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EXISTENCE OF POLYNOMIAL ATTRACTOR FOR A CLASS OF
EXTENSIBLE BEAMS WITH NONLOCAL WEAK DAMPING∗

CHUNXIANG ZHAO† , CHUNYAN ZHAO‡ , AND CHENGKUI ZHONG§

Abstract. In this paper, we put forward the concept of polynomial attractor and study the
connection between the polynomial attractors and the estimate of attractive velocity of bounded sets
for infinite-dimensional dynamical systems. Then we prove the existence of polynomial attractor for
a class of extensible beams with nonlocal weak damping for the case that the nonlinear term f has
subcritical growth.
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1. Introduction
In this paper, we study the existence of polynomial attractors for a class of extensible

beams with nonlocal weak damping
utt+∆2u−m(∥∇u∥2)∆u+k(∥ut∥)ut+f(u)=h, (x,t)∈Ω×R+,

u |∂Ω= ∂u
∂ν |∂Ω=0 (clamped) or u |∂Ω=∆u |∂Ω=0 (hinged),

u(x,0)=u0(x),ut(x,0)=u1(x),

(1.1)

where Ω⊂Rn is a bounded domain with smooth boundary ∂Ω, u=u(x,t) :Ω× [0,∞)→
R is an unknown function and h∈L2(Ω). The assumptions on the functions m and f
are as follows:

(A1) m :R+→R+ is a function of class C1, satisfying

m(s)s≥ 1

2
M(s)−θs, where M(s)=

∫ s

0

m(τ)dτ, (1.2)

where 0≤θ≤ 1
2λ

1
2
1 , λ1>0 is the first eigenvalue of the bi-harmonic operator ∆2 with

boundary condition (1.1);

(A2) f ∈C1(R) satisfies the growth condition

|f ′(s)|≤C(1+ |s|ϱ), (1.3)

with 1≤ϱ<∞ if n≤4 and 1≤ϱ< 4
n−4 if n≥5, and the dissipation condition

liminf
|s|→∞

f ′(s)>−λ1. (1.4)

Set

F (s)=

∫ s

0

f(τ)dτ.
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Assumption (1.4) yields that∫
Ω

F (u)dx≥−λ

2
∥u∥2−C, (1.5)

(f(u),u)≥
∫
Ω

F (u)dx− λ

2
∥u∥2−C, (1.6)

for some λ<λ1 (see [14]).

(A3) θ and λ are chosen so that

1− λ

λ1
− 2θ√

λ1

>0.

It is a significant issue to predict long-time dynamics of nonlinear evolution equa-
tions with different kinds of dissipation. The global attractor is a core concept. By
definition, once the global attraction exists, it covers all possible permanent regimes
of the system. Due to the Hölder-Mañé theorem (see [5, 7]), each compact set with
finite fractal dimension is homeomorphic to a compact subset of Euclidean space Rn.
Therefore, if the fractal dimension of the global attractor is finite, then the infinite-
dimensional dynamical system restricted on the global attractor can be reduced to a
finite-dimensional dynamical system (see [9]).

The further expansions of the concept of global attractor are inertial manifold [6]
and exponential attractor [4]. In particular, an exponential attractor is a positively
invariant, finite fractal dimensional compact set which uniformly exponentially attracts
all orbits starting from bounded subsets and contains the global attractor. Actually, to
the best of our knowledge, exponential attractors exist indeed for almost all equations
with finite-dimensional global attractors.

A necessary prerequisite for a dynamical system to have an exponential attractor
is that it possesses a global attractor with finite fractal dimension. On the other hand,
many dynamical systems generated by evolution equations have infinite-dimensional
global attractors, such as the p-Laplace equations with symmetry (see [26]), some
reaction-diffusion equations in unbounded domains (see [20,21]), some hyperbolic equa-
tions in unbounded domains (see [19]), and so on. When a dynamical system has an
infinite-dimensional global attractor, it has no exponential attractors, but there may
still exist positively invariant and exponentially attractive compact sets. Based on this
observation, Zhang et. al ([22]) thought that the properties of exponential attractiveness
and finite fractal dimension should be discussed separately, and proposed the concept
of exponential decay with respect to noncompactness measure for the first time. They
have proved that the sufficient and necessary condition for a dissipative dynamical sys-
tem to have a positively invariant and exponentially attractive compact set A∗ is that
the noncompactness measure of each bounded set decays exponentially. They also gave
some criteria for exponential decay with respect to noncompactness measure and proved
this property for a class of reaction-diffusion equations and a class of wave equations
with weak damping via the (C∗) condition.

We notice that for the semilinear wave equation or beam equation with nonlinear
damping g(ut), when g(0)=0 and g′(0)=0, there is no conclusion as to whether the
fractal dimension of the global attractor is finite and whether the noncompactness mea-
sure decays exponentially. There are other equations that face the same problem in the
degenerate case. And we notice that it is difficult to obtain the exponential decay esti-
mate with respect to noncompactness measure for the degenerate infinite-dimensional
dynamical systems, so is it possible to reach the polynomial decay rate?
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With this question in mind, we noticed that M. Nakao [10–12] proved that the
nonnegative function ϕ(t) which satisfies the difference inequality

sup
s∈[t,t+1]

ϕ(s)1+α≤K0(1+ t)γ
(
ϕ(t)−ϕ(t+1)

)
+g(t)

decays to zero at polynomial or logarithmic polynomial rate as t→+∞. Using such
difference inequality, Nakao proved that any solution of the wave equation with nonlinear
damping tends to a certain steady-state solution or solution orbit at polynomial rate
in [11,12], and that the energy functionals of solutions of the abstract nonlinear evolution
equations

u′′(t)+B(t)u′(t)+A(t)u(t)=f(t) (1.7)

and

B(t)u′(t)+A(t)u(t)=f(t) (1.8)

decay to 0 at polynomial (or logarithmic polynomial) rate in [10,13], where A(t) is the
Fréchet derivative of a functional on the Banach space V , B(t) is a bounded operator
from the Banach space W to its dual W ∗ and V ↪→W ↪→H ↪→W ∗ ↪→V ∗. Recently,
Silva, Narciso and Vicente [16] applied the difference inequality proposed by Nakao to
prove the polynomial decay of the energy functional of solutions for the beam equation
with nonlocal energy damping.

Base on the above analysis, in this paper and [25], we put forward the more general
concepts of the polynomial decay with respect to noncompactness measure and polyno-
mial attractor (Definition 3.1) (where the polynomial function φ= t−β :R+→R+,β >
0 is decreasing and satisfies φ(t)→0 as t→+∞) as a generalization of the theory of
exponential decay with respect to noncompact measure. And we prove that for every
dynamical system which has the property of polynomial decay with respect to non-
compactness measure, there exists a positively invariant compact set A∗ that attracts
each bounded set B at the rate of φ

(
t− t∗(B)−1

)
. This means that A∗ is polynomial

attractor. Then we also give some criteria for the polynomial decay with respect to
noncompactness measure. Indeed, in [25], we establish a quasi-stable inequality con-
cerning the controlling relationship of the distance at time t and the initial distance
between any two orbits starting from a positive invariant bounded absorbing set B0.
This quasi-stable inequality is closely related to a difference inequality and contains
compact pseudo-metrics. Thus, by the definition of noncompactness measure and the
compactness of the pseudo-metrics, from this quasi-stable inequality we can deduce
the difference inequality with respect to the noncompactness measure α(S(t)B0), which
leads to the estimate of the polynomial decay rate of the noncompactness measure. Con-
sequently, the existence of the polynomial attractors and the estimate of their attractive
rate are obtained.

In this paper, we apply an abstract theorem on estimating polynomial decay rate of
noncompactness measure of bounded sets for infinite-dimensional dynamical systems to
a class of extensible beams with nonlocal weak damping for the case that the nonlinear
term f has subcritical growth.

The paper is organized as follows. In Section 2, we give some necessary prelimi-
naries. In Section 3, we state the polynomial attractor and the polynomial decay with
respect to noncompactness measure. We prove the existence of polynomial attractor for
a class of extensible beams with nonlocal weak damping in Section 4.
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2. Preliminaries
In this section, we give some necessary preliminaries which are required for estab-

lishing our results.

2.1. Functions space. Here we consider H=L2(Ω) with usual inner product
(·,·) and norm ∥·∥, and Lp(Ω) with norm ∥·∥p. We also consider the space V0=H1

0 (Ω)
and

V =D(A 1
2 )=

{
H2

0 (Ω), for clamped boundary condition,
H2(Ω)∩H1

0 (Ω), for hinged boundary condition.

with norm ∥∇·∥ and ∥∆ ·∥ respectively, where the operator A=∆2.
Let λ1>0 be the first eigenvalue of the bi-harmonic operator ∆2 with boundary

condition (1.1), then it holds

∥∆u∥2≥λ1∥u∥2,∥∆u∥2≥λ
1
2
1 ∥∇u∥2, ∀u∈V. (2.1)

Finally, we define the space

H=V ×H

endowed with norm

∥(u,v)∥2H=∥∆u∥2+∥v∥2.

Let C denote any positive constant which may be different from line to line and
even in the same line. We also denote the different positive constants by ci,Ci,i∈N et
al.

2.2. Basic concepts and properties. We briefly recall the definition and
basics of Kuratowski α-measure of noncompactness . For more details, we refer to
[1, 3, 17].

Definition 2.1 ([1, 3]). Let (X,d) be a metric space and let B be a bounded subset
of X. The Kuratowski α-measure of noncompactness is defined by

α(B)= inf{δ>0|B has a finite cover of diameter <δ}.

Lemma 2.1 ([1, 3]). Let (X,d) be a complete metric space and α be the Kuratowski
measure of noncompactness. Then

(i) α(B)=0 if and only if B is precompact;

(ii) α(A)≤α(B) whenever A⊆B;

(iii) α(A∪B)=max{α(A),α(B)};
(iv) α(B)=α(B), where B is the closure of B;

(v) if B1⊇B2⊇B3 .. . are nonempty closed sets in X such that α(Bn)→0 as n→∞,
then ∩n≥1Bn is nonempty and compact;

(vi) if X is a Banach space, then α(A+B)≤α(A)+α(B).

Lemma 2.2 ([17]). Assume X ↪→↪→B ↪→Y where X,B,Y are Banach spaces. The
following statements hold.

(i) Let F be bounded in Lp(0,T ;X) where 1≤p<∞, and ∂F/∂t={∂f/∂t :f ∈F} be
bounded in L1(0,T ;Y ), where ∂/∂t is the weak time derivative. Then F is relatively
compact in Lp(0,T ;B).
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(ii) Let F be bounded in L∞(0,T ;X) and ∂F/∂t be bounded in Lr(0,T ;Y ) where r>1.
Then F is relatively compact in C(0,T ;B).

Next, we will briefly review the definitions and fundamental conclusions of dynam-
ical systems and the global attractor.

Definition 2.2 ([2,15,18]). A dynamical system is a pair of objects (X,{S(t)}t≥0) con-
sisting of a complete metric space X and a family of continuous mappings {S(t)}t≥0 of
X into itself with the semigroup properties:

(i) S(0)= I,

(ii) S(t+s)=S(t)S(s) for all t,s≥0,

where X is called a phase space (or state space) and {S(t)}t≥0 is called an evolution
semigroup.

Definition 2.3 ([2, 15, 18]). Let {S(t)}t≥0 be a semigroup in a complete metric
space (X,d). A closed set B⊆X is said to be absorbing for {S(t)}t≥0 iff for any bounded
set B⊆X there exists t0(B) (the entering time of B into B) such that S(t)B⊆B for
all t>t0(B). {S(t)}t≥0 is said to be dissipative iff it possesses a bounded absorbing set.

Lemma 2.3 ([2]). Let {S(t)}t≥0 be a semigroup in a complete metric space (X,d).
If {S(t)}t≥0 is dissipative, then it possesses a positively invariant bounded absorbing set.

Moreover, let B be its bounded absorbing set, then B0=
⋃

t≥tB

S(t)B is a positively

invariant bounded absorbing set, where tB>0 is the entering time of B into itself.

Definition 2.4 ([2, 15, 18]). A compact set A⊆X is said to be a global attractor of
the dynamical system (X,{S(t)}t≥0) iff

(i) A⊆X is an invariant set, i.e., S(t)A=A for all t≥0,

(ii) A⊆X is uniformly attracting, i.e., for all bounded sets B⊆X we have

lim
t→+∞

dist(S(t)B,A)=0,

where dist(A,B) :=supx∈AdistX(x,B) is the Hausdorff semi-distance.

Ma, Wang and Zhong put forward the concept of ω-limit compact in [8] and proved
that ω-limit compactness is a necessary and sufficient condition for a dissipative dy-
namical system to possess the global attractor. Due to Lemma 2.3, we can weaken the
definition of ω-limit compact in [8] to the following form:

Definition 2.5. The dynamical system (X,{S(t)}t≥0) is said to be ω-limit compact
iff for every positively invariant bounded set B⊆X we have α

(
S(t)B

)
→0 as t→∞,

where α(·) is the Kuratowski measure of noncompactness.

For the above definition, we can still get the same conclusion as in [8]:

Theorem 2.1. The dynamical system (X,{S(t)}t≥0) has a global attractor in X if and
only if it is both dissipative and ω-limit compact.

3. The polynomial attractor and the polynomial decay with respect to
noncompactness measure

The global attractor gives no information about the attractive rate. And we notice
that it is difficult to obtain the exponential decay estimate with respect to noncom-
pactness measure for the degenerate infinite-dimensional dynamical systems. In order
to describe the asymptotic behavior of dynamical systems more concretely, we propose



1398 EXISTENCE OF POLYNOMIAL ATTRACTOR

the following concept of polynomial attractor in [25]. For the reader’s convenience, we
restate these theories about polynomial attractor in [25] .

Definition 3.1. We call a compact A∗⊂X a polynomial attractor for the dynamical
system (X,{S(t)}t≥0), if A∗ is positively invariant with respect to S(t) and for every
bounded set B⊆X there exists tB ≥0 such that

dist(S(t)B,A∗)≤C
(
(t− t∗(B))

)−β
, ∀t≥ t∗(B)+ t0,

for certain positive constants C,β.

We emphasize that the finiteness of fractal dimension is not required in the above
definition of polynomial attractor. This is because there indeed exist positively invariant
compact sets with infinite fractal dimension which can attract all bounded sets at the
polynomial speed. We further proposed the following concept of polynomial decay
with respect to noncompactness measure as a condition for the existence of polynomial
attractor.

Definition 3.2. The dynamical system (X,{S(t)}t≥0) is said to have polynomial
decay with respect to noncompactness measure iff it is dissipative and there exists t0>
0 such that

α(S(t)B0)≤Ct−β , ∀t≥ t0, (3.1)

where B0 is a positively invariant bounded absorbing set of (X,{S(t)}t≥0) and certain
positive constants C,β.

Lemma 3.1. Assume that the dynamical system (X,{S(t)}t≥0) is φ-decaying with
respect to noncompactness measure, which implies that there exist a positively invariant
bounded absorbing set B0 and a positive constant t0 such that

α(S(t)B0)≤Ct−β , ∀t≥ t0.

Then for every bounded subset B of X, we have

α(S(t)B)≤C
(
t− t∗(B)

)−β
, ∀t≥ t∗(B)+ t0,

where t∗(B) is the entering time of B into B0.

Proof. Since

S(t)B⊆B0, ∀t≥ t∗(B),

we have

S(t)B=S(t− t∗(B))S(t∗(B))B⊆S(t− t∗(B))B0,

then

α(S(t)B)≤α(S(t− t∗(B))B0)≤
(
t− t∗(B)

)−β
, ∀t≥ t∗(B)+ t0.

Theorem 3.1. Assume that the dynamical system (X,{S(t)}t≥0) has polynomial
decay with respect to noncompactness measure, which implies that there exist a positively
invariant bounded absorbing set B0 and a positive constant t0 such that

α(S(t)B0)≤Ct−β , ∀t≥ t0.
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Then there exists a positively invariant compact set A∗ such that for every bounded
set B⊆X we have

dist(S(t)B,A∗)≤C
(
(t− t∗(B)−1)

)−β
, ∀t≥ t∗(B)+ t0+1, (3.2)

where t∗(B) is the entering time of B into B0. That is to say, A∗ is the polynomial
attractor for (X,{S(t)}t≥0).

Lemma 3.2. Suppose that w(t) is a nonnegative function on R+ satisfying

max{w1+α(t),w1+α(t+T )}≤h(t)[w(t)−w(t+T )], ∀t≥ t0, (3.3)

where α,T,t0 are positive constants, h(t) is a positive monotone function. Then
w(t) satisfies the following estimate:

w(t)≤
{

inf
s∈[t0,t0+T ]

w−α(s)+
α

T

∫ t−T

t0+T

ds

h(s)

}− 1
α

, ∀t≥ t0+2T.

In particular, when h(t)=K0, we have

w(t)≤
{

inf
s∈[t0,t0+T ]

w−α(s)+
α

TK0
(t− t0−2T )

}− 1
α

, ∀t≥ t0+2T. (3.4)

Proof.

ω−α(t+T )−ω−α(t)=

∫ 1

0

d

dθ

{[
θω(t+T )+(1−θ)ω(t)

]−α
}
dθ

=α

∫ 1

0

[
θω(t+T )+(1−θ)ω(t)

]−α−1
dθ

[
ω(t)−ω(t+T )

]
≥α

(
max{ω(t),ω(t+T )}

)−α−1[
ω(t)−ω(t+T )

]
. (3.5)

It follows from (3.3) and (3.5) that

ω−α(t+T )−ω−α(t)≥ α

h(t)
, ∀t≥ t0.

Thus

ω−α(t)≥ω−α(t−nT )+
α

T

n∑
i=1

T

h(t− iT )
, ∀t≥ t0+2T, (3.6)

where n≡ [ t−t0
T ] is the integral part of t−t0

T .
If h(t) is non-increasing, then by (3.6),

ω−α(t)≥ω−α(t−nT )+
α

h(t−nT )
+

α

T

n−1∑
i=1

∫ t−iT

t−(i+1)T

ds

h(t− iT )

≥ω−α(t−nT )+
α

h(t−nT )
+

α

T

∫ t−T

t−nT

ds

h(s)

≥ω−α(t−nT )+
α

T

∫ t−T

t0+T

ds

h(s)

≥ inf
s∈[t0,t0+T ]

ω−α(s)+
α

T

∫ t−T

t0+T

ds

h(s)
(3.7)
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holds for all t≥ t0+2T .

If h(t) is non-decreasing, then by (3.6)

ω−α(t)≥ω−α(t−nT )+
α

T

n∑
i=1

∫ t−(i−1)T

t−iT

ds

h(t− iT )

≥ω−α(t−nT )+
α

T

∫ t

t−nT

ds

h(s)

≥ω−α(t−nT )+
α

T

∫ t−T

t0+T

ds

h(s)

≥ inf
s∈[t0,t0+T ]

ω−α(s)+
α

T

∫ t−T

t0+T

ds

h(s)
(3.8)

holds for all t≥ t0+2T .
Combining (3.7) and (3.8), we conclude that if h(t) is monotone, then

ω(t)≤
{

inf
s∈[t0,t0+T ]

ω−α(s)+
α

T

∫ t−T

t0+T

ds

h(s)

}− 1
α

, ∀t≥ t0+2T. (3.9)

The estimate (3.4) follows immediately from (3.9).

Remark 3.1. Lemma 3.2 estimates the decay rate of nonnegative function w(t) satis-
fying the difference inequality (3.3) for the case that h(t) is a general positive monotone
function. It is a generalization of Theorem 1 in [10] by M. Nakao, which established
decay estimate from the difference inequality

sup
s∈[t,t+1]

ϕ(s)1+α≤K0(1+ t)γ
(
ϕ(t)−ϕ(t+1)

)
+g(t).

For the exponential decay (namely Ce−βt ) with respect to noncompactness mea-
sure, the case of has been discussed in [22, 23], whereas the case of polynomial decay
(namely Ct−β ) has not been discussed before. Next, we give a theorem on the polyno-
mial decay estimate with respect to noncompactness measure in this section.

Lemma 3.3. Let {S(t)}t≥0 be a dissipative dynamical system on a complete met-
ric space (X,d) and B0 be a positively invariant bounded absorbing set. Assume that
there exist positive constants T,δ0, a continuous non-decreasing function q :R+→R+, a
function g : (R+)m→R+ and pseudometrics ϱiT (i=1,2,. ..,m) on B0 such that

(i) q(0)=0; q(s)<s, s>0;

(ii) g is non-decreasing with respect to each variable, g(0,. ..,0)=0 and g is con-
tinuous at (0,. ..,0);

(iii) ϱiT (i=1,2,. ..,m) is precompact on B0, i.e., any sequence {xn}⊆B0 has a sub-
sequence {xnk

} which is Cauchy with respect to ϱiT ;

(iv) the inequality(
d(S(T )y1,S(T )y2)

)2
≤q

((
d(y1,y2)

)2
+g

(
ϱ1T (y1,y2),ϱ

2
T (y1,y2),. ..,ϱ

m
T (y1,y2)

)) (3.10)

holds for all y1,y2∈B0 satisfying ϱiT (y1,y2)≤ δ0(i=1,2,. ..,m).
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Then

α(S(t)B0)→0 as t→+∞,

and {S(t)}t≥0 is ω-limit compact.

Proof. For each B⊆B0 and any ϵ>0, by Definition 2.1, there exist
sets F1,F2,. ..,Fn such that

B⊆∪n
j=1Fn, diamFj <α(B)+ϵ. (3.11)

It follows from assumption (ii) that there exists δ>0 such that g(x1,x2,. ..,xm)<
ϵ whenever xi∈ [0,δ] (i=1,2,. ..,m). By the precompactness of ϱiT (i=1,2,. ..,m), there
exists a finite set N i={xi

j : j=1,2,. ..,ki}⊆B such that for every y∈B there is xi
j ∈

N i with the property ϱiT (y,x
i
j)≤ 1

2min{δ,δ0}, i.e.,

B⊆∪ki
j=1C

i
j , C

i
j =

{
y∈B : ϱiT (y,x

i
j)≤

1

2
min{δ,δ0}

}
, i=1,. ..,m. (3.12)

Consequently, we have

B⊆∪j1,j2,...,jm,j(C
1
j1 ∩C2

j2 ∩ .. .∩Cm
jm ∩Fj)

and

S(T )B⊆∪j1,j2,...,jm,j

(
S(T )(C1

j1 ∩C2
j2 ∩ .. .∩Cm

jm ∩Fj)
)
.

By (3.11) and (3.12), for any y1,y2∈C1
j1
∩C2

j2
∩ .. .∩Cm

jm
∩Fj , we have

d
(
y1,y2

)
≤diamFj <α(B)+ϵ (3.13)

and

ϱiT
(
y1,y2

)
≤min{δ,δ0},i=1,2,. ..,m. (3.14)

Inequality (3.14) implies

g
(
ϱ1T

(
y1,y2

)
,. ..,ϱmT

(
y1,y2

))
<ϵ. (3.15)

We deduce from (3.10), (3.13), (3.14) and (3.15) that(
d(S(T )y1,S(T )y2)

)2≤ q
((

α(B)+ϵ
)2

+ϵ
)

(3.16)

for any y1,y2∈C1
j1
∩C2

j2
∩ .. .∩Cm

jm
∩Fj . Therefore according to the definition of non-

compactness measure α, we obtain(
α(S(T )B)

)2≤ q
((

α(B)+ϵ
)2

+ϵ
)
. (3.17)

Since q is continuous and non-decreasing, combining (3.17) and the arbitrariness of ϵ
gives (

α(S(T )B)
)2≤ q

((
α(B)

)2)
. (3.18)
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We infer from (3.18) that(
α(S(kT )B0)

)2≤ q
((

α(S((k−1)T )B0)
)2)

, k=1,2,. ... (3.19)

Since q(s)≤s, the sequence
{(

α
(
S(kT )B0

))2}+∞

k=1
is non-increasing and thus there

exists α0=limk→+∞

(
α
(
S(kT )B0

))2

. By the continuity of q, (3.19) implies α0≤ q(α0),

which yields α0=0 by assumption (ii). Consequently, we obtain

α(S(t)B0)→0 as t→+∞. (3.20)

For any bounded set D⊆X, there exists tD>0 such that S(tD)D⊆B0, which implies
S(t+ tD)D⊆S(t)B0. Thus, we have α

(
S(t+ tD)D

)
≤α

(
S(t)B0

)
, which, together with

(3.20), gives

α(S(t)D)→0 as t→+∞. (3.21)

Therefore, {S(t)}t≥0 is ω-limit compact.

Theorem 3.2 (The Polynomial Decay Theorem). Let {S(t)}t≥0 be a dissipative
dynamical system on a complete metric space (X,d) and B0 be a positively invariant
bounded absorbing set. Assume that there exist positive constants C,T,δ0, β∈ (0,1),
functions gl : (R+)m→R+ (l=1,2) and pseudometrics ϱiT (i=1,2,. ..,m) on B0 such
that

(i) gl is non-decreasing with respect to each variable, gl(0,. ..,0)=0 and gl is con-
tinuous at (0,. ..,0);

(ii) ϱiT (i=1,2,. ..,m) is precompact on B0, i.e., any sequence {xn}⊆B0 has a sub-
sequence {xnk

} which is Cauchy with respect to ϱiT ;

(iii) the inequalities

(d(S(T )y1,S(T )y2))
2

≤(d(y1,y2))
2+g1

(
ϱ1T

(
y1,y2

)
,ϱ2T

(
y1,y2

)
,. ..,ϱmT

(
y1,y2

))
(3.22)

and

(d(S(T )y1,S(T )y2))
2≤C

[
(d(y1,y2))

2−(d(S(T )y1,S(T )y2))
2

+g1

(
ϱ1T

(
y1,y2

)
,ϱ2T

(
y1,y2

)
,. ..,ϱmT

(
y1,y2

))]β
+g2

(
ϱ1T

(
y1,y2

)
,ϱ2T

(
y1,y2

)
,. ..,ϱmT

(
y1,y2

))
(3.23)

hold for all y1,y2∈B0 satisfying ϱiT (y1,y2)≤ δ0(i=1,2,. ..,m).
Then there exists t0>0 such that for each bounded B⊆X the estimate

α(S(t)B)≤
{
(α(B0))

2(β−1)
β +

1−β

Tβ(1+2C)
1
β

(
t− t∗(B)− t0−2T

)} β
2(β−1)

(3.24)

holds for all t≥ t0+2T + t∗(B), where t∗(B) satisfies

S(t)B⊆B0, ∀t≥ t∗(B).
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Thus, (X,{S(t)}t≥0) possesses a polynomial attractor A∗ (see Definition 3.1) such that
for every bounded set B⊆X,

dist(S(t)B,A∗)≤
{
(α(B0))

2(β−1)
β +

1−β

Tβ(1+2C)
1
β

(
t− t0−2T − t∗(B)−1

)} β
2(β−1)

(3.25)

holds for all t≥ t0+2T + t∗(B)+1.

Proof. For all y1,y2∈B0 satisfying ϱiT (y1,y2)≤ δ0(i=1,2,. ..,m), it follows
from (3.23) that

(
d(S(T )y1,S(T )y2)

) 2
β ≤(2C)

1
β

[(
d(y1,y2)

)2−(
d(S(T )y1,S(T )y2)

)2
+g1

(
ϱ1T

(
y1,y2

)
,ϱ2T

(
y1,y2

)
,. ..,ϱmT

(
y1,y2

))]
+2

1
β g

1
β

2

(
ϱ1T

(
y1,y2

)
,ϱ2T

(
y1,y2

)
,. ..,ϱmT

(
y1,y2

))
,

which yields

(2C)−
1
β
(
d(S(T )y1,S(T )y2)

) 2
β +

(
d(S(T )y1,S(T )y2)

)2
≤
(
d(y1,y2)

)2
+g1

(
ϱ1T

(
y1,y2

)
,ϱ2T

(
y1,y2

)
,. ..,ϱmT

(
y1,y2

))
+C− 1

β g
1
β

2

(
ϱ1T

(
y1,y2

)
,ϱ2T

(
y1,y2

)
,. ..,ϱmT

(
y1,y2

))
. (3.26)

We rewrite (3.26) as

w
((

d(S(T )y1,S(T )y2)
)2)

≤
(
d(y1,y2)

)2
+g1

(
ϱ1T

(
y1,y2

)
,ϱ2T

(
y1,y2

)
,. ..,ϱmT

(
y1,y2

))
+C− 1

β g
1
β

2

(
ϱ1T

(
y1,y2

)
,ϱ2T

(
y1,y2

)
,. ..,ϱmT

(
y1,y2

))
(3.27)

with w(s)=(2C)−
1
β s

1
β +s, s≥0. We denote by w−1 the inverse function of w on R+.

Since w−1 is increasing, (3.27) implies that(
d(S(T )y1,S(T )y2)

)2
≤w−1

((
d(y1,y2)

)2
+g1

(
ϱ1T

(
y1,y2

)
,ϱ2T

(
y1,y2

)
,. ..,ϱmT

(
y1,y2

))
+C− 1

β g
1
β

2

(
ϱ1T

(
y1,y2

)
,ϱ2T

(
y1,y2

)
,. ..,ϱmT

(
y1,y2

)))
. (3.28)

Moreover, it is easy to check that w−1(0)=0 and w−1(s)<0, s>0. Thus, by Lemma 3.3
we deduce from inequality (3.28) that

α(S(t)B0)→0 as t→+∞. (3.29)

Consequently, there exists t0>0 such that

α(S(t)B0)<1, ∀t≥ t0. (3.30)



1404 EXISTENCE OF POLYNOMIAL ATTRACTOR

For each fixed t≥ t0 and each ϵ>0, by Definition 2.1, there exist sets F1,F2,. ..,Fn such
that

S(t)B0⊆∪n
j=1Fn, diamFj <α(S(t)B0)+ϵ. (3.31)

It follows from assumption (i) that there exists δ>0 such that gl(x1,x2,. ..,xm)<ϵ (l=
1,2) whenever xi∈ [0,δ] (i=1,2,. ..,m). By the precompactness of ϱiT (i=1,2,. ..,m),
there exists a finite set N i={xi

j : j=1,2,. ..,ki}⊆B0 such that for every y∈B0 there

is xi
j ∈N i with the property ϱiT (S(t)y,S(t)x

i
j)≤ 1

2min{δ,δ0}, i.e.,

S(t)B0⊆∪ki
j=1C

i
j , C

i
j =

{
S(t)y :y∈B0, ϱ

i
T (S(t)y,S(t)x

i
j)≤

1

2
min{δ,δ0}

}
, i=1,. ..,m.

(3.32)
Consequently, we have

S(t)B0⊆∪j1,j2,...,jm,j(C
1
j1 ∩C2

j2 ∩ .. .∩Cm
jm ∩Fj)

and

S(t+T )B0⊆∪j1,j2,...,jm,j

(
S(T )(C1

j1 ∩C2
j2 ∩ .. .∩Cm

jm ∩Fj)
)
.

By (3.31) and (3.32), for any S(t)y1,S(t)y2∈C1
j1
∩C2

j2
∩ .. .∩Cm

jm
∩Fj , we have

d
(
S(t)y1,S(t)y2

)
≤diamFj <α(S(t)B0)+ϵ (3.33)

and

ϱiT
(
S(t)y1,S(t)y2

)
≤min{δ,δ0}(i=1,2,. ..,m). (3.34)

Inequality (3.34) implies

gl

(
ϱ1T

(
S(t)y1,S(t)y2

)
,. ..,ϱmT

(
S(t)y1,S(t)y2

))
<ϵ, l=1,2. (3.35)

We deduce from (3.22), (3.23) and (3.34) that(
d(S(T + t)y1,S(T + t)y2)

) 2
β ≤(2C)

1
β
[(
d(S(t)y1,S(t)y2)

)2−(
d(S(T + t)y1,S(T + t)y2)

)2
+g1

(
ϱ1T (S(t)y1,S(t)y2),. ..,ϱ

m
T (S(t)y1,S(t)y2)

)]
+2

1
β g

1
β

2

(
ϱ1T (S(t)y1,S(t)y2),. ..,ϱ

m
T (S(t)y1,S(t)y2)

)
,

which yields

(2C)−
1
β
(
d(S(T + t)y1,S(T + t)y2)

) 2
β +

(
d(S(T + t)y1,S(T + t)y2)

)2
≤
(
d(S(t)y1,S(t)y2)

)2
+g1

(
ϱ1T (S(t)y1,S(t)y2),. ..,ϱ

m
T (S(t)y1,S(t)y2)

)
+C− 1

β g
1
β

2

(
ϱ1T (S(t)y1,S(t)y2),. ..,ϱ

m
T (S(t)y1,S(t)y2)

)
, (3.36)

i.e.,

w
((

d(S(T + t)y1,S(T + t)y2
)2)

≤
(
d(S(t)y1,S(t)y2)

)2
+g1

(
ϱ1T (S(t)y1,S(t)y2),. ..,ϱ

m
T (S(t)y1,S(t)y2)

)
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+C− 1
β g

1
β

2

(
ϱ1T (S(t)y1,S(t)y2),. ..,ϱ

m
T (S(t)y1,S(t)y2)

)
. (3.37)

Since w(s) is increasing on R+, (3.37) implies(
d(S(T + t)y1,S(T + t)y2

)2
≤w−1

((
d(S(t)y1,S(t)y2)

)2
+g1

(
ϱ1T (S(t)y1,S(t)y2),. ..,ϱ

m
T (S(t)y1,S(t)y2)

)
+C− 1

β g
1
β

2

(
ϱ1T (S(t)y1,S(t)y2),. ..,ϱ

m
T (S(t)y1,S(t)y2)

))
. (3.38)

We derive from (3.33), (3.35), (3.38) and the monotonically increasing property
of w−1 that(

d(S(T + t)y1,S(T + t)y2
)2≤w−1

((
α(S(t)B0)+ϵ

)2
+ϵ+C− 1

β ϵ
1
β

)
.

As a consequence,(
α(S(t+T )B0)

)2≤w−1
((

α(S(t)B0)+ϵ
)2

+ϵ+C− 1
β ϵ

1
β

)
.

Hence by the arbitrariness of ϵ, we have

w
((

α(S(t+T )B0)
)2)≤ (

α(S(t)B0)
)2
. (3.39)

Inequality (3.39) is equivalent to(
α(S(t+T )B0)

)2≤2C
[(
α(S(t)B0)

)2−(
α(S(t+T )B0)

)2]β
. (3.40)

Since α(S(t+T )B0)≤α(S(t)B0)<1 holds for all t≥ t0, we have

(α(S(t)B0))
2−(α(S(t+T )B0))

2≤
[
(α(S(t)B0))

2−(α(S(t+T )B0))
2
]β
. (3.41)

It follows from (3.40) and (3.41) that

(α(S(t)B0))
2=(α(S(t+T )B0))

2+(α(S(t)B0))
2−(α(S(t+T )B0))

2

≤(1+2C)
[
(α(S(t)B0))

2−(α(S(t+T )B0))
2
]β
,

i.e.,

(α(S(t)B0))
2
β ≤ (1+2C)

1
β
[
(α(S(t)B0))

2−(α(S(t+T )B0))
2
]

(3.42)

holds for all t≥ t0. Since B0 is positively invariant, α(S(t)B0) is non-increasing with re-
spect to t. Therefore it follows from (3.42) that (3.3) holds with w(t)=(α(S(t)B0))

2, 1+

α= 1
β and h(t)=(1+2C)

1
β . Consequently, by Lemma 3.2, we have

α(S(t)B0)≤
{
(α(B0))

2(β−1)
β +

1−β

Tβ(1+2C)
1
β

(
t− t0−2T

)} β
2(β−1)

, ∀t≥ t0+2T,

which, together with lemma 3.1 , gives (3.24).
By Theorem 3.1, (X,{S(t)}t≥0) possesses a polynomial attractor A∗ such that for

every bounded set B⊆X,

dist(S(t)B,A∗)≤
{
(α(B0))

2(β−1)
β +

1−β

Tβ(1+2C)
1
β

(
t− t0−2T − t∗(B)−1

)} β
2(β−1)

(3.43)

holds for all t≥ t0+2T + t∗(B)+1.
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4. The main result
Recently, we have proved in [24] the following result.

Lemma 4.1. Let T >0 be arbitrary. Under the assumptions (A1)−(A3), for every
(u0,u1)∈H=V ×H the initial boundary value problem (1.1) has a unique weak solution
u∈C([0,T ];H), which implies that the family of evolution operators St :H→H defined
by

St(u0;u1)=(u(t);ut(t)),t≥0, (4.1)

where (u,ut) solves (1.1) with the initial data (u0;u1), defines a nonlinear
C0−semigroup, generates a dynamical system (H,St) in the phase space H=V ×H.

Furthermore, the semigroup {St}t≥0 is dissipative and asymptotically smooth, which
imply the existence of a positively invariant bounded absorbing set B0 as well as the global
attractor A.

Lemma 4.2. Let u,v∈H, H is a Hilbert space with inner product (·, ·) and norm
∥·∥H . Then there exists some constant Cγ which depends on γ such that(

∥u∥γ−2
H u−∥v∥γ−2

H v,u−v

)
≥

{
Cγ∥u−v∥γH , if γ≥2,

Cγ
∥u−v∥2

H

(∥u∥H+∥v∥H)2−γ , if 1≤γ≤2.
(4.2)

Now we will apply Theorem 3.2 to give the estimate of polynomial dissipativity of
noncompactness measure of bounded subsets for problem (1.1).

Theorem 4.1. Under conditions (A1), (A2) and (A3), the dynamical system (H,St)
generated by problem (1.1) has the property of polynomial dissipativity of noncompact-
ness measure of bounded subsets. More precisely, there exists t0>0 such that for any
bounded B⊆V ×H we have

α(S(t)B)≤
{
(α(B0))

−p+
pCp

2p+2

(
t− t0− t∗(B)

)}− 1
p

, ∀t≥ t0+T + t∗(B),

where t∗(B) satisfies

S(t)B⊆B0, ∀t≥ t∗(B).

Proof. Let w(t) and v(t) be two weak solutions to the problem (1.1) corresponding
to two different initial data in the invariant set B0:

(w(t),wt(t))≡Sty0, (v(t),vt(t))≡Sty1, y0,y1∈B0. (4.3)

By Lemma 4.1, we know B0 is positively invariant, then{
∥(w(t),wt(t))∥H≤C,

∥(v(t),vt(t))∥H≤C,
∀t>0,y1,y2∈B0. (4.4)

Note that z(t)=w(t)−v(t) satisfies the following equality

ztt+∆2z−m(∥∇w∥2)∆z−(m(∥∇w∥2)−m(∥∇v∥2))∆v

+∥wt∥pwt−∥vt∥pvt+f(w)−f(v)=0.
(4.5)

Multiplying (4.5) by zt(t) and integrating over Ω, we obtain

(ztt,zt)+(∆2z,zt)−(m(∥∇w∥2)∆z,zt)+(∥wt∥pwt−∥vt∥pvt,zt)
=((m(∥∇w∥2)−m(∥∇v∥2))∆v,zt)−(f(w)−f(v),zt).

(4.6)
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In view of

m(∥∇w∥2)(∆z,zt)=−1

2

d

dt
m(∥∇w∥2)∥∇z∥2−m′(∥∇w∥2)∥∇z∥2(∆w,wt),

we rewrite (4.6) as

1

2

d

dt

(
∥zt(t)∥2+∥∆z(t)∥2+m(∥∇w∥2)∥∇z∥2

)
+(∥wt∥pwt−∥vt∥pvt,zt)

=−m′(∥∇w∥2)∥∇z∥2(∆w,wt)+((m(∥∇w∥2)−m(∥∇v∥2))∆v,zt)

−(f(w)−f(v),zt), (4.7)

from which, by integrating over [t,T ], we obtain

Em(T )+

∫ T

t

(∥wt∥pwt−∥vt∥pvt,zt)dτ

=Em(t)−
∫ T

t

m′(∥∇w∥2)∥∇z∥2(∆w,wt)dτ

+

∫ T

t

((m(∥∇w∥2)−m(∥∇v∥2))∆v,zt)dτ−
∫ T

t

(f(w)−f(v),zt)dτ, (4.8)

where

Em(t)=
1

2
(∥zt(t)∥2+∥∆z(t)∥2+m(∥∇w∥2)∥∇z(t)∥2). (4.9)

Moreover, integrating (4.8) from 0 to T gives,

TEm(T )=

∫ T

0

Em(t)dt−
∫ T

0

∫ T

t

(∥wt∥pwt−∥vt∥pvt,zt)dτ

−
∫ T

0

dt

∫ T

t

m′(∥∇w∥2)∥∇z∥2(∆w,wt)dτ

+

∫ T

0

dt

∫ T

t

((m(∥∇w∥2)−m(∥∇v∥2))∆v,zt)dτ

−
∫ T

0

dt

∫ T

t

(f(w)−f(v),zt)dτ. (4.10)

Multiplying (4.5) by z(t) and integrating over Ω, we obtain

d

dt
(zt,z)−∥zt∥2+∥∆z∥2+m(∥∇w∥2)∥∇z∥2+(∥wt∥pwt−∥vt∥pvt,z)

=((m(∥∇w∥2)−m(∥∇v∥2))∆v,z)−(f(w)−f(v),z),
(4.11)

which implies∫ T

0

Em(t)dt=

∫ T

0

∥zt∥2dt+
1

2

∫ T

0

(∥wt∥pwt−∥vt∥pvt,z)dt+
1

2
(zt,z)|T0

=
1

2

∫ T

0

((m(∥∇w∥2)−m(∥∇v∥2))∆v,z)dt

− 1

2

∫ T

0

(f(w)−f(v),z)dt. (4.12)
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Combining (4.10) with (4.12), one gets that

TEm(T )=

∫ T

0

∥zt∥2dt+
1

2
(zt,z)|T0 +

1

2

∫ T

0

(∥wt∥pwt−∥vt∥pvt,z)dt

−
∫ T

0

∫ T

t

(∥wt∥pwt−∥vt∥pvt,zt)dτ

+
1

2

∫ T

0

((m(∥∇w∥2)−m(∥∇v∥2))∆v,z)dt

−
∫ T

0

dt

∫ T

t

m′(∥∇w∥2)∥∇z∥2(∆w,wt)dτ

+

∫ T

0

dt

∫ T

t

((m(∥∇w∥2)−m(∥∇v∥2))∆v,zt)dτ

− 1

2

∫ T

0

(f(w)−f(v),z)dt−
∫ T

0

dt

∫ T

t

(f(w)−f(v),zt)dτ. (4.13)

Now, we will deal with each term in (4.13) one by one.

According to Lemma 4.1 and m∈C1(R+), by using estimate(4.4), the mean value
theory, and embedding V ↪→V0, we have

m(∥∇w∥2)≤C, (4.14)

|m′(∥∇w∥2)∥∇z∥2(∆w,wt)|≤C∥∇z∥2, (4.15)

|m(∥∇w∥2)−m(∥∇v∥2)|≤C∥∇z∥, (4.16)

|(m(∥∇w∥2−m(∥∇v∥2)))(∆v,z)|≤C∥∇z∥2, (4.17)

|(m(∥∇w∥2)−m(∥∇v∥2))(∆v,zt)|≤C∥∇z∥∥zt∥. (4.18)

Therefore,

1

2

∫ T

0

((m(∥∇w∥2)−m(∥∇v∥2))∆v,z)dt−
∫ T

0

dt

∫ T

t

m′(∥∇w∥2)∥∇z∥2(∆w,wt)dτ

+

∫ T

0

dt

∫ T

t

((m(∥∇w∥2)−m(∥∇v∥2))∆v,zt)dτ

≤CT∥∇z∥. (4.19)

By Lemma 4.1 and the restriction (1.3) on the growth of f in (A2) along with
Sobolev’s embedding theorems, for n≥5, let r= n

(n−4)ϱ and r̄= n
n−(n−4)ϱ are Hölder’s

conjugate exponents and for n≤4, taking r large enough, then we have

∥f(w)−f(v)∥2=
∫
Ω

|f(w)−f(v)|2dx=
∫
Ω

|f ′(v+θ1(w−v))(w−v)|2dx

≤C

∫
Ω

(1+ |v+θ1(w−v)|ϱ)2|w−v|2dx

≤C

∫
Ω

(1+ |w|2ϱ+ |v|2ϱ)|w−v|2dx

≤C[

∫
Ω

(1+ |w|2ϱ+ |v|2ϱ)rdx] 1r (
∫
Ω

|w−v|2r̄dx) 1
r̄

≤C∥w−v∥22r̄ (4.20)
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where 0<θ1<1. Therefore,

−1

2

∫ T

0

(f(w)−f(v),z)dt≤ T

2
sup

t∈[0,T ]

∥f(w)−f(v)∥ sup
t∈[0,T ]

∥z(t)∥

≤CT sup
t∈[0,T ]

∥z(t)∥, (4.21)

and

−
∫ T

0

dt

∫ T

t

(f(w)−f(v),zt)dτ ≤T 2 sup
t∈[0,T ]

∥f(w)−f(v)∥ sup
t∈[0,T ]

∥zt(t)∥

≤CT 2 sup
t∈[0,T ]

∥f(w)−f(v)∥

≤CT 2∥w−v∥2r̄. (4.22)

According to Lemma 4.2, one gets that

(∥wt∥pwt−∥vt∥pvt,zt)≥Cp∥wt−vt∥p+2, (4.23)

taking g(s)=C
−2
p+2
p s

2
p+2 ,s>0, which is a strictly increasing, concave function, and g∈

C(R+) with the property g(0)=0 such that

∥wt−vt∥2=g(Cp∥wt−vt∥p+2)

≤g
(
(∥u+v∥p(u+v)−∥u∥pu,v)

)
=C

−2
p+2
p (∥wt∥pwt−∥vt∥pvt,zt)

2
p+2 , (4.24)

which, together with Jensen’s inequality, yields that∫ T

0

∥zt∥2dt≤C
−2
p+2
p

∫ T

0

(∥wt∥pwt−∥vt∥pvt,zt)
2

p+2 dt

≤C
−2
p+2
p T

(
1

T

∫ T

0

(∥wt∥pwt−∥vt∥pvt,zt)dt
) 2

p+2

=C
−2
p+2
p T

p
p+2

(∫ T

0

(∥wt∥pwt−∥vt∥pvt,zt)dt
) 2

p+2

. (4.25)

From energy relation (4.8) with t=0, (4.19), (4.22) and (4.20) with compact embedding
theorem, there exists a suitably small constant δ such that∫ T

0

(∥wt∥pwt−∥vt∥pvt,zt)dt=Em(0)−Em(T )−
∫ T

0

m′(∥∇w∥2)∥∇z∥2(∆w,wt)dt

+

∫ T

0

((m(∥∇w∥2)+m(∥∇v∥2))∆v,zt)dt−
∫ T

0

(f(w)−f(v),zt)dt

≤Em(0)−Em(T )+C

(∫ T

0

∥∇z∥2dt+
∫ T

0

∥∇z∥dt+
∫ T

0

∥f(w)−f(v)∥dt
)

≤Em(0)−Em(T )+TC sup
t∈[0,T ]

∥w−v∥2r̄

≤Em(0)−Em(T )+TC sup
t∈[0,T ]

∥A 1
2−δz∥. (4.26)
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Then it follows from (4.25) and (4.26) that∫ T

0

∥zt∥2dt≤C
−2
p+2
p T

p
p+2

(
Em(0)−Em(T )+TC sup

t∈[0,T ]

∥A 1
2−δz∥

) 2
p+2

.

Furthermore, in view of Cauchy’s inequality along with Sobolev’s embedding theorems,
there exists a small constant 0<η< 1

2 such that∫ T

0

(∥wt∥pwt−∥vt∥pvt,z)dt≤
∫ T

0

∥z∥
(∫

Ω

(∥wt∥pwt−∥vt∥pvt)2dx
) 1

2

dt

≤C

∫ T

0

∥z∥
(
∥wt∥2p∥wt∥2+∥vt∥2p∥vt∥2

) 1
2

dt

≤TC sup
t∈[0,T ]

∥z∥≤TC sup
t∈[0,T ]

∥A 1
2−ηz(t)∥, (4.27)

and

1

2
(zt,z)|T0 ≤ 1

2

(
∥zt(T )∥∥z(T )∥+∥zt(0)∥∥z(0)∥

)
≤C

(
∥z(T )∥+∥z(0)∥

)
≤C sup

t∈[0,T ]

∥z∥

≤C sup
t∈[0,T ]

∥A 1
2−ηz(t)∥. (4.28)

Therefore, combining with (4.13) and taking η̃=min{δ,η}, one gets that

Em(T )≤CT sup
t∈[0,T ]

∥A 1
2−η̃z(t)∥

+C
−2
p+2
p T

p
p+2

(
Em(0)−Em(T )+TC sup

t∈[0,T ]

∥A 1
2−η̃z(t)∥

) 2
p+2

. (4.29)

Since

Ez(t)=
1

2
(∥zt(t)∥2+∥∆z(t)∥2)=∥ST y1−ST y2∥2H≤Em(t),

applying interpolation theorem and (4.9) it follows that

m(∥∇w∥2)∥∇z(t)∥2)≤C∥z∥1−θ1∥∆z(t)∥θ1

≤ε∥∆z(t)∥2+Cε∥z∥2

≤ε∥∆z(t)∥2+Cε sup
t∈[0,T ]

∥A 1
2−η̃z(t)∥,

for some constant C>0 and θ1=
1
2 . Then by the definition of Em(t), we can rewrite

(4.29) as

Ez(T )≤CT sup
t∈[0,T ]

∥A 1
2−η̃z(t)∥

+[CpT (1+ε)]
−2
p+2

(
Ez(0)−Ez(T )+TCε sup

t∈[0,T ]

∥A 1
2−η̃z(t)∥

) 2
p+2

. (4.30)
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Since z(t) is uniformly bounded in V =D(A 1
2 ) with D(A 1

2 ) ↪→↪→D(A 1
2−η̃)

↪→↪→H=L2(Ω), by interpolation we have that

∥A 1
2−η̃z∥≤∥z(t)∥θ2

D(A
1
2 )
·∥z(t)∥1−θ2 ≤CR∥z(t)∥1−θ2 , θ2∈ (0,1).

Therefore,

Ez(T )≤CT sup
t∈[0,T ]

∥A 1
2−η̃z(t)∥

+[CpT (1+ε)]
−2
p+2

(
Ez(0)−Ez(T )+TCB,ϱ sup

t∈[0,T ]

∥z(t)∥κ
) 2

p+2

, (4.31)

for some κ∈ (0,1]. Note

ρT (y1,y2)= sup
t∈[0,T ]

∥z(t)∥κ,

then ρT is precompact on the set B0. In fact, for every bounded set F of
C([0,T ];D(A 1

2 ))∩C1([0,T ];L2(Ω)), that is to say, there exists a constant C such that

∥u(t)∥
D(A

1
2 )
+∥ut(t)∥≤C, ∀u(t)∈F (t)={u(t) :u∈F}.

Since D(A 1
2 ) ↪→↪→L2(Ω), we infer that

F (t) is relatively compact in L2(Ω), ∀ 0<t<T.

On the other hand, ∀ε>0,u∈F , we have

∥u(t)−u(t1)∥=∥
∫ t

t1

ut(s)ds∥≤
∫ t

t1

∥ut(s)∥ds

≤ (t− t1)
1
2 (

∫ t

t1

∥ut(s)∥ds)
1
2

≤C(t− t1)
1
2

≤Cε,

∀0≤ t≤ t1≤T satisfying |t− t1|≤ε2 i.e. F is uniformly equicontinuous. By the Ascoli
Theorem in [17], we obtain the compactness of embedding

C([0,T ];D(A 1
2 ))∩C1([0,T ];L2(Ω))⊂C([0,T ];L2(Ω)).

Therefore, the pseudometric ρT =CB,T supt∈[0,T ]∥w(t)−v(t)∥κ is precompact set B0.

Thus by Theorem 3.2, we deduce from (4.31) that there exists t0>0 such that for
any bounded B⊆X,

α(S(t)B)≤
{
(α(B0))

−p+
p

2
(
T

2
p+2 +2

p
p+2+1[Cp(1+ε)]

−2
p+2

) p+2
2

(
t− t0−2T − t∗(B)

)}− 1
p

(4.32)

holds for all t≥ t0+2T + t∗(B), where t∗(B) satisfies

S(t)B⊆B0, ∀t≥ t∗(B).



1412 EXISTENCE OF POLYNOMIAL ATTRACTOR

Since
{
(α(B0))

−p+ p

2
(
T

2
p+2 +2

p
p+2

+1
[Cp(1+ε)]

−2
p+2

) p+2
2

(
t− t0−2T − t∗(B)

)}− 1
p

is continu-

ous and increasing with respect to T , where T is an arbitrary positive constant, by the
arbitrariness of ε and taking T →0 in (4.32) we have

α(S(t)B)≤
{
(α(B0))

−p+
pkCp

2p+2

(
t− t0− t∗(B)

)}− 1
p

, ∀ t>t0+ t∗(B).
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