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GLOBAL SMALL SOLUTIONS TO HEAT CONDUCTIVE
COMPRESSIBLE NEMATIC LIQUID CRYSTAL SYSTEM:
SMALLNESS ON A SCALING INVARIANT QUANTITY*

JINKAI LIT AND QIANG TAOf

Abstract. In this paper, we consider the Cauchy problem to the three dimensional heat conducting
compressible nematic liquid crystal system in the presence of vacuum and with vacuum far fields.
Global well-posedness of strong solutions is established under the condition that the scaling invariant
quantity (|[polloo +1)[llpoll3 + (Ilpolleo + 1% (Ilv/Pouoll3 +1Vdol13)] [IIVuoll3 + (lpollee + 1) (lv/Po Eoll3 +
[V2do||2)] is sufficiently small with the smallness depending only on the parameters appearing in the
system.
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1. Introduction

Liquid crystals are intermediate phases between solids and fluids. The continuum
theory of liquid crystals was established by Ericksen [5] and Leslie [25] during the period
of 1958 through 1968. The present paper concerns a simplified version of the general
Ericksen-Leslie system, which roughly speaking is a coupled system of the compressible
Navier-Stokes equations and the harmonic heat flow (see [30,32]). The equations of the
heat conducting compressible nematic liquid system read as:

pe+div(pu) =0,

p(us+u-Vu)+VP=pAu+ (u+\)Vdivu — Ad- Vd,
cop(0; +u-VO) + Pdivu— kA0 = Q(Vu) + |Ad+|Vd|*d|?,
di+u-Vd=Ad+|Vd|*d,

- W N -

— = =

(L.1)
(1.2)
(1.3)
(1.4)

where p € R, is the density of the fluid, u € R? is the velocity field and d € S? represents
macroscopic average of the nematic liquid crystal orientation field, with S? denoting
the unit spherical surface in R3. Here, P = Rpf is the pressure with R being a positive
constant, A and p are constant viscosity coefficients satisfying the physical conditions
©>0 and 2u+3X>0, heat capacity ¢, = % with v>1 being the adiabatic constant,
k>0 is the heat conductive constant coefficient, and

Q(Vu) = g\vw (V) 2+ A(diva)?.

The additional assumption that 2u > A will also be used in this paper.
Mathematical analysis of the nematic liquid crystals have attracted a lot of attention
for several decades. For the incompressible case, Lin [30] first introduced and studied a
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simplified Ericksen-Leslie system modeling the incompressible liquid crystal flows. From
then on, the solvability and stability of the incompressible liquid crystal flows have been
substantially developed. The global existence and partial regularity of weak solutions to
the Ginzburg-Landau type approximation system were obtained by Lin and Liu [32,33],
while the global existence of weak solutions to the original system was proved by Lin
et al. [31], Hong [12], and Hong and Xin [13] for two-dimensional case, and by Lin
and Wang [35] for three-dimensional case under some geometric assumptions on the
initial director field dy. Uniqueness of weak solutions in two dimensions was proved
by Lin and Wang [34], Li et al. [27], and Wang et al. [40], while the nonuniqueness
of weak solutions and finite-time blow up of classic solutions in three dimensions was,
respectively, addressed by Gong et al. [10] and Huang et al. [16]. Feireisl et al. [7, 8]
considered a non-isothermal Ginzburg-Landau model of nematic liquid crystals and
investigated the global existence of weak solutions, while the global existence of weak
solutions to the corresponding non-isothermal Ericksen-Leslie system in two dimensions
was established by Li and Xin [28]. One can refer to De Anna and Liu [2] for the
derivation of the general non-isothermal Ericksen-Leslie system. Huang and Wang [17]
established a blow-up criterion for the short-time classical solutions to incompressible
liquid crystal flows in dimensions two and three. Hong et al. [14] established the local
well-posedness and blow-up criteria of strong solutions to the liquid crystal system with
general Oseen-Frank free energy density.

Concerning the compressible case, the model of the liquid crystals becomes more
complicated since the density variation affects the mechanical behaviour of the fluid.
Global well-posedness of the isentropic compressible nematic liquid crystals in one di-
mension was proved by Ding et al. [3,4], while the global existence of weak solutions in
multi-dimensions was proved by Jiang et al. [22,23] under a smallness condition on the
third component of initial orientation field. The local existence of unique strong solution
to the initial value or initial-boundary value problem was proved in Huang et al. [18,19],
where a series of blow-up criterion of strong solutions were established as well. Li et
al. [29] obtained the global classical solutions to the Cauchy problem with small initial
energy but possibly large oscillations and the initial density may allow vacuum. The
long-time behavior of classical solution was considered in [9]. By virtue of the Fourier
splitting method, the authors built optimal temporal decay rate of the global solution.
For more results on simplified isothermal Ericksen-Leslie system, the readers can refer
to [15,36, 38, 39] and references therein.

Inspired by the introduction of non-isothermal models of incompressible nematic
liquid crystals by Feireisl et al. in [7,8], the compressible non-isothermal nematic liquid
crystal flows are now attracting increasing research attention. Fan et al. [6] first investi-
gated the local existence of unique strong solution to the initial boundary value problem.
Guo et al. [11] obtained the global existence of smooth solutions for the Cauchy problem
provided that the initial datum is close to a steady state and gave the algebraic decay
rate of the global solution. A blow up criterion was established in [42] for the strong
solutions to the two-dimensional non-isothermal flows in a bounded domain under a
geometric condition introduced by Lei et al. in [24]. Recently, Liu and Zhong [37]
proved that the global well-posedness of strong solutions with the initial data can have
compact support provided that the quantity ||pollre +||Vdpl| L3 is suitably small with
the smallness depending not only on the parameters involved in the system, but also on
some high order norm of the initial data.

The purpose of this paper is to investigate the global well-posedness of strong solu-
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tions to the Cauchy problem of (1.1)-(1.4) along with the initial condition:

(p,u,0,d)|1=0 = (po,uo,00,do). (1.5)

The initial data allows far field vacuum and the smallness assumption, which depends
only on the parameters involved in the system, is imposed exclusively on some quantities
that are scaling invariant with respect to the following scaling transform:

(pox (), uox(x), 00 (2),dox (2)) = (po (M), Aug (Az), \0p (M), do(Ax)), for any /\75(0- |
1.6

This scaling transform on the initial data is motivated from the natural scaling invariant
property of the compressible nematic liquid crystal flow (1.1)-(1.4):

pa(z,t) = p(Az, A2t), uy(z,t) = Au(Ax, A2t), Ox(z,t) = N20(\x,\%t), dy(x,t) =d(Az,\*t).

More precisely, if (p,u,0,d) is a solution with the initial data (po,uq,60,do), then, by
straightforward calculations, one can find that (py,ux,0x,d)) is also a solution with the
transformed initial data (pox,uox,80x,dox) for any nonzero A.

As already explained in [26], imposing smallness assumptions on the scaling invari-
ant quantities is necessary for obtaining globally well-posed system (1.1)-(1.5). In fact,
if assuming that M is a functional such that

M(pox,uox,Box,dox) :)\e(po,uo,eo,do), for any A#0 and some constant £#£0,
and that the global well-posedness holds for any initial data (pg,uq,00,do) satisfying
M(p07u0a907d0) SEO)

then, by suitably choosing the scaling parameter A, one can show that the global well-
posedness holds for arbitrary large initial data. However, such global well-posedness for
arbitrary large initial data is far from what we have already known.

Throughout this paper, the following notations are needed. For 1<p<oo, denote
LP=LP(R3) as the standard LP Lebesgue spaces with the norm |-||,. For 1<p<oo
and positive integer k, denote by W¥*P? =TW*P(R?) the standard Sobolev spaces, whose

norm is denoted as ||« ||y or ||| g+ with H* =W*2. To simplify the expressions, the
1

norm ZZK:1 I fillx or (Efil ||fl||§() * are sometimes denoted by ||(f1,f2,-.., fx )| x. For
1<r<o0o, D®" is the homogeneous Sobolev space, which is defined by

DM ={ueL, (R®) | |VFull, <oo}, DF=D"?2
Dy={ueL’(R?) | [|Vull2<oo}.

For simplicity, let

/fdx: R3fdm.

DEFINITION 1.1.  Let T>0. (p,u,0,d) is called a strong solution to the compressible
nematic liquid crystal flow (1.1)-(1.4) in R®x (0,T) with initial condition (1.5), if for
some q € (3,6],

peC([0,T;H nWh9), (u,0) € C([0,T]; DAND?)NL*(0,T; D*),
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Vde C([O7T]7H2) OLZ(O,T;HS), Pt € C([OaT]vLZ ﬁLq)a (ut70t) € L2(O7T1Dé)v
(/put,\/pb;) € L°(0,T;L%), d,€C([0,T);H)NL*(0,T;H?), |d|=1,

and (p,u,0,d) satisfies (1.1)-(1.4) a.e. in R3x (0,T) and fulfills the initial condition
(1.5).

THEOREM 1.1. Assume that the initial data po,uo,00 and dy satisfy

007902(); pOEHlﬁWan \/pT)HoGLQ,
(uo,00) € D§ND?, Vdo€ H?, and |do|=1,

for some g€ (3,6]. Setp:=|polloc+1. In addition, the following compatibility conditions

—,LLAU()—(/,L-F)\)VdiVuO-i-VPo—l—Ado'Vdo:mgl, (17)
KAy + Q(Vug) +|Ady +|Vdo 2 do|* = \/poga, (1.8)

hold with g1, g2 € L?, where Py= Rpoby.
Then, there is a positive constant €y depending only on R,v,u,\, and K, such that
if
No:=p[llpolls +7°(Ivpouoll3+ 1V dol13)] [ VoI5 + 5l v/po Eoll3 + [ V2dol[3)] < eo,

|u

ol” +c,0p, the problem (1.1)-(1.5) has a unique global strong solution.

where By =1

REMARK 1.1. It is obvious that if there is an initial data (po,uo,00,do) satisfying
No <eq, then, any (pox,uox,00x,dox) defined by the scaling transform (1.6) with A#£0
also satisfies Ny <ep.

REMARK 1.2. The global well-posedness of strong solutions to the Cauchy problem
for compressible non-isothermal nematic liquid crystal flows with vacuum as far field
density has recently been proved in [37], which needs the small initial data satisfying

llpoll Lo + (I Vdol| s
<eco=eo(llpoll1, llv/Poroll2, [ Vuoll2, 1v/PoEoll2, [V dol|2, |V doll2, 11, A, R, 7y, k).

Note that the explicit dependence of ¢y on the initial norms was not derived in [37].
Therefore, the scaling invariant quantities may not be expected there.

Note that since the system (1.1)-(1.5) contains the full compressible Navier-Stokes
equations as a subsystem, it inherits the difficulties of the full compressible Navier-
Stokes equations. A typical difficulty is that the basic energy estimate does not yield
the desired dissipation estimates fOT |[Vul|3dt. Another difficulty is that the presence of
the liquid crystal director field d brings strong coupling term - Vd and nonlinear terms
Vd-Ad and |Vd|?*d. In order to overcome these difficulties, we adopt the idea in [26] to
get the L>°(0,T;L3) estimate of p and introduce the spatial L?-norm of Vd and V?2d.
This motivates us to put smallness assumptions on [|po||% [l\/Pouo|l2]lv/Poluol?|l2 and
|Vdo|l2[|V2do||2, which are both scaling invariant. As a result, by continuity arguments,
some necessary lower order time-independent estimates are obtained. Then, we give
higher order estimates and eliminate the impact of vacuum by introducing the effective
viscous flux and the material derivative.

The paper is organized as follows. In Section 2 and Section 3, we derive some
lower order and higher order a priori estimates for the solutions to the Cauchy problem
(1.1)-(1.5), respectively. Section 4 is devoted to proving the global well-posedness.
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2. Time independent lower order a priori estimates

This section is devoted to the low order time independent a priori estimates to strong
solutions to system (1.1)-(1.5), under suitable smallness assumption on the initial data.

We begin with the local existence and uniqueness of strong solutions whose proof
can be performed in a similar way as in [1] and [6].

LeEMMA 2.1 (local well-posedness). Assume that the initial data (pg > 0,u0,00 >0,do)
satisfies the conditions in Theorem 1.1. Then, for any ®y > 0 satisfying

lpollwranm +1[(uo,60) [ prnpz + Vo a2 + [|(v/Pobo, 91, 92) |2 < o,

there exist a positive Ty >0, which depends on ®¢, R,c,,u, A, x and such that system
(1.1)-(1.5) admits a unique strong solution in R x (0,7p).

By applying Lemma 2.1 inductively, one can extend the local solutions (p,u,8,d)
established in Lemma 2.1 uniquely to the maximal time interval (0,Timax) of existence.
Clearly, in order to show the global existence as stated in Theorem 1.1, it suffices to show
that Tiax = 00. To this end, we on one hand assume by contradiction that T, < oo and
on the other hand will show (in the rest of this section and the next section) that some
high order norms (as high regularities as the initial data) of the solution are uniformly
bounded on the time interval (0,Tax). Thanks to the uniform boundedness of the high
order norms and by Lemma 2.1, one can further extend the solution beyond T},.x, which
contradicts to the definition of Tiax, leading to Tiax = 00.

The desired estimates are divided into two kinds: the lower order (one derivative
lower than those of the initial data) a priori estimates being carried out in the rest of
this section and the higher order (as high order derivatives as those of the initial data) a
priori estimates being carried out in the next section, Section 3. The low order a priori
estimates achieved in this section, see Proposition 2.1, are independent of the length of
the time interval, under suitable smallness assumption on the initial data; however, they
are insufficient to extend the solution beyond Ti,.x and, thus, the higher order a priori
estimates are required. Different from the lower order estimates in this section, the
higher order estimates in Section 3 will depend on the length of the time interval, and it
may grow if Ti,.x grows; however, this will be enough to show the global well-posedness
by using the contradicting arguments.

In the rest of this section, as well as in the next section, we always assume that
(p,u,0,d) has already been extended to the maximal existence time interval (0,Tinax),
so that it is a strong solution to system (1.1)-(1.5) in R? x (0,T), for any T € (0, Tinax)-

The main result of this section is the following proposition, which is a direct corollary
of Lemma 2.1 and Lemma 2.9, as below.

PROPOSITION 2.1.  For any T € (0, Tynas), define

NTZZOE?ETE(lel?)+ﬁ2(”\/ﬁu‘|g+HVdH%))(HVUH%"'ﬁ(H\/ﬁEH%"i'vad”%))(t)v (2.1)

let Ny be as in Theorem 1.1, and denote
G=2u+Ndivu—p, w=V xu. (2.2)

Then, there is a positive number €y (will be given in Lemma 2.9, as below), such
that

6 p—
Nt <5 and  sup [|pw<2p,
0<t<Tax
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provided Ny < gp.
Moreover, the following estimates hold:

sup  ([[(VPE, v/pu, Vu,d, Vd, V2d) |5+ ||plls + [l pll o + IVa[ + | Vdl5) <,

0<t<Tmaz

Trnaz
/ (Y6, [V, /e, Vi, VG, Ve, dy, Vidy, V2d, V3d, [V ||V 2d)) |2t
0

+/ ||vu||§dt+/ /p?’dedth,
0 0

where C' depends only on R,cy, i, A, £,,[polls;llv/povoll2, lv/eoEoll2: [[Vuoll2, [ Vdoll2,
V2dol|2, and [[Vdol|s.

First of all, we need a basic energy inequality.

LEMMA 2.2.  Assume that 2u> X\ . Then, for any T € (0,Tynaz), it holds that

Va3 + lldel3 + [V 2dl|3)dt

T
sup (l/Bul2+IVd2) + / (
0<t<T 0
T T
<C(|lv/pouol2 + | Vdo|2)+C / loI2IV6|2dt +C / VAR Vul + [ V2d|2)dt,

for a positive constant C' depending only on p and A.

Proof.  Multiplying (1.2) by u, integrating it over R3, and using integration by
parts, one gets

1d .
L Bl + Tl + (e )il
:—/V(Rpﬂ)-udx—/Ad-Vd-uda:

<R|lpllsl9llelldivullz + ulls| Vdlls [ V*d] 2
<Cllplls VoIl divullz +C|[Vull|[Vdl|s]|V2d]|2

. 1
<(uFNdivul3+CllpllE|VOII5 + 51 Vulls + CI V5] Vd]3. (2.3)
Using (1.4) and the Sobolev inequality, it follows

d
£||Vd||§+/(|dt\2+|V2d\2)dx:/|dt—Ad|2dx:/\u-Vd—|Vd|2d|2d:v

<C([[ull3IVdl3+[IVd|3) < CIVA3([Vul3+[V2d]3),
(2.4)

where |Vd|? = —Ad-d guaranteed by |d| =1 was used. Adding (2.3) and (2.4) yields
d
7 (IVPul3+1VdlIZ) + pl Vull3 +[ld: 5+ [ V*d]13
<ClplEIIVOI3 +ClIVAIF(IVul3+ [ V2d]3).

The conclusion follows by integrating the above inequality with respect to ¢. ]

Then, we derive the estimate on some necessary derivatives of d.
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LEMMA 2.3.  For any T € (0,Tynaz), it holds that

T
sup (IIV2dII§+|IVd||i)+/ (VI3 +IV2d3+ |Vl Vd]|[3)dt
0<t<T 0

T
<C(||V2doll5+IVdo||1)+C sup (IIVU\@IIWIIE)/ I Vul|5dt
0<t<T 0
T
+C' sup (IIVdH%IIVzdII%)/ IV3d|3dt,
0<t<T 0

for an absolute positive constant C'.

Proof. Applying the operator V to (1.4) yields
Vd; —VAd=—-V(u-Vd)+|V(Vd|*d), (2.5)
from which one derives
GIVRE+ [ (Vd P+ [PdP)ds
:/|th—VAd|2dx
=/|V(u-Vd)—|V(Vd\2d)|2da:
SC/(|Vu\2|Vd\2+|u\2\V2d|2+\Vd|6)dz+2/|Vd|2\V2d|2d:c. (2.6)

Multiplying (2.5) by 4|Vd|?Vd, and then integrating it over R?, one obtains

ld
2dt
:4/\Vd|2Vd(fV(u~Vd)+V(|Vd|2d))dz

/|Vd|4dx+4/(|Vd|2\V2d|2+2|Vd|2|V(\Vd|)|2)dx

§C’/(\Vd|4|Vu|+|Vd|3|V2d\|u|+|Vd|4|V2d\+|Vd|6)d:v
g/|Vd\2|V2d|2dx+0/(|Vu|2|Vd\2+|u\2|V2d|2+|Vd|6)dx, (2.7)

where |Vd|? = —Ad-d guaranteed by |d| =1 was used. Adding (2.6) and (2.7) yields

%/(|V2d\2+|Vd|4)dx+/(|th|2+|V3d|2+|Vd\2|V2d|2)
SC/(|Vu|2|Vd|2+|u|2|V2d\2+|Vd|6)d:c. (2.8)
It follows from the Gagliardo-Nirenberg and Young inequalities that
/ IVul?|Vd[dr < V||| Vall} < C|[ V][] § || Vull3

1
< IV dlz+ Vi3] Vul3) I Vullz, (2.9)
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/ Vdl*dz <C|Vd|2[IVdP|ls|IVd>]l2 < CIVAIRIIV (V) | V3

<5 IVdIvdlI3 +C vl vl

< S IIVdIvd|[3+ OVl val3vd)3

< S IVdlIdl |3+ CIvalBIv*d3 |Vl V2l

< S WIdlIT2dlI3+C Va3 vl v eal3 (2.10)
and

/ [l |V?dPde <Clul]2V?d]ls|V?dll> < Ol Va3 Vdll3 [V dlI3
< TIP3+l Tul) [Vl (2.11)

Substituting (2.9)-(2.11) into (2.8) yields
a
dt

<C|Vdll3||V*d||3IV2dl|3 +C (Va3 | Vull3)[Vull3,

1
(|V2d\2+|Vd|4)d:c+§/(|th|2+|V3d|2+|Vd\2|V2d|2)

which implies the conclusion by integrating in t. ]
Then, we will show the following key estimate on the sum of the energy.

LEMMA 2.4.  For any T € (0,Tyaz), it holds that
T
sup IIﬁElngr/ (V0113 + ([l [Vl [[3) dt
0<t<T 0
2 T 3 2 2
SCII\/FOEonJrC/O [ollsc 12113 [1v/POll2 (VO3 + ([ |ul[Vulllz)dt
T
+C sup V2] [l
0<t<T 0
T T
+C sup (IIVd||§||V2d||§)/ [|Vd|[V?d||[3dt+C sup (||Vd||2||V2dH2)/ IV3d|[5dt,
0<t<T 0 0<t<T 0

2
for a positive constant C depending only on R,c,,u,\, and k, where E = % +c,0.

Proof. From the specific kinetic energy E, multiplying (1.2) by u and adding the
resultant to (1.3), one has

p(Bi+u-VE)+div(uP) — kA0 =div(S-u) — Ad-Vd-u+|Ad+|Vd|?d*,  (2.12)

where S = p1(Vu+ (Vu)t) + Adivul. Then, multiplying (2.12) with E and integrating it
over R3 yield

1d
2 dt

KCy

2

IVPEI3 + keu| VI3 < ||V9||§+CH\UHVUIH§+C/p292IU\2dw

—/(Ad-Vd-u)de+/\Ad+|Vd\2d|2de
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and, thus,
d 2 2
2 IVPEll2+reu[[ VO3
gC|||u||Vu|||§+C/p292\u|2dx—2/(Ad-w-u)de+2/\Ad+|Vd\2d|2de. (2.13)
One can rewrite the right-hand side of (1.2) in divergence form since
1
—Ad-Vd=—div <Vd®Vd— 2|Vd|2113> ,

where Vd®Vd2 (d,, -d, )3x3 and I3 denotes the identity matrix of order 3. By the
Sobolev inequality and integration by parts, one deduces

1
= /(Ad- Vd-u)Edr= —/div (Vd@Vd— 2|Vd|2113> -uBdx

1
=/<Vd®Vd—2|Vd2H3) :V(uE)dz

KCy

T6||V9||§+CHIUIVU\\§+0/IVd\4IUI2dx

<C|Vdl[g]|Vull2] Ells +

KCy

<3 V015 + Cll[u|Vull3+ClIV2d|l3Vull3 + Cllul? 6V dll2 V6|Vl [l6
KCy

<7 V015 + Cll[ulVull3+ ClIV2dll3 [ Vull3 + CIVdl3 [ V2dl[3 [ Vd|[V2d]]13,

and
/|Ad+|Vd|2d|2E§2/|Ad|2de+2/|Vd|4de

§2/|Vd||V3d|de+2/|Vd|\V2d|\VE|dx+/|Vd|4|u|2dx+2cv/|Vd|49dx

<O||Vdlls[|V2dl|2]| Ell6 +ClVells || Vdll6 ]|V E]|2
+C(Ilullle +collllo) IVl 2] V6]l V[ ||6
<C([lullVulllz+col[VOll2) IVl V2 dll2 + [ V]|l V2] 2 [ V][Vl ||2)

KCy
S?HWII%+CHIUIWH§+C||Vd||§|\V3d||§+C\\Vd\\§IIV2dI\§|IIVdIIVQd\||§~

Putting the above two inequalities into (2.13) leads to

d KCy
%H\/EEII% ) ||V9||§SCHIUIWUHI%+C//1292|u|2d:17

+C|IV2d|3 | Vull3 + CIVAF IV +Cl Va3 V2|3V V2dll5.  (2.14)

To control the term |||u||Vul||3 in (2.14), we need to multiply (1.2) with |u|?u to
obtain that

1d .
1§||\/ﬁ|u|2||§—/(MAU+(M+/\)levu)-|u\2uda;

/Pdiv(|u|2u)dx/<Vd®Vd;|Vd2113)div(|u2u)dx
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<C’/(p0+|Vd| )| Vul|ul?dz
<3 (13 ) Il wuli+c [ 2o+ 9altha?)as
<5 (03 ) IITullg+C [ 6% uPds +ClluPlol Ve Talol VPl
<M—) |||U||VU|||2+C/P292|U|2dI+Cl\le|§||V2d||§|||Vd\|V2d\H§~ (2.15)
By direct computation, one has
—/(uAu+(u+)\)Vdivu)~\u|2udx2(2u—A)||\u||Vu|||§.

Hence, it follows from the above inequality and (2.15) that

d
S IVPlul 15 +220 = )[[ulVull3 < C/p292IUI2de+CIIVdII§HV2d||§HIVdIIV2dIH§-
(2.16)

Now, multiplying (2.16) by N >0, which is a sufficiently large number and depend-
ing only on R,c,,u, A, and k, then adding the resultant to (2.14), one gets

HCU

d
—(IVPEI5+ NIVplul(3)+ = VO3 + (20 = NI [ul[Vull

<Clipllclirlls ||x/,59\|2||V9||2H\UIIWIHz +C[IV2 ]3| Vulls +Cl V|2 V]l V213
+C|Vd|3[IV2d)3 ][Vl [V2d]|l3, (2.17)

where we have used the fact
3 1
/92492IUI261317SCllx/ﬁ@IIzII@HGHIU\2H6||P||92 <CllpllssllpllF IVeoll2(IVO|2][|ul[Vulll2.  (2.18)

The proof can be completed by integrating (2.17) over [0,¢]. O

Then, we will get the crucial estimate on the time independent L>°(0,T;L3)- norm
of p.

LEMMA 2.5.  For any T € (0,Tyaz), it holds that

T 2 1 1
sup HPII§+/ /pSPdwdtSCHpo|\§+C sup (||l lv/pull3 v/elul®ll3 [1olI3)
0<t<T 0 0<t<T

T T
+0/O (Ilpllio||p||§,HWH%)dHC/0 (lpllsclloll3 V2 d]3)dt

for a positive constant C depending only on R,c,,u,\, and k.

Proof. If we apply the operator A~!div to (1.2), it holds that
A div(pu); + AN divdiv(pu @) — (24 N)divu + P
1
=—A"'divdiv(Vdo Vd— §|Vd|2}13). (2.19)
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Taking advantage of (1.1), we have
(p*)¢ +div(up®) + 2divup® =0. (2.20)

Then, multiplying (2.19) by p? and using above equality, we obtain

2ﬂ2+>\ ((p*)e+div(up®)) + p* P+ p> A~ div(pu), + p* A~ divdiv(pu @ u)
:fpSA’ldivdiv(VdG)Vdf%\Vd|2]lg). (2.21)

Using (2.20), it follows
/p?’A_ldiv(pu)tda:
ccllt/ AT 1d1v(pu)d:v—|—/[div(p3u)+2divup3]A*1div(pu)dm
:/[2divup3A71diV(pu)—pgu-VAfldiv(pu)]dz—F%/psAfldiv(pu)daj.

Thanks to this, it follows from integrating (2.21) over R? that

d 20+ A
dt 2

—i—A_ldiV(pu)) p3da:—|—/p3de
:/[pg(wVA*ldiv(pu)fAfldivdiV(pu@)u)) —2divup® A~ div(pu)] dx
1
—/pgA_ldivdiv(VdQVd—2|Vd|2]lg>dx.

The conclusion in this lemma then follows from the same estimates as in Proposition
2.4 in [26] and the following bound for the last term in above equality

/p3

1
A~ divdiv (Vd@Vd— 2Vd|2113> dx

1
<Cllpllsollpll? A—ldivdiv(w@w—2|Vd|2113>
3
<Cllpllllpl3IVlE < CllpllsclllIEIIVdll3,
where the elliptic estimates were applied. ]

In order to obtain bound of ||| - (o,7; ), We need to introduce the effective viscous
flux G and the curl of velocity w, and establish the following estimates for them.

LEMMA 2.6. Assume that

sup | |plloc <4p.
0<t<T
Then, for any T € (0,Tyaz), it holds that

VG Vw
Vul|3+ / ( , > dt
0iltlngl ull3+ VU N AN
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T
SClIVungJrCﬁoiggTH\/ﬁ9||§+cﬁ3/0 [Vulla(IIVal3+plv/p8]13)dt
’ ; ) 3 2 2
+C/O P+ Mlpll3 1v/efll2) (VO3 + ([ [ul[Vul[[5)dt
T
+CIVdalli+CIVdli+enp [ VOl
0
T
+Cp sup (IIVdIIQIIVlelz)/ (IVd: |3+ 1V3d|[3)dt
0<t<T 0
T
+Cp sup (IIlelgllvzdllg)/ IV(IVd|*)||3dt,
0<t<T 0
where G and w are given by (2.2), and the constant C >0 depending only on R, c,,u,\,

and K.

Proof.  Multiplying (1.2) by wy, it follows from integration by parts that

3 31 (Il + o 0 ivl3) — [ Pvuda-+ 7l
:—/p(u'V)u-utdxf/Ad~Vd~utd3:. (2.22)
By the definition of effective viscous flux G, it is easy to see divu = QCL ': y» Which implies
f/Pdivutd:c:f jt /Pdlvud:ch/Ptdivudac
_Cﬁ/PdiVde+2(2M1+)\)(jt| 15+ /PtGdI (2.23)

On the other hand, it follows from (1.3) that
Py =(y—1)(Q(Vu) — Pdivu+ kA + |Ad+|Vd|*d|?) — div(uP),
which leads to

/Ptde:/[(7—1)(Q(VU)—Pdivu+|Ad+\Vd|2d|2)G+(uP—m(7—1)v9).vG} dz.
(2.24)

Due to ||Vul|3 = ||w||3 + ||divul|3 and combining with (2.22)-(2.24), one can deduce that

ulwoz+ G0 Ly 2
2dt 2T ou+ N 2

1
:—/p(u~V)u-utdx—/Ad-Vd-utd;v—f—2’u+>\/(/f('y—l)VH—uP)-Vde
-1 N 2 712
2u+A/(Q(V“) pdivu+|Ad+|Vd]*d|*) Gdz. (2.25)

In order to bound the right-hand side of (2.25), we need to reformulate (1.2) in the
following form with the help of Au=Vdivu—V XV xu:

plug+u-Vu)=VG—puV xw—Ad-Vd. (2.26)
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Then, multiplying both sides of (2.26) by VG, it follows

||VG||§:/(p(uﬁ—u-Vu)-VG—i—Ad-Vd-VG)dx

G2
S/(IV2 | +2pp|ut|2) daH./<p(u.v)u.VG+Ad~Vd~VG)dx

where [VG:V xwdz=0 and ||p||~ <4p were used. This gives that

G
”V16p||2 <f||f |3 + /(p(u-V)u-VG+Ad-Vd-VG)dx. (2.27)
Similarly, one has
12| Vw3 o, 1
T< ||\/ﬁutH2+% (p(u-V)u-Vw+Ad-Vd-Vw)dz. (2.28)

Putting (2.27) and (2.28) into (2.25), one gets

Loz G2 LYy Sz (Ve + nivel)
2 dt 2 ou4+N) 2 2t 16* 2
1
<C / plul |Vl (ut|2+p<vc|+|w|>) dz+C / (IV6] + pb)ul)| VG| der

+C’/(|Vu|2+p9|Vu|)|G|dx—/Ad~Vd-utdx+O/(|Ad+\Vd|2d|2)de

C 6
+= [1AdIVdI(VG] +Vul)da = 3. (229

i=1

Estimates [;,i=1,2,...,6 are given as follows. It follows from the Holder and Young
inequalities that

L <Cf||\UIIVUIllzllx/ﬁmllerCH\UIIVUII\z(IIVGII2+ Vewll2)

— 2
<q5lIVpalB + 35 (IVGIE+42 IVel)+ Crlal Tl

and
I <C|IVO||2[[VG|2+ [ pfull2 VG2
<C|VOl2IVGlla+C/ploli3 1vVooll3 V0113 [[lul|Vull3 VG2

§7192ﬁ|‘VGH§+C(ﬁ2”PH§ Iv/P9ll2+7) (IV )12 +|lul |Vl ||3),

where (2.18) was used in I3. For I3, noticing that

IVulls <C([lwlle + ldivulls) < C([lwlle + |Glls + [l pBll6)
<C(|Vwllz+[VGll2 +7lVO]2), (2.30)

it follows from the Hoélder, Young and Sobolev inequalities that

I3 <C||Vullo[[Vulls|Glls + [ Vullllp0]l6[|Glls
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<CIIWII VGl +[IVella +pI VOGS IVEIS +CpllVull2 VOl Glis VES

71927(HVG||2+# IVwl3) +Co° [[Vull 2| G5+ Cal Vo3

Note that
—/div (Vd@Vd— ;|Vd|2113) updr = /(Vd@Vd) :Vugda — % / |Vd|*divudz.
Using the Young and Sobolev inequalities, one obtains
/(Vd@Vd) :Vuyde

== (VdoVvd): Vudxf/(thGVd):Vudx—/(Vd@th) :Vudz

g—/(w@w):vudx+0||w||3\|wt||2\|vu||6

< [ (VAo Va): Vudz + L[l + Cp| V3|V,

where € >0 is a sufficiently small constant. Similarly,
/|Vd|2divutdx§%/|Vd\2divudx+4%||Vu||§+Cﬁ||Vd||§Hth||§.
Therefore, we get
I < %/[(w@w) :Vu+|Vd)*divu]de + %Hwng +Cp||Vd||3||Vdy||3.
Using (2.30) again, we obtain
I4§% / [(Vd®Vd): Vu+|Vd*divu]de

1 € p
+19?(HW||2+IIVGII )+ - IVOI13 +Cpll V|31V I3,

where €1 = % is sufficiently small.

Now, let us turn to I5 and Is. By virtue of the Holder, Young and Sobolev inequal-
ities, one deduces

Iy :C/(|Ad+|Vd|2d|2)de

SC/(IVd\|V3d||G|+Ile|V2d|IVGI)dx+C||Vd\|2||Vd||e||\VdIQIIGHGlls
<C||VdII3HV3dII IVGll2+ClVdl2[Vdll2 ] V(| Vd|*) |2 VG2

7197||VG||2+CP||VCZ|| IV2d]13 + Call V|3 V2dlI3 v (V)13

where |Ad+|Vd|?d|? = |Ad|* +2Ad-d|Vd|]* +|Vd|* = |Ad|*> — |Vd|* was used, and

IG<7||Ad||6HVdH3(HVGH2+”VWH ) < o= (VG5 + 121 Vewl3) + ClIVA V2 dl3.

1
—192p
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Putting all these estimates for I;,i=1,2,...,6 into (2.29) leads to

d (o IGIBY L s s o
= = —(IVG
7 (111 322 )+ S+ o (I GI + 42 V)

d . oy b
<2 (VAo Vd): Vu+|Vd|*divuldz + C(p+p°||pll3 11v/P0l2) (VO3 + [[ul [ Vul[13)

+CP° | Vul3|Gl3 +e1pl VOIS + Col VI3 (I Ve 13+ VPdl3)
+Cpl V|3 VIV (IVd*) 3.

(2.31)
Note that

IVullz < Cllwll2 + Gl +108]12) < C(llwll2 + 1 Gll2++/Bllv/Pbl2)

(2.32)
and

/[(Vd@ Vd): Vu+|Vd|*divulde < C||Vull2|||[Vd|? |2 < 2| Vul3+C||Vd|;.  (2.33)

Integrating (2.31) in ¢, substituting (2.32) and (2.33) into the resultant and choosing e
small enough, one gets the desired result.

0
LEMMA 2.7. Assume that

sup_|[|plloc <4p.
0<t<T
Then, for any T € (0, Tyqaz), it holds that

sup_|[[pllee < |lpollos
0<t<T

2 1 r _ . . ; 1
. oCP% supo<, < lvAulld 1ALl 13 +C3 [ 1V ull2 (VG Vw,5V0) ladt+C ([ 11V2dl2dt [T [V dl|2dt) 2

)

for a positive constant C' depending only on R, c,,u, A, and k, where G and w are given

Proof. In view of (2.19), one has

At div(pu) +u- VAT div(pu) — (2p+ N)divu+ P
1
+ A~ divdiv (Vd@Vd— 2Vd|21[3>
=u- VA~ div(pu) — A7 divdiv(pu @ u) = [u, RO R](pu),

where R is the Riesz transform on R3. To obtain the estimates of ||p||o, we adapt the
arguments by [26]. Exactly in the same way as in Proposition 2.6 of [26], one can prove
that

sup ||pllco
0<t<T
_2 1 1 _ _
<lpo|aceC?? uPosi<r IVAulF IIVAIuPIE +CP [T 19 ull2 | (VG Ve pVO)ladi+C [ Va2 dt.

(2.34)
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Thanks to this and noticing that
1
2

T T T T
| Ivaa<c [ ||V2d||2||V3d||2dtSC</ |V2d||2dt> (/ |v3d||2dt> 7
0 0 0 0

the conclusion follows. 0

1
2

Collecting Lemmas 2.2-2.7, we have the following estimates bounded by the initial
data.

LEMMA 2.8. Let G and w be given by (2.2) and Nt be given by (2.1). Then there is
a positive constant 1y depending only on R,c,,u,A, and k, such that if

n<10, Sup HPHOO S4ﬁz andNTS\/ﬁ7
0<t<T

then it holds that

T 3
sup ||p||3+</ /pBdedt) <C(lpolls+ P (l/Aouo 2+ IVdoll2)),  (2.35)
0<t<T 0
T
p2< sup (|lv/Aul2+ | Vd|2)+ / ||<w,dt,v2d>|§dt>
0<t<T 0

<C(llpolls +7*(llvpouoll3 + [ Vdol13)), (2.36)

sup [p(|[V2d3+ (Vi +IVPE(3) +1[Vull3]
0<t<T

T 2
VG Vw
+ Vd,,V3d,|Vd||V3d|,V0,|u||Vu 2+H( gy~ - ) di
/O (II( ¢ IVd|[V=d|, V8, |ul[Vul) |3 VP = vl
<C(p(IV?doll3+ lvVPoEoll3) + I Vuol3), (2.37)
oxfront, (2.38)

sup |lplleo <pe
0<t<T

for any T € (0,Tyqz), where the constant C >0 depends only on R,cy,u, A, and k.

Proof. 1In view of Lemma 2.2 and by choosing 19 < 1 small enough, we have
T
sup (I\\fPUII§+IIVdII§)+/ (IVull3+ lldell3 + [ V2dll3) dt
0<t<T 0

T
<C(IVArunll-+ Vol +C sup ol [ 613t (239
0<t<T 0

It follows from Lemma 2.3 and the assumptions that
T
7 s (IV2d3+IVal)+7 | (Va9 l3-+ Va7 )i

T s
<Cp(|[V2dol 3+ [ Vdo|14) +Cn / |VulSdt+Cn? / IVl 2. (2.40)
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With the help of (2.39) and since p=||pollco + 1, one deduces from the assumption that

T T
/ IVulSdt < sup [Vl / |Vul2dt
0 0<t<T 0

T
<C sup |Vu||§( sup (I/pul+IVal3)+ sup [l [ |ve|%dt)
0<t<T 0<t<T 0<t<T 0

T
<Cn} sup [[Vulp+Cn [ [VOlBat
0<t<T 0
which together with (2.40) and by choosing 7y small enough, implies that

T
p sup (\\V2d||§+||leli)+ﬁ/ (IVdell3 + 1 V2dlf3 + ||Vl V2d]||3)dt
0<t<T 0
) T
<Op([V*doll5 + [ Vdoll3) +Cn= sup IIVu||5+C77/ IV]3dt. (2.41)
0<t<T 0
Next, applying Lemma 2.4, using the assumptions and (2.39), we obtain
T
sup II\/5E||§+/ (IVO113+ [l V|3t
0<t<T 0
2 e 2 2
SCII\/fTOEonﬂLCnZ/O (VO3 + llulVulll3)dt
T LT
o [ [V ont [ |Ival|va)i3a
0 0
T
+C sup [|V2d|5(ly/pull3 + | Vd[3)+C sup (HVQdIIE‘HpH%)/ V0|54t
0<t<T 0<t<T 0
T
1
SCII\/pTJEoHiJrCW/O (IVO113+ [l [Vl [13) dt
T LT ) T
+Cy [ IVPdigderCob [V dlBde Cot sup [97dl+Cn [ (98,
0 0 0<t<T 0
This, combined with the fact 7y is small enough, implies that

T
sup IIx/ﬁE||§+/ (VU3 + [l Vulll3)dt
0<t<T 0

T 1T 1
<CllvpoEol3+Cn fy [V2dlI3dt+Cnz [y [I[Vd][V2d]||3dt+Cn2 supge,<rl|V2d]3. (2.42)
Then, using the assumptions and Sobolev inequality, it follows from Lemma 2.6 that

T
VG Vw2

su Vu 2+/ U, —, —— ) ||2dt

s IVul+ [l 2B

t
<Cl[Vuol+Cp sup |VEIF+Cr" [ IVulS(ITull +olvpEIE)de
Sts 0
g 21 113 2 2 g 2
+C [ o I IV IVOIE + 1l ValE)dt+n | [0l

T 1 T
+0\|Vdo|\it+O||Vd|\§||v2d||§+cnﬁ/ (I\th|\§+||V3d||§)dt+0772ﬁ/ IV(Vd[*)3dt,
0 0
(2.43)
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where we choose £1 <7 small enough. By (2.39) and (2.42), we get
t
7 / IVl Vul2 + 71l VAE|2)dt
<07* sup (IVull3+7IVEEIR) sup |Vl
0<t<T 0<t<T
T
A Csup (Bl 19d2) + sup (]2 / IV)2de)
0<t<T 0<t<T 0
T
<Cn* sup | Vul+ 0Oy / N (2.44)
0<t<T 0
and
T 1
7 sup [ VE|2+ / B+ 2210113 1/50112) (190112 + |l [V |2t
0<t<T 0
T
1
<p sup |VAER+@+7 sup (Iol2 |VBEll) / (10112 -+ ] [T 2)
0<t<T 0<t<T 0
T
— _ _ 1
<5 sup ||VAE|3+(p+mt) / (10112 + ] [V 2t
0<t<T 0

T T
— — 3 — 1 — 1
<CpllvmEall+Con [ IV*dl3de+Cpot [ IIVaIV*dllBdr+Cont sup [Vl
C (2.45)

Substituting (2.44) and (2.45) into (2.43) and using 1y small enough, one obtains

VG Vw
Vul|?+ / , dt
s IVl + [/, 2l

T
CIVuol3+Bly/Ao Eol3+ [ Vollt) + Crp / V6| 2dt
1 T 2 2 1 2 12
+opnt / NIV dl[V2dl[2dt +Cpn? sup [V2d)3
0 0<t<T

T T
+Cp [ IV Bat+Crp [ [0 (2.46)
0 0

The combination of (2.41), (2.42) and (2.46) yields that

VG Vw)
u b
(Vo
T
47 [ (I9dl -+ I9°dI3-+ 11V + [ 9615+ ullVal 1) de
<C(P(IV2doll3 + 1y/Bo Foll2) + IV uol2)

T
+Cp sup |[Vd|3[|V2d||3+Cn? sup IIVUII§+Cﬂﬁ/ IV6|3dt
0<t<T 0<t<T 0

dt

sup ((IV2d|2+ [ Vd]lt + |/AE|Z) + [Vul2) + /
0<t<T

T T
— 1 — 1 _
+Cpn2/0 |||Vd||V2d|||§dt+Cpn2OE?ETHVQngJrC’np/O (|IVdy]|3+ || V3d||3)dt
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. T
SC(ﬁ(I|V2do|I§+II\/FoEoHi)JrHVuoII%)+Cn§0§ggTIIVUII§+Cnﬁ/O IVel3dt
1 T 1 o
+Cﬁ?7§/ [[Vd||V2d||[3dt+Cp(n= +n) sup ||V3d|3
0 0<t<T
T G
+Cop [ (19l + 19 d 3,
from which, choosing 1y small enough, one gets (2.37) and
T
ﬁ/o IV0]I5dt < C (5(IIV>dol13+ [Iv/poEol13) + [ Vuoll3).- (2.47)
Recalling (2.39) and the assumptions, and using (2.47), we have
T
sup (H\fpulngrHlel%)Jr/ (IVull3+ [l de 13+ [ V2d|13)dt
0<t<T 0
1 _
SC(H\/fTo%H%Jr||Vdo||§)+CﬁOignglpllg(P(llvzdoH%Jr||¢/70Eo||§)+||vuo||§)
11
<C(|lvpouoll3 +[IVdo|13) +Cn2 = sup ||p]s. (2.48)
P~ 0<t<T
It follows from Lemma 2.5, (2.48), the Young inequality and the assumptions that
T
sup ol + [ [ o Pasi
0<t<T 0
2 1 1
<Clipoll3+C sup (loll&lvpulls vPE3 llol3)
0<t<T
T
+07 sup ol [ (IVull+ [V2al)ae
0<t<T 0

1 o 1 1
<C|lpoll3+Cnz sup |]p||3+Cp> sup p||§<||\/pouo||§+||Vdo|§+n22 sup P||3)
0<t<T 0<t<T p* 0<t<T

<Cllpoll3+C(n7 +n?) sup |Ipl3+Cp* sup |lpll3(I1v/pouoll3+ I Vdoll3)
0<t<T 0<t<T
1 11 .
§C||Po||§+0(7712+772+Z)Oi?ETHPHg+CP6(||\/P0U0H§+|\Vdo||§)3a

which implies (2.35) by choosing 1y sufficiently small.
Now, substituting (2.35) into (2.48) yields that

T
p2< sup (|v/pull?+ [ Vd2) + / (
0<t<T 0
o 1
<CP*(||v/pouol3 +1|Vdo||3)+Cnz sup |pll3
0<t<T

<C(llpolls +7*(llvpouoll3 + [ Veol13)).

which gives (2.36).
Finally, (2.38) follows immediately from Lemma 2.7, (2.36) and (2.37), and the
proof is complete. ]

Va3 + lde I3+ |V2d||§)dt>
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Now, we are able to get time-independent estimates on the scaling invariant quantity

Nr.

LEMMA 2.9. Let no,Nr, and Ny be as in Lemma 2.8, (2.1), and Theorem 1.1,
respectively. Then, there exists a number g € (0,m9) such that if

sup |[|plloo <4p, N1 <\/2o and Ny <eo,
0<t<T

then

3
sup [plle<2p and Np< Y22,
0<t<T B

where €9 depends only on R, c,,u,A, and K.

Proof. 1If g <njg is sufficiently small, all the conditions in Lemma 2.8 hold. There-
fore, we obtain

N1 <Cp(llpolls+2*(1v/pouoll3 + [ Vdoll3)) ([ Vuollz +2(I1v/po Eolls + V2o |13))
<Cegp < vEo

At the same time,

1 1 1 1
6 2 6 2

sup ||pHoo Spec./\/’o +CNy Sﬁ@cso +Cef <2p.

0<t<T

We complete the proof of the lemma. 0

3. Time dependent higher order estimates

Recalling that the low order a priori estimates established in Proposition 2.1 are
one order derivative lower than the orders of derivatives of the initial data, the a priori
estimates obtained in the previous section are insufficient to extend the solution beyond
Tmax (in case that Tpax <oo) through Lemma 2.1. Therefore, besides the a priori
estimates obtained before, the higher order a priori estimates are also required to prove
our main theorem. The desired higher order estimates are presented in this section. As
will be seen in Section 4, our main theorem is proved by contradiction argument, that
is we assume by contradiction that Tj,,x < 0o, and then show that this is not true based
on Lemma 2.1 and the a priori estimates, where T, as in the previous section is the
maximal time of existence of the extended solution (p,u,6,d). Therefore, throughout
this section, we always assume that T ,.x < oo. The following estimate will be proved in
this section:

sup  (|lpllgrawa + VO[3 + | (V2u,/pit,/p0, V3d, Vdy) |13) < cc.

0<t<Tmax

Here and in what follows,

fe=fitu-Vf

denotes the material derivative of f. These a priori estimates can be established by
modifying the methods of [20,21,41] for the compressible Navier-Stokes equations and
magnetohydrodynamic equations.

Let us begin with the following estimate on 1.
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LEMMA 3.1.  Assume Nyo<eqg. Then, for any T € (0,Tiqaz), it holds that

T
e (VO3 + Il v/pill3 + 1 Vdel13) + /0 1(v/P0, Vi, dee, Ady) |3t < C,,,,.

where C. depends only on R,cy,u, A\, k, P, and Tiaz-

max

Proof.  Applying w; (8,5 +div(u~)) to (1.2)7 and integrating over R3, it follows

2dt||\fu||2——/uj (0, P, +div(u8jP))dx+u/uj (9, Au; +div(uAu;))dz

+(pn+AN) /uj (0;divuy +div(ud;divu) ) dz

—/3 (M; j(d))s-tda — /8k w0 (M; j(d)))ijd =: ZJ“ (3.1)

where M; ;(d)=0;d-0;d— 1|Vd|?6; ;. It follows from the Hélder, Young and Sobolev
inequalities that

Ji=— / [0, P, 4 0;div(uP) — div(9;uP)] dx
:/divu(Pt—i—div(uP))d:r—/an-@-uPdm
:R/divupédx—R/Vuj -Ojupfdx
<LV alB+Clpdl3+C [ 9267 Vulde
<EIVal3+CllofI3+Closl1 16ll§ I 7ul}
Sg\\Vﬂ\|§+C(1+|\P9||§+||V9||§+||VU||3),

where Proposition 2.1 was used. By virtue of integration by parts, we compute
J2:fu/(&aj(aiuj)tJrAuonVllj)d:p
:—u/(|Vﬂ|2—3iitjuk5k8iuj—amj&-ukakuj + Auju-Viy)de
:—u/(|Vu|2—l—(‘?iujaiujdivu—aiujaiukakuj—@-ujaiukakuj)dx
<—*HVU||2+C||VU||4

In the same way, one gets

7(

A
Jy <= TN g2 1 o vl

For J; and Js, by integration by parts and the Holder, Young and Sobolev inequalities,
one has for n; € (0,1]

Js S/IVd||th||VﬂldxSCIIVdIIGHthlIsIIVﬂIIz < C|V2d||al[Vdell3 V2|3 [Vl
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<el|Val3+m Vi[5 +Cle,m) | Vdl3
> 2T tll2 »Th 112

where sup ||V2d||o <C guaranteed by Proposition 2.1 was used, and
0<t<T

I S/\UIIVdHVQdHViLIdwSCIIUIIGIIlelaHVQdIIaHVitHz <e|[Vall3+C(e)|V3dl3,

where Proposition 2.1 was used.
Substituting J;,4=1,2,...,5 into (3.1), one obtains after choosing ¢ suitably small
that

d . .

g\I\/ﬁUIlﬁJruIIVUII%
<Cmi[|V2de)l3+C(1+ o815+ VO3 + [ Vuli+ [ V2d]3) +Cm) | Vdel3.  (3:2)
Next, multiplying (1.3) by 6 and integrating the resultant over R? yield

Kk d .
§@||V9||§+cul\\f09||§

:—,«;/V&V(u-VG)dw—i—)\/|divu|29dx+%/|Vu+(Vu)t|29dx
. . 5
—R/p@divu&dw+/\Ad+|Vd\2d|29dx::ZKi. (3.3)
i=1

It follows from elliptic estimates, Proposition 2.1, and Gagliardo-Nirenberg and Young
inequalities that

V012 §c+c||ﬁéH%+C||ve||§+c/p292|vu|2dgc+C||Vu||ji+CHAd+\Vd|2dH;l
<C+C|lpb|3+C|IVO|3+CVul310]|2 +Cl|Vull i+ CllAd+|Vd[*d| 3
1 .
Sillwllip +C (1+11vpbl3 + V0I5 + | Vullz+ | Ad+ | Vd*d])3),
which implies
VO3 <C(L+|1Vo0l3+ VO3 + | Vull i+ | Ad+ [Vd[*d] 1) (3.4)

Moveover, by (1.4), the Holder, Young and Sobolev inequalities and Proposition 2.1,
one can get by the elliptic estimates that

IV2dll2 <ClIVde|l2+ V- Vdll2 + Cllu- V2d||2 + OV ||z + C||Vd|[V2d]|2
<O|IVde|l2+ C||Vullal|Vdl|s + Clull[|V*dll + C[IVallg + C[ Vd] s V]|

1 1
<C|Vdi|l2+C|Vulls+CV*dlI3 [|V3d]3 +C
1
<G IVPdlla+C 1+ [ Vdifla + [ Vula),
which gives

V|12 < C(1+[Vdil|z+ [ Vulla). (3.5)
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According to (3.5), one gets by the Sobolev embedding inequality and Proposition 2.1
that

|Ad+|Vd*d||3 < C(|Adl| 1 + VA% [ Vdl3) < ClIVdl| 32 < C(1+(IVde|l3+ (| VullZ).
(3.6)

Thus, (3.4), (3.6), the Sobolev and Young inequalities yield

K :—n/VH-V(u-VQ)dmgC/WH\ (1ul[V26] + | V| [V6])d
<C(IIVOlIsllullelV20l2+ I Vull2 [ VO]|6 ]I VE|s)
<C||Vull2I V0|3 [|V20]|3 <e[|VOl3+C(e) VO3
<Celly/pdll5+C(e) (L +[IVOl3+ IVulls+ [V |2)-

By integration by parts, it follows from the Holder, Young and Sobolev inequalities and
Proposition 2.1 that

Ko=)\ / (divu)®0pdz + X / (divu)?u-Voda

=\ ( / (divu)Qedx> —2X / Odivudiv(t—u- Vu)de + A / (divw)?u-Vodx
:)\( (divu) 9d:c> —2)\/0d1vud1vudm+2)\/9d1vu8 u;0; uldaz—&-)\/u V(G(dlvu) )da
SA( dlvu 9dfv> +C10]olIVull§ 1Vull§ (17l + [ Vull?)
g,\( dlvu 9dx> Va3 +C ) (1+ | Vulli+ | V6]12).

Similarly, one has

1o <5 ([ 1900k (V) s ) Vil COom) (1 Vu-+ 1 013).
Using Proposition 2.1 again, we get

Ky <Cllypblallv/pol|3 1011¢ | Vulla <ell/pbll3 +Cle) (1+IVOl3 + | Vull).-

At last, for K5, noticing that |Ad+ |Vd|?d|> =|Ad|* - |Vd|* and Ad-d=—|Vd|? guar-
anteed by |d| =1, it follows from the Holder, Young and Sobolev inequalities that

K5:/|Ad+|Vd|2d\29tdm+/\Ad+|Vd\2d|2u-V9dx
= </|Ad+Vd|2d|20d:c> —2/(Ad-Adt—4|Vd|2Vd;th)9dx
t
+/|Ad—(Ad-d)d\2u-V9dx
(/|Ad+Vd|2d|20dar> 72/(Ad~Adt+4Ad~dVd:th)0dx
t

+/|Ad—(Ad-d)d\2u-V9d:c
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< (120 vapapas) +ClollAdal Adls-+ Cladl Vol lolols
+ VOl Va2

<([1ad+IvdPapode) + 1T ATl IV dl] +ClAd: V01,
VOl V| 7]

< ( / |Ad+w|2d|29dx) Ay 34+ Cm) (1+ VO + [V3dl).
t

Now, substituting the estimates for K;,i=1,2,...,5 into (3.3) and then choosing & small
enough, we deduce that

d : .
a/q’dm“‘ch\/ﬁeH%§0(1+||V9||§)(1+||V3dH%+Hveﬂg)+C771||V”H§+C771||Adt||§

+CO||Vull; +C||Vd||3+C, (3.7)
where
‘I>::/<|V9|2—29()\(divu)2+%|Vu+(Vu)t|2+\Ad+|Vd\2d|2). (3.8)
On the other hand, applying 9; to (1.4), we have
dyt — Ady = (—u-Vd+|Vd|*d);.

It follows from integration by parts, the Sobolev and Young inequalities and Proposition
2.1 that

ST+ o M) = [ i~ A Pds
:/|(—u~Vd)t+(|Vd|2d)t\2dx
S/(|ut|2|Vd|2+|u|2|th\2+|Vd|4|dt|2+\Vd|2|th|2)das
< [ (4PIVa? +1uf? VupP Va)do+ vl

+C ([l + IV ARV dell2[[ Vo
1 .
< IAd3+CllalglI Va3 + CllullgIVul§ Val§ + ClI Vi3

1 .
< NAd5+ClIVal5+Cl[Vull§ +Cl V3,
which yields

d 1 .
Va5 +lldull3+ 51 A3 < CIVall3 + CVullg+ClIVdd|3. (3.9)

Thus, multiplying (3.2) and (3.9) by 771% and 771%, respectively, then adding the result
with (3.7) and choosing 7; suitably small, we finally obtain

d 1 1 . 1 1
20 [ (@407 [Vl 40 plal*)dw+ o | VpOl15 +n¢ [|(dus, Ade) 15+ i [Vl |3
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<C(L+[IVOI3) A+ (V23 +[VO]13) +C (I Vulli+ [ Vdell3 + [ Vel + [Vullg), (3.10)

where @ is given by (3.8).
Next, one needs to show the estimate of ||Vul|¢ in order to bound ||Vull4. To this
end, decompose u=v+w, where v satisfies

pAv+(u+A)Vdive =V P. (3.11)

According to Lemma 2.3 in [20], there exists a unique v(-,#) € D§ N D?2N D% satisfying
(3.11) and the following LP, p€[2,6] and L estimates for ¢t €[0,T7:

Vol <Cllpblp, (3.12)
and
IV0]|oo < C(1+1og(e+ [V (p0)llg) 1000+ [1p0]l2), a€ (3,6]. (3.13)
While, w satisfies
pAw~+ (p+A)Vdivw = pu+ Ad- Vd. (3.14)

By the elliptic estimates, it holds that
[Vwlle + [ V2wl]2 < Cllpil2+CllAd-Vd|s, (3.15)
and
IV2wlls < Cllpils+ClAd-Vdlle. (3.16)
Hence, by the Holder and Sobolev inequalities, it follows from Proposition 2.1 that
IVulle <Cllpfll6 +C|lpill2+ Cl|Ad- V|2
<C|[Vllo+ Cllpislls+C [Vl V2|3 | V2dl
<C|[ V6l +Cllpill2 +CIVdl. (3.17)
Thus, by the Young and Sobolev inequalities, one has
IVulli <CIIVullz|Vulls < C[Vullz+ | Vulls <C(1L+|[VOll2+ | Vil + [ Vdlz).  (3.18)
Substituting (3.18) into (3.10), we obtain

d 3 2 Iin02 312 3 2 b L2
2= [ (@4nf (Ve +ni plif”)dw+cullV/p0ll2 +ni | (dee, Ade) |2 + et [ V2
SCOAHIVOIR) A+ V5 +1IVOI3) +C(IIVpullz +IVdellz + Ve |5+ Vulg),  (3.19)

where @ is given by (3.8).
Now, we want to show the lower bound of ®. By the elliptic estimates, it follows
from (1.4), the Holder, Sobolev and Young inequalities that

IV2dll2 < C(IIVdell2+ V- V|2 +[|u-V2d||2 +[|[Vd V|2 + [[[Vd]Vd]|2)
<C(IVdell2+1Vull s Vlls+lulls | VZdl3 [V2dl|3 + [Vl + [IVdlls|[V2dll3 [IV2d]]13)

1
§1||V3d|||2+0(1+ IVdell2+ [ Vulls),



1480 GLOBAL SOLUTIONS TO NEMATIC LIQUID CRYSTAL SYSTEM
where we have used Proposition 2.1. By (3.17) and the Cauchy inequality, it holds that
. 1
IVulle < C(1+ V0|2 + [lpill2) + 7 1V7dll2.
Combining the above two inequalities, together with (3.18), lead to

IVulls +[V2dll2 < C(1+[IVOll2+ | pillz + [ Ve 2). (3.20)

Thus, from the definition of ®, (3.20), the Young and Sobolev inequalities, one deduces
by Proposition 2.1 that

1 1
2 [ (@0} plaf +0f [V do
3 1 3 1
>25|VO|[5 — Cl0ll6 ||Vl 3 | Vullg —Clolls] Adll3 [Adlg —Cl0lle] V]|
1 1
+2 [ (nholaf+nf |V ) do
>3 Ve —c(14 |V V3dlls)+2 | (nfplaf2 442 (Vd,|?)d
25Vl (1+[Vulle+IV3d]|2) + it plal” +n¢ [Vde|” ) da
3 . 1 1
> S RIVOI = IVl + Vil + [ Vdll) +2 [ (nf plil? +0f (Vi) da
2 T2, 3 2
2 VOI )+ [ (nfpldf? 40 Vi) do. (3.21)
Finally, integrating (3.19) over [0,¢], and then using (3.21) and Gronwall’s inequality,

the conclusion follows. 0

As a straightforward consequence of Lemma 3.1, and using (3.20), we have the
following corollary:

COROLLARY 3.1. Assume Ny <eq. Then, for any T € (0,Tn4z), it holds that

(IVulle +[V2dll2 + [ Vd]|[V*d]|]2) < Cr,

naz?

sup
0<t<T

where Cr

mazx

depends only on R, ¢y, b, A\, K, Timaz and the initial data.
Then, we focus on the bound of 6.
LEMMA 3.2.  Assume Nyo<eg. Then, for any T € (0,Tiqaz), @ holds that
. T .
sup (Il +1V2018)+ | IVéIBar<Cr,.
0<t<T 0

where Cr

mazx

depends only on R, cy, N\, k, Py, and Tgz-

Proof.  Recalling (3.4), by the Sobolev inequality, Proposition 2.1 and Lemma 3.1,
in order to get this result, it remains to bound the term sup |\/pf||5. Applying the
0<t<T

operator J;+div(u-) to (1.3), by tedious computations dev_elt_)ped in the Appendix, it
follows

cop(B;+u-V)
=kAO+ k(divuA — 0;(0;u- V) — diu-V;0) + ()\(divu)2 + %|Vu+ (Vu)* \2) divu
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+ RpOO,u;Oyuy, — Rpédivu — Rpfdivi + 2\ (divae — Opu Oy ug )divu

—i—,u(aiu]‘ +8jui)(aﬂtj -‘raj’lli —8iukakUj — 8ju;€6kui)

+0y(|Ad+|Vd|*d?) +div(|Ad + |Vd[*d|*u). (3.22)
Recalling that |Ad+|Vd|?d|? = |Ad|? —|Vd|* and Ad+|Vd|?d=Ad— (d-Ad)d guaran-
teed by |d|=1, one has 0;|Ad+|Vd[*d|* =2Ad- Ad; —4|Vd|*Vd:Vd,;. Thanks to this,

multiplying (3.22) by 6, using integration by parts, Proposition 2.1, Lemma 3.1, and
Corollary 3.1, we have

Cy d - -
AN RN

§C/|Vu|(|v29||9|+|V0||V9|)dw+/|Vu\2|é|(\Vu\+9)d:c
+C/p|é|2|Vu|dx+C/p0|Vu\|9|dx+C’/|Vu\|Va|\9|dx

+C/(|Ad||Adt||9\+\Vd|3||th||9|+|Ad—(d~Ad)d|2|u||V9|)dx
<C||Vulls(V20]|2110]ls + |V |l6 ]| VO]l2) + C|Vul 310l Vells +110]l6)

+C|Vullsllpbllz0lls +Cllv/oblI5 16116 11V all2ll6lls + Ol Vulls [ Vidll2 1616
+C|IAds]|Ade]12]10]l6 +CIIVAl[3 [ Vdell6|10]]6 + CllAdIIE w6 VO]l

K . . .
<SIVOIE+CA+ V0I5 +1VA0l5 +[IVall3 + [ Ad:3).

Thanks to (1.8), Lemma 3.1 and Corollary 3.1, applying Gronwall’s inequality, we arrive
at

T
sup ||/20I3+ / IVé|2dt<Cr,...,
0<t<T 0

which completes the proof. ]
Finally, a higher regularity on p is obtained.
LEMMA 3.3. Assume Ny<eq. Then, for any T € (0, Tynez), it holds that

sup ([lpll zrawre + [ V?ull2) < Cr,.,
0<t<T

where Cp depends only on R,cy,p,\,k, Py, and Tiaz-

mazx

Proof. By (3.13), Lemma 3.1 and Lemma 3.2, it follows
IVo]leo <Cr,

max

log(e+([Vpllq), q€(3,6]. (3.23)

Meanwhile, it follows from (3.15), Lemma 3.1 and Corollary 3.1, that

IVwlle +[V*wll2 < Clly/pill +CIVd]|3 [ VPd]; < Cr,

max °

(3.24)
Due to (3.16), Proposition 2.1, and Corollary 3.1, one deduces by the Sobolev inequality

that
IV2wlle <C([|Villa + [ V2d- V|2 +[|[V*d]?||2)
<C(IVill2+[Vdll3-) < ClIVill2+Cr,

max °

(3.25)
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Hence, by the Sobolev inequality, (3.24) and (3.25) give us
IVwlleo <C|Villl2 +Cr,.»
which combined with (3.23) implies

Vulleo <Cr.

max

log(e+[Vpllq) +C[[Viill2, q€(3,6].
Applying the elliptic estimates to (1.2), one has for 2<p<gq

IV2ull, <C(llpill, + | Ad- V|, +[|VPl|)
Cllpillp+1AdllplVdlloo + 110V Ol + 1V 0ll)
Clllpilly+1Vdllzz + V0] 2 + [V pll16]]o0)
CA+|pill, +Vollp)

<
<
<
SOT (L [IVall2 + [ Vollp),

(3.26)

(3.27)

where Proposition 2.1 and Lemma 3.2 were used. On the other hand, some straightfor-

ward calculations show that, for 2<p<gq
d
Vel <COA+[Vulloo) Vol +ClIVEull,,

which together with (3.26) and (3.27) yields

%Ilvpllp < O (1 10g(e+[[Vpllg) +[Vill2) Vol +Cr,
Set
fW)=e+[IVplly and  g(t)=1+[[Vil2,
then

& (1) < Oy 1)1 (1) 08 1 1).

(3.28)

A+ [Vallz+1Vellp)-

By solving the above ordinary differential inequality and using Lemma 3.1, one gets

sup [[Vplly < Cr,...
0<t<T

Combining (3.29) with (3.26) yields

T
/ IVulZdt<Cr,...
0

(3.29)

(3.30)

Choosing p=2 in (3.28), it follows from Lemma 3.1, (3.27), (3.30) and Gronwall’s

inequality that

sup [|[Vpll2 <Cr,,,-
0<t<T

This together with (3.27) and Lemma 3.1 implies

SHETHV%HQ <C(lpillz+Vell2) +Crppe <Cr
t<

max — max .
0<
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Thus this lemma is proved. 0

As a direct consequence of Lemmas 3.1-3.3, and Corollary 3.1, we have the following
corollary.

COROLLARY 3.2. Assume that Nog<eq. Then, for any T € (0,Tpas), it holds that

OiltlgT(HWll?p +(V2u, /P, /90, V24,V de)[[3+ |l mriewra) < Cris

maz?

T
[ (Vi v i) i <
0

for a positive constant Cr.,  depending only on R, cy, 1, A, K, Pg, and Ty aq-

max

4. Proof of Theorem 1.1

Proof. Let (p,u,0,d) be the unique local solution guaranteed by Lemma 2.1.
By applying the local well-posedness, i.e. Lemma 2.1, inductively, one can extend the
(p,u,0,d) uniquely to the maximal time Tp,.x of existence. We claim that Tp,.x =00
and thus the conclusion holds. Assume by contradiction that Ty, <oo. Let g9 be as
in Proposition 2.1 and assume that Ny <eg. Then, it follows from Proposition 2.1 and
Corollary 3.2 that for any T € (0, Tinax)

Sup (”P”WWOHI (t)+ 11 0) | 3= (8) + 1Vl 122 () + 1| (/P8 /Pt 1 /P8) ||2(t))

<Cr,

max )

(4.1)

where Cr,_ . is a positive constant depending on Ti,.x and remains uniformly bounded

for any T < Tiax-
Let 6 be a sufficiently small positive number to be determined later and denote

(o, @0, 00,do) := (p,11,0,d) =T, -
By the regularities of (p,u,6,d) and (4.1), it is clear that

p0,00>0, po€H' nW4  \/pofy€ L?,

- . - 4.2
(i10,00) € DyND?, Vdoe H?, and |dg|=1, 4.2)

and
Bollwranm + 1|(@0,00) | papz + Vol 12 + [V oboll2 < Crpr - (4.3)

Since system (1.1)—(1.4) is satisfied a.e.in R3 x (0,T}ax) and recalling (4.1), one can
choose 9 such that

—,UAﬁo—(u—&-)\)Vdivﬂo—&—Vﬁo—Ado-VdNO:\/ﬁogl, (4.4)
kAo +Q(Vitg) +|Ado+|Vdo [*do|* = \/Foga, '
with
g1ll2+11g2l2 < O (4.5)

where

911=(V/PU)|t=Tppur—s, 2= (cor/p0+ Ry/pOdivu)|i—r,,,. s
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With the aid of (4.2)—(4.5), viewing Tiax — 9 as the new initial time, and applying
Lemma 2.1, there is a positive number 7T, depending only on R,c,,u,\,x, and Cr___,
but independent of d, such that the solution (p,u,0,d) can be extended uniquely from
time Tiax — 0 to another time Tiax — 0 +T%. By choosing § sufficiently small, it holds
that Tinax — 04+ T% > Thax- In other words, one can extend the solution beyond Ty ax, if
Thax s a finite number, which contradicts to the definition of Tj,.x. Therefore, it must
have T ,.x = 00, proving the theorem. 0
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Appendix. Calculations on (3.22). The details about the calculations on (3.22)
are given as follows. Applying the operator 9; +div(u-) to (1.3), from the definition of
material derivative, one has

o[04 (pB) + div(uph)] + 8, (Pdivu) + div(uPdive) — k[0, A0+ div(uAb)]
:% [0, (1051 +Oyu;|?) + div(u]dju; + 05w |*)] + A0y (dive)? +div(u(dive)?)]
+0,(|Ad+ |Vd|2d|?) +div(|Ad+ |Vd|>d|*u). (A.1)
By (1.1) and some straightforward calculations, it follows that
o[04 (p0) +div(uph)] = cop(6; +u-V0), (A.2)
9y (Pdivu) +div(uPdivu) = R [0, pfdivu+ pdfdivu + pfdivu, + pf(divu)?
+u-Vpbdivu + pu- Vodivu+ pou- V(divu)]
= R[pfdivu+ pfdivu, + pfu-V (divu)]
= R[pfdivu+ pfdivii— pfdiv(u-Vu) + pfu -V (divu)]
= R(pOdivu+ pfdivir) — Rp0dyuw Oy, (A.3)
— k[0, A0+ div(uAf)] = —k[A0 — A(u-V6) + div(uAb))]
= —K[A— A(u- V) +divuldf +u- V(AG)]
= —kAf — k [divuAg — 0;(diu- VO) — dyu- V;0)]. (A.4)
Similarly, for the terms on the right-hand side of (A.1), we also have
% [0, (10u: + D5u;|?) + div(u|dyu; + Oyu; 2]
= 11(0;u; + By, ) (04 + By Oy ) + %|Vu+ (V)| 2divu
+ pu- (O5u; +0;uy ) V(9ju; + Oiuy)
=L Vu+ (V) Pdivu-+ (i +0jus) (Gsi + Oyt — o — i), (A5)
and

M0y (diva)? +div(u(divu)?)]
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=2A(0;divu)divu + 2\ (u - Vdive)divue + A(dive)?
=2Xdivadivu — 2Xdiv(u - Vu)dive + 2 (u- Vdive)dive 4 A(dive)?
=\(divu)® + 2\ (divi — Opuy Oyuy, ) diva. (A.6)

Thus, (3.22) follows by combining (A.1)-(A.6) together.
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