)]| < wllp(m®)]1f (m{" )] £(my™)]
< ool () oo P ()] O (mf )
= |w|€(’7)q3(m )

(ITT) We apply (2.15), (2.20) and (2.23) to estimate the upper bound of |I(t,m*))|.
The following cases can be considered.

Case 1”: k=1. Obviously, it follows that

(8, mD)] < %(|1|+|1|): if m® MmN y—0e 2™,
1 Ji[ (1L + 1)

|I(t7m(1))‘§7 <
2| ((n-w)2+(n-w)d) In- w|\/m

<O|n|? if m(l)eim(l"’),'yzle.@(l).

Case 2': k=2. If y=0 or 1€ 2®, then we can get the same estimations as the
case k=1. Moreover,

1 t
Iem®)| <] [ lpl2ir =2 it 7=(0.0)€ 9
0

@) 0~ nl® [ —1 0 @)
[I(t,m )|<T [2]12]|2]d7|=2t-07 n]° ify=(0,1)e2
0

9—1|n‘6

t
1(t,m®)| < /I2H2ll2ldf=2t-9‘1|n|5 if v=(1,0)€ 2,
0

(971‘n|5 2

t
[1(tm )| < Z— )/Wwwmwzmxwﬂm%Qﬁvzum69@
0

Case 8": k>3. For y=0 or 1 or (0,0) or (0,1) or (1,0) or (1,1)€ 2, the same

estimations can be shown as the case k=2. If 7:(7?[]671)7'7;]671)) e 9k—1) x gk—1),
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) — (D mff ) -1

that

) XE)J?(’“_L'Y;IC_D), an inductive argument yields

t
I(t,m®)] <2 / I(rm D) [ 1(r,m ) dr

<2 F@n) O (0 () P70 (20) 08T (0 u(m )P
.
= k—1 k—1
0 Fi ) S{CEa
t 0 Ek—l) ’ ;)«—1)
:26(7§k_1))+€(7§’“_”)+1/ - (v(lcfl)) - (v(kq)) dT-(9_1\n|6)01(Wik_l))wz(vik_l))
0 3(vi )M )
¢
_ (2t) o) (071|n‘6)0(7).
3(7)
The proof is now completed. O

Step 2: Our next goal is to establish an estimation of the sums involving the
functions €*Y) (m*)) | fEN) (m*)) and 1657 (¢, m*). The main difficulty comes from
the complicated combinatorics of the summation process. To overcome this difficulty,
we “change variables” in the summations. Now we need to define the following set and
isomorphic mapping.

Denote by
Z if y=0o0r 1€ 2",
ZXZ if ye2® ,v=(0,0)
B (k) — or (0,1) or (1,0) or (1,1),

(k—1) (k1)

Bl ) gkl if ye 2™ k>3,

ke k— - -
=Ty ) e gt g,

DEFINITION 2.1.  Define inductively the isomorphism cpgk) k) HH‘;L'{) Zv by

m ifvy=0 or1e2®,
m®) =m ez’ =m*),
(m17m2) ka:2a7:(070) or (Ovl)

or (1,0) or (1,1) e 22,

m® = (my,my) €M),

k—1 k—1 k—1 k—1 . k-1 k—1
(o md )l (md )i k=3 =" A Y)

eT(k=1) 5y phe=1),
m® = (m{ mi ) e

on(k=18" 1) o omk—148Y)

AP (mh) =
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Moreover we also define inductively the isomorphism qﬁ(k) 95 (k) —)H Z by

@ ify=0or 1€ 2%,
a®) =aqez=5F7
(()(1,0[2) ka:277:(070) or (071)
or (1,0) or (1,1)e 2®,
(2 = (2,7
o0 (a®) = o' =(ag,09) €87,

(as“ik 1 (ol 1>¢<’ik D (@) i k>3,a® e Bt y= (4D,
,ng 1))69(1@71&_@(%1)’

a® = (al (k—1) a(2k—1))

(k— 1)) (k— 1))

E%(k 1'71 %(k 17')’2

Remark that these isomorphisms defined above induce an ordering of the components
of the corresponding vectors. More precisely, for 1<i<o(7), we denote the i-th com-

ponent of Lp(k)( (k) € ng) Z¥ by (m®);, where

(m®);=(m{* "), if1<i<o(Y)
(m®)

)

croytty = (mE) i 1<i<o(g ).

By Definition 2.1, we need to introduce the following sets

TEN =L aez’™:> aj=1,0;>03, (2.24)
J
and
{0ez} if y=0o0r 1€ 2™,
{(a1,00) €Z% a1 +ap=1,0; >0} if y€ 2® ~=(0,0) or (0,1)
oY) — or (1,0) or (1,1),

(k— 1))

GO g G L gk iy e 9®) >3y = (4,

'yék_l)) c 91 y gk=1),
(2.25)

Because of Lemma 2.4, the terms |f(m®))| can be bounded from above by (m*)).
The following lemma addresses that the functions P(m®*)) can be estimated by the
“new variables” a;’s.

LEMMA 2.5. Forve2®), m® e mEY) | one has

P(m®W) < > [T1em®)ae. (2.26)

a=(ai)1<i<o(r) €L T 1

Proof.  The statement follows from (2.19), (2.22) and (2.24)—(2.25). We need to
consider the following three cases.
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Case 1: k=1. For mM e M) ~v=00or 1€ 2 one has P(m™)) =1. Moreover,
in the right-hand side of (2.26), we have

> M= 3 [im®

a=(a)1<i<o(y) €L ) 0 a=(a;)1<i<1€{0€Z} 1

_H| (k)

Case 2: k=2. In the left-hand side of (2.26), we can obtain

P(m?)= > [[Im®) =1 it m® e MM y=00r 1€ 2?

a=(a;)i1<i<1€{0€Z} 1
m(m(z)) =|mi+mg| < |my|+|meo| if m® e m7),
=(0,0) or (0,1) or (1,0) or (1,1)e 2

On the other hand, it follows that

DR | (CIONCE ) [[im®

a=(0;)1<i<o(y) EL ) i {(a1,2)€Z%: 01+ =1,; >0} @

- 2 [T1m ),
a:(ai)1§1¥§2€{(170)7(0a1)} i
=|(m® )1 (M@)o +[(m®),*](m®)),]!

=[my|+|mal.

Case 3: k>3. In the left-hand side of (2.26), it is clear that

P(m*)) = Z H‘(m(k))i|0:1 ify=0or1eg®
a=(a;)1<i<1€{0€Z} i
&p(m(k)):|m1+m2|§\m1\+\m2‘: Z H‘(m(k)

a=(a;)1<i<2€{(1,0),(0,1)} ¢

if v=(0,0) or (0,1) or (1,0) or (1,1) e 2"

Suppose that (2.26) could hold for any ~'€2®*) with k <k. Let
y= ('ygk 1), ék_l)) e 21 x k=1 mE) cm*Y) and m*) = (mgk_l),mgk_l)) €
=175 7) o E=195 ) Then it follows from the above assumption, the definition
of P(m*)), o7 *7) (recall (2.22) and (2.25)) and Definition 2.1 that

o) o(vs" ) 2
k-1
P(m*) = z; (m®); + z; (m(k))i+a(7§’“_”) ng(m( )
i= = =
. ot :
k—1 k-1 ket
= (m{ )+ 3 ST [ Bm )
i=1 =1 j=1
2 o(v ™) 2
k—1 k-1
=2 X o TR )
j=1 =1 Jj=1
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(k=1)
2 o(v; )
S Dol DRSS b1 D SN | (CT RN
j=1 =1 j= ajeﬂ(" LAy
= 2 [[Im®)
o=(ai)1<i<o(y) € F) i
(k=1)
where o; = (aq,j,00,, - YO (=) j) €.o/*=17" ). This ends the proof of the lemma.
d
In the following lemma, we evaluate the sums involving the functions %(m(k)) and
O] .. . . .

exp( —%) As aresult, we can give an estimation of the sums involving the functions

cEY) (mk)) and fE) (M),
LEMMA 2.6. Denote by a!l:= Ha] One has that for any 0 <k <1,

(1)
K|m ™| ) < (2o
> exp(———5—)P(m™) < (—)"7 > [[es!  (227)

m (&) e k) K a=(0) 121200y €LST 0
(II)
K|m*)| 48 i K
> e ®) < (ByrorepEmy Y e
et o= (o)s i €27
(2.28)
Proof.
(I) Tt follows from Lemma 2.5 that
(k)
Klm
> ey (m®)
mk) em(k,v)
(k)
K|m
< Y et S Tim®
m k) e (k,v) a:(ai)(f(‘”eﬂ(k*'f) i
k| (m®),|
S S m®) e,
a=(:))] M et (MmE) )1 <i<o@y Mt i
Alm®)] o
4, )™ K| (m*),]
- ¥ RN | (1 e e AR LD

=(a; )T("’)EQK(’C Y (Mm*))i)1<icoy) €MEM i

Z 'H ) exp( *\ k))i‘)eXp(_#)

M

a=(a:)] Vet (mEF)i)i1cicomeMmbm i
4
< (A *)
< «a (n) E I IeXP (m™)i))
a:(az){'( V) of (k) (MU)))1<i<oy) €MEY) 0
4
_ 1Ay _E m )
ar(h) > [Tesp(-1m®).)

a=(a;)] " e b (M) 1, (m®) y))ELY X LY X - XLV 1
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()
> el ( > exp(—j|m|>>
mezv

a:(ai);’("’)eq{(’mw)

()
- Y a!(j‘;)'“'(Zexp(—ij)

a=(a;)]" ear kM meZ

o(v)v
3 a!(%)lal <1+2 3 exp(—gm)

a:(ai)i‘(v)ed(k)‘y) meN,

5) a(y)v
- Z |°'| (1+2 4 )
1—exp(—%)

a:(ai)i(‘y)ed(k’v'ﬁ

- Z a!(%)lal (leXQp(Z))U('Y)u

a=(a;)] " et k)

< Z a!(4)|a|(24)0(7)v

K K
a=(a;)] M e )

24 ()
< Z (H)\aH()

a—(a-)fl’("’)eg{(kw)

_(2:)0(7) Z Ho‘i!'

a:(ai)f(v)ezi('v) %

(I1) Let u(m®*)=mn. Observe that |m*)|>|n|. Then combining this with (2.27)
gives that

Iim(k) K K
> eI pm®) < Y e m® ) pm®)exp(~E )

m (k) con(k,y) m (k) eom (k)

p(m®))=n pw(m®))=n
48\ o (v |
()7 exp(= i) ) [Jout
a= (041)1<L<o(-1)620(7) i
Thus we arrive at the conclusion of the lemma. 0

It remains to estimate the upper bounds of the terms |I(t,m®))|. In view of Lemma

2.4, |I(t,m™)| can be bounded from above by (2{;2:;)

ey
provide an estimation of the terms (2; " and [[;!. In fact, this gives an ideal
estimation for the total sum of these terms when ¢ belongs to a given interval.

LEMMA 2.7. If0<t<1/16, then

2(v)
> %()7) > [eit<2. (2.29)

~eP*) a=(ai)i<ico(y) €L B i

In the next lemma, we will

Proof.  The proof is based on formulae (2.19)—(2.20) and (2.23)-(2.25). Let us
consider the following three cases.
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Case 1: k=1. Since y=0 or 1€ 2 we obtain
(v)=0, F(v)=1, "7V ={oez}.
Therefore,
(2t)°
> - > [Jor=1<2. (2.30)
~yez ) a=(a;)1<i<o(~)E{0EL}

Case 2: k=2. If y=0 or 1€ 2, then the same estimation can be obtained as
the case k=1. For v=(0,0) or (0,1) or (1,0) or (1,1)€ 2®, we can carry out

5(7):1’ 3(7):17 d(2’7):{(170)7(051)ez2}'

Hence,

2t)*
>y @ 3 Toi =2

~ePD\ 9™ a=(i)12ico(y) €{(1,0),(0,1)€22} i

This implies that

D S | O

€re ) oa=(ai)i1<i<o() €A 2 i

- z 3 > 1~

€2\ 2M) a=(ai)i1<i<o(y)€{(1,0),(0,1)€Z2} @
> [0
ye2 M) a=(a;)1<i<o(~)E{0EZ}
<14+2t<2.

Case 3: k>3. If y=0 or 1 or (0,0) or (0,1) or (1,0) or (1,1)€ 2 we can derive
the same estimation as the case k=2.
Moreover, for any =, it is evident that o(vy)=4£(y)+1. We arrive at

k— k— B 3 - B
Z é('}'go 1))+0(7§0 1)) _ f(’)’gk 1))_1_0_(’75’6 1))+£(7ék 1))_'_0_(’75}C 1)) .,
Ol ) B/ O S R (A () 41

for any ,,7,.
Let us consider v = (v, (k= ”,75’“ 1)) € 2%=1) x 9(k=1) " A5 a consequence,

(2t)¢) s |
2 §(v) 2 1l

~ez®\ 91) acgo (k) =1

2t (20)/5" )
= Z ) (k—1) H &1
E(’Yl ) +L4(7v3 )+ 2 3( )

,Y:(,ngfl)ryék*l))e_@(k—l)X_@(k—l) J 1,

()
> o

(k— E—1) (k-1
a:(a(l)ya(z))+5’a(j)eg{(kfl,wj ﬁ ek (.Y( ), ( )yy =
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2t
< > =y - >

k1
wz(wikfl),vék”))e%k—l)x@(k—l)E(’Vl Ny ) +1 (k0

a e

=1,2
o(~F=1) o(~ k=D
('rJ ) (o) Z(’y;k D) * ) .
Z Z H (k ) H ()i 4681600550 )!
Jjo=1,2 ip=1 j=1,2 S ) i=1
2t
- > —D) —D) >
y=(¢ T AFT N eg k- x g k-1 46 )+€(’72 )+1a(1)€d(k A TP
O 1)) ali), (26)£" my o) ()
>, > (ot )HW [T (@)
Jjo=1,2 ip=1 j=1,2 3( ) =1
2t
- 2. =) 1) >
7:(7(1k71),7ék71))€@(k71)x@(k—l) E(’Yl )+€(’72 )+1a(j)egf(kfl’“’ﬁkil))ajilﬂ
(k— 1)) U('ij 1))

(k—1) (k—1) (2t)s Gy
Z (U(v;y Dtolv, ) H H ((a?))!

(k—1
Jjo=1,2 j=1,2 3(’)’]‘ )) i=1
=4 > >

=TV AT ek x 9 -1
(k=1
(2t )Z(’y(k nyoly; )

11 [T (@

iz S S

=12

o(vy* )

o+ D) ,
SIS S I e

=12 S(’YJ’ ) 7;,’“1)6@(1%1) (k=1)y

<4t-2-2=16t.

a@ e 175

Combining above estimate with (2.30) yields that

2t)¢) 24)¢(7)
= EENED SRR | CXE DI~ D DU | O
ve2*) a=(ai)1<i<o () €L *) ve2® a=(qi)1<i<o(v) €S/ *Y
2t)£(v)
oy B Y
~ED®\ P a=(0ts)1<i< o (o) EF BT

<1416t <2.
Hence we complete the proof of Lemma 2.7. 0

COROLLARY 2.2. If0<t< then

v
32B(24)" [w]’

k|lm(*) w2t
atmic Y Y B Oep(- T gm0 WY (g1 g <0

2
YED ) (k) com (k) 8’(7)
n(m®))=n

for some constant B> 0.
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Proof.  In the proof, we will apply the identity o(v)=£4(v)+1. By virtue of
formulae (2.27) and (2.29), we derive

|di(t,m)| = Z Z cEN (M) fE) (Y TR (1 m ()

YED(K) 1 (k) com (ksY)
u(mF))=n

< > > 1EEm®) fEN mE) 1D (1 m ™))

YED ) 1y (B) com (k)
p(mF))=n

< Z Z B exp(_“hz(k”)m(m(k))(?zi(;)(e1|n|5)"(7)

YED ) 1y (k) com (kyy)
p(m*))=n

<2B.
Thus this ends the proof. 0
Step 3: For 0<t< WLW, it follows from (2.28), Lemma 2.7 and Corollary
2.2 that
(e < 2Besp(~17),
Hence we have completed the proof of Corollary 2.1. 0

3. Existence and uniqueness of the Fourier coefficients

This section is devoted to showing the existence and uniqueness of the Fourier
coefficients c¢(¢,n) associated with the ansatz (2.1). In Section 2, by the Picard succes-
sive approximation method, we have constructed the corresponding iteration sequence
{ck(t,m)},k >0 defined by (2.8)—(2.9). What we need to do next is the convergence
analysis of this Picard sequence. To this end, we need to consider two problems. One is
to give the upper bounds of |d41(t,n) —di(t,n)|. The other is to prove that the infinite
series Y r° | (d41(t,m) —di(t,m)) converges absolutely and uniformly.

We first introduce the following sets

M= aeZ":> a;=1,0;>0,
J

and

B(k) {(Oél,OLQ)GZQ:Oé1+O[2:1, OéjZO}, kil,
| B* U x{0ez}+1P), k>2.

Notice that for any a€B*),

acRM N 0=k (3.1)
J

COROLLARY 3.1. If0<t< then

BRI

i1 (t,1) — di ()| < B (36)(96)" (5 |w]t)* exp(— |m]) —+0
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as k tends to oco.

Proof. The proof will be divided into the following four steps.

Step 1: We first show that the terms |dg41(¢,) —di(t,m)| can be bounded from
above by the variables m;.

LEMMA 3.1. For0<t< one has

kY
32B(48)" |w]’

22kBk+1 wlt k
|dit1(t,m) —di(t,n)] < % Z Z

m=(my, myyq)ezFHDY acB(k)
Z]. m;=n

IZI‘mj\O‘j exp(*z|mj|). (3.2)

Proof.  According to Corollary 2.1 and (2.17)—(2.18), we will prove the lemma by
induction.
For k=1, we derive

|da(t,m) —da(t,n)| < \TLHWI/0 Yo ldi(rma)lldi(r,ms)|dr

my,moELY
mi+me=n

sl +ma )
<aBl 3 Y mylep(- T,
J

my,mo €LY
mi+meo=n

Hence (3.2) holds for k=1.
Suppose that (3.2) could hold for any 1 <k’ <k—1 with k> 2. Note that

|dk+1 (t,’l’l) —dy, (t7n)|

t
g|n|\w\/0 > Jdk(ryma)di(1,m) — di—y (T,ma )di 1 (T,me) |dT

mi,mo €LY
mi+meos=n

t
Slnl\w\/o Yo ldk(rma) = dii(r,ma) || di(r,ma) dr

my,mog €LY
mi+mo=n

t
Shalll [ 30 Jdu(rama) —dics (rama)lldes (roma )
mq,mg €LY

mi+meo=n

Using the inductive assumption yields

t
Inllwl/ Yo lde(rn) = dioi (r,ma)||di (T, mz) |dr

ny,ng €LY
ni+ng=n

t 92(k=1) Bk (| [ 7)F—1
<l [ 2 e > )

ny,mg €LY m=(myq,---,my)erkv
nit+ns=n

> jmi=mn1

- > TTImsl® exp(=lmy ) (2Bexp(~Inal))dr

acB(k—=1) J
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2(2k—1)Bk+1(|w|t)k o P
< i > > IImsl 7 exp(— 7 [my]).

m:(ml,...,karl)ez(k-*—l)V acBkk J
jmi=n

Similarly, we conclude

t
|n|\w|/ > Jdr(r,n2) = di1(1,n2)||dk—1 (T,m1)|dT
0

ny,ng €LY
ni+n=n

9(2k=1) BR+1 (| ) N .
< 5 > > TTimsl T exp(—[my]).

m=(my, myyq)ez(ktv a€B®) j
>, mi=n

Thus we can get (3.2). The proof of the lemma is now completed. |

Step 2:  The next goal is to give the upper bounds of |dy1(¢t,n)—dg(t,n)| with
respect to the new variables «;.

COROLLARY 3.2. For0<t< one has

__ kY
32B(48)" |w]’

BFH14F(96)7% (k77 |wt)* K
i ()~ dy(1,m)] < O A By 37 [t (39
) acBk) j

Proof. Due to Lemma 3.1, we have
‘dk-‘rl(tvn) _dk(t’n”

22kBk+1(|w‘t)k ‘ K
S anCUEES > [limy i esp(~5m,)
m:(ml,«-«,mk+1)EZ(k+1)V acBk) j

ijj:'n.

22k BEFL(|w|t)* K o K
I )Y > TLims I exp-Sim )

m=(my, my )zt a€B®) Jj
2 my=n

22k BEFL(|w|t)* K o K
St LD S S Tl imy o esxo(=5 m ).

m=(my, . mp )kt acBk) j
|m|>n

By the proving procedure of Lemma 2.6, combining this with (3.1) shows that (3.3)
holds. ]

Step 3: We further to estimate the sum 3, g [[; ;! in the right-hand side of
(3.3). For this, let us introduce some notation.
For any N,l, we define

An(l)= 0‘:(@1""704N)€ZN¢%207Z%:Z ;
j

Av(l—1)= az(oq,---,aN)EZN:ajZO,Zajzl—l
J
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Given a= (a1, --,ay) €ZY, denote by ¥ the following mapping

\Ij(a) = (1/)1(0‘)7 awN(a))v
where
. _ aj lfj#]l(a)v
%(a)_{%(a)1 if j=ji1(c).

Note that j; () is the subscript of the smallest component of ¥(a). Therefore ¥ maps
from Ay (1) into Ay (I —1). Moreover, set

Q(;V(l): {aGQlN(l):ajl(a) > 1},
A (1) = A (\Wi (1) = { €Ay (1) :0< () <1}

It is clear that ¥ is an injective mapping on A (1) and card(¥~1(3)) <N for any S.
Hence we have the following fact.
LEMMA 3.2.  For any I< N, one has
S [Jet<en
a=(ay,,an)eEAN() 1

Proof. It can be seen that

2. et= > et I o

a=(ay,,an)eAn () @ a=(a,,an)eAn () i#j1(a)
- b Wy (o) (@)~ D! T et
a:(al""’aN)EmN(l) i#jl(a)

= > %y (@) H@'(a

a=(a1,,an)eAn (1)

= Z ajl(a)Hgbi( '+ Z ajl(a H(bz

a2 (1) i ae (1)
= Y ap@]]ei@+ D J[ei
a2y (1) i acA (1) i
<t > IIs+~ > I8!
BeAN(I-1) 2 BeAN(1-1) ¢

<(I+N) > [t

a=(ar,..,an)eAn(-1) 1
By induction, we obtain that for [ < N,

> [[ei!<i-1+N) > I]e!

a=(ay,,an)eEAn(—1) @ a=(ay,,an)EAN(I—2) 1

<(I—14+N)(I—2+N) > IS

a=(ay,,an)€AN(-3) 1

A

<(I—=14+N)(I—24N)---(N+1) > [T
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<(l—14+N)(I—2+N)---(N+1)
<(2N)\ L,

This shows that

> [Teu! < t+N)@N)Y 1 < 2N

a=(ai,,an)EAN() 1

This ends the proof of the lemma. 0

Step 4: We are now turning to the proof of Corollary 3.1. It follows from Corollary
3.2 that

BFTIAF(96)R (k7 |w|t)* K
|di+1(t,m) —di(t,n)| < ( )k'< 1f) eXP(—§|nD Z H%’L
‘ acB®) j

Consequently, according to formula (3.1) and Lemma 3.2 with N=k+1, =k, we can
obtain

> JJest< > [[eu! <2V, (3.4)
) i

acBk) j a=(ay,,an)EAN (N
Moreover, using Stirling’s formulae

Kzkre ™, (k)7 (@N)F S (200",

one has
BFH14%(96)7F (k= |w]t)" K
|dk+1(t,m) —di(t,m)| < x eXP(*§|n|) Z Haj!
acB®) j
Bk+14k vk(, .—v t k
< (96)k' ("{ |w| ) exp(—g|n|)(2N)k
<B(8¢)"(96)"* (v~ |wlt)* exp(~ £ |n)).
Hence we complete the proof. 0

In view of Corollary 3.1, the infinite series Y p- | (dkt1(t,m) —di(t,n)) converges
absolutely and uniformly for any 0 <t < WM.

The following corollary will give uniqueness of the Fourier coefficients c¢(t,n) asso-
ciated with the ansatz (2.1). Suppose that there could be two solutions for the “good”
Boussinesq Equation (1.1) with quasi-periodic initial data (1.2)—(1.3). We will compare
the corresponding Fourier coefficients. For this, we need a priori exponential decay esti-
mate for the decay of the coefficients. This is why we invoke the estimation of the sums
of the “new variables” a;, which require exponential decay.

We assume that u, v could be two solutions for the “good” Boussinesq Equation
(1.1). Moreover suppose that u,v could have the following expansions

u(t,x)= Z c(t,n)exp(izn-w), ov(t,x)= Z h(t,n)exp(izn - w).

nezv nezr
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COROLLARY 3.3.  For some constant to >0, let ¢(t,n),h(t,n) be functions of t € [0,ty),
n ez’ satisfying that for C1,p>0,

le(t,n)| <Crexp(—p|n|), |h(t,n)|<Ciexp(—pln|) VneZ”,
and
c(n)=c(0,n)=h(0,n)=h(n), d(n)=c0,n)=hr(0,n)=h(n) VneZ’.

If we assume

c(t,n) :%c(n) (exp (itA) +exp (—itA)) — 50 '(n) (exp (itA) —exp (—it))

ﬁZ / (exp (i(r — 1)A) — exp i(t —7)A)

(im-w)e(r,m)c(r,n—m)dr, meZ’, (3.5)

h(t,n) :%h(n) (exp (itA) +exp (—itA)) — ih'(n) (exp (itA) —exp (—itA))

RV e DD [ etitr—om) - e (it =)

(im-w)h(r,m)h(r,n—m)dr, meZ’, (3.6)

where  A=((n-w)?+(n-w)!)?®  with weR", then  there  exists t1=
min(¢, WM) such that for allmeZ’, 0<t<ty, one has c(t,n)="h(t,n).
Proof. The proof will be divided into the following three steps.

Step 1: Let us consider the upper bounds on |h(t,n) —c(t,n)| with respect to the
variables m;.

LEMMA 3.3.  Letc(t,n),h(t,n) be as seen in Corollary 3.3. There is a positive constant
C1 such that for k=1,2,---,

‘h(t7n) _C(t7n)|

2(C1) (i) N
ST > > I Im;1% exp(—plm;)). (3.7)
m:(ml,---,mk+1)ez(k+1)l/a€]}i§(k) 7

Proof.  Obviously, formulas (3.5)—(3.6) can be rewritten as

c(t,n) :%c(n) (exp (itA) +exp (—itA)) — ic (n )7 (exp (itA) —exp (—itA))

t

in-w (exp(i(T—t))\)_eXp<i(t_T))\))

2 1+ (n-w)?.Jo
Z c(t,mq)e(r,mq)dr, mezZ, (3.8)

mi,mo €LY
mi+me=n

h(t,n) :%h(n) (exp (itA) +exp (—itA)) — ﬁh (n )7 (exp (itA) —exp (—itA))
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t

in-w (exp(i(T—t)A) —exp(i(t—T)A))

9 1+ (n-w)?Jo
> h(rmi)h(r,ma)dr, meZ’.  (3.9)

my,moELY
mi+me=n

The difference between (3.8) and (3.9) is bounded from above by

|h(t,m) —c(t,n)| < |n||w| / |h(T,mq)h(T,m2) — c(T,m1)c(T,m2)|dT

mq,mo €LY
mi+meo=n

<lnllw| Y- /IhTml)IIh(T"w)H\(Tml)IIC(Tmz)\)d

mq,mo €LY
mi+meo=n

<lnllw| > / ((2C1)?exp(—p(|ma| + mal))dr

my,mo €LY
mi+meo=n

<2C)tlw| > ZmJIeXp p(lma|+|mal)).

my,mo €LY
mi+meo=n

Hence (3.7) holds for k=1.
We prove (3.7) by induction. Suppose that (3.7) could hold for k—1. Observe that

|h(t,n) —c(t,n)| < |n||w| Z / |h(T,mq)h(T,m2) — c(T,m1)c(T,m2)|dT

mq,mo €LY
mi+meo=n

<|n||w] g / (|h(7,m1) —c(T,m1)||h(T,m2)]|
my,mo €LY
mi+mao=n

+|h(T,m2) —c(T,m2)||c(T,m1)|)dT.

By using the inductive assumption, we have

ITLIIW\/ Y Iz ) —e(rn)|lh(r,ny)ldr

ny,mg €LY
ni+ns=n

<|w|/ Z Cl ‘W|7) Z |(ij)—|—n2|d7

ny,my €LY m=(my,,my)ezkv  J

natna=n S, mi=m

> TIm;|® exp(=plmy])(Crexp(—plnal))

aeBk-1) j

E+1(|wol)E
SW > > I Im;1% exp(—plm)).

m:(m1=,.,,mk+1)ez(k+1>l’ acBk) j
> m=n

Similarly, one has

\n||w|/ Z h(r,n2) —c(r,n2)||c(T,m2)|dT

ny,ng €LY
ni+ns=n
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k4101 ,14)%
Sw > > ] Im;1% exp(—plmi)).

m=(my,,my ) e+ a€BF) J
> m=n

Thus we can get (3.7). Consequently, we arrive at the conclusion of the lemma. ]
Step 2: Our next goal is to give an estimation of |h(t,n) — c(t,n)| with respect to
the variables ;.

COROLLARY 3.4. Let c¢(t,n),h(t,n) be given in Corollary 3.5. There exists a positive
constant Cy such that for k=1,2,---,

2(C1)FF1(288)F (p=¥ |wlt)*
(COMES el 5~ T

|h‘(t’n)_C(t7n)|S k!

acBk) j

Proof. 1t follows from Lemma 3.3 that

k+1 (| wlp)k
|h(t,n)—c(t,n)|§w Z Z H\mj\“jexp(—p|mj|)

m=(m1,..., mk+1)€z(k+l)va€ﬂ$(k> J

ij:n
2(Cy)FH (Jwlt)* o
e > HeXP(—§|mj|)
’ m=(my,...,mpqeEDY J
Zm_,»:n
a; P
< > [IIm;l T exp(—g[my]).

aeB(k) ]

Combining this with the proving procedure of Lemma 2.6, we obtain the conclusion of
the lemma. O

Step 3: Finally, combining Corollary 3.4 with formula (3.4) yields that

2(C)M (288"~ |wlt)*

Ih(tn) = elt,n) < > (2)
with N =k+1. Due to Stirling’s formulae
K> kFe ™ (KDTH2N)F < (20)F,
for 0<t < min(to, W;S&’M)’ we have
2 k+1 9288 o~V t k
k—oc0 k!
This implies that c(t,n)=h(t,n) for all n€Z” and 0 <t <t;.
Hence we complete the proof of Corollary 3.3. 0

4. Proof of the main results
The remainder of this paper is to give the proof of the main results.

Proof. (Proof of Theorem 1.1.) We first show the existence of local solutions for
the “good” Boussinesq Equation (1.1) subject to quasi-periodic initial data (1.2)—(1.3).
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v

Ezistence. It follows from Corollary 3.1 that for all 0 <t < WZ)”M and neZ”,
the following limit

d®(t,n) = lim di(t,n)= lim cx(t,n)
exists with
_y K
|d©) (t,n) — dy_1 (t,n)| < B¥'(8¢)"(96)* (r \w\t)kexp(*glnll

Moreover, using Corollary 2.1 yields that

4 (t.m)| <2Bexp(~"17),

Based on the above estimations, d(®) (t,n) satisfies the following system coming from
(2.9)

dO(t,n) :%c(n) (exp (it\) +exp (—itA)) — %C’(n) (exp (itA) —exp (—itA))
(exp (i(r —1)A) —exp(i(t —7)A))

_ in-w
2y/14+(n-w)2.Jo
> dO(rmy)dO (r,my)dr,

my,mo €LY
mi+mo=n
Due to Lemma 2.2, the function
u(t,x)= Z dO(t,n)exp(izn - w)

nezv

satisfies the “good” Boussinesq Equation (1.1) with quasi-periodic initial conditions
(1.2)—(1.3).

It remains to prove uniqueness of local solutions for the “good” Boussinesq Equation
(1.1) subject to quasi-periodic initial data (1.2)—(1.3).

Uniqueness. Let u,v be two local solutions for the “good” Boussinesq Equation
(1.1) subject to quasi-periodic initial data (1.2)—(1.3). Namely, both u and v satisfy
that for 0 <t <tp, x€R,

OPu+02u—02u—02(u?) =0, Ofv+0tv—0%v—0%(v?)=0
with
u(0,2)=v(0,x), Ou(0,2)=0w(0,z) VreR.

Moreover, u,v have the following expansions

u(t,x)= Z c(t,n)exp(izn-w), v(t,x)= Z h(t,n)exp(izn - w),

nezv nezv

where the Fourier coefficients |c(t,n)|, |h(t,n)| satisfy that for some constants C; >
0,p>0,

le(t,n)| <Ciexp(—pln|), |h(t,n)|<Ciexp(—pln|), neZ”.
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From Lemma 2.2, we have equations (3.5)—(3.6). Then c¢(¢,n) and h(t,n) obey the
conditions of Corollary 3.3. In view of Corollary 3.3, one has u(t,x) =v(t,x) for 0<t <

IIlil’l(l‘;()7 m) and zeR.
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Hence we have completed the proof of Theorem 1.1. 0
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