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PULLBACK EXPONENTIAL ATTRACTORS FOR THE THREE
DIMENSIONAL NON-AUTONOMOUS PRIMITIVE EQUATIONS OF

LARGE SCALE OCEAN AND ATMOSPHERE DYNAMICS∗

BO YOU†

Abstract. The main objective of this paper is to study the existence of pullback exponential
attractors for the three-dimensional non-autonomous primitive equations of large-scale ocean and at-
mosphere dynamics. Due to the shortage of the proof of the uniqueness of weak solutions, it is very
difficult to define a solution process such that we cannot obtain the existence of pullback exponential
attractors by the standard theory of pullback exponential attractor established in [A.N. Carvalho and
S. Sonner, Commun. Pure Appl. Anal., 12(6):3047–3071, 2013], [R. Czaja and M. Efendiev, J. Math.
Anal. Appl., 381(2):748–765, 2011], [M. Efendiev, S. Zelik, and A. Miranville, Proc. Roy. Soc. Edinb.
Sect. A, 135(4):703–730, 2005], [J.A. Langa, A. Miranville, and J. Real, Discrete Contin. Dyn. Syst.,
26(4):1329–1357, 2010]. Inspired by the idea of the method of ℓ-trajectories, we will prove the existence
of pullback exponential attractors by the abstract results established in [B. You, Math. Meth. Appl.
Sci., 44(13):10361–10386, 2021].

Keywords. Pullback exponential attractors; Primitive equations; Aubin-Lions compactness
lemma; The method of ℓ-trajectories; Trajectory space.

AMS subject classifications. 35B41; 35Q86; 37C60; 37L25; 37N10.

1. Introduction
In this paper, we mainly consider the existence of pullback exponential attractors

for the following three-dimensional non-autonomous primitive equations of large-scale
ocean and atmosphere dynamics (see [34])

∂v
∂t +(v ·∇)v+w ∂v

∂z +∇p+ 1
Rofv

⊥+L1v=0,
∂p
∂z +T =0,

∇·v+ ∂w
∂z =0,

∂T
∂t +v ·∇T +w ∂T

∂z +L2T =Q

(1.1)

in the domain

Ω=M×(−h,0),

where M ⊂R2 is a bounded domain with smooth boundary ∂M. The horizontal velocity
field v=(v1,v2), the three-dimensional velocity field (v1, v2, w), the temperature T
and the pressure p are unknown. The vector v⊥=(−v2,v1), f =f0+βy is the Coriolis
parameter, Ro is the Rossby number which measures the significant influence of the
rotation of the earth to the dynamical behavior of the ocean, Q(x,y,z,t) is a given heat
source. The viscosity operator L1 and the heat diffusion operator L2 are given by
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where Re1, Re2 are positive constants representing the horizontal and vertical Reynolds
numbers, respectively, Rt1, Rt2 are positive constants which stand for the horizontal and
vertical eddy diffusivity, respectively. For the sake of simplicity, let ∇=(∂x,∂y) be the
horizontal gradient operator and let ∆=∂2

x+∂2
y be the horizontal Laplacian operator.

Let Γu, Γb and Γl be the upper, bottom and the lateral boundaries of Ω, respectively,
which are given by

Γu={(x,y,z)∈Ω:z=0}, Γb={(x,y,z)∈Ω:z=−h},
Γl={(x,y,z)∈Ω: (x,y)∈∂M,−h≤z≤0}.

Problem (1.1) is subject to the boundary conditions:
∂v
∂z |Γu =0,w|Γu =0,( 1

Rt2
∂T
∂z +αT )|Γu =0,

∂v
∂z |Γb

=0,w|Γb
=0, ∂T∂z |Γb

=0,

v · n⃗|Γl
=0, ∂v∂n⃗ × n⃗|Γl

=0, ∂T∂n⃗ |Γl
=0,

(1.2)

where n⃗ is the unit outward normal vector to Γl, α is a positive constant related to the
turbulent heating on the surface of the ocean.

In addition, we supply system (1.1)-(1.2) with the initial conditions

v(x,y,z,τ)=vτ (x,y,z), T (x,y,z,τ)=Tτ (x,y,z). (1.3)

Large-scale dynamics of ocean and atmosphere is governed by the primitive equa-
tions which are derived from the Navier-Stokes equations with rotation coupled to ther-
modynamics and salinity diffusion-transport equations by taking the buoyancy forces
and stratification effects into account under the Boussinesq approximation. Moreover,
due to the shallowness of the oceans and the atmosphere, i.e., the depth of the fluid layer
is very small in comparison to the radius of the earth, the vertical large-scale motion in
the oceans and the atmosphere is much smaller than the horizontal one, which in turn
leads to modeling the vertical motion by the hydrostatic balance. As a result, one can
obtain the system (1.1)-(1.3) which is known as the primitive equations for ocean and
atmosphere dynamics (see [34]). We observe that one has to add the diffusion-transport
equation of the salinity to the system (1.1)-(1.3) in the case of ocean dynamics, but we
omit it here in order to simplify our mathematical presentation. However, we emphasize
that our results are equally valid when the salinity effects are taken into account.

In the past several decades, the well-posedness and the long-time behavior of solu-
tions for the primitive equations of the coupled atmosphere-ocean have been extensively
studied from the theoretical point of view (see [1, 12, 17–23, 26–28, 31–33, 38]). In par-
ticular, in [28], the authors began to study the well-posedness and long-time behavior
of solutions for such a system from the mathematical theoretical point of view for the
first time, they established the global existence of weak solutions, the existence of (local
in time) strong solutions and the finite fractal dimension of its global attractor, but
the issue about the uniqueness of weak solutions and the existence of (global in time)
strong solutions remains open. Recently, the existence and uniqueness of (global in time)
strong solutions for this system have been well-established in [1], but the uniqueness
of weak solutions remains unresolved. Since then, many authors started considering
the well-posedness and long-time behavior of solutions for the primitive equations or
some similar counterparts. In [18], the authors proved the existence of weak solutions
as well as trajectory attractors for the moist atmospheric equations in geophysics. The
long-time dynamics of the primitive equations of large-scale atmosphere was considered
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and the existence of a weakly compact global attractor A attracting all the trajectories
was obtained in [20]. In [21], the author proved the existence of a global attractor in V
for the primitive equations of large-scale atmosphere and ocean dynamics by using the
Aubin-Lions compactness lemma under the assumption Q∈L2(Ω). The regularity of
the global attractor for the 3D viscous primitive equations has been established in [38].
In [26], the authors have provided the upper bound of the fractal dimension of the
global attractor for the primitive equations of atmospheric circulation and have given
its physical interpretation. The existence of finite dimensional global attractors for the
3D viscous primitive equations by using the squeezing property was proved in [22, 23].
To the best of our knowledge, there are no results related to the existence of pullback
exponential attractors for the three-dimensional non-autonomous primitive equations of
large-scale ocean and atmosphere dynamics.

The study of the long-time behavior of infinite dimensional dynamical systems or
semigroups generated by autonomous partial differential equations can be usually re-
duced to the description of global attractor (see [35,37]), which may attract trajectories
slowly and be sensitive to small perturbations. The two drawbacks of global attractor
obviously lead to essential difficulties in numerical simulations of global attractor and
even make the global attractor unobservable in some sense. To overcome these draw-
backs, the notion of an exponential attractor was introduced in [13]. Until now, there are
main three classical methods of constructing the exponential attractor for autonomous
dissipative equations by the squeezing property ([13])/the smoothing property ([14]) of
the difference of two solutions or the quasi-stable methods [10]. Moreover, to ensure the
finiteness of the fractal dimension of the exponential attractor in these three ways, there
is an additional requirement on the Hölder continuity in time of the semigroup, which
is, in general, very difficult to prove, in particular, when the solutions lack regularity.

Non-autonomous equations appear in many applications of the natural sciences, so
they are of great importance and interest. In recent years, more attention was paid to
the processes generated by the non-autonomous differential equations and their long-
time behaviors (see [2, 4, 5, 7–9, 15, 36]). The first attempt was to extend the notion
of global attractor to the non-autonomous case, leading to the concept of the so-called
uniform attractor (see [9]). It is remarkable that the conditions ensuring the existence
of the uniform attractor are parallel to those for the autonomous case. However, one
disadvantage of the uniform attractor is that it need not to be “invariant”, unlike the
global attractor for autonomous systems. Moreover, it is well known that the trajectories
may be unbounded for many non-autonomous systems when the time tends to infinity,
and there does not exist a uniform attractor for such systems. In order to overcome
this drawback, a new counterpart, called pullback attractor, has been introduced for the
non-autonomous case. The theory of pullback attractors has been developed for both
non-autonomous and random dynamical systems, and it has been also shown to be very
useful in the understanding of the dynamics of non-autonomous dynamical systems
(see [3]).

Similar to the autonomous case, many authors have also proposed the notion of
pullback exponential attractor. In particular, the authors in [16] have first extended
the way of construction of exponential attractors for discrete semigroups in [14] to
non-autonomous problems by using the concept of forwards attractor and developed
an explicit algorithm for discrete evolution processes by the smoothing property of
the evolution process. Moreover, they also constructed an exponential attractor of
the time continuous process generated by non-autonomous reaction-diffusion systems.
Later, this construction was modified in the pullback sense, and the algorithm was also
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extended to time continuous evolution processes in [11, 25] based on the existence of a
fixed bounded pullback absorbing set, which leads to the boundedness of the section
of exponential pullback attractor in the past, but it may be unbounded in the future.
Recently, the authors in [6] proved the existence of pullback exponential attractors
for an asymptotically compact process under significantly weak hypothesis that the
process lacks the strong regularity property in time, whose sections are not necessarily
uniformly bounded in the past. Moreover, they obtained better estimates for the fractal
dimension of the sections of pullback attractor based on the existence of a family of
time-dependent absorbing sets. In [39], the author developed the abstract framework
of pullback exponential attractor based on the method of ℓ-trajectories and applied it
to the three-dimensional planetary geostrophic equations.

In this paper, we are mainly concerned with the existence of pullback exponential
attractors for the three-dimensional non-autonomous primitive equations of large-scale
ocean and atmosphere dynamics. Due to the shortage of the proof of the uniqueness of
weak solutions, it is very difficult to define a solution process such that we cannot con-
sider the existence of pullback exponential attractor by the classical theory of pullback
exponential attractor established in [6, 11, 16, 25]. In [30], the authors have set up the
theoretical framework of a finite dimensional global attractor as well as an exponential
attractor for the autonomous evolutionary equations by the method of ℓ-trajectories.
Inspired by the idea of the method of ℓ-trajectories, we have generalized the theoreti-
cal framework of autonomous case to non-autonomous case in [39]. In this paper, we
first construct the pullback exponential attractors in an auxiliary phase space of the
trajectories of length ℓ by the smoothing property of the difference of two solution tra-
jectories. By defining the Lipschitz continuous projection operator from the trajectory
phase space into the original phase space, we establish the existence of pullback expo-
nential attractors for this system in the original phase space and also provide a method
of constructing pullback exponential attractor.

Throughout this paper, let X be a Banach space endowed with the norm ∥·∥X , let
∥u∥p be the Lp(Ω)-norm of u, denote by Rτ =[τ,+∞) and let C be positive constants
which may be different from line to line.

2. Preliminaries

2.1. Functional spaces and some lemmas. To study problem (1.1)-(1.3), we
first introduce some notations of function space. Define

V1=

{
v∈ (C∞(Ω̄))2 :

∂v

∂z

∣∣∣∣
Γu

=0,
∂v

∂z

∣∣∣∣
Γb

=0,v · n⃗|Γl
=0,

∂v

∂n⃗
× n⃗

∣∣∣∣
Γl

=0,∫ 0

−h

∇·v(x,y,r)dr=0

}
,

V2=

{
T ∈C∞(Ω̄) :

(
1

Rt2

∂T

∂z
+αT

)∣∣∣∣
Γu

=0,
∂T

∂z

∣∣∣∣
Γb

=0,
∂T

∂n⃗

∣∣∣∣
Γl

=0

}
.

Denote the closure of V1, V2 by V1, V2, respectively, with respect to the following norms
defined as follows

∥v∥=
(

1

Re1

∫
Ω

|∇v(x,y,z)|2dxdydz+ 1

Re2

∫
Ω

|∂zv(x,y,z)|2dxdydz
) 1

2

,

∥T∥=
(

1

Rt1

∫
Ω

|∇T (x,y,z)|2dxdydz+ 1

Rt2

∫
Ω

|∂zT (x,y,z)|2dxdydz
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+α

∫
M

|T (x,y,0)|2dxdy
) 1

2

for any v∈V1, T ∈V2, and let H1 be the closure of V1 with respect to the (L2(Ω))2-
norm, V =V1×V2, H=H1×L2(Ω). let ∥(v,T )∥22=∥v∥22+∥T∥22 for any (v,T )∈H and
∥(v,T )∥2=∥v∥2+∥T∥2 for any (v,T )∈V.

Next, we recall some results used to prove the existence of pullback exponential
attractor for problem (1.1)-(1.3).

Lemma 2.1 ([1]). There exists a positive constant K1, such that

1

K1
∥T∥2≤∥T∥2H1(Ω)≤K1∥T∥2

for any T ∈V2. Moreover, we have

∥T∥22≤K2∥T∥2

for any T ∈V2, where

K2=max{2h
α
,2Rt2h

2}.

Lemma 2.2 ( [9]). Assume that p1∈ (1,∞], p2∈ [1,∞). Let X, X0, X1 be Banach
spaces such that X0⊂⊂X⊂X1. Then

Y ={u∈Lp1(0,ℓ;X0) :u
′∈Lp2(0,ℓ;X1)}⊂⊂Lp1(0,ℓ;X),

where ℓ is any fixed positive constant.

Definition 2.1 ([29]). A process {U(t,τ)}t≥τ defined on a Banach space X is said
to be τ -continuous, if for every u0∈X and every t∈R, the X-valued function

τ →U(t,τ)u0

is continuous and bounded on (−∞,t].

Definition 2.2 ([35,37]). Let H be a separable real Hilbert space. For any non-empty
compact subset K⊂H, the fractal dimension dF (K) of K is defined by

dF (K)= limsup
ϵ→0+

log(Nϵ(K))

log( 1ϵ )
,

where Nϵ(K) denotes the minimum number of open balls in H with radii ϵ>0 that are
necessary to cover K.

Lemma 2.3 ( [30]). Let X, Y be two metric spaces and the function f :X→Y is
α-Hölder continuous on the subset A⊂X. Then

dF (f(A))≤ 1

α
dF (A).

In particular, the fractal dimension does not increase under a Lipschitz continuous map-
ping.

Definition 2.3 ([6, 11, 16]). Let {U(t,s)}t≥s be an evolution process defined on a
metric space X. We call the family M={M(t) : t∈R} a pullback exponential attractor
for the evolution process {U(t,s)}t≥s in X, if
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(i) The subsets M(t)⊂X are non-empty and compact in X for all t∈R.
(ii) The family is positively semi-invariant, that is

U(t,s)M(s)⊂M(t), ∀ t≥s.

(iii) The fractal dimension of the section M(t) in X is uniformly bounded for all t∈R.
(iv) The family {M(t) : t∈R} exponentially pullback attracts bounded subsets of X, i.e.,

there exists a positive constant ω>0, such that for every bounded subset B⊂X and
t∈R,

lim
s→+∞

eωsdist(U(t,t−s)B,M(t))=0.

2.2. New formulation. We can reformulate problem (1.1)-(1.3) by integrating
the second equation as well as the third equation of (1.1) with respect to z and combining
the boundary conditions (1.2) as follows just like in [1]:

∂v
∂t +(v ·∇)v−(

∫ z

−h
∇·v(x,y,r,t)dr)∂v∂z +∇ps(x,y,t)+

1
Rofv

⊥+L1v

=
∫ z

0
∇T (x,y,r,t)dr,∫ 0

−h
∇·v(x,y,r,t)dr=0,

∂T
∂t +v ·∇T −(

∫ z

−h
∇·v(x,y,r,t)dr)∂T∂z +L2T =Q,

∂v
∂z |Γu =0, ∂v∂z |Γb

=0,v · n⃗|Γl
=0, ∂v∂n⃗ × n⃗|Γl

=0,

( 1
Rt2

∂T
∂z +αT )|Γu

=0, ∂T∂z |Γb
=0, ∂T∂n⃗ |Γl

=0,

v(x,y,z,τ)=vτ (x,y,z), T (x,y,z,τ)=Tτ (x,y,z).

(2.1)

Define

v̄(x,y)=
1

h

∫ 0

−h

v(x,y,r)dr

and

ṽ=v− v̄,

then it is clear that v̄ and ṽ satisfy the following problem:
∂v̄
∂t +(v̄ ·∇)v̄+(ṽ ·∇)ṽ+(∇· ṽ)ṽ+∇ps(x,y,t)− 1

Re1
∆v̄+ 1

Rofv̄
⊥

=
∫ z

0
∇T (x,y,r,t)dr,

∇· v̄=0, v̄ · n⃗|Γl
=0, ∂v̄

∂n⃗ × n⃗|Γl
=0

(2.2)

and
∂ṽ
∂t +(ṽ ·∇)ṽ−(

∫ z

−h
∇· ṽ(x,y,r,t)dr)∂ṽ∂z +(ṽ ·∇)v̄+(v̄ ·∇)ṽ−

∫ z

0
∇T (x,y,r,t)dr

+ 1
Rofṽ

⊥+L1ṽ−(ṽ ·∇)ṽ+(∇· ṽ)ṽ+
∫ z

0
∇T (x,y,r,t)dr=0,

∂ṽ
∂z |Γu =0, ∂ṽ∂z |Γb

=0, ṽ · n⃗|Γl
=0, ∂ṽ∂n⃗ × n⃗|Γl

=0.

(2.3)
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3. The existence of a pullback attractor

3.1. The well-posedness. We start with the following general existence and
uniqueness of solutions obtained by the standard Faedo-Galerkin methods ([1,21,24,28,
37]). Here, we only state it as follows.

Theorem 3.1 ([1, 21]). Suppose that Q∈L2
loc(R;L2(Ω)). Then for any initial data

(vτ ,Tτ )∈H, there exists at least one weak solution (v(t),T (t))∈C(Rτ ;Hw)∩L2
loc(Rτ ;V )

of problem (2.1). Furthermore, if (vτ ,Tτ )∈V, there exists a unique strong solution
(v(t),T (t))∈C(Rτ ;V ) of problem (2.1), which depends continuously on the initial data
with respect to the topology of H and V.

By Theorem 3.1, we can define a family of continuous processes {U(t,τ) :−∞<τ ≤
t<∞} on V by

U(t,τ)(vτ ,Tτ )=(v(t),T (t)) :=(v(t,τ ;(vτ ,Tτ )),T (t,τ ;(vτ ,Tτ )))

for any t≥ τ, where (v(t),T (t)) is the strong solution of problem (2.1) with initial data
(v(τ),T (τ))=(vτ ,Tτ )∈V. That is, a family of mappings U(·,τ) :Rτ ×V →V satisfies

U(τ,τ)= id (identity),

U(t,τ)=U(t,r)U(r,τ)

for all t≥ r≥ τ.

Combining Theorem 3.1 with the similar procedure of the proof of absorbing set
in [21], we can easily obtain the following conclusions.

Corollary 3.1. Assume that Q∈L2
loc(R;L2(Ω)). Then the process {U(t,τ)}t≥τ

associated with problem (2.1) is τ -continuous.

Corollary 3.2. Assume that Q∈L2
loc(R;L2(Ω)), (vmτ ,Tm

τ )⇀ (vτ ,Tτ ) in H,
(vm(t),Tm(t)) is a sequence of weak solutions for problem (2.1) such that (vm(τ),Tm(τ))
=(vmτ ,Tm

τ ). For any T >τ, if there exists a subsequence converging (∗-) weakly in spaces
L∞(τ,T ;H)∩L2(τ,T ;V )∩H1(τ,T ;(V ∩H3(Ω))′) to a certain function (v(t),T (t)). Then
(v(t),T (t)) is a weak solution of problem (2.1) on [τ,T ] with (v(τ),T (τ))=(vτ ,Tτ ).

3.2. The existence of a pullback attractor in Xℓ. In this subsection, we will
consider the existence of a pullback attractor for problem (2.1) by using the method of
ℓ-trajectories. From Theorem 3.1, we know that for any (vτ ,Tτ )∈H, there exists at least
one weak solution (v(t),T (t))∈C(Rτ ;Hw)∩L2

loc(Rτ ;V ) of problem (2.1), which implies
that many trajectories may start from the same initial data (vτ ,Tτ )∈H. However, for
any t>τ, there exists some t0∈ (τ,t) such that (v(t0),T (t0))∈V and there exists a
unique strong solution of problem (2.1) starting from (v(t0),T (t0)). For the sake of
simplicity, denote by [χβ(s,τ ;(vτ ,Tτ ))]s∈[τ,τ+ℓ], for short χ

β(s,τ ;(vτ ,Tτ )) (β∈Γ(vτ ,Tτ )),
where Γ(vτ ,Tτ ) is the set of indices marking trajectories starting from (vτ ,Tτ ). In the
following, we first give the mathematical framework of pullback attractor.

Definition 3.1. Let ℓ∈ (0,1] be a fixed positive constant. Define

Xℓ=
⋃
τ∈R

⋃
(vτ ,Tτ )∈H

⋃
β∈Γ(vτ ,Tτ )

χβ(s,τ ;(vτ ,Tτ ))

equipped with the topology of L2(0,ℓ;H).
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Since χβ(s,τ ;(vτ ,Tτ ))∈C([τ,τ+ℓ];Hw) for any τ ∈R, (vτ ,Tτ )∈H and β∈Γ(vτ ,Tτ ),
it makes sense to talk about the point values of each trajectory. However, it is not clear
whether Xℓ is closed in L2(0,ℓ;H) such that Xℓ in general is not a complete metric
space. In what follows, we first give the definition of some operators.

For any t∈ [0,1], we define the mapping et :Xℓ→H by

et(χ(s,τ ;(vτ ,Tτ )))=χ(tℓ+τ,τ ;(vτ ,Tτ ))

for any χ(s,τ ;(vτ ,Tτ ))∈Xℓ.
For any t≥ τ, the operators L(t,τ) :Xℓ→Xℓ are given by the relation

L(t,τ)χ(s,τ ;(vτ ,Tτ ))=(v,T )(t+s−τ,τ ;(vτ ,Tτ ))

=U(t+s−τ,ℓ+τ)e1(χ(s,τ ;(vτ ,Tτ )))=χ(t+s−τ,τ ;(vτ ,Tτ )), s∈ [τ,τ+ℓ]

for any χ(s,τ ;(vτ ,Tτ ))∈Xℓ, where (v,T )(s,τ ;(vτ ,Tτ )) is the unique solution of prob-
lem (2.1) on [τ,ℓ+ t] such that (v,T )|[τ,τ+ℓ]=χ(s,τ ;(vτ ,Tτ )), we can easily prove the
operators {L(t,τ)}t≥τ is a process on Xℓ.

In what follows, let Dℓ be the family of all nonempty bounded subsets of Xℓ and
let D be the family of all nonempty bounded subsets of H. In the following, we will
perform some a priori estimates of solutions for problem (2.1) to prove the existence of
pullback attractors for problem (2.1).

Theorem 3.2. Assume that Q∈L2
loc(R;L2(Ω)) satisfies

sup
r∈R

∫ r

r−1

∥Q(s)∥22ds<+∞.

Then there exists a positive constant ρ1 satisfying for any Bℓ∈Dℓ, there exists a time
τ1= τ1(Bℓ,t)≤ t such that for any weak solution of problem (2.1) with short trajectory
χ(s,τ ;(vτ ,Tτ ))∈Bℓ, we have

∥(v(t),T (t))∥22+
∫ ℓ

0

∥(v,T )(t+ζ)∥22dζ≤ρ1

for any τ ≤ t−τ1.

Proof. Taking the inner product of the third equation of problem (2.1) with T in
L2(Ω) and combining Lemma 2.1 with Young’s inequality, we obtain

1

2

d

dt
∥T (t)∥22+∥T (t)∥2=

∫
Ω

Q(x,y,z,t)T (x,y,z,t)dxdydz

≤∥Q(t)∥2∥T (t)∥2

≤1

2
∥T (t)∥2+ 1

2
K2∥Q(t)∥22,

which implies that

d

dt
∥T (t)∥22+

1

K2
∥T (t)∥22≤K2∥Q(t)∥22

and

d

dt
∥T (t)∥22+∥T (t)∥2≤K2∥Q(t)∥22. (3.1)
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It follows from the classical Gronwall inequality that

∥T (t)∥22≤
1

ℓ

∫ ℓ

0

∥T (ζ+τ)∥22e
ζ+τ−t

K2 dζ+
K2

ℓ

∫ ℓ

0

∫ t

τ+ζ

e
s−t
K2 ∥Q(s)∥22dsdζ

≤e
ℓ

K2

ℓ
e

τ−t
K2

∫ ℓ

0

∥T (ζ+τ)∥22dζ+K2(1+K2)sup
r∈R

∫ r

r−1

∥Q(s)∥22ds. (3.2)

Thanks to

d

ds
(∥T (s)∥22e

s
K2 )≤K2∥Q(s)∥22e

s
K2 (3.3)

for any ζ ∈ (0,ℓ), integrating inequality (3.3) with respect to s from τ+ζ to t+ζ and
integrating the resulting inequality over (0,ℓ) with respect to ζ, we obtain∫ ℓ

0

∥T (t+ζ)∥22dζ≤e
τ−t
K2

∫ ℓ

0

∥T (τ+ζ)∥22dζ+K2

∫ ℓ

0

∫ t+ζ

τ+ζ

e
s−t−ζ

K2 ∥Q(s)∥22dsdζ

≤e
τ−t
K2

∫ ℓ

0

∥T (τ+ζ)∥22dζ+K2(1+K2)ℓsup
r∈R

∫ r

r−1

∥Q(s)∥22ds. (3.4)

Multiplying the first equation of problem (2.1) by v and integrating over Ω, we find

1

2

d

dt
∥v(t)∥22+∥v(t)∥2=

∫
Ω

∫ z

0

∇T (x,y,s,t)ds ·v(x,y,z,t)dxdydz

≤h∥T (t)∥2∥∇v(t)∥2.

Let λ=sup{µ< 1
K2

:µ∥v∥22≤∥v∥2,∀v∈V1}, we infer from Young’s inequality and
Poincáre’s inequality that

d

dt
∥v(t)∥22+∥v(t)∥2≤h2Re1∥T (t)∥22 (3.5)

and

d

dt
∥v(t)∥22+λ∥v(t)∥22≤h2Re1∥T (t)∥22. (3.6)

We infer from the classical Gronwall inequality and inequality (3.2) that

∥v(t)∥22≤∥v(τ+ζ)∥22eλ(τ+ζ−t)+h2Re1

∫ t

τ+ζ

∥T (s)∥22eλ(s−t)ds

≤∥v(τ+ζ)∥22eλ(τ+ζ−t)+
h2Re1K2e

ℓ
K2

ℓ(1−K2λ)
eλ(τ−t)

∫ ℓ

0

∥T (ζ+τ)∥22dζ

+
h2Re1

λ
K2(1+K2)sup

r∈R

∫ r

r−1

∥Q(ζ)∥22dζ,

which implies that

∥v(t)∥22≤
eλℓ

ℓ
eλ(τ−t)

∫ ℓ

0

∥v(τ+ζ)∥22dζ+
h2Re1K2e

ℓ
K2

ℓ(1−K2λ)
eλ(τ−t)

∫ ℓ

0

∥T (ζ+τ)∥22dζ

+
C

λ
K2(1+K2)sup

r∈R

∫ r

r−1

∥Q(ζ)∥22dζ. (3.7)
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Thanks to

d

ds
(∥v(s)∥22eλs)≤h2Re1∥T (s)∥22eλs. (3.8)

Integrating inequality (3.8) with respect to s between τ+ζ and t+ζ and integrating
the resulting inequality with respect to ζ over (0,ℓ), using inequality (3.2), we conclude∫ ℓ

0

∥v(t+ζ)∥22dζ≤eλ(τ−t)

∫ ℓ

0

∥v(τ+ζ)∥22dζ+h2Re1

∫ ℓ

0

∫ t+ζ

τ+ζ

∥T (s)∥22eλ(s−t−ζ)dsdζ

≤h2Re1

∫ ℓ

0

∫ t+ζ

τ+ζ

(
e

ℓ
K2

ℓ
e

τ−s
K2

∫ ℓ

0

∥T (η+τ)∥22dη

)
eλ(s−t−ζ)dsdζ

+h2Re1

∫ ℓ

0

∫ t+ζ

τ+ζ

(
K2(1+K2)sup

r∈R

∫ r

r−1

∥Q(s)∥22ds
)
eλ(s−t−ζ)dsdζ

+eλ(τ−t)

∫ ℓ

0

∥v(τ+ζ)∥22dζ

≤eλ(τ−t)

∫ ℓ

0

∥v(τ+ζ)∥22dζ+h2Re1e
ℓ

K2 eλ(τ−t)

∫ ℓ

0

∥T (τ+ζ)∥22dζ

+
h2Re1ℓ

λ
K2(1+K2)sup

r∈R

∫ r

r−1

∥Q(s)∥22ds. (3.9)

Therefore, we deduce from inequalities (3.2), (3.4), (3.7) and (3.9) that there exists a
positive constant ρ1 satisfying for any Bℓ∈Dℓ, there exists a time τ1= τ1(Bℓ,t)≤ t such
that for any weak solution of problem (2.1) with short trajectory χ(s,τ ;(vτ ,Tτ ))∈Bℓ,
we have

∥(v(t),T (t))∥22+
∫ ℓ

0

∥(v,T )(t+ζ)∥22dζ≤ρ1

for any τ ≤ t−τ1.

From the proof of Theorem 3.2, we conclude the following result.

Corollary 3.3. Assume that Q∈L2
loc(R;L2(Ω)) satisfies

sup
r∈R

∫ r

r−1

∥Q(s)∥22ds<+∞.

Then there exists a positive constant ρ1 satisfying for any B∈D, there exists a time
τ ′1= τ ′1(B,t)≤ t such that for any weak solution of problem (2.1) with any initial data
(vτ ,Tτ )∈B, we have

∥(v(t),T (t))∥22+
∫ ℓ

0

∥(v,T )(t+ζ)∥22dζ≤ρ1

for any τ ≤ t−τ ′1.

Theorem 3.3. Assume that Q∈L2
loc(R;L2(Ω)) satisfies

sup
r∈R

∫ r

r−1

∥Q(s)∥22ds<+∞.
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Then there exists a positive constant ρ2 satisfying for any Bℓ∈Dℓ, there exists a time
τ2= τ2(Bℓ,t)≤ t such that for any weak solution of problem (2.1) with short trajectory
χ(s,τ ;(vτ ,Tτ ))∈Bℓ, we have

∥v(t)∥26+∥T (t)∥26+
∫ ℓ

0

∥(v,T )(t+ζ)∥2dζ≤ρ2

for any τ ≤ t−τ2.

Proof. Taking the inner product of the third equation of problem (2.1) with |T |4T
in L2(Ω), we obtain

1

6

d

dt
∥T (t)∥66+

5

9
∥|T (t)|3∥2≤∥|T (t)|3∥

5
3
10
3

∥Q(t)∥2

≤C∥Q(t)∥2∥|T (t)|3∥
2
3
2 ∥|T (t)|3∥.

We infer from Young’s inequality and the Sobolev embedding theorem that

d

dt
∥T (t)∥26≤C∥Q(t)∥22. (3.10)

For any ζ ∈ (0,ℓ), integrating inequality (3.10) over (t−ℓ+ζ,t) and integrating the re-
sulting inequality with respect to ζ over (0,ℓ), we have

∥T (t)∥26≤
1

ℓ

∫ ℓ

0

∥T (t−ℓ+ζ)∥26dζ+C
1

ℓ

∫ ℓ

0

∫ t

t−ℓ+ζ

∥Q(s)∥22dsdζ

≤C

ℓ

∫ t

t−ℓ

∥T (ζ)∥2dζ+C

∫ t

t−1

∥Q(s)∥22ds. (3.11)

Integrating inequality (3.1) from t−ℓ to t and combining inequality (3.2), we obtain

∥T (t)∥22+
∫ t

t−ℓ

∥T (ζ)∥2dζ

≤K2

∫ t

t−ℓ

∥Q(ζ)∥22dζ+∥T (t−ℓ)∥22

≤K2

∫ t

t−ℓ

∥Q(ζ)∥22dζ+
e

2ℓ
K2

ℓ
e

τ−t
K2

∫ ℓ

0

∥T (ζ+τ)∥22dζ+K2(1+K2)sup
r∈R

∫ r

r−1

∥Q(s)∥22ds

≤e
2ℓ
K2

ℓ
e

τ−t
K2

∫ ℓ

0

∥T (ζ+τ)∥22dζ+K2(1+K2)sup
r∈R

∫ r

r−1

∥Q(s)∥22ds. (3.12)

We deduce from inequalities (3.11)-(3.12) that

∥T (t)∥26≤
Ce

2ℓ
K2

ℓ2
e

τ−t
K2

∫ ℓ

0

∥T (ζ+τ)∥22dζ+
C

ℓ
K2(1+K2)sup

r∈R

∫ r

r−1

∥Q(s)∥22ds

+C

∫ t

t−1

∥Q(s)∥22ds

≤Ce
2ℓ
K2

ℓ2
e

τ−t
K2

∫ ℓ

0

∥T (ζ+τ)∥22dζ+
C

ℓ
(1+K2)

2 sup
r∈R

∫ r

r−1

∥Q(s)∥22ds. (3.13)
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Multiplying the first equation of problem (2.3) by |ṽ|4ṽ and integrating by parts over
Ω, we deduce

1

6

d

dt
∥ṽ(t)∥66+

1

Re1
∥|∇ṽ||ṽ|2∥22+

1

Re2
∥|∂z ṽ||ṽ|2∥22+

4

9
∥|ṽ|3∥2

≤C

∫
Ω

|v̄||∇ṽ||ṽ|5dxdydz+C

∫
M

(

∫ 0

−h

|T |dz)(
∫ 0

−h

|∇ṽ||ṽ|4dz)dxdy

+C

∫
M

(

∫ 0

−h

|ṽ|2dz)(
∫ 0

−h

|∇ṽ||ṽ|4dz)dxdy. (3.14)

It follows from Hölder’s inequality and Minkowski inequality that∫
Ω

|v̄||∇ṽ||ṽ|5dxdydz≤
∫
M

|v̄|(
∫ 0

−h

|∇ṽ|2|ṽ|4dz) 1
2 (

∫ 0

−h

|ṽ|6dz) 1
2 dxdy

≤(

∫
M

|v̄|4dxdy) 1
4 (

∫
Ω

|∇ṽ|2|ṽ|4dxdydz) 1
2 (

∫ 0

−h

(

∫
M

|ṽ|12dxdy) 1
2 dz)

1
2 . (3.15)

By virtue of interpolation inequality, we have∫
M

|ṽ|12dxdy=
∫
M

||ṽ|3|4dxdy

≤C

∫
M

|ṽ|6dxdy
∫
M

|∇|ṽ|3|2dxdy,

which entails that

(

∫ 0

−h

(

∫
M

|ṽ|12dxdy) 1
2 dz)

1
2 ≤C(

∫
Ω

|ṽ|6dxdydz) 1
4 (

∫
Ω

|∇|ṽ|3|2dxdydz) 1
4 . (3.16)

We deduce from inequalities (3.15)-(3.16) that∫
Ω

|v̄||∇ṽ||ṽ|5dxdydz≤C∥ṽ∥
3
2
6 ∥v∥

1
2
2 ∥∇v∥

1
2
2 (

∫
Ω

|∇|ṽ|3|2dxdydz) 1
4 (

∫
Ω

|∇ṽ|2|ṽ|4dxdydz) 1
2 .

(3.17)

Repeating the similar process as the above, we have∫
M

(

∫ 0

−h

|T |dz)(
∫ 0

−h

|∇ṽ||ṽ|4dz)dxdy≤C∥T∥6(
∫
Ω

|∇ṽ|2|ṽ|4dxdydz) 1
2 ∥ṽ∥26 (3.18)

and∫
M

(

∫ 0

−h

|ṽ|2dz)(
∫ 0

−h

|∇ṽ||ṽ|4dz)dxdy≤C(

∫
Ω

|∇ṽ|2|ṽ|4dxdydz) 1
2 ∥ṽ∥36∥ṽ∥H1(Ω), (3.19)

where we use the inequality ∥ṽ∥8L8(M)≤C∥ṽ∥6L6(M)∥ṽ∥
2
H1(M).

We deduce from inequalities (3.14), (3.17)-(3.19) that

d

dt
∥ṽ(t)∥66+

2

Re1
∥|∇ṽ||ṽ|2∥22+

2

Re2
∥|∂z ṽ||ṽ|2∥22+2∥|ṽ|3∥2

≤C(∥v∥22∥∇v∥22+∥ṽ∥2H1(Ω))∥ṽ∥
6
6+C∥T∥26∥ṽ∥46, (3.20)
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which implies that

d

dt
∥ṽ(t)∥26≤C(∥v∥22∥∇v∥22+∥ṽ∥2H1(Ω))∥ṽ∥

2
6+C∥T∥26

≤C(∥v∥22∥v∥2+∥v∥2)∥ṽ∥26+C∥T∥26.

For any ζ ∈ (0,ℓ), we deduce from the Gronwall inequality that

∥ṽ(t)∥26≤C

(∫ t

t+ζ−ℓ

∥T (s)∥26ds
)
exp

{
C

∫ t

t+ζ−ℓ

∥v(s)∥22∥v(s)∥2+∥v(s)∥2ds
}

+
(
∥ṽ(t+ζ−ℓ)∥26

)
exp

{
C

∫ t

t+ζ−ℓ

∥v(s)∥22∥v(s)∥2+∥v(s)∥2ds
}

≤C

(
∥ṽ(t+ζ−ℓ)∥2+

∫ t

t−ℓ

∥T (s)∥2ds
)
exp

{
C

∫ t

t−ℓ

∥v(s)∥22∥v(s)∥2+∥v(s)∥2ds
}

≤C

(
∥v(t+ζ−ℓ)∥2+

∫ t

t−ℓ

∥T (s)∥2ds
)
exp

{
C

∫ t

t−ℓ

∥v(s)∥22∥v(s)∥2+∥v(s)∥2ds
}
,

which entails that

∥ṽ(t)∥26≤C

(∫ t

t−ℓ

∥T (s)∥2ds
)
exp

{
C

∫ t

t−ℓ

∥v(s)∥22∥v(s)∥2+∥v(s)∥2ds
}

+C

(
1

ℓ

∫ ℓ

0

∥v(t+ζ−ℓ)∥2dζ

)
exp

{
C

∫ t

t−ℓ

∥v(s)∥22∥v(s)∥2+∥v(s)∥2ds
}
. (3.21)

Integrating inequality (3.5) from t−ℓ to t and combining inequality (3.7), we obtain

∥v(t)∥22+
∫ t

t−ℓ

∥v(ζ)∥2dζ

≤h2Re1

∫ t

t−ℓ

∥T (ζ)∥22dζ+∥v(t−ℓ)∥22

≤e2λℓ

ℓ
e(τ−t)

∫ ℓ

0

∥v(τ+ζ)∥22dζ+
h2Re1K2e

ℓ
K2

+λℓ

ℓ(1−K2λ)
eλ(τ−t)

∫ ℓ

0

∥T (ζ+τ)∥22dζ

+h2Re1K2

∫ t

t−ℓ

∥T (ζ)∥2dζ+ C

λ
K2(1+K2)sup

r∈R

∫ r

r−1

∥Q(ζ)∥22dζ. (3.22)

Taking the inner product of the first equation of problem (2.2) with −∆v̄ in L2(M) and
using Hölder’s inequality, we deduce

1

2

d

dt
∥∇v̄(t)∥2L2(M)+

1

Re1
∥∆v̄(t)∥2L2(M)

≤C∥v̄∥L4(M)∥∇v̄∥L4(M)∥∆v̄∥L2(M)+C∥|∇ṽ||ṽ|∥2∥∆v̄∥L2(M)

+C∥v̄∥L2(M)∥∆v̄∥L2(M)+C∥∇T∥2∥∆v̄∥L2(M).

Therefore, we obtain

d

dt
∥∇v̄(t)∥2L2(M)+

1

Re1
∥∆v̄(t)∥2L2(M)

≤C∥v̄∥2L2(M)∥∇v̄∥4L2(M)+C∥∇T∥22+C∥∇v∥22+C∥|∇ṽ||ṽ|2∥22
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≤C∥v∥22∥v∥2∥∇v̄∥2L2(M)+C∥T∥2+C∥v∥2+C∥|∇ṽ||ṽ|2∥22.

For ζ ∈ (0,ℓ), in view of the Gronwall inequality, we obtain

∥∇v̄(t)∥2L2(M)

≤C

(∫ t

t+ζ−ℓ

∥T (s)∥2+∥v(s)∥2+∥|∇ṽ(s)||ṽ(s)|2∥22ds
)
exp

{
C

∫ t

t+ζ−ℓ

∥v(s)∥22∥v(s)∥2ds
}

+∥∇v̄(t+ζ−ℓ)∥2L2(M) exp

{
C

∫ t

t+ζ−ℓ

∥v(s)∥22∥v(s)∥2ds
}

≤C
(
∥v(t+ζ−ℓ)∥2

)
exp

{
C

∫ t

t−ℓ

∥v(s)∥22∥v(s)∥2ds
}

+C

(∫ t

t−ℓ

∥(v(s),T (s))∥2+∥|∇ṽ(s)||ṽ(s)|2∥22ds
)
exp

{
C

∫ t

t−ℓ

∥v(s)∥22∥v(s)∥2ds
}
,

which implies that

∥∇v̄(t)∥2L2(M)≤C

(
1

ℓ

∫ ℓ

0

∥v(t+ζ−ℓ)∥2dζ
)
exp

{
C

∫ t

t−ℓ

∥v(s)∥22∥v(s)∥2ds
}

+C

(∫ t

t−ℓ

∥(v(s),T (s))∥2+∥|∇ṽ(s)||ṽ(s)|2∥22ds
)
exp

{
C

∫ t

t−ℓ

∥v(s)∥22∥v(s)∥2ds
}

≤C

(∫ t

t−ℓ

∥(v(s),T (s))∥2+∥|∇ṽ(s)||ṽ(s)|2∥22ds
)
exp

{
C

∫ t

t−ℓ

∥v(s)∥22∥v(s)∥2ds
}
. (3.23)

Integrating inequality (3.20) from t−ℓ to t, we obtain

∥ṽ(t)∥66+
2

Re1

∫ t

t−ℓ

∥|∇ṽ(s)||ṽ(s)|2∥22ds+
2

Re2
∥|∂z ṽ||ṽ|2∥22+2∥|ṽ|3∥2

≤∥ṽ(t−ℓ)∥66+C

∫ t

t−ℓ

(∥v(s)∥22∥∇v(s)∥22+∥ṽ(s)∥2H1(Ω))∥ṽ(s)∥
6
6+∥T (s)∥26∥ṽ(s)∥46ds

≤∥ṽ(t−ℓ)∥66+C

∫ t

t−ℓ

(∥v(s)∥22∥v(s)∥2+∥v(s)∥2)∥ṽ(s)∥66+∥T (s)∥26∥ṽ(s)∥46ds. (3.24)

Therefore, we deduce from inequalities (3.2), (3.7), (3.12)-(3.13), (3.21)-(3.24) and the

inequality ∥v∥6≤Ch− 1
3 ∥v∥2+Ch

1
6 ∥∇v̄∥2+∥ṽ∥6 shown in [21] that there exists a posi-

tive constant ρ2 satisfying for any Bℓ∈Dℓ, there exists a time τ2= τ2(Bℓ,t)≤ τ1≤ t such
that for any weak solution of problem (2.1) with short trajectory χ(s,τ ;(vτ ,Tτ ))∈Bℓ,
we have

∥v(t)∥26+∥T (t)∥26+
∫ ℓ

0

∥(v,T )(t+ζ)∥2dζ≤ρ2 (3.25)

for any τ ≤ t−τ2.

Theorem 3.4. Assume that Q∈L2
loc(R;L2(Ω)) satisfies

sup
r∈R

∫ r

r−1

∥Q(s)∥22ds<+∞.

Then there exists a positive constant ρ3 satisfying for any Bℓ∈Dℓ, there exists a time
τ3= τ3(Bℓ,t)≤ t such that for any weak solution of problem (2.1) with short trajectory
χ(s,τ ;(vτ ,Tτ ))∈Bℓ, we have

∥(v(t),T (t))∥2+
∫ ℓ

0

(
∥(v(t+ζ),T (t+ζ))∥2H2(Ω)+∥(vt(t+ζ),Tt(t+ζ))∥22

)
dζ≤ρ3
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for any τ ≤ t−τ3.

Proof. Denoting u=vz. It is clear that u satisfies the following equation obtained
by differentiating the first equation of problem (2.1) with respect to z:

∂u
∂t +L1u+(v ·∇)u−(

∫ z

−h
∇·v(x,y,r,t)dr)∂u∂z +(u ·∇)v

−(∇·v)u+ 1
Rofu

⊥−∇T =0,

u|Γu
=0,u|z=−h=0,u · n⃗|Γl

=0, ∂u∂n⃗ × n⃗|Γl
=0.

(3.26)

Multiplying the first equation of problem (3.26) by u and integrating over Ω, we obtain

1

2

d

dt
∥u(t)∥22+∥u(t)∥2≤∥T∥2∥∇u∥2+C∥v∥6∥u∥

1
2
2 ∥u∥

3
2 .

We deduce from Young’s inequality that

d

dt
∥u(t)∥22+∥u(t)∥2≤C∥v∥46∥u∥22+C∥T∥22. (3.27)

For any ζ ∈ (0,ℓ), it follows from the Gronwall inequality that

∥u(t)∥22≤
(
∥u(t−ℓ+ζ)∥22+C

∫ t

t−ℓ+ζ

∥T (s)∥22ds
)
exp

{
C

∫ t

t−ℓ+ζ

∥v(s)∥46ds
}

≤
(
∥u(t−ℓ+ζ)∥22+CK2

∫ t

t−ℓ

∥T (s)∥2ds
)
exp

{
C

∫ t

t−ℓ

∥v(s)∥46ds
}
. (3.28)

Integrating inequality (3.28) over (t−ℓ+ζ,t) with respect to ζ over (0,ℓ), we have

∥u(t)∥22≤

(
1

ℓ

∫ ℓ

0

∥u(t−ℓ+ζ)∥22dζ+CK2

∫ t

t−ℓ

∥T (s)∥2ds

)
exp

{
C

∫ t

t−ℓ

∥v(s)∥46ds
}

≤
(
1

ℓ

∫ t

t−ℓ

∥v(s)∥2ds+CK2

∫ t

t−ℓ

∥T (s)∥2ds
)
exp

{
C

∫ t

t−ℓ

∥v(s)∥46ds
}

≤C

(∫ t

t−ℓ

∥(v(s),T (s))∥2ds
)
exp

{
C

∫ t

t−ℓ

∥v(s)∥46ds
}
. (3.29)

Moreover, integrating inequality (3.27) over (t−ℓ,t), we obtain

∥u(t)∥22+
∫ t

t−ℓ

∥u(s)∥2ds≤∥u(t−ℓ)∥22+C

∫ t

t−ℓ

(
∥v(s)∥46∥u(s)∥22+∥T (s)∥22

)
ds. (3.30)

Taking the inner product of the first equation of problem (2.1) with −∆v in L2(Ω), we
conclude

1

2

d

dt
∥∇v(t)∥22+

1

Re1
∥∆v(t)∥22+

1

Re2
∥∇vz(t)∥22

≤C∥vz∥
1
2
2 ∥∇vz∥

1
2
2 ∥∇v∥

1
2
2 ∥∆v∥

3
2
2 +C∥∇T∥2∥∆v∥2+C∥v∥6∥∇v∥3∥∆v∥2+C∥v∥2∥∆v∥2.

We infer from Young’s inequality that

d

dt
∥∇v(t)∥22+

1

Re1
∥∆v(t)∥22+

1

Re2
∥∇vz(t)∥22
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≤C(1+∥v∥46+∥vz∥22∥∇vz∥22)∥∇v∥22+C∥∇T∥22. (3.31)

For any ζ ∈ (0,ℓ), it follows from the Gronwall inequality that

∥∇v(t)∥22≤
(
∥∇v(t−ℓ+ζ)∥22

)
exp

{
C

∫ t

t−ℓ+ζ

(1+∥v(s)∥46+∥vz(s)∥22∥∇vz(s)∥22)ds
}

+C

(∫ t

t−ℓ+ζ

∥∇T (s)∥22ds
)
exp

{
C

∫ t

t−ℓ+ζ

(1+∥v(s)∥46+∥vz(s)∥22∥∇vz(s)∥22)ds
}

≤
(
∥∇v(t−ℓ+ζ)∥22

)
exp

{
C

∫ t

t−ℓ

(1+∥v(s)∥46+∥vz(s)∥22∥∇vz(s)∥22)ds
}

+C

(∫ t

t−ℓ

∥∇T (s)∥22ds
)
exp

{
C

∫ t

t−ℓ

(1+∥v(s)∥46+∥vz(s)∥22∥∇vz(s)∥22)ds
}
,

which entails that

∥∇v(t)∥22≤
(
1

ℓ

∫ ℓ

0

∥∇v(t−ℓ+ζ)∥22dζ
)
exp

{
C

∫ t

t−ℓ

(1+∥v(s)∥46+∥vz(s)∥22∥∇vz(s)∥22)ds
}

+C

(∫ t

t−ℓ

∥∇T (s)∥22ds
)
exp

{
C

∫ t

t−ℓ

(1+∥v(s)∥46+∥vz(s)∥22∥∇vz(s)∥22)ds
}

≤C

(∫ t

t−ℓ

∥(v(s),T (s))∥2ds
)
exp

{
C

∫ t

t−ℓ

(1+∥v(s)∥46+∥vz(s)∥22∥∇vz(s)∥22)ds
}
. (3.32)

Integrating inequality (3.31) over (t−ℓ,t), we obtain

∥∇v(t)∥22+
1

Re1

∫ t

t−ℓ

∥∆v(s)∥22ds+
1

Re2

∫ t

t−ℓ

∥∇vz(s)∥22ds

≤∥∇v(t−ℓ)∥22+C

∫ t

t−ℓ

(1+∥v(s)∥46+∥vz(s)∥22∥∇vz(s)∥22)∥∇v(s)∥22ds+C

∫ t

t−ℓ

∥∇T (s)∥22ds

≤∥∇v(t−ℓ)∥22+C

∫ t

t−ℓ

(1+∥v(s)∥46+∥vz(s)∥22∥∇vz(s)∥22)∥∇v(s)∥22ds+C

∫ t

t−ℓ

∥T (s)∥2ds.

(3.33)

Multiplying the third equation of problem (2.1) by L2T and integrating over Ω, we
conclude

1

2

d

dt
∥T (t)∥2+∥L2T (t)∥22

≤C∥v∥6∥∇T∥3∥L2T∥2+∥Q(t)∥2∥L2T∥2+C∥∇v∥
1
2
2 ∥∆v∥

1
2
2 ∥∂zT∥

1
2
2 ∥∇Tz∥

1
2
2 ∥L2T∥2,

which entails

d

dt
∥T (t)∥2+∥L2T (t)∥22≤C(∥v∥46+∥∇v∥22∥∆v∥22)∥T∥2+C∥Q(t)∥22. (3.34)

For any ζ ∈ (0,ℓ), we infer from the Gronwall inequality that

∥T (t)∥2≤C

(∫ t

t−ℓ+ζ

∥Q(s)∥22ds
)
exp

{
C

∫ t

t−ℓ+ζ

(∥v(s)∥46+∥∇v(s)∥22∥∆v(s)∥22)ds
}

+
(
∥T (t−ℓ+ζ)∥2

)
exp

{
C

∫ t

t−ℓ+ζ

(∥v(s)∥46+∥∇v(s)∥22∥∆v(s)∥22)ds
}

≤C

(∫ t

t−1

∥Q(s)∥22ds
)
exp

{
C

∫ t

t−ℓ

(∥v(s)∥46+∥∇v(s)∥22∥∆v(s)∥22)ds
}
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+
(
∥T (t−ℓ+ζ)∥2

)
exp

{
C

∫ t

t−ℓ

(∥v(s)∥46+∥∇v(s)∥22∥∆v(s)∥22)ds
}
,

which entails that

∥T (t)∥2≤C

(∫ t

t−1

∥Q(s)∥22ds
)
exp

{
C

∫ t

t−ℓ

(∥v(s)∥46+∥∇v(s)∥22∥∆v(s)∥22)ds
}

+

(
1

ℓ

∫ ℓ

0

∥T (t−ℓ+ζ)∥2dζ
)
exp

{
C

∫ t

t−ℓ

(∥v(s)∥46+∥∇v(s)∥22∥∆v(s)∥22)ds
}

≤C

(∫ t

t−1

∥Q(s)∥22ds
)
exp

{
C

∫ t

t−ℓ

(∥v(s)∥46+∥∇v(s)∥22∥∆v(s)∥22)ds
}

+

(
1

ℓ

∫ t

t−ℓ

∥T (ζ)∥2dζ
)
exp

{
C

∫ t

t−ℓ

(∥v(s)∥46+∥∇v(s)∥22∥∆v(s)∥22)ds
}
. (3.35)

Integrating inequality (3.34) over (t−ℓ,t), we conclude

∥T (t)∥2+
∫ t

t−ℓ

∥L2T (s)∥22ds

≤∥T (t−ℓ)∥2+C

∫ t

t−ℓ

(
(∥v(s)∥46+∥∇v(s)∥22∥∆v(s)∥22)∥T (s)∥2+∥Q(s)∥22

)
ds. (3.36)

Thanks to

∥Tt∥2≤∥Q(t)∥2+C∥v∥6∥∇T∥3+∥L2T∥2+C∥∇v∥
1
2
2 ∥∆v∥

1
2
2 ∥∂zT∥

1
2
2 ∥∇Tz∥

1
2
2 (3.37)

and

∥vt∥2≤C∥v∥6∥∇v∥3+C∥∇v∥
1
2
2 ∥∆v∥

1
2
2 ∥vz∥

1
2
2 ∥∇vz∥

1
2
2

+C∥v∥2+C∥∇T∥2+∥L1v∥2. (3.38)

We derive from inequalities (3.37)-(3.38) that

∥(vt,Tt)(t)∥22≤C∥Q(t)∥22+C(1+∥(v,T )(t)∥2)(1+∥v(t)∥46+∥(v,T )(t)∥2H2(Ω)). (3.39)

Therefore, we deduce from inequalities (3.25), (3.29)-(3.30), (3.32)-(3.33), (3.35)-(3.36)
and (3.39) that there exists a positive constant ρ3 satisfying for any Bℓ∈Dℓ, there exists
a time τ3= τ3(Bℓ,t)≤ τ2≤ t such that for any weak solution of problem (2.1) with short
trajectory χ(s,τ ;(vτ ,Tτ ))∈Bℓ, we have

∥(v(t),T (t))∥2+
∫ t

t−ℓ

(
∥(v(ζ),T (ζ))∥2H2(Ω)+∥(vt(ζ),Tt(ζ))∥22

)
dζ≤ρ3

for any τ ≤ t−τ3.

Corollary 3.4. Assume that Q∈L2
loc(R;L2(Ω)) satisfies

sup
r∈R

∫ r

r−1

∥Q(s)∥22ds<+∞.

Then there exists a positive constant ρ3 satisfying for any B∈D, there exists a time τ ′2=
τ ′2(B,t)≤ t such that for any weak solution of problem (2.1) with initial data (vτ ,Tτ )∈B,
we have

∥(v(t),T (t))∥2+
∫ ℓ

0

(
∥(v(t+ζ),T (t+ζ))∥2H2(Ω)+∥(vt(t+ζ),Tt(t+ζ))∥22

)
dζ≤ρ3
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for any τ ≤ t−τ ′2.

Let

B0=
{
(v,T )∈H :∥(v,T )∥2≤ρ3

}
,

then B0∈D, we infer from Corollary 3.4 that for any t∈R, there exists a time τ0=
τ0(B0,t)≥0 such that for any initial data (vτ ,Tτ )∈B0 and any τ ≤ t−τ0, we have

U(t,τ)B0⊂B0.

For any t∈R, define

B1(t)=
⋃

τ∈[t−τ0,t]

{U(t,τ)(vτ ,Tτ ) : (vτ ,Tτ )∈B0},

B2(t)=B1(t)
H

and

Bℓ
0(t)={χ∈Xℓ :e0(χ)∈B2(t)}.

From the proof of some a priori estimates in the Section 3 of [1] and Corollary 3.4, we
deduce for any τ ≤ t,

U(t,τ)B1(τ)⊂B1(t)

and there exists a positive constant ϱ(τ0) depending on τ0 and ρ3 such that B1(t)⊂
{(v,T )∈H :∥(v,T )∥≤ϱ(τ0)}∈D for any t∈R. Moreover, we have the following conclu-
sion.

Proposition 3.1. Assume that for any t∈R, B1(t)∈D defined above. Then

B2(t)=B1(t)
H
∈D

for any t∈R and

U(t,τ)B2(τ)⊂B2(t)

for any t≥ τ.

Proof. For any τ ∈R, from the definition of B2(τ), we infer that for any (vτ ,Tτ )∈
B2(τ), there exists a sequence {(vn,τ ,Tn,τ )}∞n=1⊂B1(τ) such that

(vn,τ ,Tn,τ )→ (vτ ,Tτ ) inH, asn→∞.

It follows from Theorem 3.1 that for any fixed τ ∈R, {(vn,τ ,Tn,τ )}∞n=1 is uniformly
bounded in V. Therefore, we deduce from the reflexivity of V and the compactness
of V ⊂H that there exist some (v1,T1)∈V and a subsequence {(vnj ,τ ,Tnj ,τ )}∞j=1 of
{(vn,τ ,Tn,τ )}∞n=1 such that

(vnj ,τ ,Tnj ,τ )⇀ (v1,T1) inV, as j→∞,

(vnj ,τ ,Tnj ,τ )→ (v1,T1) inH, as j→∞,
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which entails that

(v1,T1)=(vτ ,Tτ ).

From

∥(vτ ,Tτ )∥≤ liminf
j→+∞

∥(vnj ,τ ,Tnj ,τ )∥≤ϱ(τ0),

we conclude that B2(t)=B1(t)
H
∈D for any t∈R.

For any fixed τ ∈R and any fixed t>τ, we conclude from the definition of B2(τ),
that for any (vτ ,Tτ )∈B2(τ), there exists a sequence {(vn,τ ,Tn,τ )}∞n=1⊂B1(τ) such that

(vn,τ ,Tn,τ )→ (vτ ,Tτ ) inH, asn→∞.

Since (vn,τ ,Tn,τ ) (n≥1) and (vτ ,Tτ ) are bounded in V for any fixed τ ∈R, we conclude
from Theorem 3.1 that

U(t,τ)(vn,τ ,Tn,τ )→U(t,τ)(vτ ,Tτ ) inH, asn→∞.

From U(t,τ)(vn,τ ,Tn,τ )∈B1(t), we obtain U(t,τ)(vτ ,Tτ )∈B2(t). Therefore, we deduce
that

U(t,τ)B2(τ)⊂B2(t)

for any t≥ τ.

Let

Y =
{
χ∈Xℓ :χ∈L2(0,ℓ;V ),χt∈L1(0,ℓ;(H2(Ω)∩V2)

′)
}

equipped with the following norm

∥χ∥Y =


∫ ℓ

0

∥χ(r)∥2dr+

(∫ ℓ

0

∥χt(r)∥(H2(Ω)∩V2)′ dr

)2


1
2

.

Define B̂ℓ
1={Bℓ

1(t) : t∈R}, where

Bℓ
1(t)=

{
χ∈Xℓ :∥e0(χ)∥2+∥χ∥2Y ≤ρ3

}
.

From Proposition 3.1 and Theorem 3.4, we know that L(t,τ)Bℓ
0(τ)⊂Bℓ

0(t) for any t≥ τ
as well as L(t,τ)Bℓ

0(τ)⊂Bℓ
1(t) for any τ ≤ t−τ3.

Lemma 3.1. Assume that Q∈L2
loc(R;L2(Ω)) satisfies

sup
r∈R

∫ r

r−1

∥Q(s)∥22ds<+∞.

Then L(t,τ)Bℓ
0(τ)

L2(0,ℓ;H)
⊂Bℓ

0(t) for any t≥ τ.

Proof. Thanks to L(t,τ)Bℓ
0(τ)⊂Bℓ

0(t) for any t≥ τ, it is enough to prove that for
any t∈R,

Bℓ
0(t)

L2(0,ℓ;H)
⊂Bℓ

0(t).
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For any fixed τ ∈R and any χ0∈Bℓ
0(τ)

L2(0,ℓ;H)
, there exists a sequence of short trajec-

tories χn∈Bℓ
0(τ) such that χn→χ0 in L2(0,ℓ;H). Since e0(χn)∈B2(τ) for any n∈N,

there exists a subsequence {e0(χnj
)}∞j=1 of {e0(χn)}∞n=1 and (vτ ,Tτ )∈V such that

e0(χnj
)⇀ (vτ ,Tτ ) in V, which implies that e0(χnj

)→ (vτ ,Tτ ) inH. From the proof of the
existence of weak solutions for problem (2.1), we deduce that for any S>τ, there exists
a subsequence converging (∗-) weakly in spaces L∞(τ,S;H)∩L2(τ,S;V )∩H1(τ,S;(V ∩
H3(Ω))′)) to a certain function (v(t),T (t)) with (v(τ),T (τ))=(vτ ,Tτ ). Therefore, we ob-
tain χ0∈Xℓ from Corollary 3.2. It remains to show that e0(χ0)∈B2(τ). From the closed-
ness of B2(τ), we deduce that e0(χ0)=(vτ ,Tτ )∈B2(τ). Therefore, we obtain χ0∈Bℓ

0(τ).

Lemma 3.2. Assume that Q∈L2
loc(R;L2(Ω)) satisfies

sup
r∈R

∫ r

r−1

∥Q(s)∥22ds<+∞.

Then for any τ ∈R, the mapping L(t,τ) :Xℓ→Xℓ is locally Lipschitz continuous on
Bℓ

0(τ) for all t≥ τ.

Proof. Assume that τ ∈R and χ1, χ2∈Bℓ
0(τ). For any t>τ+ℓ, let (v1(t),T1(t))=

L(t,τ)χ1, (v2(t),T2(t))=L(t,τ)χ2 and let v=v1−v2, T =T1−T2, p=p1−p2. From the
proof of Theorem 2 in [1], we conclude

d

dt
∥(v(t),T (t))∥22+∥(v(t),T (t))∥2≤L(t)∥(v(t),T (t))∥22, (3.40)

where

L(t)=C(∥(v2,T2)∥4+∥∂zv2∥2∥∇∂zv2∥22+∥∂zT2∥2∥∇∂zT2∥22).

Let s∈ (0,ℓ) and integrating inequality (3.40) from τ+s to t+s, we obtain

∥(v(t+s),T (t+s))∥22≤
∫ t+s

τ+s

L(r)∥(v(r),T (r))∥22dr+∥(v(τ+s),T (τ+s))∥22. (3.41)

From the classical Gronwall inequality, we deduce

∥(v(t+s),T (t+s))∥22≤∥(v(τ+s),T (τ+s))∥22exp(
∫ t+s

τ+s

L(r)dr)

≤Mℓ(t,τ)∥(v(τ+s),T (τ+s))∥22, (3.42)

where

Mℓ(t,τ)=Mℓ(|t+ℓ−τ |)=exp(

∫ t+ℓ

τ

L(r)dr) (3.43)

is a finite number depending on ϱ(τ0) and |t+ℓ−τ | for any fixed t>τ+ℓ from the proof
of a priori estimates in the Section 3 of [1], since e0(χ

1), e0(χ
2)∈B2(τ) are uniformly

bounded in V for any χ1, χ2∈Bℓ
0(τ).

Integrating inequality (3.42) with respect to s for 0 to ℓ, we obtain∫ ℓ

0

∥(v(t+s),T (t+s))∥22ds≤Mℓ(t,τ)

∫ ℓ

0

∥(v(τ+s),T (τ+s))∥22ds, (3.44)
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which implies that for any τ ∈R, the mapping L(t,τ) :Xℓ→Xℓ is locally Lipschitz con-
tinuous on Bℓ

0(τ) for all t≥ τ.

We can immediately obtain the existence of a pullback attractor in Xℓ stated as
follows.

Theorem 3.5. Assume that Q∈L2
loc(R;L2(Ω)) satisfies

sup
r∈R

∫ r

r−1

∥Q(s)∥22ds<+∞.

Then the process {L(t,τ)}t≥τ generated by problem (2.1) possesses a pullback attractor

Âℓ={Aℓ(t) : t∈R} in Xℓ and e1(Aℓ(t)) is included in B2(t+ℓ) for any t∈R, where

e1(Aℓ(t))={e1(χ) :χ∈Aℓ(t)}

for any t∈R.

4. The existence of pullback exponential attractors
In this section, we construct the pullback exponential attractors of problem (2.1)

by combining the method of ℓ-trajectories with the smoothing property of the process
{L(t,τ)}t≥τ .

4.1. The existence of pullback exponential attractors. In this subsection,
we prove the smoothness property of the process {L(t,τ)}t≥τ to construct the pullback
exponential attractors of problem (2.1).

Theorem 4.1. Assume that Q∈L2
loc(R;L2(Ω)) satisfies

sup
r∈R

∫ r

r−1

∥Q(s)∥22ds<+∞.

For any fixed τ ∈R, let χ1 and χ2 be two short trajectories belonging to Bℓ
0(τ). Then

there exists a positive constant κ independent of t such that for arbitrary t≥ τ+ℓ, we
have

∥L(t,τ)χ1−L(t,τ)χ2∥2Y ≤κMℓ(t,τ)

∫ ℓ

0

∥χ1(τ+r)−χ2(τ+r)∥22dr,

where Mℓ(t,τ) is given in (3.43).

Proof. Suppose that τ ∈R and any χ1, χ2∈Bℓ
0(τ), for any t>τ+ℓ, let

(v1(t),T1(t))=L(t,τ)χ1, (v2(t),T2(t))=L(t,τ)χ2 and let v=v1−v2, T =T1−T2. From
inequality (3.40), we conclude

d

dt
∥(v(t),T (t))∥22+∥(v(t),T (t))∥2≤L(t)∥(v(t),T (t))∥22. (4.1)

For any t≥ τ+ℓ, integrating inequality (4.1) from t−s to t+ℓ with s∈ [0, ℓ2 ], we conclude

∥(v(t+ℓ),T (t+ℓ))∥22+
∫ t+ℓ

t−s

∥(v(ζ),T (ζ))∥2dζ

≤
∫ t+ℓ

t−s

L(ζ)∥(v(ζ),T (ζ))∥22dζ+∥(v(t−s),T (t−s))∥22.
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It follows from the classical Gronwall inequality that

∥(v(t+ℓ),T (t+ℓ))∥22+
∫ t+ℓ

t−s

∥(v(ζ),T (ζ))∥2dζ≤ exp(

∫ t+ℓ

t−s

L(ζ)dζ)∥(v(t−s),T (t−s))∥22. (4.2)

For any t≥ τ+ℓ and any s∈ [0, ℓ2 ], integrating inequality (4.1) from τ+s to t−s, we
obtain

∥(v(t−s),T (t−s))∥22≤
∫ t−s

τ+s

L(r)∥(v(r),T (r))∥22dr+∥(v(τ+s),T (τ+s))∥22.

We deduce from the classical Gronwall inequality that

∥(v(t−s),T (t−s))∥22≤∥(v(τ+s),T (τ+s))∥22exp(
∫ t−s

τ+s

L(r)dr)

≤∥(v(τ+s),T (τ+s))∥22exp(
∫ t−s

τ

L(r)dr). (4.3)

Combining inequality (4.2) with inequality (4.3), we obtain∫ ℓ

0

∥(v(t+ζ),T (t+ζ))∥2dζ≤exp(

∫ t+ℓ

τ

L(ζ)dζ)∥(v(τ+s),T (τ+s))∥22

=Mℓ(t,τ)∥(v(τ+s),T (τ+s))∥22.

Integrating the above inequality over (0, ℓ2 ) with respect to s, we obtain∫ ℓ

0

∥(v(t+ζ),T (t+ζ))∥2dζ≤ 2Mℓ(t,τ)

ℓ

∫ ℓ
2

0

∥(v(τ+s),T (τ+s))∥22ds. (4.4)

Since Mℓ(t,τ) is bounded for any fixed t∈ [τ+ℓ,S], we obtain∫ ℓ

0

∥(v(t+ζ),T (t+ζ))∥2dζ≤ 2Mℓ(t,τ)

ℓ

∫ ℓ

0

∥(v(τ+s),T (τ+s))∥22ds. (4.5)

Thanks to

∥vt∥((H2(Ω))2∩V1)′ ≤∥v∥+C∥v1∥3∥v∥6+C∥∇v1∥2∥v∥3
+C∥v2∥3∥v∥6+C∥∇v∥2∥v2∥3+C∥T∥2+C∥v∥2 (4.6)

and

∥Tt∥(H2(Ω)∩V2)′ ≤∥T∥+C∥v1∥3∥T∥6
+C∥∇v1∥2∥T∥3+C∥T2∥3∥v∥6+C∥∇v∥2∥T2∥3, (4.7)

we infer from Theorem 3.3, (4.5)-(4.7) that(∫ ℓ

0

∥(vt(t+r),Tt(t+r))∥((H2(Ω))3∩V )′ dr

)2

≤κ2Mℓ(t,τ)

∫ ℓ

0

∥(v(τ+s),T (τ+s))∥22ds.

(4.8)
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Theorem 4.2. Assume that Q∈L2
loc(R;L2(Ω)) satisfies

sup
r∈R

∫ r

r−1

∥Q(s)∥22ds<+∞.

Then for any θ∈ (0, 12 ), there exists a pullback exponential attractor Mℓ=Mθ
ℓ ={Mℓ(t) :

t∈R} for the process {L(t,τ)}t≥τ generated by problem (2.1), the sections Mℓ(t) are
compact subsets of X=L2(0,ℓ;V ) and their fractal dimension in L2(0,ℓ;V ) can be esti-
mated by

dimF (Mℓ(t))≤ log 1
2θ
(NX

θ (BY (0;1))),

where BX(x0;R) denotes a R-ball in X centered at x0 and NX
θ (BY (0;1)) denotes the

smallest number of balls in X of radius θ necessary to cover the unit ball in Y.

Proof. From Theorem 3.4, we know that there exists a Dℓ-pullback absorbing set
B̂ℓ

0={Bℓ
0(t) : t∈R} in X satisfying L(t,τ)Bℓ

0(τ)⊂Bℓ
0(t) for any t≥ τ and Aℓ(τ)⊂Bℓ

0(τ)
for any τ ∈R. Therefore, we infer from Theorem 4.1 that there exists some time t1>0
such that the mapping L(kt1,(k−1)t1) :B

ℓ
0((k−1)t1)→Bℓ

0(kt1) enjoys the smoothness
property

∥L(kt1,(k−1)t1)χ
1−L(kt1,(k−1)t1)χ

2∥Y ≤K∥χ1−χ2∥X (4.9)

for any χ1, χ2∈Bℓ
0((k−1)t1) and

L(kt1,(k−1)t1)B
ℓ
1((k−1)t1)⊂Bℓ

1(kt1) (4.10)

where K2=κMℓ(t1)=κexp(
∫ kt1
(k−1)t1

L(r)dr) is a fixed positive constant.

For any natural number k∈Z, Bℓ
0(kt1) is uniformly bounded in X, which implies

that there exists a positive constant R and χk ∈Bℓ
0(kt1) such that Bℓ

0(kt1)⊂BX(χk;R)
for all k∈Z, denote by W 0(k)={χk}. Moreover, for any θ∈ (0, 12 ), we can choose some
elements η1,η2, ·· · ,ηN ∈Y such that

BY (0;1)⊂
N⋃
j=1

BX(ηj ;
θ

K
),

where N =NX
θ
K

(BY (0;1)).

We infer from inequality (4.9) that for any χ∈BX(χk−1;R),

∥L(kt1,(k−1)t1)χ−L(kt1,(k−1)t1)χk−1∥Y ≤K∥χ−χk−1∥X ≤KR,

i.e.,

L(kt1,(k−1)t1)BX(χk−1;R)⊂BY (L(kt1,(k−1)t1)χk−1;KR),

which implies that for any χ∈BY (L(kt1,(k−1)t1)χk−1;KR), we have

χ−L(kt1,(k−1)t1)χk−1

KR
∈BY (0;1)⊂

N⋃
j=1

BX(ηj ;
θ

K
),
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and

BY (L(kt1,(k−1)t1)χk−1;KR)⊂
N⋃
j=1

BX(L(kt1,(k−1)t1)χk−1+KRηj ;Rθ),

which yields that there exist z1, z2, ·· · , zN ∈L(kt1,(k−1)t1)B
ℓ
0((k−1)t1) and y1, y2,

·· · , yN ∈Bℓ
0((k−1)t1) such that

L(kt1,(k−1)t1)B
ℓ
0((k−1)t1)=L(kt1,(k−1)t1)

(
BX(χk−1;R)∩Bℓ

0((k−1)t1)
)

⊂
N⋃
j=1

BX(zj ;2θR)

and

L(kt1,(k−1)t1)yj =zj

for any j=1,2, ·· · ,N. Denoting the new set of centers by W 1(k), it follows

L(kt1,(k−1)t1)B
ℓ
0((k−1)t1)⊂

⋃
χ∈W 1(k)

BX(χ;2θR)

with W 1(k)∈L(kt1,(k−1)t1)B
ℓ
0((k−1)t1) and ♯W 1(k)≤N.

In what follows, we assume that the sets Wm(k)⊂L(kt1,(k−m)t1)B
ℓ
0((k−m)t1)⊂

Bℓ
0(kt1) are already constructed for all m≤n, which satisfies

L(kt1,(k−m)t1)B
ℓ
0((k−m)t1)⊂

⋃
χ∈Wm(k)

BX(χ;(2θ)mR)

and

♯Wm(k)≤Nm.

In order to construct a covering of

L(kt1,(k−n−1)t1)B
ℓ
0((k−n−1)t1)

=L(kt1,(k−1)t1)L((k−1)t1,(k−n−1)t1)B
ℓ
0((k−n−1)t1)

⊂
⋃

χ∈Wn(k−1)

L(kt1,(k−1)t1)BX(χ;(2θ)nR)

⊂
⋃

χ∈Wn(k−1)

BY (L(kt1,(k−1)t1)χ;(2θ)
nKR),

let χ∈Wn(k−1), we proceed as before and use the covering of the unit ball BY (0;1)
by θ

K -balls in X to conclude

BY (L(kt1,(k−1)t1)χ;(2θ)
nKR)⊂

N⋃
j=1

BX(L(kt1,(k−1)t1)χ+(2θ)nKRηj ;(2θ)
nRθ),

which entails that

BY (L(kt1,(k−1)t1)χ;(2θ)
nKR)⊂

N⋃
j=1

BX(L(kt1,(k−1)t1)y
χ
j ;(2θ)

n+1R)
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for some yχ1 , ·· · , yχN ∈L((k−1)t1,(k−n−1)t1)B
ℓ
0((k−n−1)t1). Constructing in the

same way such a covering by balls with radius (2θ)n+1R inX for every χ∈Wn(k−1), we
obtain a covering of the set L(kt1,(k−n−1)t1)B

ℓ
0((k−n−1)t1) and denote the new set

of centres by Wn+1(k), which yields ♯Wn+1(k)≤N♯Wn(k−1)≤Nn+1 and Wn+1(k)⊂
L(kt1,(k−n−1)t1)B

ℓ
0((k−n−1)t1) as well as

L(kt1,(k−n−1)t1)B
ℓ
0((k−n−1)t1)⊂

⋃
χ∈Wn+1(k)

BX(χ;(2θ)n+1R).

In order to obtain the existence of the pullback exponential attractor, for any k∈Z and
any n∈N, we define

E0(k)=W 0(k)={χk},
E1(k)=L(kt1,(k−1)t1)E

0(k−1)∪W 1(k),

...

En(k)=L(kt1,(k−1)t1)E
n−1(k−1)∪Wn(k)=

n⋃
j=0

L(kt1,(k−j)t1)W
n−j(k−j).

From the fact that L(t,τ)Bℓ
0(τ)⊂Bℓ

0(t) for any t≥ τ, we conclude for any k∈Z,

L(kt1,(k−n)t1)B
ℓ
0((k−n)t1)⊂L(kt1,(k−m)t1)B

ℓ
0((k−m)t1)

for any n,m∈N with n≥m. Moreover, for any k∈Z, the family of sets En(k)(n∈N),
satisfies the following properties

(i) L(kt1,(k−1)t1)E
n(k−1)⊂En+1(k), E0(k)=W 0(k)⊂Bℓ

0(kt1), En(k)⊂
L(kt1,(k−n)t1)B

ℓ
0((k−n)t1)⊂Bℓ

0(kt1),

(ii) ♯En(k)≤
∑n

i=0N
i≤ (n+1)Nn,

(iii) L(kt1,(k−n)t1)B
ℓ
0((k−n)t1)⊂

⋃
χ∈Wn(k)BX(χ;(2θ)nR)⊂⋃

χ∈En(k)BX(χ;(2θ)nR).

For any k∈Z, define

M̃ℓ(k)=

∞⋃
n=0

En(k).

In what follows, we will prove that for any k∈Z, the set M̃ℓ(k) is pre-compact, finite-
dimensional and positively semi-invariant with respect to the process {L(mt1,nt1) :m≥
n}.

First of all, for any k∈Z and any m∈N, it follows from the property (i) that

L((m+k)t1,kt1)M̃ℓ(k)=

∞⋃
n=0

L((m+k)t1,kt1)E
n(k)

⊂
∞⋃

n=0

En+m(m+k)=

∞⋃
n=m

En(m+k)

⊂
∞⋃

n=0

En(m+k)=M̃ℓ(m+k).
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Furthermore, for any k∈Z, since En(k)⊂L(kt1,(k−n)t1)B
ℓ
0((k−n)t1)⊂L(kt1,(k−

m)t1)B
ℓ
0((k−m)t1) for any n≥m, we deduce

M̃ℓ(k)=

∞⋃
n=0

En(k)⊂
m⋃

n=0

En(k)∪
∞⋃

n=m+1

En(k)

⊂
m⋃

n=0

En(k)∪L(kt1,(k−m)t1)B
ℓ
0((k−m)t1).

We infer from properties (ii) and (iii) that for any k∈Z,

♯(

m⋃
n=0

En(k))=

m∑
n=0

♯En(k)≤ (m+1)♯Em(k)≤ (m+1)2Nm

and

L(kt1,(k−m)t1)B
ℓ
0((k−m)t1)⊂

⋃
χ∈Wm(k)

BX(χ;(2θ)mR).

For any ϵ>0, there exists some positive integer m sufficiently large such that

(2θ)mR≤ ϵ< (2θ)m−1R.

Therefore, for any k∈Z, we can estimate the number of ϵ-balls needed to cover M̃ℓ(k)
as follows

NX
ϵ (M̃ℓ(k))≤ ♯(

m⋃
n=0

En(k))+♯Wm(k)≤ (m+1)2Nm+Nm≤2(m+1)2Nm,

which implies that for any k∈Z, there exists a finite number of ϵ-net to cover M̃ℓ(k).
Therefore, M̃ℓ(k) is a pre-compact subset of Bℓ

0(k) in X for any k∈Z.
For any fixed k∈Z, we conclude the fractal dimension of the set M̃ℓ(k),

dimF (M̃ℓ(k))= limsup
ϵ→0+

ln(NX
ϵ (M̃ℓ(k)))

−lnϵ
≤ log 1

2θ
(N)= log 1

2θ
(NX

θ (BY (0;1))).

In what follows, we will prove that for any k∈Z, the set M̃ℓ(k) exponentially attracts
all bounded subsets of X. For any bounded subset Bℓ of Xℓ, we infer from Theorem 3.4
that for any k∈Z, there exists some t2= t2(B

ℓ)>0 such that L(kt1,kt1−τ)Bℓ⊂Bℓ
0(kt1)

for any kt1−τ ≥ t2, which implies that there exists some natural number n0∈N with
n0t1≥ t2 such that L(kt1,(k−n)t1)B

ℓ⊂Bℓ
0(kt1) for any n≥n0. Therefore, if n≥n0+1,

we obtain

distX(L(kt1,(k−n)t1)B
ℓ,M̃ℓ(k))

≤distX(L(kt1,(k−n+n0)t1)L((k−n+n0)t1,(k−n)t1)B
ℓ,

∞⋃
n=0

En(k))

≤distX(L(kt1,(k−n+n0)t1)B
ℓ
0((k−n+n0)t1),

∞⋃
n=0

En(k))

≤distX(L(kt1,(k−n+n0)t1)B
ℓ
0((k−n+n0)t1),E

n−n0(k))
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≤(2θ)n−n0R

=(2θ)−n0Re−ln( 1
2θ )n. (4.11)

To obtain the existence of a pullback exponential attractor for the continuous time
process {L(t,τ)}t≥τ , we define

Ẽℓ(t) :=L(t,kt1)M̃ℓ(k), for t∈ [kt1,(k+1)t1).

From Lemma 3.1, we know that B̂ℓ
0 is a family of closed subsets of X. Let Eℓ(t) be the

closure of Ẽℓ(t) in X for any t∈R.
Due to the Lipschitz-continuity of the process, the sets Ẽℓ(t) are compact in X.

Moreover, we deduce from Lemma 2.3 that the same (uniform) bound on the fractal
dimension of the sections Eℓ(t),

dimF (Eℓ(t))=dimF (Ẽℓ(t))=dimF (L(t,kt1)M̃ℓ(k))

≤dimF (M̃ℓ(k))≤ log 1
2θ
(NX

θ (BY (0;1))), for t∈ [kt1,(k+1)t1).

In the following, we will prove that the sets {Eℓ(t) : t∈R} are positively semi-invariant.

Let t,s∈R and t≥s, then s=kt1+s′1 and t= lt1+ t′1 for some k,l∈Z, k≤ l and
s′1,t

′
1∈ [0,t1). If l≥k+1, we obtain

L(t,s)Ẽℓ(s)=L(lt1+ t′1,kt1+s′1)Ẽℓ(kt1+s′1)=L(lt1+ t′1,kt1+s′1)L(kt1+s′1,kt1)M̃ℓ(k)

=L(lt1+ t′1,lt1)L(lt1,kt1)M̃ℓ(k)⊂L(lt1+ t′1,lt1)M̃ℓ(l)= Ẽℓ(lt1+ t′1)= Ẽℓ(t),

where we used the semi-invariance of the family {M̃ℓ(k) :k∈Z} under the action of
the process {L(mt1,nt1) :m≥n}. On the other hand, if l=k, then s=kt1+s′1 and
t=kt1+ t′1 for some s′1, t

′
1∈ [0,t1) with t′1≥s′1 and

L(t,s)Ẽℓ(s)=L(kt1+ t′1,kt1+s′1)Ẽℓ(kt1+s′1)

=L(kt1+ t′1,kt1+s′1)L(kt1+s′1,kt1)M̃ℓ(k)

=L(kt1+ t′1,kt1)M̃ℓ(k)= Ẽℓ(lt1+ t′1)= Ẽℓ(t).

By the continuity of the process, we obtain the semi-invariance of the family {Eℓ(t) : t∈
R}.

Finally, the set Eℓ(t) exponentially pullback attracts all bounded subsets of X at
time t∈R. This follows immediately from the exponential pullback attracting property
of the sets {M̃ℓ(k) :k∈Z} and the Lipschitz-continuity property of the process {L(t,τ) :
t≥ τ}. Therefore, the family Eℓ={Eℓ(t) : t∈R} is a pullback exponential attractor for
the process {L(t,τ)}t≥τ in X.

4.2. The existence of a pullback exponential attractor in H. In this
subsection, we prove the existence of a pullback exponential attractor in H of problem
(2.1).

Theorem 4.3. Assume that Q∈L2
loc(R;L2(Ω)) satisfies

sup
r∈R

∫ r

r−1

∥Q(s)∥22ds<+∞.

Then for any fixed τ ∈R, the mapping e1 :B
ℓ
0(τ)→B2(τ+ℓ)=e1(B

ℓ
0(τ)) is Lipschitz

continuous. That is, for any two short trajectories χ1, χ2∈Bℓ
0(τ), there exists a positive
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constant η dependent on ℓ such that

∥e1(χ1)−e1(χ
2)∥22≤η

∫ ℓ

0

∥χ1(r)−χ2(r)∥22dr.

Proof. Assume that τ ∈R and χ1, χ2∈Bℓ
0(τ). For any t>τ+ℓ, let (v1(t),T1(t))=

L(t,τ)χ1, (v2(t),T2(t))=L(t,τ)χ2 and let v=v1−v2, T =T1−T2. From inequality
(3.40), we conclude

d

dt
∥(v(t),T (t))∥22+∥(v(t),T (t))∥2≤L(t)∥(v(t),T (t))∥22.

For any τ ∈R and any ζ ∈ (0,ℓ), we infer from the classical Gronwall inequality that

∥(v(τ+ℓ),T (τ+ℓ))∥22≤∥(v(τ+ζ),T (τ+ζ))∥22exp(
∫ τ+ℓ

τ+ζ

L(r)dr)

≤∥(v(τ+ζ),T (τ+ζ))∥22exp(
∫ τ+ℓ

τ

L(r)dr). (4.12)

Integrating inequality (4.12) over (0,ℓ), we obtain

∥(v(τ+ℓ),T (τ+ℓ))∥22≤
1

ℓ
exp(

∫ τ+ℓ

τ

L(r)dr)
∫ ℓ

0

∥(v(τ+ζ),T (τ+ζ))∥22dζ.

Thanks to (3.43), we know that

Mℓ(τ,τ)=exp(

∫ τ+ℓ

τ

L(r)dr)<+∞,

which implies that the mapping e1 :Aℓ→A is Lipschitz continuous.

Theorem 4.4. Assume that Q∈L2
loc(R;L2(Ω)) satisfies

sup
r∈R

∫ r

r−1

∥Q(s)∥22ds<+∞.

Then for any θ∈ (0, 12 ), there exists a pullback exponential attractor E=Eθ={E(t) : t∈
R}={e1(Eℓ(t−ℓ)) : t∈R} for the process {U(t,τ)}t≥τ generated by problem (2.1).

Proof. From Lemma 2.3, Theorem 4.2 and Theorem 4.3, we know that for any
t∈R, E(t)=e1(Eℓ(t−ℓ)) is compact and its fractal dimension is uniformly finite. As a
result of L(t−ℓ,s−ℓ)Eℓ(s−ℓ)⊂Eℓ(t−ℓ) for any t≥s, we have

U(t,s)E(s)=U(t,s)e1(Eℓ(s−ℓ))=e1(L(t−ℓ,s−ℓ)Eℓ(s−ℓ))⊂e1(Eℓ(t−ℓ))=E(t)

for any t≥s. From the definition of B2(t) and Bℓ
0(t), we deduce that for any t∈R and

any bounded subset B of H, there exists some time t̄= t̄(B) such that

U(t,t−τ)B⊂B2(t)=e0(B
ℓ
0(t))

for any τ ≥ t̄, which implies that there exists some natural number n0 with n0t1≥ t̄ such
that L(t,t−nt1)B

ℓ⊂Bℓ
0(t) for any n≥n0. Therefore, for any s≥ (n0+1)t1, there exists
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some k0∈N and s1∈ [0,t1) such that s=k0t1+s1, we conclude from Theorem 4.3 and
inequality (4.11) that

distX(U(t,t−s)B,E(t))=distX(U(t,t−s+ t̄)U(t−s+ t̄,t−s)B,E(t))
≤distX(U(t,t−s+ t̄)B2(t−s+ t̄),E(t))
=distX(U(t,t−s+ t̄)e1(B

ℓ
0(t−s+ t̄−ℓ)),e1(Eℓ(t−ℓ)))

=distX(e1(L(t−ℓ,t−s+ t̄−ℓ)Bℓ
0(t−s+ t̄−ℓ)),e1(Eℓ(t−ℓ)))

≤ηdistX(L(t−ℓ,t−s+ t̄−ℓ)Bℓ
0(t−s+ t̄−ℓ),Eℓ(t−ℓ)),

which implies that the family E={E(t) : t∈R} exponentially attracts all bounded sub-
sets of H uniformly. Therefore, the family E={E(t) : t∈R} is a pullback exponential
attractor for the process {U(t,τ)}t≥τ in H.

Corollary 4.1. Assume that Q∈L2
loc(R;L2(Ω)) satisfies

sup
r∈R

∫ r

r−1

∥Q(s)∥22ds<+∞.

Then the process {U(t,τ)}t≥τ generated by problem (2.1) possesses a pullback attractor

Â={A(t) : t∈R}={e1(Aℓ(t−ℓ)) : t∈R}, where Aℓ(t−ℓ) is the section of pullback at-
tractor Âℓ={Aℓ(t) : t∈R} in Xℓ for the process {L(t,τ)}t≥τ generated by problem (2.1)
obtained in Theorem 3.5.

Remark 4.1. Assume that Q∈L2
loc(R;L2(Ω)) satisfies

sup
r∈R

∫ r

r−1

∥Q(s)∥22ds<+∞.

Then each member E(t) of the pullback exponential attractor E={E(t) : t∈R} for the
process {U(t,τ)}t≥τ generated by problem (2.1) in H contains the section A(t) of the
pullback attractor established in Corollary 4.1.

Remark 4.2. Assume that Q∈L2
loc(R;L2(Ω)) satisfies

sup
r∈R

∫ r

r−1

∥Q(s)∥22ds<+∞.

If the Hölder continuity in time of the process {U(t,τ)}t≥τ generated by problem (2.1) in
H can be obtained, the exponential attractor M={M(t) : t∈R} for the time continuous
process {U(t,τ)}t≥τ generated by problem (2.1) can be constructed in the usual way:

Mℓ(t)=
⋃

s∈[0,t1]

L(t,s)Eℓ(s)

and

M(t)=e1(Mℓ(t−ℓ)).
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