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Abstract. The present paper studies a quantitative version of the transversality theorem. More
precisely, given a continuous function g∈C([0,1]d,Rm) and a global smooth manifold W ⊂Rm of di-
mension p, we establish a quantitative estimate on the (d+p−m)-dimensional Hausdorff measure of
the set Zg

W =
{
x∈ [0,1]d :g(x)∈W

}
. The obtained result is applied to quantify the total number of

shock curves in weak entropy solutions to scalar conservation laws with uniformly convex fluxes in one
space dimension.
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1. Introduction
Given two smooth manifolds X of dimension d and Y of dimension m, let g :X→Y

be a C1 map. For any smooth submanifold W of Y , we say that the function g is
transverse to W and write g⊤∩W if

(dg)p(TpX)+Tg(p)(W )=Tg(p)(Y ) for all p∈g−1(W ).

The transversality lemma, which is the key to studying Thom’s transversality theorem
[16, 18, 23], shows that the set of transverse maps is dense [6]. In particular, given a
smooth manifold W ⊂Rm of dimension p, for any continuous function g : [0,1]d 7→Rm

and any ε>0, there exists a C1 function gε : [0,1]
d→Rm such that

∥gε−g∥C1 ≤ε and gε⊤∩W.

For every h∈C
(
[0,1]d,Rm

)
, consider the set

Zh
W :=

{
x∈ [0,1]d :h(x)∈W

}
. (1.1)

If h is smooth and transverse to W , then Zh
W is a (d+p−m)-dimensional smooth

manifold. Hence, its (d+p−m)-dimensional Hausdorff measure is finite. In this paper,
we perform a quantitative analysis of the measure of Zg

W . Namely, how small can we
make this measure, by an ε-perturbation of g? To formulate more precisely our result,
given g∈C([0,1]d,Rm), define

N g
W (ε) := inf

∥h−g∥C0≤ε
Hd+p−m

(
Zh

W

)
to be the smallest (d+p−m)-Hausdorff measure of Zh

W among all functions h∈
C
(
[0,1]d,Rm

)
with ∥h−g∥C0 ≤ε. Relying on the concept of Kolmogorov ε-entropy [17],

we will establish an upper bound on the numberN g
W (ε) for a general continuous function

g : [0,1]d→Rm. The result can be extended to the case of continuous functions g :X→Y
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where X,Y are smooth manifolds and W ⊆Y is a smooth submanifold of Y . Specifically,
we obtain the following estimate for the class of Hölder continuous functions.

Theorem 1.1. Assume that p+d≥m and g∈Cα([0,1]d,Rm) is Hölder continuous
with exponent α∈]0,1]. Then for every ε>0 sufficiently small, it holds

N g
W (ε)≤CW ·

(
∥g∥C0,α

ε

)m−p
α

, (1.2)

where the constant CW >0 depends only on W and ∥g∥C0,α is the Hölder norm of g.

In the scalar case (d=m=1), the blow up rate
(
1
ε

)m−p
α with respect to ε is shown to

be the best bound in terms of power function in Example 3.1. For the multi-dimensional
cases (d≥2), this should be still true but the situation becomes considerably more
technical. We leave this open.

In the second part of the paper, we give an application to conservation laws. For
several classes of hyperbolic PDEs, one can prove that there exists an open dense set
of initial data for which the solution develops at most a finite number of singularities
[5, 10, 11, 22]. A natural question is to provide a quantitative estimate on this number.
For example, consider the scalar conservation laws in one space dimension

ut(t,x)+f
(
u(t,x)

)
x
=0 (t,x)∈ [0,∞[×R, (1.3)

with strictly convex flux f . In this case, there is a connection between (1.3) and the
Hamilton-Jacobi equation which induces an explicit representation of solutions. Using
this representation, Oleinik [19–21] shows that solutions of (1.3) are continuous, except
on the union of an at most countable set of shock curves. Analogous results are also
established for solutions to genuinely nonlinear hyperbolic systems of conservation laws
in [7,12,14,15]. The structure and smoothness of solutions to (1.3) were studied in [10],
using the concept of generalized characteristics. For a dense set of initial data, a stronger
regularity property holds. Namely, the total number of shock curves is finite [22]. Here,
in the spirit of metric entropy, which was used in the study of the compactness estimates
for solution sets [2–4,8], we shall provide quantitative estimates on the number of shock
curves in an entropy weak solution u to (1.3), which is a weak solution of (1.3) in the
sense of distributions and satisfies an entropy criterion for admissibility

u(t,x−)≥u(t,x+) for a.e. t>0,x∈R.

More precisely, assuming that f ∈C4(R) is uniformly convex, i.e.,

f ′′(u)≥λ > 0 for all u∈R. (1.4)

For any given ε>0 and ū∈L1(R) with a compact support, we seek a perturbed initial
datum v̄∈C3

c (R), with ∥v̄− ū∥L1 ≤ε such that the solution v=v(t,x) of (1.3) with
v(0, ·)= v̄ has the total number of shocks bounded in terms of ε−1. The next simplified
theorem provides an upper bound on this number of shocks.

Theorem 1.2. Let the flux function f be C4-smooth and satisfy (1.4). Given constants
R,V >0, assume that ū∈L1(R) satisfies

Supp(ū)⊆ [−R,R] and Tot.Var.{ū} < V. (1.5)
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Then, for some constant C, the following holds. For every ε>0 sufficiently small, there
exists v̄∈C3(R) with Supp(v̄)⊆ [−2R,2R] and ∥v̄− ū∥L1 ≤ε, such that the entropy weak
solution v=v(t,x) of (1.3) with initial datum v(0, ·)= v̄ satisfies

[Total number of shock curves of v]≤ C

λ
· R

4V 5

ε4
+4. (1.6)

The proof of Theorem 1.2 relies on Theorem 1.1 and the observation that the total
number of shock curves arising in the solution v is bounded by the total number of
inflection points of the function x→f ′(v̄(x)). Finally, we remark that the constant C
is explicitly computed in (4.13) and the result is proved for C3-smooth f in Theorem
4.1.

The remainder of this paper is organized as follows. In Section 2, we recall basic
concepts on the inverse of the minimal modulus of continuity and Kolmogorov ε-entropy,
and also include a necessary result on the partition of the unit cube into polytopes in
Rd. Section 3 contains a general result on an upper estimate for N g

W (ε), while Section
4 provides a brief review on the scalar conservation laws with uniformly convex fluxes
in one space dimension and extends Theorem 1.2 to the case of C3-smooth f .

2. Notations and preliminaries
Let d≥1 and n≥1 be integers and D be a measurable subset of Rd. Throughout

the paper we shall denote by:

• | · | the Euclidean norm of Rd;

• Bd(a,r)={x∈Rd : |x−a|<r} the ball of radius r centered at a∈Rd and

Bd(A,r)=
⋃
a∈A

Bd(a,r) for all r≥0,A⊆Rd;

• Int(D) the interior of D;

• Diam(D)=supx,y∈D |x−y|, the diameter of D;

• χD=


1 if x∈D

0 if x∈Rd\D
the characteristic function of D;

• Hs(D) the s-dimensional Hausdorff measure of D;

• #(S) the number of elements of any finite set S;

• L1(R) the Lebesgue space of all (equivalence classes of) summable functions on
R, equipped with the usual norm ∥·∥L1 ;

• L∞(R) the space of all essentially bounded functions on R, equipped with the
usual norm ∥·∥L∞ ;

• Cn(R), the space of smooth functions on R having continuous derivatives
f ′,f ′′,. ..,f (n), equipped with the usual norm ∥·∥Cn ;

• Tot.Var.{g,I} total variation of a function g over an open interval I in R;
• Supp(u) the essential support of a function u∈L∞(R);
• ⌊x⌋ :=max{z∈Z :z≤x} the integer part of x.

In order to obtain the estimate (1.2) for general continuous functions, let us introduce
the inverse of the minimal modulus of a continuity.

Definition 2.1. Given subsets U ⊆Rd and V ⊆Rm, let h :U→V be continuous. The
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minimal modulus of continuity of h is given by

ωh(δ)= sup
x,y∈U,|x−y|≤δ

|h(y)−h(x)| for all δ∈ [0,diam(U)]. (2.1)

The inverse of the minimal modulus of continuity of h is the map s→Ψh(s) and is
defined by

Ψh(s) :=sup{δ≥0 : |h(x)−h(y)|≤s for all |x−y|≤ δ,x,y∈U} (2.2)

for all s≥0.

From the above definition, it is clear that Ψh(s)=∞ for all s∈ [Mh,∞[ with Mh :=
supx,y∈U |h(x)−h(y)|. In particular, if h is a constant function then Ψh(s)=∞ for all
s≥0. Otherwise, by the continuity of h, it holds

Ψh(0)=0 and 0 < Ψh(s)≤diam(U) for all s∈]0,Mh[.

Moreover, Ψh(·) : [0,∞[→ [0,∞[ is increasing and superadditive

Ψh(s1+s2)≥Ψh(s1)+Ψh(s2) for all s1,s2≥0.

If the map δ→ωh(δ) is strictly increasing in [0,diam(U)[ then Ψh is the inverse of ωh,
i.e.,

Ψh(s)=ω−1
h (s) for all s∈ [0,Mh[.

In the case that h is Hölder continuous with an exponent α∈]0,1], for every s>0 it
holds

Ψh(s)≥
(

s

∥h∥C0,α

) 1
α

with ∥h∥C0,α = sup
x,y∈U,x ̸=y

|h(x)−h(y)|
|x−y|α

. (2.3)

Toward a sharp estimate on N g
W (ε), we recall the concept of Kolmogorov ε-entropy [17],

which has been studied extensively in a variety of literature and disciplines. It plays a
central role in various areas of information theory and statistics, including nonparamet-
ric function estimation, density information, empirical processes and machine learning.
It provides a tool for characterizing the rate of mixing of sets of small measure.

Definition 2.2. Given a metric space (E,ρ), let K be a totally bounded subset of E.
For any ε>0, let Nε(K|E) be the minimal number of sets in a covering of K by subsets
of E having diameter no larger than 2ε. Then the ε-entropy of K is defined as

Hε(K|E) := log2Nε(K|E).

To complete this section, let us prove a simple lemma of the decomposition of a unit
cube in Rd that will be used in the proof of Theorem 3.1.

Lemma 2.1. Let □d=[0,1]d be a unit cube in Rd. Then, □d can be decomposed into
2d−1d! polytopes ∆d

k in Rd such that ∆d
k has (d+1) vertices for k∈

{
0,1,. ..,2d−1d!−1

}
.

Proof. The decomposition of □d can be done by using the induction process:

• If d=1 then □1 is an interval [0,1].
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• For d≥2, assume that □d−1 can be decomposed into 2d−2(d−1)! polytopes
∆d−1

ℓ in Rd−1 such that ∆d−1
ℓ has d vertices for ℓ∈

{
0,1,. ..,2d−2(d−1)!−1

}
.

Observe that □d has 2d faces □d−1
h =∂□d

h for h∈{0,1,. ..,2d−1} which are
Rd−1-cubes of side length 1. Thus, for each h∈{0,1,. ..,2d−1}, we can partition
□d−1

h into 2d−2(d−1)! polytopes ∆d−1
h,ℓ such that ∆d−1

h,ℓ has d vertices for ℓ∈{
0,1,. ..,2d−2(d−1)!−1

}
. Then □d can be partitioned into 2d−1d! polytopes

∆d
k for k=

{
1,2,. ..,2d−1d!

}
such that

∆d
k=
{
θc+(1−θ) ·y :θ∈ [0,1],y∈∆d−1

h,ℓ

}
, k=h ·2d−2(d−1)!+ℓ,

with c being the center of □d.

The proof is complete.

3. Upper estimates on N g
W (ε)

In this section, we provide a quantitative study on the Hausdorff measure of Zg
W for

general continuous functions g∈C
(
[0,1]d,Rm

)
and W ⊆Rm being a C1 manifold with

dim(W )=p. More precisely, given the definition of the set Zh
W in (1.1), we establish an

upper bound for

N g
W (ε) := inf

h∈C([0,1]d,Rm),∥h−g∥C0≤ε
Hd+p−m

(
Zh

W

)
. (3.1)

Recalling that Bm(W,r)=
⋃

w∈W

Bm(w,r) is a r-tubular neighbourhood of W in Rm, we

shall assume the following additional hypothesis on W :

(A1) There exists an open set U of Rm and a C1 diffeomorphism φ :Bm(W,r)→U
with φ(W ) ⊆ Rp×{0}⊆Rp×Rm−p for some r>0.

In this case, from (2.2), we denote by

γW :=
λ1

λ2
, ℓ(s)=

1

2
√
d
·Ψg (γW ·s) for all s>0, (3.2)

with

0 < λ1 := inf
x ̸=y

|φ(x)−φ(y)|
|x−y|

≤ sup
x̸=y

|φ(x)−φ(y)|
|x−y|

:=λ2 < ∞. (3.3)

Remark 3.1. WhenW is the graph of a C1 function ϕ :Rp→Rm−p with ∥ϕ∥C1(R)<∞,
then W satisfies the hypothesis (A1). Indeed, one can choose φ :Rm→Rm such that

φ(x,y)=(x,y−ϕ(x)) for all x∈Rp,y∈Rm−p.

In this case, a direct computation yields

min

1

2
,

1√
1+4∥ϕ∥2C1(R)

≤λ1≤λ2≤
√
2+2∥ϕ∥2C1(R).

Introducing the constant which approximately measures the set g−1
(
Bm(W,ε)

)
⊆ [0,1]d

in terms of Kolmogorov ε-entropy

0≤Λε :=min

{
(4ℓ(ε))d ·2Hℓ(ε)

(
g−1(Bm(W,ε))

∣∣Rd
)
,1

}
, (3.4)
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we prove the following result.

Theorem 3.1. Assume that p+d≥m and the C1 manifold W ⊆Rm satisfies the
hypothesis (A1). Then for every ε>0 sufficiently small such that Ψg (γW ·ε)≤

√
d, it

holds

N g
W (ε)≤CΛε ·

(
1

Ψg (γW ·ε)

)m−p

(3.5)

with the constant C=2d+m−p−1d!dd+
p−m

2 .

Proof. The proof is divided into several steps:

Step 1. Fix 0<ε<
λ2

λ1+λ2
·r, for every δ>0 such that

ωg

(√
dδ
)
≤ λ1ε

λ2
and ε+ωg(δ)<r, (3.6)

we divide [0,1]d into (Kδ)
d closed cubes □ι of side length ℓδ =

1

Kδ
≤ δ with Kδ =

⌊
1

δ

⌋
+1

and set

Iδ =
{
ι∈
{
1,. ..,

(
Kδ

)d}
: int(□ι)∩g−1

(
Bm(W,ε)

)
̸=∅
}
, Oδ =

⋃
ι∈Iδ

□ι. (3.7)

From (2.1) and ε+ωg(δ)<r, one has

g(□ι) ⊆ Bm(W,ε)+Bm(0,ωg(δ)) ⊆ Bm(W,r) for all ι∈ Iδ,

and this implies that g(Oδ)⊆Bm(W,r). Therefore, one can define the function compo-
sition g̃ :Oδ →Rm such that

g̃(x)=φ(g(x)) for all x∈Oδ. (3.8)

Since dist(g(x),W )≥ε for all x∈∂Oδ\∂[0,1]d, it holds

inf
x∈∂Oδ\∂[0,1]d

dist(g̃(x),φ(W ))≥ inf
|x−y|≥ε

∣∣φ(x)−φ(y)
∣∣≥λ1ε. (3.9)

In the next two steps, we will approximate g̃ by a function h̃δ :Oδ →Rm such that

(i) h̃δ is a piecewise continuous function with∥∥∥h̃δ− g̃
∥∥∥
L∞(R)

≤λ2 ·ωg

(√
dℓδ

)
, inf

x∈∂Oδ\∂[0,1]d
dist

(
h̃δ(x),φ(W )

)
> 0;

(3.10)

(ii) The (d+p−m)-Hausdorff measure of Z h̃δ

φ(W )=
{
x∈Oδ : h̃δ(x)∈φ(W )

}
is

bounded by

Hd+p−m
(
Z h̃δ

φ(W )

)
≤
(
22d−1d!dd+p−m

)
·ℓd+p−m

δ ·2
Hℓδ

(
g−1(Bm(W,ε))

∣∣∣Rd

)
.

(3.11)
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Step 2. For every ι∈ Iδ, following the induction process in Lemma 2.1, we partition
□ι into 2d−1d! polytopes ∆k

ι in Rd such that the set of vertices Vk
ι of ∆k

ι has (d+1)
elements and is written by

Vk
ι =
{
vk,jι ∈Rd : j∈{1,2,. ..,d+1}

}
for all k∈

{
1,2,. ..,2d−1d!

}
.

Set md :=min{d,m}. Observe that for any given ι∈ Iδ, k∈
{
1,2,. ..,2d−1d!

}
, and s>0,

there are md linearly independent vectors z1,z2 .. .,zmd
in Rm with

∣∣∣zj− g̃
(
vk,jι

)∣∣∣<s for

j∈{1,2,. ..,md} such that the following subspace of Rm has dimension md+p−m

span
{
z1− g̃

(
vk,d+1
ι

)
,z2− g̃

(
vk,d+1
ι

)
,. ..,zm+d− g̃

(
vk,d+1
ι

)}⋂
Rp×{0}.

Thus, up to an arbitrarily small modification on g̃
(
vk,jι

)
, we can assume that for every

ι∈ Iδ and k∈
{
1,2,. ..,2d−1d!

}
, the subspace

span
{
g̃
(
vk,1ι

)
− g̃
(
vk,d+1
ι

)
, g̃
(
vk,2ι

)
− g̃
(
vk,d+1
ι

)
,. .., g̃

(
vk,md
ι

)
− g̃
(
vk,d+1
ι

)}⋂
Rp×{0}

(3.12)

has dimension md+p−m. Denote by ∇d=

α∈Rd :αj ≥0,

d∑
j=1

αj ≤1

, we have

∆k
ι =


d∑

j=1

αj ·vk,jι +

1−
d∑

j=1

αj

 ·vk,d+1
ι :α∈∇d

.

The piecewise linear continuous function h̃ι :□ι→Rm is then defined as follows: For all

k∈
{
1,2,. ..,2d−1d!

}
, x=

d∑
j=1

αj ·vk,jι +

1−
d∑

j=1

αj

 ·vk,d+1
ι with α∈∇d, we set

h̃ι (x) := g̃
(
vk,d+1
ι

)
+

d∑
j=1

αj ·
[
g̃
(
vk,jι

)
− g̃
(
vk,d+1
ι

)]
. (3.13)

From (3.8) and (3.3), one estimates∣∣∣h̃ι (x)− g̃ (x)
∣∣∣≤ sup

|y−z|≤diam
(
∆k

ι

)|g̃(y)− g̃(z)|

≤λ2 · sup
|y−z|≤

√
dℓδ

|g(y)−g(z)|≤λ2 ·ωg

(√
dℓδ

)
.

The function h̃δ :Oδ →Rm is defined by

h̃δ(x)= h̃ι(x) for all x∈□ι,ι∈ Iδ

is continuous and satisfies∣∣h̃δ(x)− g̃(x)
∣∣≤λ2 ·ωg

(√
dℓδ

)
for all x∈Oδ.

Recalling (3.9) and (3.6), we have

inf
x∈∂Oδ\∂[0,1]d

dist
(
h̃δ(x),φ(W )

)
≥λ1ε−λ2 ·ωg

(√
dℓδ

)
> 0. (3.14)
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Step 3. Let us show that h̃δ satisfies (ii). Fix ι∈ Iδ, we consider the m×d matrix

Ak
ι =
[
g̃
(
vk,1ι

)
− g̃
(
vk,d+1
ι

)
,. .., g̃

(
vk,dι

)
− g̃
(
vk,d+1
ι

)]
.

By the rank-nullity theorem, one has that rank(Ak
ι )=md and{

α∈Rd :Ak
ι α=0

}
=Yk

ι with dim
(
Yk

ι

)
=d−md.

Assume that Xk
ι ⊕Yk

ι =Rd. The linear map α→Ak
ι α is injective from Xk

ι to Rm

and dim
(
Xk

ι

)
=md. Thus, from (3.12), the following set is a (md+p−m)-dimensional

hyperplane

Γk
ι :=

{
α∈Xk

ι :A
k
ι α∈Rp×{0}− g̃

(
vk,d+1
ι

)
⊂Rp×Rm−p

}
.

For every k∈
{
1,2,. ..,2d−1d!

}
, we set

∇d
k :=

α∈∇d : h̃ι

 d∑
j=1

αj ·vk,jι +

1−
d∑

j=1

αj

 ·vk,d+1
ι

∈φ(W )⊂Rp×{0}

.

From (3.13), it holds

∇d
k=

α∈∇d : g̃
(
vk,d+1
ι

)
+

d∑
j=1

αj ·
[
g̃
(
vk,jι

)
− g̃
(
vk,d+1
ι

)]
∈φ(W )


=

α∈∇d :

d∑
j=1

αj ·
[
g̃
(
vk,jι

)
− g̃
(
vk,d+1
ι

)]
∈φ(W )− g̃

(
vk,d+1
ι

)
⊆
{
α∈Rd :Ak

ι α∈Rp×{0}− g̃
(
vk,d+1
ι

)}
=Yk

ι +Γk
ι .

Observe that Yk
ι +Γk

ι is a (d+p−m)-dimensional hyperplane. Again recalling (3.13),
we obtain{

x∈∆k
ι : h̃ι(x)∈φ(W )

}
=


d∑

j=1

αj ·vk,jι +

1−
d∑

j=1

αj

 ·vk,d+1
ι :α∈∇d

k

,

and

Hd−m+p
({

x∈∆k
ι : h̃ι(x)∈φ(W )

})
≤

(
sup

j∈{1,...,d}

∣∣vk,jι −vk,d+1
ι

∣∣)d−m+p

·Hd−m+p
(
∇d

k

)
≤
(√

dℓδ
)d−m+p ·Hd−m+p

(
∇d

k

)
≤ (dℓδ)

d−m+p.

Thus, for all ι∈Iδ, it holds

Hd−m+p
(
Z h̃ι

φ(W )

)
≤

2d−1d!∑
k=1

Hd−m+p
({

x∈∆k
ι : h̃ι(x)∈φ(W )

})
≤2d−1d!(dℓδ)

d−m+p.

By the concept of ε-entropy in Definition 2.2, we have

g−1
(
Bm(W,ε)

)
⊆

J⋃
j=1

Dj , J ≤2
Hℓδ

(
g−1(Bm(W,ε))

∣∣∣Rd

)
,



ANDREW MURDZA AND KHAI T. NGUYEN 1311

for some Dj ⊂Rd with diam(Dj)≤2ℓδ. For any j∈{1,. ..,J}, it holds

#
{
ι∈
{
1,. ..,

(
Kδ

)d}
: int(□ι)∩Dj ̸=∅

}
≤2d.

Hence,

#(Iδ)≤min

2d ·2
Hℓδ

(
g−1(Bm(W,ε))

∣∣∣Rd

)
,
(
Kδ

)d
=

(
1

ℓδ

)d
, (3.15)

and this yields (3.11) by

Hd+p−m
(
Z h̃δ

φ(W )

)
≤
∑
ι∈Iδ

Hd−m+p
(
Z h̃ι

φ(W )

)
≤#(Iδ) ·2d−1d!(dℓδ)

d−m+p. (3.16)

Step 4. To complete the proof, we first approximate g by the continuous function
gδ :Oδ →Rm which is defined by

gδ(x)=φ−1(h̃δ(x)) for all x∈Oδ.

From (3.10), it holds

|gδ(x)−g(x)|=
∣∣∣φ−1(h̃δ(x))−φ−1(g̃(x))

∣∣∣≤ |h̃δ(x)− g̃(x)|
λ1

≤ λ2

λ1
·ωg

(√
dℓδ

)
,

and

inf
∂Oδ\∂[0,1]d

dist(gδ(x),W )= inf
∂Oδ\∂[0,1]d

dist
(
φ−1(h̃δ(x)),φ

−1(φ(W ))
)

≥ 1

λ2
·dist

(
h̃δ(x),φ(W )

)
> 0.

Since dist(g(x),W )≥ε for all x∈
(
[0,1]d\Oδ

)
, we can extend gδ to [0,1]d such that gδ

is still continuous with ∥gδ−g∥L∞(R)≤
λ2

λ1
·ωg

(√
dℓδ

)
and gδ(x) does not belong to W

for every x∈ [0,1]d\Oδ. Thus, (3.16) and (3.15) yield

Hd+p−m (Zgδ
W )=Hd+p−m ({x∈Oδ :gδ(x)∈W})

=Hd+p−m
({

x∈Oδ : h̃δ ∈φ(W )
})

=Hd+p−m
(
Z h̃δ

φ(W )

)
≤ 2d−1d!dd−m+p

ℓm−p
δ

·min

2dℓdδ ·2
Hℓδ

(
g−1(Bm(W,ε))

∣∣∣Rd

)
,1

.

Recalling (2.1) and (2.2), we choose δ=
1√
d
·Ψg

(
λ1ε

λ2

)
such that ωg

(√
dδ
)
≤ λ1ε

λ2
, the

condition (3.6) on δ holds, and

∥gδ−g∥L∞(R)≤
λ2

λ1
·ωg

(√
dℓδ

)
≤ε,

and

1

2
√
d
·Ψg

(
λ1ε

λ2

)
=

δ

2
≤ ℓδ =

1⌊
1

δ

⌋
+1

≤ δ=
1√
d
·Ψg

(
λ1ε

λ2

)
.
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Hence, (3.2)-(3.4) yields (3.5) and the proof is complete.

Remark 3.2. In addition, if g∈Cα([0,1]d,Rm) is Hölder continuous with exponent
α∈]0,1] then from (2.3) it holds

Ψg (γW ·ε)≥
(

γW ·ε
∥g∥C0,α

) 1
α

for all ε≥0.

Recalling (3.4)-(3.5), we obtain Theorem 1.1 with CW =
(
2d+m−p−1dd+

p−m
2 d!

)
·(

1

γW

)m−p
α

.

To conclude this section, let us provide an example to show that the blow up rate(
1
ε

)m−p
α with respect to ε is the best bound in terms of power function in the case

d=m=1,p=0, W ={0}, and α=1.

Example 3.1. Consider the Lipschitz function g : [0,1]→R with the Lipschitz constant
1 such that

g(x)=

∞∑
n=1

un(x) ·χ[sn,sn+1](x) with s1=0,sn=

n−1∑
j=1

2−j for all n≥2.

Here, the function un : [0,1]→R is defined as follows: un=0 on [0,1]\[sn,sn+1] and for
all x∈ [sn,sn+1]

un(x)=2−ℓn ·
2n

2
−1∑

k=0

u
(
2ℓn ·

[
(x−sn)−k2−ℓn

])
·χ[sn+k2−ℓn ,sn+(k+1)2−ℓn ]

with

u(x)=

(
1

4
−
∣∣∣∣x− 1

4

∣∣∣∣) ·χ[0,1/2]+

(∣∣∣∣x− 3

4

∣∣∣∣− 1

4

)
·χ[1/2,1], ℓn=n2+n.

Given any ε∈
[
2−ℓn+1 ,2−ℓn

[
, for any h∈C([0,1],R) with ∥h−g∥C0([0,1])≤ε, we have

H0
(
Zh

{0}

)
=#{x∈ [0,1] :h(x)=0}≥#{x∈]sn,sn+1[:un(x)=0}≥2n

2

≥
(
1

ε

) 1
1+o(ε)

with lim
ε→0+

o(ε)=0. Thus,

N g
{0}(ε)= inf

∥h−g∥C0≤ε
H0
(
Zh

{0}

)
≥
(
1

ε

) 1
1+o(ε)

,

and the blow up rate
(
1
ε

)m−p
α = 1

ε in Theorem 1.1 is optimal in terms of power function
in the case d=m=1,p=0 and α=1. In this scalar case, one can follow the same
construction to show that the rate is optimal for α∈]0,1[.

For the multi-dimensional cases (d≥2), the blow up rate
(
1
ε

)m−p
α in Theorem 1.1

should be still optimal in terms of power function but the situation becomes considerably
more technical. We leave this open.
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4. A quantitative bound on the total number of shock curves
In this section, we shall use Theorem 3.1 to prove Theorem 1.2. In general, the scalar

conservation laws (1.3) do not possess classical solutions since discontinuities arise in
finite time even if the initial data are smooth. Hence, it is natural to consider weak
solutions in the sense of distributions that, for sake of uniqueness, satisfy an entropy
criterion for admissibility

u(t,x−)≥u(t,x+) for a.e. t>0,x∈R.

Under the convexity Assumption (1.4), it is well known (see e.g. in [7]) that for every
ū∈L∞(R)∩L1(R), the Cauchy problem (1.3) with u(0,·)= ū admits a unique entropy
solution u(t,x) which satisfies the Oleinik’s estimate

u(t,y)−u(t,x)≤ 1

λt
·(y−x) for all t>0,y >x.

Moreover, the solution is continuous except on the union of an at most countable set of
Lipschitz continuous curves (shocks). To be precise, we recall the definition and theory
of generalized characteristic curves associated to (1.3). For a more in depth theory of
generalized characteristics, we direct the readers to [9, 13].

Definition 4.1. A Lipschitz continuous curve ξ(t) defined on an interval [0,∞[ is
called a generalized characteristic if for a.e. t in the interval

ξ̇(t) ∈
[
f ′(u(t,ξ(t)+)),f ′(u(t,ξ(t)−))

]
. (4.1)

Moreover, we say that

• ξ on [a,b] is genuine if u(t,ξ(t)+)=u(t,ξ(t)−) for a.e. t∈ [a,b].

• ξ on an interval [t̄,σ[ for some t̄<σ≤+∞ is a shock if

u(t,ξ(t)−) > u(t,ξ(t)+) for all t∈ [t̄,σ[.

• A point (t̄, x̄)∈]0,∞[×R is called a shock generation point if the forward char-
acteristic through (t̄, x̄) is a shock, while every backward characteristic through
(t̄, x̄) is genuine.

The existence of backward (forward) characteristics was studied by Fillipov. As in [9],
the speed of the characteristic curves are determined and genuine characteristics are
essentially classical characteristics.

Proposition 4.1. Let ξ : [a,b]→R be a generalized characteristic curve of (1.3),
associated with an entropy weak solution u. Then for almost every time t∈ [a,b], it
holds that

ξ̇(t)=


f ′(u(t,ξ(t))) if u(t,ξ(t)+)=u(t,ξ(t)−) ,

f(u(t,ξ(t)+))−f(u(t,ξ(t)−))

u(t,ξ(t)+)−u(t,ξ(t)−)
if u(t,ξ(t)+) < u(t,ξ(t)−).

(4.2)

In addition, if ξ is genuine on [a,b], then (t,ξ(·)) is a straight line and the solution u is
constant along this line.

Given (t,x)∈]0,+∞[×R, all backward characteristics ξ are confined between max-
imal and minimal backward characteristics, denoted by ξ+(t,x) and ξ−(t,x). Moreover, we
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recall properties of generalized characteristics, including the non-crossing property of
two genuine characteristics.

Proposition 4.2. Let u be an entropy weak solution to (1.3). Then for any (t,x)∈
]0,+∞[×R, the followings hold:

(i) The maximal and minimal backward characteristics ξ±(t,x) are genuine.

(ii) There is a unique forward characteristic, denoted by ξ(t,x), which passes though
(t,x). If u(t,·) is discontinuous at a point x, then

u
(
τ,ξ(t,x)(τ)−

)
> u

(
τ,ξ(t,x)(τ)+

)
for all τ ≥ t.

(iii) Two genuine characteristics may intersect only at their endpoints.

From the above proposition, one can easily obtain the following lemma.

Lemma 4.1. For any given initial data v̄∈C2(R) with supp(v̄)⊆ [−R,R] such that

#{x∈ [−R,R] : [f ′(v̄)(x)]′′=0} < ∞ (4.3)

The total number of shock curves of the entropy weak solution v of (1.3) with u(0, ·)= v̄
is at most the total number of inflection points of f ′(v̄).

Proof. From Proposition 4.2, we have that the total number of shock curves of v
is bounded by the total number of shock generation points. Given a shock generation
point (t̄, x̄), let d :R→R be a C2 such that

d(β)=β+f ′(v̄(β)) · t̄ for all β∈R.

Two cases are considered:

• If v(t̄, x̄−)=v(t̄, x̄+) then let ξ(t̄,x̄)(·) be the backward characteristic starting
from (t̄, x̄). Set β̄ := ξ(t̄,x̄)(0). From ([9, Lemma 5.2]), it holds

d′(β̄)=0 =⇒ [f ′(v̄)]′(β̄)=−1

t̄
. (4.4)

For every δ>0, there exist x̄−δ<x−
δ <x̄<x+

δ <x̄+δ such that v(t̄,·) is con-
tinuous at x±

δ . By the non-crossing property (iii) in Proposition 4.2 and the
continuity of v̄(t̄,·) at x̄, we have

ξ(t̄,x−
δ )(0) :=β−

δ < β̄ < β−
δ := ξ(t̄,x+

δ )(0), lim
δ→0+

β−
δ = lim

δ→0+
β+
δ = β̄,

and

x−
δ =d(β−

δ ) < d(β̄)= x̄ < d(β+
δ )=x+

δ .

This implies that there exist β̃−
δ ∈

]
β−
δ ,β̄

[
and β̃+

δ ∈
]
β̄,β+

δ

[
such that

d′(β̃±
δ

)
> 0 =⇒ [f ′(v̄)]′

(
β̃±
δ

)
> − 1

t̄
.

Hence, (4.4) and the Assumption (4.3) imply that β̄ is an inflection point of
f ′(v̄).
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• Otherwise, if v(t̄, x̄−)>v(t̄, x̄+) then (t̄, x̄) is a center of a centered compression
wave, i.e., there are two genuine backward characteristics ξ1 and ξ2 through
(t̄, x̄) so that every backward characteristic through (t̄, x̄) is contained in the
funnel confined between ξ1 and ξ2. In this case, one has that

[f ′(v)]′(β)=−1

t̄
for all β∈]ξ1(0),ξ2(0)[

and this contradicts (4.3).
Therefore, the total number of shock generation points is at most the total number of
inflection points of f ′(v̄).

From the above lemma and Theorem 3.1, we now extend Theorem 1.2 to the case
of C3-smooth f . In order to do so, given constants R,V >0, we denote by

Φf,V,R(ε)=212 ·max

{
45

(
1+

1

V

)∥∥f∥∥
C3
]
−V

2 ,V2

[, 4βε

ΨV
f (βε)

}
(4.5)

with βε=
5λε3

29V 4R3
and ΨV

f(3) being the inverse of the minimal modulus of continuity of

the restriction of f (3) to the interval ]− V
2 ,

V
2 [ which is defined in (2.2).

Theorem 4.1. Given constants R,V >0, assume that f ∈C3(R) and ū∈L1(R)
satisfies (1.5). Then, for every ε>0 sufficiently small, there exists v̄∈C2(R) with
Supp(v̄)⊆ [−2R,2R] and ∥v̄− ū∥L1 ≤ε, such that the entropy weak solution v=v(t,x)
of (1.3) with initial datum v(0, ·)= v̄ satisfies

[Total number of shock curves of v]≤ Φf,V,R(ε)

λ
· R

4V 5

ε4
+4. (4.6)

Proof. Step 1. Let ū∈L1(R)∩L∞(R) be such that

Supp(ū)⊆ [−R,R] and Tot.Var.(ū,]−∞,∞[)≤V.

For every δ>0, we first approximate ū by the smooth function uδ ∈C3(R) with
Supp(uδ)⊆ [−R−δ,R+δ] which is defined by

uδ(x) := [ū∗ρδ](x)=
∫ ∞

−∞
ū(y)ρδ(x−y)dy for all x∈R

where the mollifier

ρδ(x)=
315

256 ·δ
·
(
1− x2

δ2

)4

·χ[−δ,δ](x)

is a C4(R) function with Supp(ρδ)⊆ [−δ,δ] and

∫ ∞

−∞
ρδ(x)dx=1. From [1, Lemma 3.24],

the L1-distance between ū and uδ is bounded by

∥uδ− ū∥L1(R)≤ δ ·Tot.Var.(ū,]−∞,∞[)≤V δ. (4.7)

Moreover, a direct computation yields

∥uδ∥L∞(R)≤∥u∥L∞(R) ·∥ρδ∥L1(R)=∥u∥L∞(R)≤
1

2
·Tot.Var.(ū,]−∞,∞[)≤ V

2
,
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∥u′
δ∥L∞(R)≤∥u∥L∞(R) ·∥ρ′δ∥L1(R)≤

V

2
·∥ρ′δ∥L1(R)=

315V

256 ·δ
,

and

∥u′′
δ∥L∞(R)≤

V

2
·∥ρ′′δ∥L1(R)=

1215V

98
√
7 ·δ2

, ∥u′′′
δ ∥L∞(R)≤

V

2
·∥ρ′′′δ ∥L1(R) <

5085V

224 ·δ3
.

Consider the continuous function hδ := [f ′(uδ)]
′′ with Supp(hδ)⊆ [−R−2δ,R+2δ]. For

every x,y∈R, we can roughly estimate∣∣hδ(y)−hδ(x)
∣∣= ∣∣∣[f ′′′(uδ)[u

′
δ]

2+f ′′(uδ)u
′′
δ

]
(y)−

[
f ′′′(uδ)[u

′
δ]

2+f ′′(uδ)u
′′
δ

]
(x)

∣∣∣
≤

45V (1+V )
∥∥f∥∥

C3
]
−V

2
,V
2

[
2δ3

· |x−y|+
∥∥u′

δ

∥∥2

L∞(R) ·
∣∣f (3)(uδ(x))−f (3)(uδ(y))

∣∣
≤

45V (1+V )
∥∥f∥∥

C3
]
−V

2
,V
2

[
2δ3

· |x−y|+ 8V 2

5δ2
·ωf(3)

(
5V

4δ
· |x−y|

)
and (2.1) yields

ωhδ
(τ)≤

45V (1+V )
∥∥f∥∥

C3
]
−V

2 ,V2

[
2δ3

·τ+ 8V 2

5δ2
·ωf(3)

(
5V τ

4δ

)
for all τ ≥0.

Recalling (2.2), we then derive an upper bound on the inverse of the minimal modulus
of continuity of hδ

Ψhδ
(s)≥min

 δ3s

45V (V +1)
∥∥f∥∥

C3
]
−V

2 ,V2

[ , 4δ5V ·ΨV
f

(
5δ2s

16V 2

), (4.8)

where ΨV
f(3) is the inverse of the minimal modulus of continuity of the restriction of f (3)

on ]−V/2,V/2[.
On the other hand, applying Theorem 3.1 for m=d=1,p=0, W ={0}∈R, and

Λε≤1, we get that for any given σ>0 sufficiently small, there exists a continuous
function h̃σ,δ such that

Supp(h̃σ,δ)⊆]−R−2δ,R+2δ[,
∥∥h̃σ,δ−hδ

∥∥
C0(R)≤σ (4.9)

and

#
{
x∈]−R−2δ,R+2δ[: h̃σ,δ(x)=0

}
≤ 4(R+δ)

Ψhδ
(σ)

. (4.10)

Step 2. Set R1 :=max{R+δ,sup{x∈R : h̃σ,δ} ≠ 0}∈]R+δ,R+2δ[ and

α1=

∫ R1

−R−2δ

h̃σ,δ(z)dz, α0=

∫ R1

−R−2δ

(∫ y

−R−2δ

h̃σ,δ(z)dz

)
dy.

We approximate f ′(uδ) by a function Fσ,δ defined by

Fσ,δ(x)=



f ′(0), x∈R\[−R−2δ,R+2δ],

f ′(0)+

∫ x

−R−2δ

(∫ y

−R−2δ

h̃σ,δ(z)dz

)
dy, x∈]−R−2δ,R1[,

f ′(0)+α0 ·
(

R+2δ−x

R+2δ−R1

)3

+Gθ(x)χ[R1,R1+θ], x∈ [R1,R+2δ[,

(4.11)
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with
Gθ(x)=(x−R1)(x−R2)

3 ·
(

α2

(R1−R2)3
+(x−R1) ·

(
α3

2(R1−R2)3
− 3α2

(R1−R2)4

))
,

α2=α1+
3β1

R+2δ−R1
, α3=

−6β1

R+2δ−R1
, R2=R1+θ,

for some θ>0 sufficiently small. One computes that

Gθ(R1)=Gθ(R2)=G′
θ(R2)=G′′

θ (R2)=0, G′
θ(R1)=α2, G′′

θ (R1)=α3,

and this yields
Fσ,δ(R1±)=f ′(0)+α0, F ′

σ,δ(R1±)=α1, F ′′
σ,δ(R1±)= h̃σ,δ(R1)=0,

Fσ,δ(R+2δ)=F ′
σ,δ(R+2δ)=F ′′

σ,δ(R+2δ)=0.

Hence, Fσ,δ is a C2-function. Moreover, observe that the number of inflection points of
Fσ,δ in [R1,R+2δ] is less than 5, we have from (4.10) that

#{x∈R :x is an inflection point of Fσ,δ}≤
4(R+δ)

Ψhδ
(σ)

+4. (4.12)

Recalling (4.9), we estimate

∣∣Fσ,δ(x)−f ′(uδ)(x)
∣∣≤∫ R1

−R−2δ

(∫ y

−R−2δ

∣∣h̃σ,δ(z)−hδ(z)
∣∣dz)dy

≤ (R1+R+2δ)2

2
·σ for all x∈]−∞,R1].

This also implies that

|β1|=
∣∣Fσ,δ(R1)−f ′(0)

∣∣= ∣∣Fσ,δ(R1)−f ′(uδ)(R1)
∣∣≤ (R1+R+2δ)2

2
·σ.

Since
∣∣Gθ(x)

∣∣≤θ ·
(
4|α2|+

|α3|
2

)
for all x∈ [R1,R1+θ], one gets from (4.11) that

∣∣Fσ,δ(x)−f ′(uδ)(x)
∣∣= ∣∣Fσ,δ(x)−f ′(0)

∣∣≤ (R1+R+2δ)2

2
·σ+θ ·

(
4|α2|+

|α3|
2

)
for all x∈ [R1,∞[. Thus, we can choose θ>0 sufficiently small such that

∥Fσ,δ−f ′(uδ)∥L∞(R)≤2(R+2δ)2 ·σ.

Step 3. Let vσ,δ :R→R be a C2 function such that

vσ,δ(x)=
(
f ′)−1(

Fδ(x)
)

for all x∈R.

By the uniform convexity of f in (1.4), we get

|vσ,δ(x)−uδ(x)|≤
1

λ
·
∣∣Fσ,δ(x)−f ′(uδ)(x)

∣∣≤ 2(R+2δ)2 ·σ
λ

,
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and (4.7) yields

∥vσ,δ− ū∥L1(R)≤∥uδ− ū∥L1(R)+∥vσ,δ−uδ∥L1(R)≤V δ+
4(R+2δ)3 ·σ

λ
.

Given ε>0, if we choose

δ=
ε

2V
and σ=

λε

23(R+2δ)3
,

then the function v̄ :=vσ,δ has Supp(v̄)⊆ [−2R,2R] and ∥v̄− ū∥L1(R)≤ε. In the case,
recalling (4.8), we have

Ψhδ
(σ)=min

 λε4

2645V 4(V +1)(R+2δ)3
∥∥f∥∥

C3
]
−V

2 ,V2

[ , 2ε5V ·ΨV
f

(
5λε3

29V 4(R+2δ)3

).

Thus, (4.12) yields

#
{
x∈R :x is an inflection point of f ′[v̄]

}
≤ max


2845V 4(V +1)(R+2δ)4

∥∥f∥∥
C3
]
−V

2 ,V2

[
λε4

,
10V (R+2δ)

ε ·ΨV
f

(
5λε3

29V 4(R+2δ)3

)
+4

=28 · V
5(R+2δ)4

λε4
·max

{
45

(
1+

1

V

)∥∥f∥∥
C3
]
−V

2 ,V2

[, 4βε

ΨV
f (βε)

}
+4

with βε=
5λε3

29V 4R3
. In particular, for 0<ε≤ RV

4
such that 2δ≤R, it holds

#
{
x∈R :x is an inflection point of f ′[v̄]

}
≤ Φf,V,R(ε)

λ
· R

4V 5

ε4
+4

with Φf,V,R(ε) defined in (4.5).

Step 4. To complete the proof, recalling Lemma 4.1, we obtain that the total number
of shock curves in the weak entropy solution v of (1.3) with initial data u(0,·)= v̄ is
bounded as in (4.6).

Remark 4.1. If we assume f ∈C4(R) as in Theorem 1.2, then from (2.3) it holds that

ΨV
f(3) (s)≥

s∥∥f∥∥
C4
]
−V

2 ,V2

[ for all s>0.

Thus, the function Φf,V,R is bounded by

Φf,V,R≤C :=21245 ·
(
1+

1

V

)
·∥f∥

C4
]
−V

2 ,V2

[ (4.13)

and (4.6) yields (1.6).

Finally, in the spirit of approximation theory, we state the following corollary of
Theorem 1.2.
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Corollary 4.1. Under the same assumptions in Theorem 1.2, given an integer N >4
and an initial datum ū∈L1(R) satisfying (1.5), there exists v̄∈C3(R) with supp(v̄)⊆
]−2R,2R[ and

∥v̄− ū∥L1(R)≤23(45)1/4 ·
[
V +1

λ
·∥f∥

C4
]
−V

2 ,V2

[]1/4 · RV

(N−4)1/4

such that the entropy weak solution v=v(t,x) of (1.3) with initial datum v(0, ·)= v̄
contains at most N shocks.
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[4] F. Ancona, O. Glass, and K.T. Nguyen, On Kolmogorov entropy compactness estimates for scalar
conservation laws without uniform convexity, SIAM J. Math. Anal., 51(4):3020–3051, 2019. 1

[5] P. Bénilan and M.G. Crandall, Regularizing effects of homogeneous evolution equations, in D.N.
Clark, G. Pecelli, and R. Sacksteder (eds.), Contributions to Analysis and Geometry, Johns
Hopkins Univ. Press, Baltimore, 1981. 1

[6] J.M. Bloom, The local structure of smooth maps of manifolds, B.A. Thesis, Harvard, 2004. 1
[7] A. Bressan, Hyperbolic Systems of Conservation Laws. The One Dimensional Cauchy Problem,

Oxford University Press, Oxford, 2000. 1, 4
[8] R. Capuani, P. Dutta, and K.T. Nguyen, Metric entropy for functions of bounded total generalized

variation, SIAM J. Math. Anal., 53(1):1168–1190, 2021. 1
[9] C.M. Dafermos, Generalized characteristics and the structure of solutions of hyperbolic conservation

laws, Indiana Univ. Math. J., 26(6):1097–1119, 1977. 4, 4, 4
[10] C.M. Dafermos and X. Geng, Generalized characteristics uniqueness and regularity of solutions

in a hyperbolic system of conservation laws, Ann. Inst. H. Poincaré Anal. Non Linéaire, 8(3-
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