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THE DELAYED CUCKER-SMALE MODEL WITH ATTRACTIVE
POWER-LAW POTENTIALS∗

LONG NIE† AND ZILI CHEN‡

Abstract. We study the large-time behavior of the delayed Cucker−Smale model with attractive
power-law potentials. By making full use of the energy fluctuation and another Lyapunov functional
involving the communication function, it is proved that this model achieves consensus, i.e. velocity
difference and space diameter converge to zero. More importantly, the precise convergence rate is
established.
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1. Introduction
In this paper, we are interested in the large-time behavior of the delayed

Cucker−Smale (C−S) model with pairwise attractive potentials. Let (xi(t),vi(t))∈R2d

be the position and velocity of i-th agent at the time t, i=1,2, ·· · ,N , and let V de-
note the pairwise attractive potential. Then, this model is described by the following
dynamical system

dxi(t)

dt
=vi(t),

dvi(t)

dt
=−

 1

N

∑
j ̸=i

ϕ(|xi−xj |)(vi−vj)+
1

N

∑
j ̸=i

∇xiV (|xi−xj |)

(t−τ),

(1.1)

where τ >0 is the reaction delay, and ϕ≥0 is the communication weight function. The
first term on the right-hand side of (1.1)2 represents the velocity alignment force, and
the second term serves as the attractive force through the potential V . The initial
configuration is given by

(xi(t),vi(t))=(x0
i (t),v

0
i (t)), ∀ t∈ [−τ,0], (1.2)

where x0
i ,v

0
i ∈C([−τ,0];Rd).

Without reaction delays and attractive potentials, model (1.1), (1.2) is the classical
C−S model, which was introduced by Cucker and Smale in [14, 15] in 2007. Its large-
time behavior was fully discussed in [14,19,20]. More precisely, when the communication
weight ϕ has a long range, this model exhibits flocking behavior for any initial data.
Moreover, the convergence rate is exponential. But when ϕ has a short range, flocking
behavior only appears for a restricted class of initial configurations. Then, this seminal
model was quickly extended in many directions, such as adding stochastic noises (see
e.g. [16, 18]), to include singular communication functions (see e.g. [3, 19, 27–29]), the
kinetic description this model (see e.g. [4, 9, 20]) and so on.
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In real systems of interacting agents-animals, humans or robots, there exist reac-
tion delays, which might have a significant effect on their flocking behavior. Without
potentials V , the exponential asymptotic flocking of the C−S model with fixed reaction
delays and distributed reaction delays, which are small enough, were established in [23]
and [24], respectively. The flocking of two agents with large reaction delays was also
considered in [11]. For flocking results on the C−S model with transmission-type delays
and other delays, we refer to [12,13,21,22,26,30–32] and the references therein.

In many situations, agents are driven not only by the alignment rule, but also subject
to other pairwise potentials. Thus, it is natural to consider the C−S model coupled with
pairwise potentials. When V are some typical attractive-repulsive potentials, flocking
behavior was established for this model for any smooth and positive communication
weight in [2], but convergence rates were not obtained. Recently, Shu and Tadmor
considered the hydrodynamic C-S model with the quadratic potential, i.e., V (r)= 1

2r
2.

When the positive communication function decays slow enough at infinity, according to
a key Lyapunov functional combining the energy and the longitudinal momentum, the
consensus behavior and the exponential convergence rate were both established in [33].
Then, similar Lyapunov functionals were successfully used to deal with a Cucker-Smale
type system with matrix communications in [34], where the pairwise potential can cover
some low order power-law functions. In Subsection 3.3 of [35], with nice modifications
and simplifications it was proved that the flocking behavior holds for any attractive
power-law potential. But for the high order power-law potential, it needs acting from a
scale L>0, i.e., V (r)= rα,r>L,α>2.

In [8], by constructing a new Lyapunov functional L(t) involving the communication
function ϕ, we established the large-time behavior of the kinetic C−S model with V (r)=
rα,α>2 and improved the convergence rate for the case of α∈ [1,2). In this paper, we
mainly generalize this idea to the delayed model (1.1). To establish the large-time
behavior, the boundedness of space diameter should be proved firstly. When τ =0,
it can be easily obtained from the energy dispassion. When there exists a delay, the
boundedness of space diameter is not obvious since the energy dispassion does not hold.
Actually, we firstly use the decreasing of L(t) to get the boundedness of space diameter,
where α should be no less than 2. Then, by the estimates of L(t) and its derivative
again, we obtain the large-time behavior.

Theorem 1.1. Let V (r)= rα,α≥2. Let ϕ be smooth and strictly positive. Then there

exists τ0>0 depending upon the initial data such that the global solution {(xi,vi)}Ni=1 of
model (1.1), (1.2) achieves consensus if τ ≤ τ0. Furthermore, for any t≥0 and i ̸= j,

N∑
i,j=1

(
|vi−vj |2+ |xi−xj |2

)
≤

{
C exp{−Ct}, α=2,

C(t+1)−
2

α−2 , α>2,
(1.3)

where the constants C depend upon the initial data, α and N .

With a simpler calculation, the above estimates also hold for τ =0.

Remark 1.1. Let V (r)= rα,α>0. When τ =0, the global solution {(xi,vi)}Ni=1 of
model (1.1), (1.2) achieves consensus and satisfies

N∑
i,j=1

(
|vi−vj |2+ |xi−xj |2

)
≤

{
C exp{−Ct}, α∈ (0,2],

C(t+1)−
2

α−2 , α>2.
(1.4)

where the constants C depend upon the initial data, α and N .
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In this paper, we assume that the particle number N is not very large. Thus, it is
allowed that the constants in (1.3) and (1.4) depend upon N . For the case of τ =0, it
can be improved according to the particle energy and L(t).

Remark 1.2. When ϕ decays slow enough, the constants in (1.4) can be independent
of N , please see [8, 33–35] for the details.

When V is other popular potentials such as Morse potentials or more general power-
law potentials, flock and mill solutions were investigated in [1, 5–7]. We also refer
to [17,25,36–38] for the research on other multi-agent models.

The paper is organized as follows: In Section 2, we first give a basic estimate of
the energy fluctuation. Then, another Lyapunov functional is introduced to show the
boundedness of space diameter. In Section 3, to show the consensus of this model
we are devoted to establishing the exponential and polynomial decay of this Lyapunov
functional for α=2 and α>2, respectively.

2. Boundedness of velocity difference and space diameter
Firstly, there exists a local unique solution {(xi,vi)}Ni=1 to model (1.1), (1.2) since

the right-hand side of (1.1)2 is locally Lipschitz continuous as a function of (xi,vi)(t−τ).
Note that the solution is actually global since the boundedness of |xi−xj | ,|vi−vj | will
be proved in this section. Then, we can consider the large-time behavior of this solution.
In this section, we are devoted to proving the uniform boundedness of velocity difference
and space diameter.

2.1. Energy fluctuation. Now, we give some basic properties of this model.
Firstly, from (1.1) we have that

d

dt

(
N∑
i=1

vi(t)

)
=0, ∀ t≥0. (2.1)

Then, we consider the energy fluctuation defined as

E(t)=
1

2

N∑
i,j=1

|vi−vj |2+
N∑

i,j=1

V (|x̃i− x̃j |), (2.2)

where x̃i :=xi(t−τ), ṽi :=vi(t−τ). We also denote that ϕ̃ji :=ϕ(|x̃j− x̃i|) and assume
that ϕ≤1 for simplicity in the following subsections.

By (1.1) and (2.1), a basic calculation gives that for any t≥0,

d

dt
E(t)=

d

dt

N

N∑
i=1

v2i +

N∑
i,j=1

|x̃i− x̃j |α


=−2N

N∑
i=1

viv̇i+α

N∑
i,j=1

|x̃i− x̃j |α−2
(x̃i− x̃j)(ṽi− ṽj)

=−
N∑

i,j=1

ϕ̃ji (ṽi− ṽj)(vi−vj)−α

N∑
i,j=1

|x̃i− x̃j |α−2(x̃i− x̃j)[(vi−vj)−(ṽi− ṽj)]

=−
N∑

i,j=1

ϕ̃ji (ṽi− ṽj)(vi−vj)+2α

N∑
i,j=1

|x̃i− x̃j |α−2(x̃i− x̃j)(ṽi−vi). (2.3)
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When τ =0, (2.3) becomes d
dtE(t)=−

∑N
i,j=1ϕji|vi−vj |2≤0, from which we can imme-

diately obtain the uniform boundedness of |xi−xj | and |vi−vj |. However, when the
time delay is considered, the dissipation of energy fluctuation is broken. For now, we
complete the calculation of E′(t).

Lemma 2.1. Let {(xi,vi)}Ni=1 be a global solution to model (1.1), (1.2), then

d

dt
E(t)≤− 1

4

N∑
i,j=1

ϕ̃ji|ṽj− ṽi|2−
1

4

N∑
i,j=1

ϕ̃ji |vj−vi|2+τα2
N∑

i,j=1

|x̃i− x̃j |2α−2

+(4τ+2)

∫ t

t−τ

N∑
i,j=1

|ṽj− ṽi|2ds+(4τ+2)α2

∫ t

t−τ

N∑
i,j=1

|x̃i− x̃j |2α−2
ds

for t≥ τ .

Proof. Following from (2.3), we can obtain that for any t≥0,

d

dt
E(t)≤−

N∑
i,j=1

ϕ̃ji (ṽj− ṽi)(vj−vi)+2α

N∑
i,j=1

|x̃i− x̃j |α−1 |ṽi−vi|

≤−
N∑

i,j=1

ϕ̃ji |vj−vi|2−2

N∑
i,j=1

ϕ̃ji (vi−vj)(ṽi−vi)+2α

N∑
i,j=1

|x̃i− x̃j |α−1 |ṽi−vi|

≤− 1

2

N∑
i,j=1

ϕ̃ji |vj−vi|2+
(
2+

1

τ

) N∑
i,j=1

|ṽi−vi|2+τα2
N∑

i,j=1

|x̃i− x̃j |2α−2,

where the last inequality is obtained from the Young inequality. Similarly, we can find
that

d

dt
E(t)≤−1

2

N∑
i,j=1

ϕ̃ji |ṽj− ṽi|2+
(
2+

1

τ

)
N

N∑
i=1

|ṽi−vi|2+τα2
N∑
i=1

|x̃i− x̃j |2α−2.

Hence, combining the above two inequalities we have that

d

dt
E(t)≤− 1

4

N∑
i,j=1

ϕ̃ji |ṽj− ṽi|2−
1

4

N∑
i,j=1

ϕ̃ji |vj−vi|2

+

(
2+

1

τ

)
N

N∑
i=1

|ṽi−vi|2+τα2
N∑
i=1

|x̃i− x̃j |2α−2. (2.4)

Based on (1.1) and Cauchy’s inequality, we obtain that for any t≥ τ ,

|ṽi−vi|2=

∣∣∣∣∣∣
∫ t

t−τ

− 1

N

∑
j ̸=i

ϕ̃ji (ṽi− ṽj)−
1

N

∑
j ̸=i

∇x̃i
V (|x̃i− x̃j |)ds

∣∣∣∣∣∣
2

≤2τ

N

∫ t

t−τ

∑
j ̸=i

|ṽj− ṽi|2ds+
2τα2

N

∫ t

t−τ

∑
j ̸=i

|x̃i− x̃j |2α−2ds. (2.5)

From (2.4) and (2.5) we can get that for any t≥ τ ,

d

dt
E(t)≤(4τ+2)

∫ t

t−τ

N∑
i,j=1

|ṽj− ṽi|2ds+(4τ+2)α2

∫ t

t−τ

N∑
i,j=1

|x̃i− x̃j |2α−2
ds
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− 1

4

N∑
i,j=1

ϕ̃ji|ṽj− ṽi|2−
1

4

N∑
i,j=1

ϕ̃ji |vj−vi|2+τα2
N∑

i,j=1

|x̃i− x̃j |2α−2
,

which completes the proof.

2.2. Another Lyapunov functional. To get the boundedness of velocity
difference and space diameter, we need to neutralize the term

∑N
i,j=1 |x̃i− x̃j |2α−2

in
Lemma 2.1. Inspired by [8], we now define another Lyapunov functional containing the
energy fluctuation, that is,

L(t)=E(t)+ε

 N∑
i,j=1

(x̃i− x̃j)(vi−vj)+

N∑
i,j=1

∫ |x̃i−x̃j |

0

rϕ(r)dr

, (2.6)

where ε≤1/4 is an undetermined parameter. The new element in L(t) is the term∑N
i,j=1

∫ |x̃i−x̃j |
0

rϕ(r)dr, which is essential to deal with general power-law potentials.
In the following lemma, we establish the relationship between L(t) and E(t). For

convenience, we define velocity difference and space diameter as follows:
Rx(t)= sup

s∈[0,t]

max
1≤i,j≤N

|xi(s)−xj(s)|,

Rv(t)= sup
s∈[0,t]

max
1≤i,j≤N

|vi(s)−vj(s)| .

Lemma 2.2. Let {(xi,vi)}Ni=1 be a global solution to model (1.1), (1.2). Assume that

R̃x(t0)<∞. If ε≤ ϕ(R̃x(t0))
4 , then

L(t)≥ 1

4

N∑
i,j=1

|vi−vj |2+
N∑

i,j=1

|x̃i− x̃j |α+3ε2
N∑

i,j=1

|x̃i− x̃j |2, ∀ t∈ [0,t0].

Proof. On the one hand, by the Young inequality we have that

ε

N∑
i,j=1

(x̃i− x̃j)(vi−vj)≥−1

4

N∑
i,j=1

|vi−vj |2−ε2
N∑

i,j=1

|x̃i− x̃j |2.

On the other hand, from the decreasing of ϕ we get that

ε

N∑
i,j=1

∫ |x̃i−x̃j |

0

rϕ(r)dr≥εϕ(R̃x(t))

N∑
i,j=1

|x̃i− x̃j |2≥εϕ(R̃x(t0))

N∑
i,j=1

|x̃i− x̃j |2.

Combining the above two inequalities with the definition of L(t), we complete the proof.

Conversely, it is easy to obtain the following lemma, whose proof is omitted.

Lemma 2.3. Let {(xi,vi)}Ni=1 be a global solution to model (1.1), (1.2), then

L(t)≤ 1+ε

2

N∑
i,j=1

|vi−vj |2+
N∑

i,j=1

|x̃i− x̃j |α+ε

N∑
i,j=1

|x̃i− x̃j |2, ∀ t≥0.

Then, we compute L′(t).
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Lemma 2.4. Let {(xi,vi)}Ni=1 be a global solution to model (1.1), (1.2), then

d

dt
L(t)

≤−

ϕ
(
R̃x(t)

)
4

− ε

2

 N∑
i,j=1

(
|ṽi− ṽj |2+ |vi−vj |2

)
−
(
αε−τα2R̃x(t)

α−2
) N∑
i,j=1

|x̃i− x̃j |α

+(4τ+2)

∫ t

t−τ

N∑
i,j=1

|ṽi− ṽj |2ds+(4τ+2)α2

∫ t

t−τ

N∑
i,j=1

|x̃i− x̃j |2α−2ds

for any t≥ τ .

Proof. Following from (1.1) and (2.1), we have that for any t≥ τ ,

d

dt

 N∑
i,j=1

(x̃i− x̃j)(vi−vj)+

N∑
i,j=1

∫ |x̃i−x̃j |

0

rϕ(r)dr


=

d

dt

2N

N∑
i=1

x̃ivi−2

N∑
i=1

x̃i

N∑
i=1

vi+

N∑
i,j=1

∫ |x̃i−x̃j |

0

rϕ(r)dr


=2N

N∑
i=1

ṽivi−2

N∑
i=1

ṽi

N∑
i=1

vi+2N

N∑
i=1

x̃iv̇i+

N∑
i,j=1

ϕ̃ji(x̃i− x̃j)(ṽi− ṽj)

=

N∑
i,j=1

(ṽi− ṽj)(vi−vj)−α

N∑
i,j=1

|x̃i− x̃j |α

≤1

2

N∑
i,j=1

|ṽi− ṽj |2+
1

2

N∑
i,j=1

|vi−vj |2−α

N∑
i,j=1

|x̃i− x̃j |α. (2.7)

Combining Lemma 2.1 with (2.7), we can get that

d

dt
L(t)≤−1

4

N∑
i.j=1

ϕ̃ji |ṽj− ṽi|2−
1

4

N∑
i,j=1

ϕ̃ji |vj−vi|2+τα2
N∑

i,j=1

|x̃i− x̃j |2α−2

+(4τ+2)

∫ t

t−τ

N∑
i,j=1

|ṽj− ṽi|2ds+(4τ+2)α2

∫ t

t−τ

N∑
i,j=1

|x̃i− x̃j |2α−2
ds

+
ε

2

N∑
i,j=1

|ṽi− ṽj |2+
ε

2

N∑
i,j=1

|vi−vj |2−αε

N∑
i,j=1

|x̃i− x̃j |α. (2.8)

By the decreasing of ϕ and the definition of R̃x(t), we can obtain that

d

dt
L(t)≤−

[
ϕ(R̃x(t))

4
− ε

2

] N∑
i,j=1

(
|ṽi− ṽj |2+ |vi−vj |2

)
−
[
αε−τα2R̃x(t)

α−2
] N∑
i,j=1

|x̃i− x̃j |α

+(4τ+2)

∫ t

t−τ

N∑
i,j=1

|ṽi− ṽj |2ds+(4τ+2)α2

∫ t

t−τ

N∑
i,j=1

|x̃i− x̃j |2α−2ds.

This completes the proof.
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To show the boundedess of L(t), we integrate on both sides of the inequality in
Lemma 2.4 from τ to t.

Lemma 2.5. Let {(xi,vi)}Ni=1 be a global solution to model (1.1), (1.2), then there
exists a positive constant C3 depending upon the initial data such that for any t≥ τ ,

L(t)≤Cα
3 −
[
αε−(4τ+3)τα2R̃α−2

x (t)
]∫ t

τ

N∑
i,j=1

|x̃i− x̃j |αds

−

[
ϕ(R̃x(t))

4
− ε

2
−(4τ+2)τ

]∫ t

τ

 N∑
i,j ̸=1

|ṽi− ṽj |2+
N∑

i,j=1

|vi−vj |2
ds.

Proof. Exchanging the order of integrals, we can obtain that∫ t

τ

∫ s

s−τ

N∑
i,j=1

|x̃i− x̃j |2α−2duds

=

∫ t

0

(∫ min{t,u+τ}

max{u,τ}
ds

)
N∑

i,j=1

|x̃i− x̃j |2α−2du

≤τ

∫ t

0

N∑
i,j=1

|x̃i− x̃j |2α−2du

≤τ

∫ τ

0

N∑
i,j=1

|x̃i− x̃j |2α−2du+τR̃x(t)
α−2

∫ t

τ

N∑
i,j=1

|x̃i− x̃j |αdu (2.9)

for t≥ τ . By Lemma 2.4 and the computations in (2.9), we can obtain that

L(t)≤L(τ)+(4τ+2)τ

∫ τ

0

N∑
i,j=1

|ṽi− ṽj |2ds+(4τ+2)τα2

∫ τ

0

N∑
i,j=1

|x̃i− x̃j |2α−2ds

−
[
αε−(4τ+3)τα2R̃x(t)

α−2
]∫ t

τ

N∑
i,j=1

|x̃i− x̃j |αds

−

ϕ
(
R̃x(t)

)
4

− ε

2
−(4τ+2)τ

∫ t

τ

N∑
i,j ̸=1

|ṽi− ṽj |2ds

−

[
ϕ(R̃x(t))

4
− ε

2

]∫ t

τ

N∑
i,j=1

|vi−vj |2ds. (2.10)

Note that x̃i, ṽi are given on [0,τ ], so

(4τ+2)τ

∫ τ

0

N∑
i,j=1

|ṽi− ṽj |2ds+(4τ+2)τα2

∫ τ

0

N∑
i,j=1

|x̃i− x̃j |2α−2ds≤C1,

where C1>0 depends only upon the initial data (if we assume that τ ≤1). Then,
we consider L(τ). By (1.1), we know that v̇i is given on [0,τ ]. Consequently, vi(τ)
can be easily computed. Thus, following from the definition of L(τ), there exists a
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positive constant C2 depending only upon the initial data such that L(τ)≤C2. Let
C3=max{(C1+C2)

1/α,Rx(0)}, then we complete the proof.

For convenience, we further require that C3>Rx(0). Now, the precise value of ε in
L(t) can be given, i.e.,

ε=
1

4
ϕ(C3). (2.11)

With the above preparation, we can prove the boundedness of velocity difference and
space diameter.

Theorem 2.1. Let {(xi,vi)}Ni=1 be a global solution to model (1.1), (1.2), then for
any t≥0, {

Rx(t)≤C3,

Rv(t)≤2(C3)
α/2,

(2.12)

if τ is small enough such that
ϕ(C3)

8
−(4τ+2)τ ≥0

ϕ(C3)

8
−(4τ+3)ταCα−2

3 ≥0.

(2.13)

Proof. Since R̃x(τ)=Rx(0)<C3, by the continuity of Rx(t) we obtain that R̃x(t)<
C3 holds in a time interval. Then, we define that

t0=sup
{
t≥ τ ;R̃x(t)<C3 holds on [τ,t)

}
. (2.14)

We now claim t0=∞. If not, we have that R̃x(t0)=C3 and R̃x(t)<C3 for any t∈ [τ,t0).
Following from the decreasing of ϕ and (2.13), we have that

ϕ
(
R̃x(t)

)
4

− ϕ(C3)

8
−(4τ+2)τ ≥0

ϕ(C3)

8
−(4τ+3)ταR̃x(t)

α−2≥0

(2.15)

for any t∈ [τ,t0]. Combining (2.15) with Lemma 2.5, we obtain that L(t)≤Cα
3 . Then,

according to ε=ϕ(C3)/4=ϕ(R̃x(t0))/4, we can use Lemma 2.2 to get that for any
t∈ [τ,t0]

Cα
3 ≥ 1

4

N∑
i,j=1

|vi−vj |2+
N∑

i,j=1

|x̃i− x̃j |α+3(ϕ(C3)/4)
2

N∑
i,j=1

|x̃i− x̃j |2.

Thus, for any i ̸= j, {
|x̃i− x̃j |<C3, ∀ t∈ [τ,t0]

|vi−vj |≤2(C3)
α/2, ∀ t∈ [τ,t0] ,

which conflicts with R̃x(t0)=C3. Thus, t0=∞ and the desired estimates can be ob-
tained.
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Remark 2.1. Combining the above theorem with Lemma 2.3, we can obtain that

L(t)≤C

 N∑
i,j=1

|vi−vj |2+
N∑

i,j=1

|x̃i− x̃j |α
min{2/α,1}

≤CE(t)min{2/α,1},

where C>0 depends upon initial data.

Remark 2.2. The Lyapunov functional L(t) can not obtain the boundedness of
Rx(t),Rv(t) for the case of α<2 because of the delay.

3. The Lyapunov functional decays
In the previous section, the Lyapunov functional L(t) was used to deduce the bound-

edness of velocity difference and space diameter. More importantly, this functional is
also the key to prove the consensus of model (1.1), (1.2). Now, we give the precise
definition of consensus.

Definition 3.1.
(1) Model (1.1), (1.2) exhibits flocking iff lim

t→∞
|vi−vj |=0 and sup

t≥0
|xi−xj |<∞ for

any i,j.

(2) Model (1.1), (1.2) achieves consensus iff it exhibits flocking and lim
t→∞

|xi−xj |=0

for any i,j.

Actually, we are devoted to proving that the Lyapunov functional decays, where the
estimate of L′(t) in Lemma 2.4 will be fully used. Before that, we need the following
lemma to establish the relationship between E(t) and E(s) for s∈ [t−τ,t].

Lemma 3.1. Let v≥0 satisfy that

v′(t)≥−a sup
s∈[t−τ,t]

v(s),

where a>0. Let v(0) ̸=0 and k0= sup
s∈[−τ,0]

v(s)/v (0). If τ >0 satisfies e2ak0τ ≤2, then

for any t≥0,

v(s)≤k0e
2ak0(t−s)v(t), −τ ≤s<t.

This lemma and its proof are only slightly different from Lemma 2.2 in [10], so we
omit the proof.

Lemma 3.2. Let {(xi,vi)}Ni=1 be a global solution of (1.1). There exists τ0>0 depend-
ing upon the initial data such that

d

dt
L(t)≤− 1

16
ϕ(C3)E(t), ∀ t≥ τ,

if τ ≤ τ0.

Proof. Combining (2.12) with Lemma 2.4, we have that

d

dt
L(t)≤−1

8
ϕ(C3)

N∑
i,j=1

|vi−vj |2−
(α
4
ϕ(C3)−τα2Cα−2

3

) N∑
i,j=1

|x̃i− x̃j |α

+(4τ+2)

∫ t

t−τ

N∑
i,j=1

|ṽi− ṽj |2ds+(4τ+2)α2Cα−2
3

∫ t

t−τ

N∑
i,j=1

|x̃i− x̃j |αds.
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Consequently, when τ satisfies (2.13), we have that

d

dt
L(t)≤−1

8
ϕ(C3)E(t)+3

(
α2Cα−2

3 +1
)∫ t

t−τ

(Ẽ(s)+E(s))ds. (3.1)

Note that

d

dt
E(t)=

d

dt

N

N∑
i=1

v2i +

N∑
i,j=1

|x̃i− x̃j |2


=−
N∑

i,j=1

ϕ̃ji (ṽi− ṽj)(vi−vj)−2

N∑
i,j=1

(x̃i− x̃j)(vi−vj)+2

N∑
i,j=1

(x̃i− x̃j)(ṽi− ṽj)

≥−3E(t)−3Ẽ(t)≥−6 max
s∈[t−τ,t]

E(s). (3.2)

According to and (3.2), when τ is sufficiently small, there exists a positive constant C
depending upon initial data such that

E(s)+ Ẽ(s)≤CE(t), ∀ s∈ [t−τ,t].

Combining the above inequality with (3.1), we can get that d
dtL(t)≤− 1

8ϕ(C3)E(t)+
CτE(t), which yields the conclusion.

Proof. (Proof of Theorem 1.1.) Combining Lemma 3.2 with Remark 2.1, we
have that

d

dt
L(t)≤−CL(t)max{α/2,1}, ∀ t≥ τ.

Then,

L(t)≤

{
L(τ)exp{−Ct}, α=2,

C(t+1)−
2

α−2 , α>2.

Using the above inequality and Lemma 2.2, we complete the proof.

Proof. (Proof of Remark 1.1.) When τ =0, (2.3) yields that

d

dt
E(t)≤−ϕ(Rx(t))

N∑
i,j=1

|vi−vj |2≤0.

Then, following from the proof of Lemma 2.4 we can obtain that

dL

dt
=−[ϕ(Rx(t))−ϵ]

N∑
i,j=1

|vi−vj |2−ϵ

N∑
i,j=1

|xi−xj |V ′(|xi−xj |)

≤−[ϕ(Rx(t))−ϵ]

N∑
i,j=1

|vi−vj |2−Cϵ

N∑
i,j=1

V (|xi−xj |)

since rV ′(r)≥CV (r) for some positive constant C. Note that Rx(t) is bounded, by
choosing a sufficiently small ϵ there exists C>0 depending upon the initial data such
that

dL

dt
≤−CE(t). (3.3)
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Secondly, when τ =0 we have from the definition of L(t) that

L(t)=E(t)+ε

 N∑
i,j=1

(xi−xj)(vi−vj)+

N∑
i,j=1

∫ |xi−xj |

0

rϕ(r)dr


≤2E(t)+C

N∑
i,j=1

|xi−xj |2.

Consequently, if V (r)≥Crα for a C>0, by the above inequality we get that

L(t)≤CE(t)min{2/α,1}. (3.4)

Combining (3.3), (3.4) with Lemma 2.2, we can obtain the desired estimates.

Remark 3.1. From the above proof, we actually obtain (1.4) when V only satisfies
V (0)=0,

V (r)≥Crα, α>0 and rV ′(r)≥CV (r).

The above assumption of V is rather general. For examples, V (r)= r2+r3, V (r)=er−1
and V (r)= rα+V0(r), where V0≥0 is a convex function passing through the origin. But,
such easy generalization is impossible when there is a delay.

Acknowledgement. Zili Chen is supported by NSFC (No. 11961046) and Natural
Science Foundation of Jiangxi Province (No. 20212ACB211008).

REFERENCES
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