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WITH SOURCE TERM∗

HUIMIN YU† , XIAOMIN ZHANG‡ , AND JIAWEI SUN§

Abstract. In this paper, we study the initial-boundary value problem of one-dimensional isentropic
compressible Euler equations with the source term βρ|u|αu. By means of wave decomposition and the
uniform a-priori estimates, we prove the global existence of smooth solutions under small perturbations
around the supersonic Fanno flow. Then, by Gronwall’s inequality, we get that the smooth solution is
time-periodic.
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1. Introduction
In this paper, we are concerned with isentropic compressible Euler equations with

a nonlinear source term:{
∂tρ+∂x(ρu)=0,

∂t(ρu)+∂x(ρu
2+p)=βρ|u|αu,

(t,x)∈ [0,+∞)× [0,L], (1.1)

where ρ,u and p are the density, velocity and pressure of gas, respectively. The pressure
p(ρ) is governed by p(ρ)=aργ , here the adiabatic exponent γ >1 and the parameter a
is scaled to unity for mathematical convenience. The sound speed c≥0 is defined by
c2=∂p/∂ρ. And the term βρ|u|αu represents the friction with α,β∈R.

In this paper, we assume the initial data are

(ρ,u)⊤|t=0=(ρ0(x),u0(x))
⊤. (1.2)

The boundary conditions are

(ρ,u)⊤|x=0=(ρl(t),ul(t))
⊤ (1.3)

and ρl(t),ul(t) are periodic functions with a period P >0, i.e.

ρl(t+P )=ρl(t),ul(t+P )=ul(t).

In order to obtain the C1 solution, the initial and boundary data should satisfy the
following compatibility conditions at the point (0,0)

ρ′l(0)+ρ′0(0)u0(0)+ρ0(0)u
′
0(0)=0,

ρ′l(0)ul(0)+ρl(0)u
′
l(0)+ρ′0(0)u

2
0(0)+2ρ0(0)u0(0)u

′
0(0)

+p′0(0)−βρ0(0)u
α+1
0 (0)=0,

ρ0(0)=ρl(0),u0(0)=ul(0),

(1.4)
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where

p′0(0)=γργ−1
0 (0)ρ′0(0).

Because of the widespread application background, the compressible Euler equation
with several kinds of source terms have been studied extensively and there are fruitful
results. For example, we can refer [6, 7, 16, 21] for the research on the existence and
stability of the small smooth solution, [2,3,5,8,9,23,26] for the singularity formation of
the smooth solution and the results on the weak solution. In this paper, we are interested
in the time-periodic solution of problem (1.1)-(1.3). As far as we know, there are
many works on the studies of time-periodic solutions of the partial differential equations
such as the viscous fluids equations [1, 11, 15, 17, 18] and the hyperbolic conservation
laws [4, 19, 20, 24, 25]. All of the studies mentioned above discuss the time-periodic
solutions which are derived by the time-periodic external forces or the piston motion.
But there are few works on the time-periodic solutions of the hyperbolic conservation
laws derived by the time-periodic boundary condition. In [29], Yuan studied time-
periodic supersonic solutions for the isentropic compressible Euler equation (i.e. β=0)
triggered by the periodic supersonic boundary condition. For the quasilinear hyperbolic
system with more general time-periodic boundary conditions, Qu showed the existence
and stability of the time-periodic solutions around a small neighborhood of u≡0 in [22].
Recently, Wei et al. [28] studied the global stability problem for supersonic flows in one
dimensional compressible Euler equations with a friction term −µρ|u|u,µ>0.

In this paper, we would like to show global existence and uniqueness of time-periodic
supersonic solutions of initial-boundary value problem (1.1)-(1.3) with the general fric-
tion term βρ|u|αu by perturbing some supersonic Fanno flow. Different from [28], we
consider (1.1)-(1.3) in the form of sound speed and fluid speed. Then the Fanno flow is
considered for some upstream with positive constants state (c−,u−) at the left side. Af-
ter analyzing the ODEs carefully, we get the maximal duct length Lm, exceeding which
the flow will get choked. Based on the supersonic Fanno flow, we prove the existence of
time periodic solutions by wave decomposition.

The main results of this paper are:

Theorem 1.1. For any fixed non-sonic upstream state (ρ−,u−) satisfying 0<u− ̸=
√
γρ

γ−1
2

− , there exists a maximal duct length Lm, which only depends on α,β,γ and

(ρ−,u−)
⊤, such that the steady solution Ṽ =(ρ̃(x),ũ(x))⊤ of problem (1.1) exists in

[0,Lm] and keeps the upstream supersonic/subsonic state.

Theorem 1.2. Suppose the duct length L<Lm and the upstream state (ρ−,u−) is

supersonic, i.e. u−>
√
γρ

γ−1
2

− . Then there exists a ε0>0 such that for any fixed ε with
0<ε≤ε0, if

∥(ρ0(x)− ρ̃(x), u0(x)− ũ(x))∥C1([0,L])<ε, (1.5)

∥(ρl(t)−ρ−, ul(t)−u−)∥C1([0,+∞))<ε, (1.6)

then the mixed initial-boundary value problem (1.1)-(1.3) has a unique C1 solution V =
(ρ(t,x),u(t,x))⊤ in the domain E={(t,x)|t>0,x∈ (0,L]}, satisfying

∥V − Ṽ ∥C1(E)<Cε

for some constant C>0 and

V (t+P,x)=V (t,x), ∀t>T1,x∈ [0,L],
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where Ṽ =(ρ̃(x),ũ(x))⊤ is the supersonic Fanno flow obtained in Theorem 1.1 and

T1= max
t≥0,x∈[0,L]

i=1,2

L

λi(V (t,x))
. (1.7)

Remark 1.1. For the supersonic flow, the flow at x=L is completely determined by
the initial data at x∈ [0,L] and boundary conditions at x=0, so we only need to give
the boundary condition at x=0.

The rest of the paper is organised as follows. In Section 2, we construct the Fanno
flow. In Section 3, we present a reformulation of the problem by perturbing the solution
around the supersonic Fanno flow and introduce a wave decomposition for the perturbed
solution. In Section 4, we prove the global existence and uniqueness of the solution
with the help of uniform a-priori estimates. In Section 5, we prove time-periodicity of
solutions by Gronwall’s inequality.

2. Fanno flow
The Fanno flow refers to the adiabatic flow through a constant area duct where

the effect of friction (i.e.β <0) is considered. The friction causes the flow properties to
change along the duct. For the completeness of our results, we also consider the case
β>0 in this section.

We rewrite the initial-boundary problem (1.1)-(1.3) in terms of the sound speed

c=
√
γρ

γ−1
2 and the fluid velocity u as follows

ct+cxu+
γ−1

2
cux=0,

ut+uux+
2

γ−1
ccx=β|u|αu,

(c,u)⊤|t=0=(c0(x),u0(x))
⊤,

(c,u)⊤|x=0=(cl(t),ul(t))
⊤,

(2.1)

where c0(x)=
√
γρ

γ−1
2

0 (x),cl(t)=
√
γρ

γ−1
2

l (t).
Now, we consider the positive solution (c̃, ũ)⊤ of the steady flow of system (2.1)

which satisfies 
c̃′ũ+

γ−1

2
c̃ũ′=0,

ũũ′+
2

γ−1
c̃c̃′=βũ1+α,

(c̃, ũ)⊤|x=0=(c−,u−)
⊤,

(2.2)

where u− and c− are two positive constants.

First, by (2.2)1, we get

c̃= c−u
γ−1
2

− ũ− γ−1
2 . (2.3)

Substituting (2.3) into (2.2)2, we have

ũ−αũ′−c2−u
γ−1
− ũ−γ−α−1ũ′=β. (2.4)
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We consider (2.4) by classifying α and β.

Case 1: α ̸=1 and α ̸=−γ.

In this case, (2.4) becomes

1

−α+1
(ũ−α+1)′+

1

γ+α
c2−u

γ−1
− (ũ−γ−α)′=β. (2.5)

Integrating (2.5) from 0 to x, we get

1

−α+1
ũ−α+1+

1

γ+α
c2−u

γ−1
− ũ−γ−α=

1

−α+1
u−α+1
− +

1

γ+α
c2−u

−1−α
− +βx. (2.6)

Denote the left-hand-side function of (2.6) as h(s), i.e.

h(s)=
1

−α+1
s−α+1+

1

γ+α
c2−u

γ−1
− s−γ−α,

then we deduce

h′(s)<0, for 0<s<sc;

h′(s)>0, for s>sc,

where sc= c
2

γ+1

− u
γ−1
γ+1

− . This means that h(s) gets its minimum at the point s=sc. On

the other hand, from (2.3), we have c̃= c
2

γ+1

− u
γ−1
γ+1

− when ũ=sc= c
2

γ+1

− u
γ−1
γ+1

− . That is, the
flow speed equals to the sound speed (i.e.M =1) at the choked point (sc,h(sc)). See
Figure 2.1 below.

Fig. 2.1.

If β>0 and the upstream is supersonic (i.e. u−>c−), ũ is monotonically increasing
by considering (2.6) and ũ>u−. By (2.3), c̃ is monotonically decreasing and c̃<c−.
Then, ũ> c̃. If β>0 and the upstream is subsonic (i.e. u−<c−), ũ is monotonically
decreasing and c̃ is monotonically increasing. Then ũ< c̃.
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When β<0, from (2.6), h(s) decreases with respect to the length of the duct till
arriving at its minimum. Therefore, we can get the maximal length of the duct Lm for
a supersonic or subsonic flow before it gets choked, which is

Lm=
1

β

( 1

−α+1
(s−α+1

c −u−α+1
− )+

1

γ+α
c2−(u

γ−1
− s−γ−α

c −u−1−α
− )

)
. (2.7)

Case 2: α=1 or α=−γ.

Now, (2.4) is turned into

(lnũ)′+
1

γ+1
c2−u

γ−1
− (ũ−γ−1)′=β, for α=1, (2.8)

and

1

γ+1
(ũγ+1)′−c2−u

γ−1
− (lnũ)′=β, for α=−γ. (2.9)

Integrating (2.8) and (2.9) from 0 to x, we get

lnũ+
1

γ+1
c2−u

γ−1
− ũ−γ−1=lnu−+

1

γ+1
c2−u

−2
− +βx, for α=1, (2.10)

and

1

γ+1
ũγ+1−c2−u

γ−1
− lnũ=

1

γ+1
uγ+1
− −c2−u

γ−1
− lnu−+βx, for α=−γ. (2.11)

Define

f(s)= lns+
1

γ+1
c2−u

γ−1
− s−γ−1,

and

g(s)=
1

γ+1
sγ+1−c2−u

γ−1
− lns.

The functions f(s) and g(s) get their minimums at the point s=sc= c
2

γ+1

− u
γ−1
γ+1

− . Fur-
thermore, we get the maximal length of the duct Lm for β<0 :

Lm=
1

β

( 1

γ+1
c2−(u

γ−1
− s−γ−1

c −u−2
− )+ln

sc
u−

)
, for α=1 (2.12)

and

Lm=
1

β

( 1

γ+1
(sγ+1

c −uγ+1
− )−c2−u

γ−1
− ln

sc
u−

)
, for α=−γ. (2.13)

We can get similar results as in case 1, we omit the details here.

From the above discussion, we have the following lemma.

Lemma 2.1. If u−>0,c−>0 and the duct length L<Lm, where Lm is a positive
constant only depending on α,β,γ,c− and u− (See (2.7), (2.12), (2.13)), then the Cauchy
problem (2.2) admits a unique smooth positive solution (c̃(x),ũ(x))⊤ which satisfies the
following properties:
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(1) 0<ũ(x)<u−<c−<c̃(x), if β>0 and c−>u−;

(2) 0<c̃(x)<c−<u−<ũ(x), if β>0 and c−<u−;

(3) 0<u−<ũ(x)<c̃(x)<c−, if β<0 and c−>u−;

(4) 0<c−<c̃(x)<ũ(x)<u−, if β<0 and c−<u−.

This result means that a subsonic flow entering a duct with friction (β<0) will have
an increase in its Mach number until the flow is choked at M =1, i.e. ũ= c̃. Conversely,
the Mach number of a supersonic flow will decrease until the flow is choked. However, if
a flow entering a duct with acceleration (β>0), the Mach number of a subsonic flow will
decrease and the Mach number of a supersonic flow will increase (i.e. accelerating the
initial subsonic or supersonic state). It is worthy to be pointed out that the theoretical
calculations are consistent with the experiment. Different from the calculations in [28],
where the authors consider a differential equation that relates the change in Mach
number with respect to the length of the duct dM

dx , we rewrite the dominating equations
in terms of the relations between the sound speed and flow speeds. Fortunately, the
resulting equations can be decoupled easily. Therefore, we can show the maximal duct
length which makes the flow choke assuming the upstream Mach number is supersonic

or subsonic. Thus by Lemma 2.1 and c̃=
√
γρ̃

γ−1
2 , we can directly get Theorem 1.1.

3. Reformulation of problem and wave decomposition
For the supersonic flow, we should have u>0. Then, we can write the system (1.1)

as {
ρt+ρxu+ρux=0,

ut+uux+γργ−2ρx=βuα+1.
(3.1)

Letting

ρ(t,x)= ρ̄(t,x)+ ρ̃(x), u(t,x)= ū(t,x)+ ũ(x), (3.2)

where (ρ̄(t,x),ū(t,x))⊤ is the perturbation of the supersonic Fanno flow. Substituting
(3.2) into (3.1), we get{

ρ̄t+ ρ̄xu+ρūx+ ρ̃′ū+ ρ̄ũ′+ ρ̃′ũ+ ρ̃ũ′=0,

ūt+uūx+ ūũ′+ ũũ′+γργ−2ρ̄x+γργ−2ρ̃′=β(ū+ ũ)α+1.
(3.3)

Moreover, the system (3.3) can be further written into{
ρ̄t+ ρ̄xu+ρūx=−ρ̃′ū− ρ̄ũ′,

ūt+uūx+γργ−2ρ̄x=−F (ρ,ρ̃)ρ̄ρ̃′− ūũ′−G(u,ũ)ū,
(3.4)

where F (ρ,ρ̃)ρ̄=γ(ργ−2− ρ̃γ−2), G(u,ũ)ū=−β[uα+1− ũα+1] and F (ρ,ρ̃) and G(u,ũ)
can take the following expressions

F (ρ,ρ̃)=γ(γ−2)

∫ 1

0

(θρ̄+ ρ̃)γ−3dθ, G(u,ũ)=−β(α+1)

∫ 1

0

(θū+ ũ)αdθ. (3.5)

We also consider the perturbations of the initial and boundary conditions. The
initial data is reformulated as

t=0 :

{
ρ0(x)= ρ̄0(x)+ ρ̃(x), x∈ [0,L],

u0(x)= ū0(x)+ ũ(x), x∈ [0,L],
(3.6)



H.M YU, X.M. ZHANG, AND J.W. SUN 1339

where L<Lm, and boundary condition is

x=0 :

{
ρl(t)= ρ̄l(t)+ ρ̃(0), t≥0,

ul(t)= ūl(t)+ ũ(0), t≥0,
(3.7)

where ρ̄0,ū0, ρ̄l,ūl are C1 functions.

Let V̄ =(ρ̄, ū)⊤, the system (3.4) can be rewritten as the following quasi-linear form

V̄t+A(V )V̄x+D(Ṽ ,V )V̄ =0 (3.8)

with the initial data

V̄ |t=0= V̄0=(ρ̄0,ū0)
⊤, (3.9)

and the boundary condition

V |x=0=Vl=(ρl,ul)
⊤, (3.10)

where V (t,x)= V̄ (t,x)+ Ṽ (x), and

A(V )=

(
u ρ

γργ−2 u

)
, D(Ṽ ,V )=

(
ũ′ ρ̃′

F (ρ,ρ̃)ρ̃′ ũ′+G(u,ũ)

)
.

We next introduce a wave decomposition of the solution V̄ to the system (3.8). We
can easily get the following two eigenvalues of the coefficient matrix A(V )

λ1(V )=u−c, λ2(V )=u+c,

where c=
√
γρ

γ−1
2 . The corresponding two right eigenvectors ri,i=1,2 are

r1(V )=
1√

ρ2+c2
(ρ,−c)⊤, r2(V )=

1√
ρ2+c2

(ρ,c)⊤. (3.11)

The left eigenvectors li(V ),i=1,2 are determined by

li(V )rj(V )≡ δij , i,j=1,2, (3.12)

where δij stands for the Kronecker’s symbol. Then, li,i=1,2 have the following expres-
sions

l1(V )=

√
ρ2+c2

2
(ρ−1,−c−1), l2(V )=

√
ρ2+c2

2
(ρ−1,c−1), (3.13)

which have the same regularity as ri(V ).

Let

mi= li(V )V̄ , ni= li(V )V̄x, m=(m1,m2)
⊤, n=(n1,n2)

⊤, (3.14)

then

V̄ =

2∑
k=1

mkrk(V ),
∂V̄

∂x
=

2∑
k=1

nkrk(V ), (3.15)
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∂V̄

∂t
=−D(Ṽ ,V )V̄ −

2∑
k=1

λk(V )nkrk(V ). (3.16)

Thus, we have

dV̄

dit
=

∂V̄

∂t
+λi(V )

∂V̄

∂x

=

2∑
k=1

(λi(V )−λk(V ))nkrk(V )−D(Ṽ ,V )V̄ . (3.17)

By (3.12)-(3.17), one has

dmi

dit
=
∂mi

∂t
+λi(V )

∂mi

∂x

=

2∑
j,k=1

Ψijk(V )njmk+

2∑
j,k=1

Ψ̃ijk(V )mjmk−
2∑

k=1

˜̃Ψik(V )mk, (3.18)

where

Ψijk(V )=(λj(V )−λi(V ))li(V )rj(V ) ·∇V rk(V ), (3.19)

Ψ̃ijk(V )= li(V )D(Ṽ ,V )rj(V ) ·∇V rk(V ), (3.20)

˜̃Ψik(V )=λi(V )li(V )Ṽ ′ ·∇V rk(V )+ li(V )D(Ṽ ,V )rk(V ). (3.21)

Similarly, using (3.8) and (3.12)-(3.17), we also get

dni

dit
=
∂ni

∂t
+λi(V )

∂ni

∂x

=

2∑
j,k=1

Φijk(V )njnk+

2∑
j,k=1

Φ̃ijk(V )nk−
2∑

k=1

li(V )Dx(Ṽ ,V )rk(V )mk, (3.22)

where the term Dx(Ṽ ,V ) makes sense if Ṽ is a C2 function, and

Φijk(V )=(λj(V )−λk(V ))li(V )rj(V ) ·∇V rk(V )

−rj(V ) ·∇V λk(V )δik, (3.23)

Φ̃ijk(V )=−λk(V )li(V )Ṽ ′ ·∇V rk(V )+ li(V )D(Ṽ ,V )rj(V ) ·∇V rk(V )mj(V )

− li(V )D(Ṽ ,V )rk(V )− Ṽ ′ ·∇V λk(V )δik. (3.24)

For later use, we rewrite the system (3.4) by exchanging the variable t and x as
follows

V̄x+A−1(V )V̄t+A−1(V )D(Ṽ ,V )V̄ =0.

Denote λ̂i(V ),i=1,2 are eigenvalues of the matrix A−1(V ), l̂i(V ),i=1,2 and r̂i(V ),i=
1,2 are the left and right eigenvectors respectively. They can be determined in terms of
λi(V ),ri(V ) and li(V ) as follows

λ̂i(V )=λi(V )−1, r̂i(V )= ri(V ), l̂i(V )= li(V ). (3.25)
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Therefore, r̂i(V ) and l̂i(V ) also satisfy (3.12).
Let

m̂i= l̂i(V )V̄ , n̂i= l̂i(V )V̄t, m̂=(m̂1,m̂2)
⊤, n̂=(n̂1,n̂2)

⊤. (3.26)

By applying similar arguments as in (3.18)-(3.24), we can get

dm̂i

dix
=
∂m̂i

∂x
+ λ̂i(V )

∂m̂i

∂t

=

2∑
j,k=1

Ψ̂ijk(V )n̂jm̂k+

2∑
j,k=1

ˆ̃Ψijk(V )m̂jm̂k−
2∑

k=1

ˆ̃̃
Ψik(V )m̂k (3.27)

with

Ψ̂ijk(V )=(λ̂j(V )− λ̂i(V ))l̂i(V )r̂j(V ) ·∇V r̂k(V ), (3.28)

ˆ̃Ψijk(V )=λ̂i(V )l̂i(V )D(Ṽ ,V )r̂j(V ) ·∇V r̂k(V ), (3.29)

ˆ̃̃
Ψik(V )=l̂i(V )Ṽ ′ ·∇V r̂k(V )+ λ̂i(V )l̂i(V )D(Ṽ ,V )r̂k(V ), (3.30)

and

dn̂i

dix
=
∂n̂i

∂x
+ λ̂i(V )

∂n̂i

∂t

=

2∑
j,k=1

Φ̂ijk(V )n̂j n̂k+

2∑
j,k=1

ˆ̃Φijk(V )n̂k−
2∑

k=1

l̂i(V )(A−1(V )D(Ṽ ,V ))tr̂k(V )m̂k(V )

(3.31)

with

Φ̂ijk(V )=(λ̂j(V )− λ̂k(V ))l̂i(V )r̂j(V ) ·∇V r̂k(V )− r̂j(V ) ·∇V λ̂k(V )δik,

ˆ̃Φijk(V )=− l̂i(V )Ṽ ′ ·∇V r̂k(V )+ λ̂i(V )l̂i(V )D(Ṽ ,V )r̂j(V ) ·∇V r̂k(V )m̂j(V )

− λ̂i(V )l̂i(V )D(Ṽ ,V )r̂k(V ).

We also provide the wave decomposition of the initial and boundary data as follows

m0=(m10,m20)
⊤, n0=(n10,n20)

⊤ (3.32)

with

mi0= li(V0)V̄0, ni0= li(V0)V̄
′
0 ,

and

m̂l=(m̂1l,m̂2l)
⊤, n̂l=(n̂1l,n̂2l)

⊤, (3.33)

with

m̂il= l̂i(Vl)V̄l, n̂il= l̂i(Vl)V̄
′
l ,

where V̄0 and V̄l are defined by (3.9) and (3.10) respectively, and

V0=(ρ0,u0)
⊤, V̄ ′

0 =(ρ̄′0,ū
′
0)

⊤, (3.34)

Vl=(ρl,ul)
⊤, V̄ ′

l =(ρ̄′l,ū
′
l)
⊤. (3.35)
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4. Existence of global solutions
In this section, we will prove the existence of the global solution V̄ =(ρ̄(t,x),ū(t,x))⊤

to the initial-boundary value problem (3.8) and (3.9)-(3.10) in the domain E={(t,x)|t>
0,x∈ (0,L]}.

The local existence and uniqueness of the C1 solution to the mixed initial-boundary
value problem (3.8) and (3.9)-(3.10) is guaranteed by the classical theory in [13], which
can be extended globally in terms of a uniform a-priori estimate of the global C1 solu-
tions (see [10–12,14,27,28]).

Next we will establish a uniform a-priori estimate of the classical solution to help
us to extend globally the local solution. Let us first give the following assumption

|mi(t,x)|, |ni(t,x)|≤Cε, ∀i=1,2, (t,x)∈E (4.1)

for a suitably small positive constant ε, which will be determined later.
From (3.11), (3.15) and (4.1), we have

|V̄ (t,x)|, |∂V̄
∂x

(t,x)|≤Cε, ∀(t,x)∈E. (4.2)

Combining Lemma 2.1 with (4.2), we obtain the following results. The details of the
proof are omitted here.

Lemma 4.1. For sufficiently small ε, it holds that

|D(Ṽ ,V )(t,x)|,|∂xD(Ṽ ,V )(t,x)|, |∇V ri(V )(t,x)|, |Ṽ ′|,T1≤C, (4.3)

C−1≤|λi(V )(t,x)|, |∇V λ̂i(V )(t,x)|, |li(V )(t,x)|≤C, (4.4)

|∂V̄
∂t

(t,x)|,|∂tA−1(V )(t,x)|, |∂tD(Ṽ ,V )(t,x)|≤Cε (4.5)

for any (t,x)∈E, where the positive constant C only depends on c−,u−, c̃(L), ũ(L),γ,α
and β.

We observe from (4.2) and (4.4) that it suffices to prove (4.1) for a uniform a-priori
estimate of the global C1 solution.

Write x=x∗
i (t),i=1,2 as the characteristic curve of λi passing through a point

(0,0), which satisfy

dx∗
i (t)

dt
=λi(V (t,x∗

i (t))), x∗
i (0)=0.

Note that x=x∗
2(t) lies below x=x∗

1(t) since λ2(V )>λ1(V ).
We divide the region E into three small regions and discuss the uniform a-priori

estimate of classical solutions in each small region separately.

Region 1: the region E1={(t,x)|0≤ t≤T1,0≤x≤L,x≥x∗
2(t)}.

For any point (t,x)∈E1, integrating the i-th equation in (3.18) along the i-
characteristic curve with respect to τ from 0 to t which intersects the x-axis at a point
(0,bi), we obtain from (3.18), (3.19)-(3.21), (4.1), (4.3) and (4.4) that

|mi(t,x(t))|≤|mi(0,bi)|+
∫ t

0

2∑
j,k=1

|Ψijk(V )njmk|dτ

+

∫ t

0

2∑
j,k=1

|Ψ̃ijk(V )mjmk|dτ+
∫ t

0

2∑
k=1

| ˜̃Ψik(V )mk|dτ
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≤|mi0(bi)|+C

∫ t

0

|m(τ,x(τ))|dτ. (4.6)

Applying the same procedures as above for (3.22), from (3.23), (3.24), (4.1), (4.3)
and (4.4), we have

|ni(t,x(t))|≤|ni(0,bi)|+
∫ t

0

2∑
j,k=1

|Φijk(V )njnk|dτ

+

∫ t

0

2∑
j,k=1

|Φ̃ijk(V )nk|dτ+
∫ t

0

2∑
k=1

|li(V )Dx(Ṽ ,V )rk(V )mk|dτ

≤|ni0(bi)|+C(

∫ t

0

|n(τ,x(τ))|dτ+
∫ t

0

|m(τ,x(τ))|dτ). (4.7)

Putting (4.6)-(4.7) together, summing up i=1,2 and applying Gronwall’s inequality,
we have

|m(t,x)|+ |n(t,x)|≤ (∥m0∥C0([0,L])+∥n0∥C0([0,L]))(1+CT1). (4.8)

Because of the arbitrariness of (t,x)∈E1 and the boundedness of T1 in (4.3), we obtain
from (4.8) that

max
(t,x)∈E1

|m(t,x)|+ |n(t,x)|≤C(∥m0∥C0([0,L])+∥n0∥C0([0,L])). (4.9)

Region 2: the region E2={(t,x)|t≥0,0≤x≤L,0≤x≤x∗
1(t)}.

For any point (t,x)∈E2, integrating in (3.27) with respect to x along the i-th
characteristic curve, which is assumed to intersect the t-axis at a point (τi,0), we have
from (3.28)-(3.30), (4.1), (4.3) and (4.4) that

|m̂i(t(x),x)|≤|m̂il(τi)|+C

∫ x

0

|m̂(t(y),y)|dy. (4.10)

For (3.31), applying the same procedures as above, we further use (4.5) to obtain

|n̂i(t(x),x)|≤|n̂il(τi)|+C(

∫ x

0

|n̂(t(y),y)|dy+
∫ x

0

|m̂(t(y),y)|dy). (4.11)

Taking the summation of (4.10) and (4.11) and the summation for i=1,2, applying
Gronwall’s inequality, we have

max
(t,x)∈E2

|m̂(t,x)|+ |n̂(t,x)|≤C(∥m̂l∥C0([0,+∞))+∥n̂l∥C0([0,+∞))), (4.12)

where we have used the arbitrariness of (t,x)∈E2.

Region 3: in the remaining region

E3={(t,x)|0≤ t≤T1,0≤x≤L,x∗
1(t)≤x≤x∗

2(t)}.

For any point (t,x)∈E3, integrating the first equation in (3.18) and (3.22) along
the first characteristic curve that intersects x∗

2(t) at a point (t1,x1), we get from (3.19)-
(3.21), (3.23), (3.24), (4.1), (4.3) and (4.4) that

|m1(t,x(t))|≤|m1(t1,x1)|+C

∫ t

t1

|m(τ,x(τ))|dτ ≤|m1(t1,x1)|+C

∫ t

0

|m(τ,x(τ))|dτ,

(4.13)
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|n1(t,x(t))|≤|n1(t1,x1)|+C(

∫ t

0

|n(τ,x(τ))|dτ+
∫ t

0

|m(τ,x(τ))|dτ). (4.14)

Similarly, for any point (t,x)∈E3, integrating the second equation in (3.18) and
(3.22) along the second characteristic curve that intersects x∗

1(t) at a point (t2,x2), we
have

|m2(t,x(t))|≤|m2(t2,x2)|+C

∫ t

0

|m(τ,x(τ))|dτ, (4.15)

|n2(t,x(t))|≤|n2(t2,x2)|+C(

∫ t

0

|n(τ,x(τ))|dτ+
∫ t

0

|m(τ,x(τ))|dτ). (4.16)

By applying Gronwall’s inequality, the combination of (4.13)-(4.16) gives rise to

max
(t,x)∈E3

(|m(t,x)|+ |n(t,x)|)≤C(∥m0∥C0([0,L])+∥n0∥C0([0,L])

+∥m̂l∥C0([0,+∞))+∥n̂l∥C0([0,+∞))), (4.17)

where we have used (4.9) and (4.12) and the arbitrariness of (t,x)∈E3.
We notice from (4.9), (4.12), (4.17), (3.14) and (3.26) that under the initial and

boundary conditions (1.5)-(1.6) for a sufficiently small ε>0 and the assumption (4.4),
we can check the validity of hypothesis (4.1) for some constant C>0. Therefore, we
obtain a uniform a-priori estimate for the global C1 solution. The global existence of
solutions to the initial-boundary value problem (3.8) and (3.9)-(3.10) can be checked by
the standard continuity method, the details are omitted here.

5. Periodic solution
In this section, we will prove the global solution V =(ρ(t,x),u(t,x))⊤ is a time-

periodic function with a period P >0.
Using a Riemann invariant of system (1.1)

r=
1

2
(u− 2

γ−1
c), s=

1

2
(u+

2

γ−1
c), (5.1)

(1.1) can be converted into the following form
rt+λ1(r,s)rx=

β(r+s)α+1

2
,

st+λ2(r,s)sx=
β(r+s)α+1

2
,

(5.2)

where

λ1=u−c=
γ+1

2
r− γ−3

2
s, λ2=u+c=

3−γ

2
r+

γ+1

2
s.

Correspondingly, the initial data and boundary conditions become

r(0,x)= r0(x), s(0,x)=s0(x), x∈ [0,L], (5.3)

r(t,0)= rl(t), s(t,0)=sl(t), t≥0, (5.4)

where rl(t),sl(t) are time-periodic with the period P >0.



H.M YU, X.M. ZHANG, AND J.W. SUN 1345

For the convenience of later proof, we exchange t and x, then problem (5.2) and
(5.3)-(5.4) becomes the following Cauchy problem in the domain E

rx+
1

λ1
rt=

β(r+s)α+1

2λ1
,

sx+
1

λ2
st=

β(r+s)α+1

2λ2
,

r(t,0)= rl(t),

s(t,0)=sl(t).

(5.5)

Furthermore, setting

W =(r− r̃,s− s̃)⊤, Λ(t,x)=

(
1

λ1(r(t,x),s(t,x))
0

0 1
λ2(r(t,x),s(t,x))

)
,

then (5.5) can be rewritten as

Wx+Λ(t,x)Wt=
β

2
Λ(t,x)

(
(r+s)α+1

(r+s)α+1

)
− β

2


(r̃+ s̃)α+1

λ̃1

(r̃+ s̃)α+1

λ̃2

 , (5.6)

where

r̃=
1

2
(ũ− 2

γ−1
c̃), s̃=

1

2
(ũ+

2

γ−1
c̃),

λ̃1=λ1(r̃, s̃)=
γ+1

2
r̃− γ−3

2
s̃,

λ̃2=λ2(r̃, s̃)=
3−γ

2
r̃+

γ+1

2
s̃.

By

∥ρ− ρ̃∥C1(E)+∥u− ũ∥C1(E)<Cε,

and (5.1), we can get

∥r(t,x)− r̃(x)∥C1(E)+∥s(t,x)− s̃(x)∥C1(E)<K1ε (5.7)

with K1>0 a constant that depends only on ρ̃, ũ,γ and L.
Next we will show that the following conclusion holds

r(t+P,x)= r(t,x), s(t+P,x)=s(t,x), ∀t>T1,x∈ [0,L], (5.8)

where T1 is defined by (1.7).
Letting

U(t,x)=W (t+P,x)−W (t,x),

then by (5.6), we can get {
Ux+Λ(t,x)Ut=G(t,x),

U(t,0)=0, t>0,
(5.9)
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where

G(t,x)=
β

2
Λ(t+P,x)

(
(r(t+P,x)+s(t+P,x))α+1

(r(t+P,x)+s(t+P,x))α+1

)

− β

2
Λ(t,x)

(
(r(t,x)+s(t,x))α+1

(r(t,x)+s(t,x))α+1

)
− [Λ(t+P,x)−Λ(t,x)]Wt(t+P,x).

Noting that λ1,λ2 are continuous functions of (r,s), then by (5.7), we can get the
following estimates

|Wt(t+P,x)|≤K1ε, (5.10)

|r(t+P,x)+s(t+P,x)|≤K2, (5.11)

|Λt(r(t,x),s(t,x))|≤K3ε, (5.12)

|Λ(t+P,x)−Λ(t,x)|≤K4|U(t,x)|, (5.13)

|Λ(t,x)|≤K5, (5.14)

where constants K2,K3,K4,K5 depend only on ρ̃, ũ,γ and L.
It follows from (5.10)-(5.11), (5.13)-(5.14) that

|G(t,x)|≤|β|
2
|Λ(t,x)|

(
(α+1)|η|α|U(t,x)|
(α+1)|η|α|U(t,x)|

)

+
|β|
2
|Λ(t+P,x)−Λ(t,x)|

(
|r(t+P,x)+s(t+P,x)|α+1

|r(t+P,x)+s(t+P,x)|α+1

)
+ |Λ(t+P,x)−Λ(t,x)||Wt(t+P,x)|

≤K6|U(t,x)|, (5.15)

where η lies between u(t,x) and u(t+P,x), the definition of K6 is the same as above.
For a fixed point (t0,x0) with t0>T1,0<x0<L, we can draw two characteristic

curves Γ1 : t= t∗1(x) and Γ2 : t= t∗2(x), namely,

dt∗1
dx

=
1

λ1(r(t∗1,x),s(t
∗
1,x))

,t∗1(x0)= t0

and

dt∗2
dx

=
1

λ2(r(t∗2,x),s(t
∗
2,x))

,t∗2(x0)= t0

for 0<x<x0. And we can easily see that Γ1 lies below Γ2.
Setting

I(x)=
1

2

∫ t∗2(x)

t∗1(x)

|U(t,x)|2dt, (5.16)

where 0≤x<x0.
By the definition of T1 and t0>T1, we can get that (t∗1(0),t

∗
2(0))⊂ (0,+∞), then by

(5.9), we have U(t,0)≡0 in this interval.
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Therefore,

I(0)=0.

Taking derivative of I(x) with respect to x, we get

I
′
(x)=

∫ t∗2(x)

t∗1(x)

U(t,x)TUx(t,x)dt+
1

2
|U(t∗2(x),x)|2

1

λ2(r(t∗2(x),x),s(t
∗
2(x),x))

− 1

2
|U(t∗1(x),x)|2

1

λ1(r(t∗1(x),x),s(t
∗
1(x),x))

≤−
∫ t2∗(x)

t∗1(x)

U(t,x)TΛ(t,x)Ut(t,x)dt+

∫ t∗2(x)

t∗1(x)

U(t,x)TG(t,x)dt

+
1

2
U(t,x)TΛ(t,x)U(t,x)|t=t∗2(x)

t=t∗1(x)

=− 1

2

∫ t∗2(x)

t∗1(x)

(U(t,x)TΛ(t,x)U(t,x))t−U(t,x)TΛt(t,x)U(t,x)dt

+

∫ t∗2(x)

t∗1(x)

U(t,x)TG(t,x)dt+
1

2
U(t,x)TΛ(t,x)U(t,x)|t=t∗2(x)

t=t∗1(x)

=
1

2

∫ t∗2(x)

t∗1(x)

U(t,x)TΛt(t,x)U(t,x)dt+

∫ t∗2(x)

t∗1(x)

U(t,x)TG(t,x)dt

≤(K3ε+2K6)I(x).

In the last inequality we have used (5.12) and (5.15).
Hence, by Gronwall’s inequality, we can get that I(x)≡0. Furthermore, by conti-

nuity of I(x), we have I(x0)=0, then U(t0,x0)=0.
Since (t0,x0) is arbitrary, so we have

U(t,x)≡0, ∀t>T1, x∈ [0,L],

that is, we complete the proof of (5.8). Then, using (5.1) and c=
√
γρ

γ−1
2 , we can get

that (ρ,u)⊤ is also a periodic function with a period P >0.
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