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SOURCE TERM∗

BENEDETTO PICCOLI† , FRANCESCO ROSSI‡ , AND MAGALI TOURNUS§

Abstract. We introduce an optimal transportation interpretation of the Kantorovich norm on the
space of signed Radon measures with finite mass, based on the generalized Wasserstein distance for
measures with different masses. With this new interpretation, we obtain new topological properties for
this norm. We use these tools to prove existence and uniqueness for solutions to non-local transport
equations with source terms, when the initial condition is a signed measure.
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1. Introduction
The problem of optimal transportation, also called Monge-Kantorovich problem,

has been intensively studied in the mathematical community. Related to this problem,
Wasserstein distances in the space of probability measures have revealed to be powerful
tools, in particular for dealing with dynamics of measures like the transport Partial
Differential Equation (PDE in the following), see e.g. [2,3]. For a complete introduction
to Wasserstein distances, see [27,28].

The main limit of this approach, at least for its application to dynamics of measures,
is that the Wasserstein distances Wp(µ,ν) (p≥1) are defined only if the two positive
measures µ,ν have the same mass. For this reason, the generalized Wasserstein distances
W a,b

p (µ,ν) are introduced in [24, 25]: they combine the standard Wasserstein and total

variation distances. In rough words, for W a,b
p (µ,ν) an infinitesimal mass δµ of µ can

either be removed at cost a|δµ|, or moved from µ to ν at cost bWp(δµ,δν). An optimal
transportation problem between densities with different masses has been studied in
[9, 15], where only a given fraction m of each density is transported. These works were
motivated by a modeling issue: Using the example of a resource that is extracted and
that we want to distribute in factories, one aims to use only a certain given fraction of
production and consumption capacity. In this approach and contrarily to the generalized
Wasserstein distance [23], the mass that is leftover has no impact on the distance between
the measures µ and ν. In another context, for the purpose of interpreting some reaction-
diffusion equations not preserving masses as gradient flows, the authors of [16] define the
distance Wb2 between measures with different masses on a bounded domain. Further
generalizations for positive measures with different masses, based on the Wasserstein
distance and its Benamou-Brenier formulation, are introduced in [11, 19, 20]. See [10]
for a unifying framewok for unbalanced optimal transport.

Such generalizations still have a drawback: both measures need to be positive. In
the present paper we introduce a norm, parametrized by two positive numbers (a,b),
on the space of signed Radon measures with finite mass on Rd. Such norm, based
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on an optimal transportation approach, induces a distance generalizing the Wasserstein
distance to signed measures. We then prove that for (a,b)=(1,1) this norm corresponds
to the extension of the so-called Kantorovich distance or Bounded-Lipschitz norm (BL
norm) for finite signed Radon measures presented in [17] in the dual form

∥µ∥BL= sup
∥f∥∞≤1,∥f∥Lip≤1

∫
Rd

fdµ. (1.1)

This formulation, already given in [17], enables us to propose new proofs for the main
topological properties and characterizations of the BL norm.

The main contribution of the paper is the statement of Theorem (1.1) and lies in the
use of the (a,b) norm to guarantee well-posedness of the following nonlocal transport
equation

∂tµt(x)+div(v[µt](x)µt(x))=h[µt](x), µ|t=0(x)=µ0(x), (1.2)

for x∈Rd and µ0∈Ms(Rd), h[µ]∈Ms(Rd), where Ms(Rd) is the space of signed Radon
measures with finite mass on Rd. We recall some instances of (1.2):

• The equation has already been studied in the framework of positive measures,
for modeling several different phenomena; see a review in [26]. In particular:

– in crowd modeling, the presence of negative sources allows to describe
pedestrians exiting a door [26];

– in opinion dynamics, it allows to describe increase/decrease of populations
associated to a given opinion or role, such as in the leader-follower models
proposed in [1, 12];

– in mathematical biology, it models morphogen and tissue dynamics. Even
though in [22] the dynamics is based on a second-order operator, methods
based on optimal transportation can be adapted to this setting too, see
e.g. [13].

• Again for dynamics of positive measures, it is still useful to generalize to signed
measures, either for computations around steady states or for approximations
of the dynamics in which (small) negative masses can appear, see e.g. [24].

• Signed measures appear in a model coming from the hydrodynamic equations of
Ginzburg-Landau vortices, where the vortex density µt (which can be positive
or negative depending on the local topological degree) in a two-dimensional
domain occupied by a superconducting sample inducing the magnetic field v[µt]
satisfies (1.2) (see [4, 21]) with{

h[µ]=0,

v[µ]=−(∇∆−1µ)(x)n(x),

where n is the Radon-Nikodym derivative of |µ| with respect to µ.

• Another motivation to study Equation (1.2) in the framework of signed mea-
sures is the interpretation of µt as the spatial derivative of the entropy solution
ρ(x,t) to a scalar conservation law. A link between scalar conservation laws and
nonlocal transport equation has been initiated in [6,18], but until now, studies
are restricted to convex fluxes and monotonous initial conditions, so that the
spatial derivative µt is a positive measure for all t>0.
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To deal with generic scalar conservation laws, one needs a space of signed mea-
sures equipped with a metric of Wasserstein type, see e.g. [5].

Formally, the spatial derivative µt of the one-dimensional scalar conservation
law associated with flux f ∈C1(R) satifies (1.2) with

h[µ]=0,

v[µ]=f ′

(∫
(−∞,x]

dµ(s)

)
.

Motivated by Ginzburg-Landau vortices, the authors of [4] suggested to extend the
usual Wasserstein distance W1 to the couples of signed measures µ=µ+−µ− and ν=
ν+−ν− such that |µ+|+ |ν−|= |µ−|+ |ν+| by the formula W1(µ,ν)=W1(µ

++ν−,µ−+
ν+). This procedure fails for p ̸=1, since triangular inequality is lost. A counter-example
to the triangular inequality is provided in [4] for d=1 and p=2: Taking µ= δ0, ν= δ4,
η= δ1−δ2+δ3, we obtain W2(µ,ν)=4 whereas W2(µ,η)+W2(η,ν)=

√
2+

√
2.

We use the same trick from [4] to turn the generalized Wasserstein distance W a,b
1

into a norm for signed measures, by setting

∥µ∥a,b :=W a,b
1 (µ+,µ−)= inf

η̃,ν̃∈M(Rd)
|η̃|=|ν̃|

(
a
(
|µ+− η̃|+ |µ−− ν̃|

)
+bW1(η̃, ν̃)

)
,

where µ+,µ− are any positive finite measures such that µ=µ+−µ−, and where |µ| is
the total variation of µ. For the reason mentioned above, this construction only defines
a norm for p=1.

Notice that we need to restrict ourselves to Radon measures µ with finite mass.
The regularity assumptions on the vector field and on the source term are the following:

(H-1) There exists K such that for all µ,ν ∈Ms(Rd) it holds

∥v[µ]−v[ν]∥C0(Rd)≤K∥µ−ν∥a,b. (1.3)

(H-2) There exist L,M such that for all x,y∈Rd, for all µ∈Ms(Rd) it holds

|v[µ](x)−v[µ](y)|≤L|x−y|, |v[µ](x)|≤M. (1.4)

(H-3) There exist Q,P,R such that for all µ,ν ∈Ms(Rd) it holds

∥h[µ]−h[ν]∥a,b≤Q∥µ−ν∥a,b, |h[µ]|≤P, supp(h[µ])⊂B0(R). (1.5)

The main result of the paper is the following.

Theorem 1.1 (Existence, uniqueness and stability in (Ms(Rd),∥.∥a,b)). Let v and h
satisfy (H-1)-(H-2)-(H-3) and µ0∈Ms(Rd) compactly supported be given. Then, there
exists a unique distributional solution to (1.2). In addition, for µ0 and ν0 in Ms(Rd),
denoting by µt and νt the corresponding solutions, we have the following property for
t∈ [0,1] of continuous dependence with respect to initial data:

∥µt−νt∥a,b≤∥µ0−ν0∥a,bexp(K1t), K1=2L+2bK(P +min{|µ0|, |ν0|})+Q,

the following estimates on the mass and support:

|µt|≤ |µ0|+Pt, supp{µt}⊂B(0,R′+ tM) for R′s. t.(supp{µ0}∪B0(R))⊂B0(R
′).
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Moreover, the solution is Lipschitz in time:

∥µt+τ −µt∥a,b≤K2τ, K2=aP +bM(P + |µ0|), τ ≥0, t+τ ≤1.

Remark 1.1. We emphasize that the assumptions (H-1)-(H-2) are incompatible with a
direct interpretation of the solution of (1.2) as the spatial derivative of a conservation law
and need to be relaxed in a future work. Indeed, to draw a parallel between conservation
laws and non-local equations, discontinuous vector fields need to be considered.

The structure of the article is the following. In Section 2, we state and prove
results of measure theory, which are needed for the rest of the paper. We also recall the
definition of generalized Wasserstein distance. In Section 3, we to define the norm ∥·∥a,b
on the space of signed Radon measures with finite mass, state a Kantorovich-Rubinstain
type duality for this norm, and we end Section 3 by proving some topological properties
for this norm. Section 4 is devoted the proof of Theorem 1.1.

2. Generalized Wasserstein distance
In this section, we introduce the notations and state preliminary results. Through-

out the paper, B(Rd) is the space of Borel sets on Rd, M(Rd) is the space of Radon
measures with finite mass (i.e. Borel regular, positive, and finite on every set). We
denote with Ms(Rd) the space of such signed Radon measures, that are measures
µ that can be written as µ=µ+−µ− with µ+,µ−∈M(Rd). For µ∈Ms(Rd), we
define |µ|= |µJ

+|+ |µJ
−| where (µJ

+,µ
J
−) is the unique Jordan decomposition of µ, i.e.

µ=µJ
+−µJ

− with µJ
+⊥µJ

−. Observe that |µ| is always finite, since µJ
+,µ

J
−∈M(Rd).

For a sequence of probability measures, different notions of weak convergences are
equivalent. It is not the case for signed measures and we precise here what we call
narrow and vague convergence. In the present paper, C0(Rd;R) is the set of continuous
functions, C0

b (Rd;R) is the set of bounded continuous functions, and C0
c (Rd;R) is the set

of continuous functions with compact support on Rd.

Definition 2.1 (Narrow and vague convergence for signed measures).

• A sequence (µn)n∈N of measures in Ms(Rd) is said to converge narrowly to µ
if the following holds: for all φ∈C0

b (Rd;R),
∫
Rdφ(x)dµn(x)→

∫
Rdφ(x)dµ(x).

• A sequence (µn)n∈N of measures in Ms(Rd) is said to converge vaguely to µ if
the following holds: for all φ∈C0

c (Rd;R),
∫
Rdφ(x)dµn(x)→

∫
Rdφ(x)dµ(x).

Notice that in [14], vague convergence is called weak convergence. In [17, 27] how-
ever, weak convergence refers to what we define here as narrow convergence. Notice
that if a sequence of positive measures µn converges vaguely to µ and if (µn)n is tight,
then µn converges narrowly to µ.

We now recall definition and key properties of the standard and generalized Wasser-
stein distance. For more details on these topics, see [25,27].

Definition 2.2 (Transference plan). A transference plan between two positive
measures µ and ν of same mass is a measure π∈M(Rd,Rd) which satisfies for all
A,B∈B(Rd)

π(A×Rd)=µ(A), π(Rd×B)=ν(B).

Note that transference plans are not probability measures in general, as their mass
is |µ|= |ν|, the common mass of both marginals. We denote by Π(µ,ν) the set of
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transference plans between µ and ν. The p-Wasserstein distance for positive Radon
measures of same mass is defined for p≥1 as

Wp(µ,ν)=

(
min

π∈Π(µ,ν)

∫
Rd×Rd

|x−y|pdπ(x,y)
) 1

p

.

It was extended to positive measures having possibly different mass in [24,25], where
the authors introduce the distance W a,b

p on the space M(Rd) of Radon measures with
finite mass. The formal definition is the following.

Definition 2.3 (Generalized Wasserstein distance [24]). Let µ,ν be two positive
measures in M(Rd). The generalized Wasserstein distance between µ and ν is given for
p≥1, a>0 and b>0 by

W a,b
p (µ,ν)=

 inf
µ̃,ν̃∈M(Rd)

|µ̃|=|ν̃|

ap(|µ− µ̃|+ |ν− ν̃|)p+bpW p
p (µ̃, ν̃)

1/p

. (2.1)

Proposition 2.1 (Scaling and dilation formulae for the generalized Wasserstein dis-
tance). Consider a>0 and b>0 and let µ,ν be two measures.

(1) The following scaling formula holds for p≥1

Wλa,λb
p (µ,ν)=λW a,b

p (µ,ν), λ>0. (2.2)

(2) Define Dℓ :x→ ℓx with ℓ>0 the dilation in Rn, then it holds

W a,b
1 (Dℓ#µ,Dℓ#ν)=W

a,ℓb
1 (µ,ν). (2.3)

Proof. The first statement is directly deduced from Definition 2.3. For the second
statement, define

Ca,b(µ̄, ν̄,π;µ,ν) :=a(|µ− µ̄|+ |ν− ν̄|)+b
∫

|x−y|dπ(x,y),

where π is a transference plan in Π(µ̄, ν̄). It holds

Ca,b(Dℓ#µ̄,Dℓ#ν̄,(Dℓ×Dℓ)#π;Dℓ#µ,Dℓ#ν)

=a(|Dℓ#µ−Dℓ#µ̄|+ |Dℓ#ν−Dℓ#ν̄|)+b
∫

|x−y|d(Dℓ×Dℓ)π(x,y),

=a(|µ− µ̄|+ |ν− ν̄|)+b
∫

|ℓx−ℓy|dπ(x,y)=Ca,ℓb(µ̄, ν̄,π;µ,ν).

As a consequence, (2.3) holds.

Notice that the first statement of Proposition 2.1 implies in particular that

W a,b
p =

b

b′
W a′,b′

p , for
a

b
=
a′

b′
. (2.4)

The following lemma is useful to derive properties for the generalized Wasserstein
distance.
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Lemma 2.1. The infimum in (2.1) is always attained. Moreover, there always exists
a minimizer that satisfies the additional constraint µ̃≤µ, ν̃≤ν.

The proof can be found in [24].

For f ∈C0
c (Rd;R), we define

∥f∥∞= sup
x∈Rd

|f(x)|, ∥f∥Lip=sup
x ̸=y

|f(x)−f(y)|
|x−y|

.

We also denote by C0,Lip
c (Rd;R) the subset of functions f ∈C0

c (Rd;R) for which it holds
∥f∥Lip<+∞.

The following result is stated in [25, Theorem 13].

Lemma 2.2 (Kantorovitch-Rubinstein duality for W 1,1
1 ). For µ, ν in M(Rd), it holds

W 1,1
1 (µ,ν)=sup

{∫
Rd

φd(µ−ν); φ∈C0,Lip
c ,∥φ∥∞≤1,∥φ∥Lip≤1

}
.

Lemma 2.3 (Properties of the generalized Wasserstein distance). Let µ,ν,η,µ1,µ2,ν1,ν2
be some positive measures in M(Rd). The following properties hold for p≥1, a>0 and
b>0

(1) W a,b
p (µ1+µ2,ν1+ν2)≤W a,b

p (µ1,ν1)+W
a,b
p (µ2,ν2),

(2) W a,b
1 (µ+η,ν+η)=W a,b

1 (µ,ν).

Proof. The first property is taken from [24, Proposition 11]. For a= b=1, the
second statement is a direct consequence of the Kantorovitch-Rubinstein duality in
Lemma 2.2 for W 1,1

1 . For general a>0, b>0, we use the results of Proposition 2.1.
Indeed, also applying Kantorovich-Rubinstein duality for W 1,1

1 and setting a′=1,b′=
ℓ= b

a , it holds

W a,b
1 (µ+η,ν+η)=aW

1, ba
1 (µ+η,ν+η)=aW 1,1

1 (Dℓ#µ+Dℓ#η,Dℓ#ν+Dℓ#η)=

=aW 1,1
1 (Dℓ#µ,Dℓ#ν)=aW

1, ba
1 (µ,ν)=W a,b

1 (µ,ν).

Definition 2.4 (Image of a measure under a plan). Let µ and ν two measures in
M(Rd) of same mass and π∈Π(µ,ν). For η≤µ, we denote by f the Radon-Nikodym
derivative of η with respect to µ and by πf the transference plan defined by πf (x,y)=
f(x)π(x,y). Then, we define the image of η under π as the second marginal η′ of πf .

Observe that the second marginal satisfies η′≤ν. Indeed, since η≤µ, it holds f ≤1.
Thus, for all Borel sets B of Rd we have

η′(B)=πf (Rd×B)≤π(Rd×B)=ν(B).

3. Generalized Wasserstein norm for signed measures
In this section, we define the generalized Wasserstein norm for signed measures,

by generalizing [17]. We introduce general weight parameters a and b (Definition 3.2),
that might be useful for modeling issues. We also prove the Kantorovich-Rubinstein
duality for ∥.∥1,1, adapting similar results in [17] and [24, Lemma 14], that allows to
interpret the norm in the framework of optimal transportation. We finally list the main
topological properties of the normed space of signed Radon measures.
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3.1. Definitions.
Definition 3.1 (Generalized Wasserstein distance extended to signed measures). For
µ,ν two signed measures in Ms(Rd), we define

Wa,b
1 (µ,ν)=W a,b

1 (µ++ν−,µ−+ν+),

where µ+,µ−,ν+ and ν− are any measures in M(Rd) such that µ=µ+−µ− and ν=
ν+−ν−.

Proposition 3.1. The operator Wa,b
1 is a distance on the space Ms(Rd) of signed

measures with finite mass on Rd.

Proof. First, we prove that the definition does not depend on the decomposition.
Indeed, if we consider two distinct decompositions, µ=µ+−µ−=µJ

+−µJ
−, and ν=

ν+−ν−=νJ+−ν−J , with the second one being the Jordan decomposition, then we have
(µ++ν−)−(µJ

++νJ−)=(µ−+ν+)−(µJ
−+νJ+), and this is a positive measure since µ+≥

µJ
+ and ν+≥νJ+. The second property of Lemma 2.3 then gives

W a,b
1 (µJ

++νJ−,µ
J
−+νJ+)

=W a,b
1 (µJ

++νJ−+(µ++ν−)−(µJ
++νJ−),µ

J
−+νJ++(µ−+ν+)−(µJ

−+νJ+))

=W a,b
1 (µ++ν−,µ−+ν+).

We now prove that Wa,b
1 (µ,ν)=0 implies µ=ν. By choosing the Jordan de-

composition for both µ and ν and observing that W a,b
1 is a distance, we obtain

µ++ν−=µ−+ν+, thus µ=ν.
We now prove the triangle inequality. We have Wa,b

1 (µ,η)=W a,b
1 (µ++η−,µ−+η+).

Using Lemma 2.3, we have

Wa,b
1 (µ,η)=W a,b

1 (µ++η−+ν++ν−,µ−+η++ν++ν−)

≤W a,b
1 (µ++ν−,µ−+ν+)+W

a,b
1 (η−+ν+,η++ν−)

=Wa,b
1 (µ,ν)+Wa,b

1 (ν,η).

We also state the following lemma about adding and removing masses.

Lemma 3.1. Let µ,ν,η,µ1,µ2,ν1,ν2 be in Ms(Rd), then the following properties hold

• Wa,b
1 (µ+η,ν+η)=Wa,b

1 (µ,ν),

• Wa,b
1 (µ1+µ2,ν1+ν2)≤Wa,b

1 (µ1,ν1)+Wa,b
1 (µ2,ν2).

Proof. The proof is direct. For the first item, it holds

Wa,b
1 (µ+η,ν+η)=W a,b

1 ([µ++η+]+[ν−+η−],[ν++η+]+[µ−+η−])

=W a,b
1 (µ++ν−+[η++η−],ν++µ−+[η++η−])

which by Lemma 2.3 is equal to W a,b
1 (µ++ν−,µ−+ν+)=Wa,b

1 (µ,ν).
For the second item, it holds

Wa,b
1 (µ1+µ2,ν1+ν2)=W

a,b
1 (µ1,++µ2,++ν1,−+ν2,−,ν1,++ν2,++µ1,−+µ2,−)

≤W a,b
1 (µ1,++ν1,−,ν1,++µ1,−)+W

a,b
1 (µ2,++ν2,−,ν2,++µ2,−)

=Wa,b
1 (µ1,ν1)+Wa,b

1 (µ2,ν2),
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where the inequality comes from Lemma 2.3.

Definition 3.2. For µ∈Ms(Rd) and a>0, b>0, we define

∥µ∥a,b=Wa,b
1 (µ,0)=W a,b

1 (µ+,µ−),

where µ+ and µ− are any measures of M(Rd) such that µ=µ+−µ−.

It is clear that the definition of ∥µ∥a,b does not depend on the choice of µ+,µ− as

a consequence of the corresponding property for W a,b
1 .

Proposition 3.2. The space of signed measures (Ms(Rd),∥.∥a,b) is a normed vector
space.

Proof. First, we notice that ∥µ∥a,b=0 implies that W a,b
1 (µ+,µ−)=0, which is

µ+=µ− so that µ=µ+−µ−=0. For triangular inequality, using the second property
of Lemma 3.1, we have that for µ,η∈Ms(Rd),

∥µ+η∥a,b=Wa,b
1 (µ+η,0)≤Wa,b

1 (µ,0)+Wa,b
1 (η,0)=∥µ∥a,b+∥η∥a,b.

Homogeneity is obtained by writing for λ>0, ∥λµ∥a,b=Wa,b
1 (λµ,0)=W a,b

1 (λµ+,λµ−)
where µ=µ+−µ−. Using Lemma 2.2 combined with Definition 2.3 and the notation of
Proposition 2.1 we have

W a,b
1 (λµ+,λµ−)=aW

1, ba
1 (λµ+,λµ−)

=aW 1,1
1

(
D b

a
#λµ+,D b

a
#λµ−

)
=asup

{∫
Rd

φd
(
D b

a
#λµ+,D b

a
#λµ−

)
; φ∈C0,Lip

c ,∥φ∥∞≤1,∥φ∥Lip≤1

}
=λasup

{∫
Rd

φd
(
D b

a
#µ+,D b

a
#µ−

)
; φ∈C0,Lip

c ,∥φ∥∞≤1,∥φ∥Lip≤1

}
=λW a,b

1 (µ+,µ−).

We provide here an example that illustrates the competition between cancellation
and transportation. This example is used later in the paper.

Example 3.1. Take µ= δx−δy. Then

∥µ∥a,b=W a,b
1 (δx,δy)= inf

µ̃,ν̃∈M(Rd)
|µ̃|=|ν̃|

{a(|δx− µ̃|+ |δy− ν̃|)+bW1(µ̃, ν̃)}.

Using Lemma 2.1, the minimum is attained and it can be written as µ̃= ϵδx and ν̃= ϵδy
for some 0≤ ϵ≤1. Then

∥µ∥a,b= min
0≤ϵ≤1

{2a(1−ϵ)+bϵ|x−y|}.

The minimizers depend on the distance between x and y. For b|x−y|<2a, the minimum
is attained for ϵ=1 and ∥µ∥a,b= b|x−y|. In that case, we say that all the mass is
transported. On the contrary, for b|x−y|>2a, the minimum is attained for ϵ=0 and
∥µ∥a,b=2a, and we say that all the mass is cancelled (or removed). For b|x−y|=2a,
we can both transport and cancel.
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3.2. Topological properties. In this section, we study the topological prop-
erties of the norm introduced above. In particular, we prove that it admits a duality
formula, that indeed coincides with (1.1). We first prove that the topology of ∥.∥a,b
does not depend on a,b>0.

Proposition 3.3. For a>0, b>0, the norm ∥.∥a,b is equivalent to ∥.∥1,1.

Proof. For µ∈Ms(Rd) denote by (ma,b
+ ,ma,b

− ) the positive measures such that

∥µ∥a,b=a|µ+−ma,b
+ |+a|µ−−ma,b

− |+bW1(m
a,b
+ ,ma,b

− ),

and similarly define (m1,1
+ ,m1,1

− ). Their existence is guaranteed by Lemma 2.1. By
definition of the minimizers, we have

∥µ∥a,b=a|µ+−ma,b
+ |+a|µ−−ma,b

− |+bW1(m
a,b
+ ,ma,b

− )

≤a|µ+−m1,1
+ |+a|µ−−m1,1

− |+bW1(m
1,1
+ ,m1,1

− )≤max{a,b}∥µ∥1,1.

In the same way, we obtain

min{a,b}∥µ∥1,1≤∥µ∥a,b≤max{a,b}∥µ∥1,1.

We now give an equivalent Kantorovich-Rubinstein duality formula for the new
distance. For f ∈C0

b (Rd;R), similarly to C0
c (Rd;R), we define the following

∥f∥∞= sup
x∈Rd

|f(x)|, ∥f∥Lip=sup
x ̸=y

|f(x)−f(y)|
|x−y|

,

and we introduce

C0,Lip
b ={f ∈C0

b (Rd;R) | ∥f∥Lip<∞}.

In the next proposition, we express the Kantorovich-Rubinstein duality for the norm
W1,1

1 . This shows that W1,1
1 coincides with the bounded Lipschitz norm introduced

in [17], also called Fortet Mourier distance in [28].

Proposition 3.4 (Kantorovitch-Rubinstein duality for ∥.∥1,1). The signed generalized
Wasserstein norm ∥.∥1,1 coincides with the bounded Lipschitz norm: For µ in Ms(Rd),
it holds

∥µ∥1,1=∥µ∥BL.

We emphasize that Proposition 3.4 does not coincide with Lemma 2.2, since it involves
non-compactly supported test functions.

Proof. By using Lemma 2.2 we have

∥µ∥1,1=W 1,1
1 (µ+,µ−)=sup

{∫
Rd

φdµ; φ∈C0,Lip
c ,∥φ∥∞≤1,∥φ∥Lip≤1

}
.

We denote by

S=sup

{∫
Rd

φdµ; φ∈C0,Lip
b ,∥φ∥∞≤1,∥φ∥Lip≤1

}
.
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First observe that S<+∞. Indeed, it holds
∫
Rdφdµ≤∥φ∥∞|µ|<+∞. Denote with φn

a sequence of functions of C0,Lip
b such that

∫
Rdφn dµ→S as n→∞. Consider a sequence

of functions ρn in C0,Lip
c such that ρn(x)=1 for x∈B0(n), ρn(x)=0 for x /∈B0(n+1)

and ∥ρn∥∞≤1. For the sequence ψn=φnρn of functions of C0,Lip
c , it holds∣∣∣∣∫

Rd

ψn dµ−S
∣∣∣∣≤ ∣∣∣∣∫

Rd

(ψn−φn) dµ

∣∣∣∣+ ∣∣∣∣∫
Rd

φn dµ−S
∣∣∣∣

≤2

∣∣∣∣∣
∫
Rd\B0(n)

dµ

∣∣∣∣∣+
∣∣∣∣∫

Rd

φn dµ−S
∣∣∣∣

since ∥φn∥∞≤1. The first term goes to zero with n, since µ, being of finite mass, is
tight, and the second term goes to zero with n, by definition of S and φn. Then

S=sup

{∫
Rd

φdµ; φ∈C0,Lip
c ,∥φ∥∞≤1,∥φ∥Lip≤1

}
,

and Proposition 3.4 is proved.

In the rest of the section, we state topological properties for the norm ∥.∥a,b.

Remark 3.1. We observe that a sequence µn of Ms(R) which satisfies ∥µn∥a,b →
n→∞

0

is not necessarily tight, and its mass is not necessarily bounded. For instance, we have
that

νn= δn−δn+ 1
n

is not tight, whereas it satisfies for n sufficiently large

∥νn∥a,b=
b

n
→

n→∞
0.

See Example 3.1 for the details of the calculation. Now take the sequence

µn=nδ 1
n2

−nδ− 1
n2
.

As explained in Example 3.1, depending on the sign of 2a− 2b
n2 , we either cancel the

mass or transport it. For n large enough, 2a≥ 2b
n2 , so we transport the mass. Thus for

n sufficiently large it holds

∥µn∥a,b=
2bn

n2
→

n→∞
0

whereas |µn|=2n is not bounded.

We now show that norm ∥.∥1,1 does not metrize narrow convergence, via a coun-
terexample based on unboundedness of the space. This is in line with the classical fact
that weak*-convergence cannot be metrized [8, p. 76, Remark 20].

Remark 3.2. Take µn= δ√2πn+π
2
−δ√

2πn+ 3π
2

. We have

∥µn∥1,1≤

∣∣∣∣∣
√
2πn+

π

2
−
√
2πn+

3π

2

∣∣∣∣∣ →
n→∞

0,



B. PICCOLI, F. ROSSI, AND M. TOURNUS 1289

even though for φ(x)=sin(x2) in C0
b (R), we have∫
R
φdµn=2, n∈N.

Remark 3.3. We have as a direct consequence of Proposition 3.4 that

∥µn−µ∥a,b →
n→∞

0 ⇒ ∀φ∈C0,Lip
b (Rd),

∫
Rd

φdµn →
n→∞

∫
Rd

φdµ. (3.1)

However, the reciprocal statement of (3.1) is false: define

µn :=ncos(nx)χ[0,π].

For

φn :=
1

n
cos(nx),

it is clear that ∫
R
φndµn=

∫ π

0

cos2(nx)dx=
π

2
̸→0.

In particular,

sup
φ∈C0,Lip

b (R)

∫
R
φd(µn−0)≥ π

2
,

hence by Proposition 3.4, ∥µn−0∥≥ π
2 does not converge to zero. We now prove that,

for each φ in C0,Lip
b (R), it holds

∫
Rφdµn→0. Given φ∈C0,Lip

b (R), define

f(x) :=

{
φ(−x), when x∈ [−π,0],
φ(x), when x∈ [0,π],

and extend f as a 2π-periodic function on R. We have∫
R
φdµn=

∫
R
f dµn.

Since f is a 2π-periodic function, it also holds
∫
f dµn=nan, where an is the n-th

cosine coefficient in the Fourier series expansion of f . We then prove nan→0 for any
2π-periodic Lipschitz function f , following the ideas of [29, p. 46, last line]. Since f is
Lipschitz, then its distributional derivative is in L∞[−π,π] and thus in L1[−π,π]. Then

an=
1

2π

∫ π

−π

f(x)cos(nx)dx=− 1

2nπ

∫ π

−π

f ′(x)sin(nx)dx=−b
′
n

n
,

where b′n is the n-th sine coefficient of f ′. As a consequence of the Riemann-Lebesgue
lemma, b′n→0, and this implies nan→0.

We recall from [25] that the space (M(Rd),W a,b
p ) is a complete metric space. The

proof is based on the fact that a Cauchy sequence of positive measures is both uniformly
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bounded in mass and tight. This is not true anymore for a Cauchy sequence of signed
measures.

Remark 3.4. Observe that (Ms(Rd),∥.∥a,b) is not a Banach space. Indeed, take the
sequence

µn=

n∑
i=1

(
δi+ 1

2i
−δi− 1

2i

)
.

It is a Cauchy sequence in (Ms(Rd),∥.∥a,b): Indeed, by choosing to transport all the
mass from µ+

n +µ−
n+k onto µ+

n+k+µ
−
n with the cost b, it holds

Wa,b
1 (µn,µn+k)≤2b

n+k∑
i=n+1

1

2i
≤2b

+∞∑
i=n+1

1

2i
→

n→∞
0.

However, the sequence (µn)n does not converge in (Ms(Rd),∥.∥a,b). As seen in
Remark 3.3, the convergence for the norm ∥.∥a,b implies the convergence in the sense of
distributions. In the sense of distributions we have

µn⇀µ∗ :=

+∞∑
i=1

(
δi+ 1

2i
−δi− 1

2i

)
/∈Ms(R).

Indeed, for all φ∈C∞
c (R), since φ is compactly supported, it holds∫

R
φ(x) (dµn(x)−dµ∗(x))=

+∞∑
i=n+1

(
φ

(
i+

1

2i

)
−φ

(
i− 1

2i

))
→

n→∞
0.

The measure µ∗ does not belong to Ms(R), as it has infinite mass.

Nevertheless, we have the following convergence result.

Theorem 3.1. Let µn be a Cauchy sequence in (Ms(Rd),∥.∥a,b). If µn is tight
(in the sense of Definition A.3) and has uniformly bounded mass, then it converges in
(Ms(Rd),∥.∥a,b).

Proof. Take a tight Cauchy sequence (µn)n∈Ms(Rd) such that the sequences
given by the Jordan decomposition |µ+

n | and |µ−
n | are uniformly bounded. Then,

by Lemma A.2, there exists µ+ and µ− in M(Rd) and φ1 nondecreasing such that,
µ+
φ1(n)

⇀
n→∞

µ+ vaguely. Then, |µ−
n | being uniformly bounded, there exists φ2 nonde-

creasing such that for φ=φ1 ◦φ2 it holds

µ−
φ(n) ⇀

n→∞
µ− vaguely.

Since µ+
n and µ−

n are assumed to be tight, the sequences µ−
φ(n) and µ

+
φ(n) also converge

to µ− and µ+ narrowly, and it holds W a,b
1 (µ+

φ(n),µ
+) →

n→∞
0 and W a,b

1 (µ−
φ(n),µ

−) →
n→∞

0,

due to [24, Theorem 13]. We then have

∥µn−(µ+−µ−)∥a,b≤∥µn−µφ(n)∥a,b+∥µφ(n)−(µ+−µ−)∥a,b

≤∥µn−µφ(n)∥a,b+W a,b
1 (µ+

φ(n)+µ
−,µ−

φ(n)+µ
+)

≤∥µn−µφ(n)∥a,b+W a,b
1 (µ+

φ(n),µ
+)+W a,b

1 (µ−
φ(n),µ

−) →
n→∞

0.
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Here, we used the fact that (µn)n is a Cauchy sequence.

We end this section with a characterization of the convergence for the norm. If a se-
quence µn of signed measures converges toward µ∈Ms(Rd), then for any decomposition
of µn into two positive measures µn=µ

+
n −µ−

n (not necessarily the Jordan decomposi-
tion), we have that each µ+

n ,µ
−
n is the sum of two positive measures: m+

n ,z
+
n andm−

n ,z
−
n ,

respectively. The measures m+
n and m−

n are the parts that converge respectively to µ+

and µ−. Both m+
n and m−

n are uniformly bounded and tight. The measures z+n and z−n
are the residual terms that may be unbounded and not tight. They compensate each
other in the sense that W a,b

1 (z+n ,z
−
n ) vanishes for large n.

4. Application to the transport equation with source term
This section is devoted to the use of the norm introduced in Definition 3.2 to

guarantee existence, uniqueness, and stability with respect to initial condition for the
transport Equation (1.2). We denote the set of test functions (i.e. C∞ with compact
support) on a given space X by D(X).

Definition 4.1 (Measure-valued weak solution). A measure-valued weak solution
to (1.2) is a continuous map with respect to the weak-* topology of measures (i.e µ∈
C0([0,1];Ms(Rd)) such that for all φ∈D([0,1)×Rd) it holds∫ 1

0

dt

∫
Rd

(dµt(∂tφ(t,x)+v[µt] ·∇φ(t,x))+dh[µt]φ(t,x))=−
∫
Rd

dµ0φ(0, ·). (4.1)

Equivalently, µ satisfies µt=0=µ0 and for all φ∈D(Rd) it holds

d

dt
⟨µt,φ⟩= ⟨µt,v[µt] ·∇φ⟩+⟨h[µt],φ⟩, (4.2)

where

⟨µt,φ⟩ :=
∫
Rd

φ(x)dµt(x).

The equivalence of definitions is classical, see e.g. [3, Chap 8]. We will also use the
following classical fact: For µt solving the transport equation with source (1.2), any
interval [t1,t2]⊂ [0,1) and all φ∈D([t1,t2]×Rd), it holds∫ t2

t1

dt

∫
Rd

dµt(∂tφ(t,x)+v[µt] ·∇φ(t,x))+dh[µt],φ(t,x)

=

∫
Rd

dµt2φ(t2, ·)−
∫
Rd

dµt1φ(t1, ·). (4.3)

4.1. Estimates of the norm under flow action. In this section, we extend
the action of flows on probability measures to signed measures, and state some estimates
about the evaluation of ∥µ∥a,b under a flow action on µ. Notice that for µ∈Ms(Rd)
and T a map, we have T#µ=T#µ+−T#µ−, where µ=µ+−µ− is any decomposition
of µ. Observe that in general, given µ∈Ms(Rd) and T :Rd 7→Rd a Borel map, it only
holds

|T#µ|≤ |µ|, (4.4)

even by choosing the Jordan decomposition for (µ+,µ−), since it may hold that T#µ+

and T#µ− are not orthogonal. However, if T is injective (as it will be in the rest of the
paper), it holds T#µ+⊥T#µ−, hence |T#µ|= |µ|.
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Lemma 4.1. For v(t,x) measurable in time, uniformly Lipschitz in space, and uni-
formly bounded, we denote by Φv

t the flow it generates, i.e. the unique solution to

d

dt
Φv

t =v(t,Φ
v
t ), Φv

0 = Id.

Given µ0∈Ms(Rd), then, µt=Φv
t#µ0 is the unique solution of the linear transport

equation 
∂

∂t
µt+∇·(v(t,x)µt)=0,

µ|t=0=µ0

in C([0,T ],Ms(Rd)).

Proof. The proof is a direct consequence of [27, Theorem 5.34] combined with [7,
Theorem 2.1.1].

Lemma 4.2. Let v and w be two vector fields, both satisfying for all t∈ [0,1] and
x,y∈Rd the following properties:

|v(t,x)−v(t,y)|≤L|x−y|, |v(t,x)|≤M.

Let µ and ν be two measures of Ms(Rd). Then

• ∥Φv
t#µ∥a,b≤eLt∥µ∥a,b

• ∥µ−Φv
t#µ∥a,b≤ b tM |µ|,

• ∥Φv
t#µ−Φw

t #µ∥a,b≤ b|µ|
(eLt−1)

L ∥v−w∥L∞(0,1;C0)

• ∥Φv
t#µ−Φw

t #ν∥a,b≤eLt∥µ−ν∥a,b+bmin{|µ|, |ν|} (eLt−1)
L ∥v−w∥L∞(0,1;C0)

Proof. The first three inequalities follow from [25, Proposition 10]. For the first
inequality, we write

∥Φv
t#µ∥a,b=W

a,b
1 (Φv

t#µ
+,Φv

t#µ
−)

≤eLtW a,b
1 (µ+,µ−) by [25, Prop. 10]

=eLt∥µ∥a,b.
For the second inequality,

∥µ−Φv
t#µ∥a,b=W

a,b
1 (µ++Φv

t#µ
−,µ−+Φv

t#µ
+)

≤W a,b
1 (µ+,Φv

t#µ
+)+W a,b

1 (µ−,Φv
t#µ

−) (Lemma 2.3)

≤ b t∥v∥C0(|µ+|+ |µ−|) by [25, Prop. 10]

= b t∥v∥L∞(0,1;C0(R))|µ| since (µ+,µ−) is the Jordan decomposition.

The third inequality is given by

∥Φv
t#µ−Φw

t #µ∥a,b=W1
a,b(Φv

t#µ
++Φw

t #µ
−,Φw

t #µ
++Φv

t#µ
−)

≤W a,b
1 (Φv

t#µ
+,Φw

t #µ
+)+W a,b

1 (Φw
t #µ

−,Φv
t#µ

−)

≤ b
(
W1(Φ

v
t#µ

+,Φw
t #µ

+)+W1(Φ
w
t #µ

−,Φv
t#µ

−)
)

≤ b (|µ+|+ |µ−|) (e
Lt−1)

L
∥v−w∥|L∞(0,1;C0(R))

by using [25, Prop. 10] with µ=ν.
The last inequality is deduced from the first and the third ones using triangular

inequality.
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4.2. A scheme for computing solutions of the transport equation. In
this section, we define an approximation scheme for solutions to (1.2). This will be
useful to prove existence of solutions. We then prove Theorem 1.1.

Fix µ0∈Ms(Rd) such that supp(µ0)⊂K, with K compact. Let v∈
C0,Lip(Ms(Rd),C0,Lip(Rd)) and h∈C0,Lip(Ms(Rd),Ms(Rd)) satisfy (H-1)-(H-2)-
(H-3). We now define a sequence (µk

t )k of approximated solutions for (1.2) through the
following Euler-explicit-type iteration scheme. For simplicity of notations, we define a
solution on the time interval [0,1] only.

Scheme

Initialization. Fix k∈N. Define ∆t=
1

2k
. Set µk

0 =µ0.

Induction. Given µk
i∆t for i∈{0,1,. ..,2k−1}, define vki∆t :=v[µ

k
i∆t] and

µk
t =Φ

vk
i∆t

t−i∆t#µ
k
i∆t+(t− i∆t)h[µk

i∆t], t∈ [i∆t,(i+1)∆t]. (4.5)

Remark 4.1. The flow Φt−i∆t encodes the transport part ∂tµ+div(vµ)=0 while
(t− i∆t)h encodes the reaction ∂tµ=h.

We now prove equi-Lipschitz continuity of the sequence (µk
t )k. We also define the

following sup-norm on curves in C0([0,1],Ms(Rd)) by writing

∥µ∥ := sup
t∈[0,1]

∥µt∥a,b.

Proposition 4.1. The sequence (µk
t )k ∈C0([0,1],Ms(Rd),∥.∥) is equi-Lipschitz with

respect to time, i.e. there exists L′=aP +bM(P + |µ0|) independent of k such that for
all t,s∈ [0,1] it holds

∥µk
t −µk

s∥a,b≤L′|t−s|. (4.6)

Moreover, the sequence is uniformly bounded in mass and compactly supported, i.e.

|µk
t |≤Pt+ |µ0|, supp{µt}⊂B(0,R′+M) (4.7)

for R′ such that (supp{µ0}∪B0(R))⊂B0(R
′).

Remark 4.2. Estimates (4.7) are expected at the discrete level from the PDE (1.2)
with the assumptions (H-1), (H-2), (H-3). Indeed, the transport part preserves mass,
while the reaction term gives a mass growth that is at most linear. Likewise, the support
estimate is expected from the PDE since h has support in B0(R) (no mass created out
of this ball) and transport cannot expand the support with a speed faster than |v|≤M .

Proof. We first prove (4.7). The sequence built by the scheme satisfies

|µk
t |≤Pt+ |µ0|, t∈ [0,1], (4.8)

where P is such that |h[µ]|≤P by (H-3). Indeed, it holds directly from (4.5) and from
(H-3) that

|µk
(i+1)∆t|≤ |Φvk

i∆t

∆t #µk
i∆t|+∆t|h[µk

i∆t]|≤ |µk
i∆t|+∆tP,
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then by induction on i (for k fixed), we have

|µk
i∆t|≤Pi∆t+ |µ0|. (4.9)

Thus for t∈ [i∆t,(i+1)∆t], using again (4.5) and (H-3)

|µk
t |≤ |Φvk

i∆t

t−i∆t#µ
k
i∆t|+(t− i∆t)|h[µk

i∆t]|≤ |µk
i∆t|+(t− i∆t)P ≤|µ0|+Pt,

using (4.9) for the last inequality. This proves the first estimate of (4.7), as t≤1. We
now prove the second statement of (4.7). First observe that supp{µ}=supp{µ+}∪
supp{µ−}, where (µ+,µ−) is the Jordan decomposition of µ. Choose K such that
supp{µ0}⊂K and use (4.5) and (H-2)-(H-3) to write

supp{µk
t }⊆Kt,M,R,

with

Kt,M,R :={x∈Rd, x=xK,R+x′, xK,R∈K∪B0(R), ∥x′∥≤ tM}.

Take now R′ such that K∪B0(R)⊂B0(R
′). Then, it holds Kt,M,R⊂B(0,R′+ tM).

Again by recalling t≤1, we have the second statement of (4.7).
We now prove that (µk

t )k is Lipschitz with respect to time. We have two cases:

• Let t,s∈ [i∆t,(i+1)∆t] for some i∈{0,1,. ..,2k−1}. By applying (4.5), the
triangular inequality and Lemma 4.2, we have

∥µk
t −µk

s∥a,b≤∥Φvk
i∆t

t−i∆t#µ
k
i∆t−Φ

vk
i∆t

s−i∆t#µ
k
i∆t∥a,b

+∥(t− i∆t)h[µk
i∆t]−(s− i∆t)h[µk

i∆t]∥a,b

=∥Φvk
i∆t

t−s #ν1−ν1∥a,b+∥(t−s)h[µk
i∆t]+ν2−ν2∥a,b

≤|t−s|bM |ν1|+a|t−s||h[µk
i∆t]|≤ |t−s|(bM |µk

i∆t|+aP )
≤|t−s|(bM(Ps+ |µ0|)+aP ),

where ν1=Φ
vk
i∆t

s−i∆t#µ
k
i∆t and ν2=(s− i∆t)h[µk

i∆t]. Recall that s∈ [0,1] and
observe that this implies Lipschitz continuity on [i∆t,(i+1)∆t].

• Choose now any t,s∈ [0,1] and assume t<s with no loss of generality. Then
choose i,j∈{0,1,. ..,2k−1} the unique indexes so that

i∆t≤ t< (i+1)∆t< ...< (j−1)∆t<s≤ j∆t.

By applying triangular inequality and the estimate of the previous case on each
term, it holds

∥µk
t −µk

s∥a,b≤∥µk
t −µk

(i+1)∆t∥
a,b+∥µk

(i+1)∆t−µ
k
(i+2)∆t∥

a,b+ .. .

+∥µk
(j−1)∆t−µ

k
s∥a,b

≤L′((i+1)∆t− t+(i+2)∆t−(i+1)∆t+ .. .

+s−(j−1)∆t)=L′(s− t).

This proves uniform Lipschitz continuity.

We now prove that µk
t is an approximated solution of (1.2).
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Proposition 4.2. There exists L′′ such that, for each k and φ∈D([0,1)×Rd) satis-
fying

∥φ(t,·)∥∞≤1, ∥φ(t, ·)∥Lip≤1, for all t∈ [0,1], (4.10)

it holds∣∣∣∣∫ 1

0

dt

∫
Rd

(
dµk

t (∂tφ(t,·)+v[µk
t ] ·∇φ(t,·))+dh[µk

t ]φ(t,·)
)
+

∫
Rd

dµ0φ(0, ·)
∣∣∣∣≤ L′′

2k
. (4.11)

Proof. By using the formulation (4.3), for each interval [i∆t,(i+1)∆t] and φ∈
D([i∆t,(i+1)∆t]×Rd) it holds∫ (i+1)∆t

i∆t

dt

∫
Rd

dΦ
v[µk

i∆t]
t−i∆t #µ

k
i∆t(∂tφ(t,·)+v[µk

i∆t] ·∇φ(t,·))

=

∫
Rd

dΦ
v[µk

i∆t]
∆t #µk

i∆tφ((i+1)∆t,·)−
∫
Rd

dµk
i∆tφ(i∆t,·)

and ∫ (i+1)∆t

i∆t

dt

∫
Rd

(
d((t− i∆t)h[µk

i∆t])(∂tφ(t,·)+dh[µk
i∆t]φ(t,·)

)
=

∫
Rd

d(∆th[µk
i∆t])φ((i+1)∆t,·)−

∫
Rd

d0φ(i∆t,·).

By adding on both sides and recalling the definition of µk in (4.5), it holds∫ (i+1)∆t

i∆t

dt

∫
Rd

(
dµk

t ∂tφ(t,·)+dΦ
v[µk

i∆t]
t−i∆t #µ

k
i∆tv[µ

k
i∆t] ·∇φ(t,·))+dh[µk

i∆t]φ(t,·)
)

=

∫
Rd

dµk
(i+1)∆tφ((i+1)∆t, ·)−

∫
Rd

dµk
i∆tφ(i∆t, ·).

Recall that µt=Φ
v[µk

i∆t]
t−i∆t #µ

k
i∆t+(t− i∆t)h[µk

i∆t] and sum all terms i=0,. ..,2k−1. By
recalling that φ(1, ·)=0, we have

2k−1∑
i=0

∫ (i+1)∆t

i∆t

dt

∫
Rd

(
dµk

t (∂tφ(t,·)+v[µk
i∆t] ·∇φ(t,·))+dh[µk

i∆t]φ(t,·)
)

=−
2k−1∑
i=0

∫ (i+1)∆t

i∆t

dt

∫
Rd

(t− i∆t)h[µk
i∆t]v[µ

k
i∆t] ·∇φ(t, ·))−

∫
Rd

dµ0φ(0,·). (4.12)

Recall that (4.6) implies that for each t∈ [i∆t,(i+1)∆t] it holds ∥µk
t −µk

i∆t∥a,b≤L′∆t,
hence by (H-1)-(H-3) it holds

∥v[µk
i∆t]−v[µk

t ]∥C0(Rd)≤KL′∆t, ∥h[µk
i∆t]−h[µk

t ]∥a,b≤QL′∆t.

By using (4.12), we have∣∣∣∣∫ 1

0

dt

∫
Rd

(
dµk

t (∂tφ(t,·)+v[µk
t ] ·∇φ(t,·))+dh[µk

t ]φ(t,·)
)
+

∫
Rd

dµ0φ(0,·)
∣∣∣∣
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≤
2k−1∑
i=0

∣∣∣∣∣
∫ (i+1)∆t

i∆t

dt

∫
Rd

(t− i∆t)h[µk
i∆t]v[µ

k
i∆t] ·∇φ(t,·))

∣∣∣∣∣
+

2k−1∑
i=0

∣∣∣∣∣
∫ (i+1)∆t

i∆t

dt

∫
Rd

(
dµk

t (v[µ
k
t ]−v[µk

i∆t]) ·∇φ(t,·))+d(h[µk
t ]−h[µk

i∆t])φ(t, ·)
)∣∣∣∣∣

≤
∫ 1

0

dt∆tPM∥∇φ(t, ·)∥C0(Rd)

+

∫ 1

0

dt

∫
Rd

d|µk
t |L′K∆t∥∇φ(t,·)∥C0(Rd)+L

′Q∆t∥φ∥C0(Rd)

≤∆tPM+∆tL′((P + |µ0|)K+Q).

Here we used that h[µk
i∆t] and µ

k
t have bounded mass, see (H-3)-(4.7), as well as bounded

C0 norm of v, due to (H-2). Observe that ∥∇φ(t,·)∥C0(Rd)=∥φ(t,·)∥Lip and recall

∆t= 1
2k
. By choosing L′′ :=PM+L′((P + |µ0|)K+Q) not depending on k, we have

the result.

4.3. Proof of Theorem 1.1. In this section, we prove Theorem 1.1, stating
existence and uniqueness of the solution to the Cauchy problem associated to (1.2). The
proof is based on the proof of the same result for positive measures written in [25]. We
first focus on existence.

Step 1. Existence. Recall Proposition 4.1: The sequence given by the scheme
(µk

t )k is uniformly Lipschitz continuous, uniformly bounded in mass and tight. Since
µk
0 =µ0 for all k, this implies that the sequence is also uniformly bounded and equi-

continuous. By Ascoli-Arzela theorem, this implies that the sequence is relatively com-
pact in C0

(
[0,1],Ms(Rd)

)
, hence there exist converging sub-sequences. By passing to

one of such subsequences, for which we use the index j, we define

µt := lim
j→∞

µj
t . (4.13)

We now prove that µt satisfies (4.1) for all φ∈D([0,1)×Rd). Observe that each φ
satisfies supt∈[0,1]∥φ(t,·)∥C0(Rd),∥φ(t,·)∥Lip<+∞. Moreover, by homogeneity of (4.1)
and of ∥φ(t,·)∥C0(Rd), ∥φ(t,·)∥Lip, ∥∂tφ(t, ·)∥C0(Rd), ∥∂tφ(t,·)∥Lip with respect to φ→λφ,

it is sufficient to prove that µt satisfies (4.1) for all φ∈D([0,1)×Rd) with the additional
constraint

∥φ(t,·)∥C0(Rd), ∥φ(t,·)∥Lip, ∥∂tφ(t,·)∥C0(Rd), ∥∂tφ(t,·)∥Lip≤1 for all t∈ [0,1). (4.14)

Observe that for each φ∈D([0,1)×Rd) satisfying (4.14) it holds

C :=

∣∣∣∣∫ 1

0

dt

∫
Rd

(dµt(∂tφ(t,x)+v[µt] ·∇φ(t,x))+dh[µt]φ(t,x))+

∫
Rd

dµ0φ(0, ·)
∣∣∣∣

≤ L′′

2j +
∣∣∣∫ 1

0
dt
∫
Rd d(µt−µj

t )∂tφ(t,·)+dµtv[µt] ·∇φ(t, ·)−dµj
tv[µ

j
t ] ·∇φ(t,·))+d(h[µt]−h[µj

t ])φ(t, ·)
∣∣∣.

Since such estimate holds for any j, it is sufficient to prove that the right-hand side
tends to zero for j→+∞. We have

C≤ L′′

2j +∥µ−µj∥supt∈[0,1]max{∥∂tφ(t,·)∥∞,∥∂tφ(t,·)∥Lip}+
∣∣∣∫ 1

0
dt
∫
Rd d(µt−µj

t )v[µt] ·∇φ(t,·)
∣∣∣

+

∣∣∣∣∫ 1

0

dt

∫
Rd

dµj
t (v[µt]−v[µj

t ]) ·∇φ(t, ·))
∣∣∣∣+∥h[µ]−h[µj ]∥≤ L′′

2j
+∥µ−µj∥
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+∥µ−µj∥M sup
t∈[0,1]

∥φ(t,·)∥Lip+

∫ 1

0

dt

∫
Rd

d|µj
t |L∥µt−µj

t∥a,b∥φ(t,·)∥Lip+Q∥µ−µj∥

≤ L′′

2j
+∥µ−µj∥(1+M+(P + |µ0|)L+Q).

By letting j→+∞ and recalling that (4.13) is equivalent to ∥µ−µj∥→0, we have the
result.

Remark 4.3. From this construction, we do not prove uniqueness of the limit for the
sequence µk. Yet, we will prove uniqueness of the solution to (1.2) in Step 4, that will
in turn ensure uniqueness of the limit.

Step 2. Any weak solution to (1.2) is Lipschitz in time. In this step, we
prove that any weak solution in the sense of Definition 4.1 to the transport Equation
(1.2) is Lipschitz with respect to time, since it satisfies

∥µt+τ −µt∥a,b≤L′τ, t≥0, τ ≥0, (4.15)

with L′ defined in Proposition (4.1). To do so, we consider a solution µt to (1.2). We
define the vector field w(t,x) :=v[µt](x) and the signed measure bt=h[µt]. The vector
field w is uniformly Lipschitz and uniformly bounded with respect to x, since v is so.
The field w is also measurable in time, since by definition, µt is continuous in time.
Then, µt is the unique solution of

∂tµt(x)+div.(w(t,x)µt(x))= bt(x), µ|t=0(x)=µ0(x). (4.16)

Uniqueness of the solution of the linear Equation (4.16) is a direct consequence of Lemma
4.1. Moreover, the scheme presented in Section 4.2 can be rewritten for the vector field
w and the source b, in which dependence with respect to time is added and dependence
with respect to the measure is dropped. Thus, the unique solution µ to (4.16) can be
obtained as the limit of this scheme µk.

For each k≥0 it holds

∥µt+τ −µt∥a,b≤∥µt−µk
t ∥a,b+∥µk

t −µk
t+τ∥a,b+∥µk

t+τ −µt+τ∥a,b≤2∥µ−µk∥+L′τ,

where we used (4.6) for Lipschitz continuity of µk. By letting k→+∞ we have ∥µ−
µk∥→0, thus (4.15) holds.

Step 3. Any weak solution to (1.2) satisfies the operator splitting esti-
mate: There exist K ′,τ ′>0 such that for all t∈ [0,1) and τ ∈ (0,τ ′) saisfying t+τ ≤1,
it holds

∥µt+τ −(Φv[µt]
τ #µt+τh[µt])∥a,b≤K ′τ2. (4.17)

To this end, consider µt as the solution to the non-autonomous linear Equation
(4.16), as in Step 2: This allows to define the trajectory µk

t given by the scheme presented
in Section 4.2 and to prove that µt is the limit of µk

t . We now prove an estimate similar
to (4.17) for µk

t .
Fix k∈N∗ and let t= i∆t, τ =n∆t< log(2)/L for some i∈{0,. ..,2k−1}, n∈N and

t+τ ≤1 This ensures eLτ ≤1+2Lτ . Define

an :=∥µk
(i+n)∆t−(Φ

v[µk
i∆t]

n∆t #µk
i∆t+n∆th[µ

k
i∆t])∥a,b.
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Observe that it holds a1=0, while for n≥2 it holds

an≤∥Φv[µk
(i+n−1)∆t]

∆t #µk
(i+n−1)∆t−(Φ

v[µk
i∆t]

∆t #(Φ
v[µk

i∆t]

(n−1)∆t#µ
k
i∆t+(n−1)∆th[µk

i∆t]))∥a,b

+∥∆th[µk
(i+n−1)∆t]−∆th[µk

i∆t]∥a,b+∥Φv[µk
i∆t]

∆t #(n−1)∆th[µk
i∆t]−(n−1)∆th[µk

i∆t]∥a,b

≤eL∆t∥µk
(i+n−1)∆t−(Φ

v[µk
t ]

(n−1)∆t#µ
k
i∆t+(n−1)∆th[µk

i∆t])∥a,b

+b|µk
i∆t|

eL∆t−1

L
∥v[µk

(i+n−1)∆t]−v[µ
k
i∆t]∥C0 +∆tQ∥µk

(i+n−1)∆t−µ
k
i∆t∥a,b

+(n−1)∆t(∆tbM |h[µk
i∆t]|

≤ (1+2L∆t)an−1+(|µ0|+P )2∆tan−1+∆tQan−1+(n−1)∆t2MP

≤ (1+K ′
1∆t)an−1+K

′
2τ∆t.

Here, we used (H-1)-(H-2)-(H-3), Lemma (4.2) as well as Lipschitz continuity and bound-
edness of mass proved in Proposition 4.1. Observe that K ′

1,K
′
2 do not depend on n or

k, with K1>L. Thus, choose τ ′=log(2)/K1 independent of k and observe that for all
τ ∈ (0,τ ′) it holds

∥µk
(i+n)∆t−(Φ

v[µk
i∆t]

n∆t #µk
i∆t+n∆th[µ

k
i∆t])∥a,b

≤K2τ∆t
(1+K ′

1∆t)
n−1

K ′
1∆t

=
K ′

2

K ′
1

τ(eK
′
1τ −1)

≤2K ′
2τ

2. (4.18)

We are now ready to prove (4.17). For t∈ [0,1) fixed, build the sequence ik ∈
{0,. ..2k−1} such that |t− ik2−k|<2−k. Similarly, for τ ∈ (0,τ ′) fixed, build the se-
quence nk ∈{0,. ..2k} such that |t−(ik+nk)2

−k|<2−k. Observe that limk→+∞∥µ−
µk∥=0, together with (4.6), implies

∥µt+τ −µk
(ik+nk)2−k∥a,b≤∥µt+τ −µk

t+τ∥a,b+∥µk
t+τ −µk

(ik+nk)2−k∥a,b

≤∥µ−µk∥+L′2−k→0.

and similarly ∥µt−µk
ik2−k∥a,b→0. By using (H-1)-(H-2)-(H-3) and Lemma 4.2, this in

turn ensures

∥Φ
v[µk

ik2−k ]

nk2−k #µk
ik2−k −Φv[µt]

τ #µt∥a,b

≤∥Φ
v[µk

ik2−k ]

nk2−k #µk
ik2−k −Φ

v[µk

ik2−k ]

τ #µk
ik2−k∥a,b

+∥Φ
v[µk

ik2−k ]

τ #µk
ik2−k −Φv[µt]

τ #µk
ik2−k∥a,b+∥Φv[µt]

τ #µk
ik2−k −Φv[µt]

τ #µt∥a,b

≤|µk
ik2−k |M |nk2−k−τ |+ |µk

ik2−k |
eLτ −1

L
K∥µt−µk

ik2−k∥a,b+eLτ∥µt−µk
ik2−k∥a,b→0

as well as

∥nk2−kh[µk
ik2−k ]−τh[µt]∥a,b

≤∥nk2−kh[µk
ik2−k ]−τh[µk

ik2−k ]∥a,b+τ∥h[µk
ik2−k ]−τh[µt]∥a,b

≤P |nk2−k−τ |+τQ∥µk
ik2−k −µt∥a,b→0.
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Since nk2
−k→ τ ∈ (0,τ ′), for k sufficiently large one can apply (4.18), thus

lim
k→+∞

∥µt+τ −(Φv[µt]
τ #µt+τh[µt])∥a,b

≤ lim
k→+∞

(
∥µt+τ −µk

(ik+nk)2−k∥a,b

+∥µk
(ik+nk)2−k −(Φ

v[µk

ik2−k ]

nk2−k #µk
ik2−k +nk2

−kh[µk
ik2−k ])∥a,b

+∥Φ
v[µk

ik2−k ]

nk2−k #µk
ik2−k −Φv[µt]

τ #µt∥a,b+∥nk2−kh[µk
ik2−k ]−τh[µt]∥a,b

)
≤0+2K ′

2τ
2+0+0.

that is (4.17) for K ′=2K ′
2.

Step 4. Uniqueness of the solution to (1.2) and continuous dependence.
Assume that µt and νt are two solutions to (1.2) with initial condition µ0,ν0, respectively.
Define ε(t) :=∥µt−νt∥a,b, that is a Lipschitz function by Step 2. We denote

Rµ(t,τ)=µt+τ −(Φv[µt]
τ #µt+τh[µt]), Rν(t,τ)=νt+τ −(Φv[νt]

τ #νt+τh[νt]).

Fix τ <τ ′< log(2)/L, that ensures eLτ ≤1+2Lτ . By Step 3, it holds

ε(t+τ)=∥µt+τ −νt+τ∥a,b=∥Φv[µt]
τ #µt+τh[µt]+Rµ(t,τ)−Φv[νt]

τ #νt−τh[νt]−Rν(t,τ)∥a,b

≤∥Φv[µt]
τ #µt−Φv[νt]

τ #νt∥a,b+τ∥h[µt]−h[νt]∥a,b+∥Rµ(t,τ)∥a,b+∥Rν(t,τ)∥a,b

≤eLτ∥µt−νt∥a,b+(P +min{|µ0|, |ν0|}) e
Lτ−1
L

∥v[µt]−v[νt]∥C0 +τQ∥µt−νt∥a,b+2K′τ2

≤
(
eLτ +b(P +min{|µ0|, |ν0|})2τK+τQ

)
ε(t)+2K′τ2≤ (1+τK3)ε(t)+2K′τ2

for K2=2L+2Kb(P +min{|µ0|, |ν0|})+Q. By letting τ→0, we deduce ε′(t)≤K3ε(t)
almost everywhere. Then, ε(t)≤ε(0)exp(K2t), that implies continuous dependence with
respect to the initial data.

Moreover, if µ0=ν0, then ε(0)=0, thus ε(t)=0 for all t. Since ∥.∥a,b is a norm, this
implies µt=νt for all t, that corresponds to uniqueness of the solution.

Appendix. Measure theory and signed measures. In this appendix, we recall
standard results of measure theory and signed measures. In this section, µ and ν are
either in M(Rd), i.e. they are unsigned measures, or in Ms(Rd), i.e. they are signed
measures.

Definition A.1. We say that µ,ν ∈M(Rd) satisfy

• µ<<ν if ∀A∈B(Rd), (ν(A)=0)⇒ (µ(A)=0)

• µ≤ν if ∀A∈B(Rd), µ(A)≤ν(A)
• µ⊥ν if there exists E∈B(Rd) such that µ(Rd)=µ(E) and ν(E)=0

The concept of largest common measure between measures is now recalled.

Lemma A.1. Let µ,ν ∈M(Rd). Then, there exists a unique measure µ∧ν which
satisfies

µ∧ν≤µ, µ∧ν≤ν, (η≤µ and η≤ν)⇒η≤µ∧ν. (A.1)

We refer to µ∧ν as the largest common measure to µ and ν. Moreover, denoting by f
the Radon Nikodym derivative of µ with respect to ν, i.e. the unique measurable function
f such that µ=fν+ν⊥, with ν⊥⊥ν, we have

µ∧ν=min{f,1}ν. (A.2)
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Proof. The uniqueness is clear using (A.1). Existence is given by formula (A.2)
as follows. First, it is obvious that min{f,1}ν≤ν and using µ=fν+ν⊥, it is also clear
that min{f,1}ν≤µ. Let us now assume by contradiction the existence of a measure η
and of A∈B(Rd) such that

η≤µ, η≤ν, η(A)>

∫
A

min{f,1}dν. (A.3)

Since ν⊥⊥ν, there exists E∈B(Rd) such that ν(Rd)=ν(E) and ν⊥(E)=0 (see Def-
inition A.1), then ν(A)=ν(A∩E) and ν⊥(A)=ν⊥(A∩Ec). Since η≤ν, we have
η(A∩Ec)=0, thus η(A∩E)=η(A), and using (A.3)

η(A∩E)>

∫
A∩E

min{f,1}dν.

We define

B=A∩E∩{f >1}.

Then

η(B)+η((A∩E)\B)=η(A∩E)

>

∫
A∩E

min{f,1}dν(x)

=

∫
B

min{f,1}dν(x)+
∫
(A∩E)\B

min{f,1}dν

=

∫
B

1dν+

∫
(A∩E)\B

fdν

=ν(B)+µ((A∩E)\B)

which contradicts the fact that both η≤ν and η≤µ. This implies that η satisfying
(A.3) does not exist, and then Lemma A.1 holds.

Lemma A.2 (Weak compactness for positive measures). Let µn be a sequence of mea-
sures in M(Rd) that are uniformly bounded in mass. We can then extract a subsequence
µϕ(n) such that µϕ(n) converges vaguely to µ for some µ∈M(Rd).

A proof can be found in [14, Theorem 1.41].
We finally recall two definitions for signed measures.

Definition A.2 (Push-forward). For µ∈Ms(Rd) and T :Rd→Rd a Borel map, the
push-forward T#µ is the measure on Rd defined by T#µ(B)=µ(T−1(B)) for any Borel
set B⊂Rd.

Definition A.3 (Tightness). A sequence (µn)n∈N of measures in M(Rd) is tight if
for each ε>0, there is a compact set K⊂Rd such that for all n≥0, µn(Rd \K)<ε. A
sequence (µn)n∈N of signed measures of Ms(Rd) is tight if the sequences (µ+

n )n∈N and
(µ−

n )n∈N given by the Jordan decomposition are both tight.
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