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SHARP INTERFACE LIMIT FOR COMPRESSIBLE
NAVIER-STOKES/ALLEN-CAHN SYSTEM WITH SHOCK WAVE*

YUNKUN CHENT, BIN HUANG!, AND XIAODING SHI®

Abstract. In this paper, the sharp interface limit for the diffusion interface model system of immis-
cible two-phase flow called compressible Navier-Stokes/Allen-Cahn system is studied in one dimension.
The results show that, for the initial perturbations with small energy but possibly large oscillations
of shock wave solutions, and the strength of initial phase field is allowed to vary arbitrarily within its
physical meaning, then the sharp interface limit of the compressible Navier-Stokes/Allen-Cahn system
is the standard two-phase compressible Navier-Stokes equations.
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1. Introduction

Diffusion interface model is an important model to describe immiscible two-phase
flow. The advantage of this model is that it is convenient to describe the interface
motion between two phases, especially in numerical simulation. This model can capture
the motion of the interface by introducing the phase field function, which overcomes the
difficulty of interface tracking. However, due to the limitation of computing technology,
it is impossible to simulate the diffusion interface with thickness as thin as the actual
physical scale in numerical simulation. In fact, in the actual calculation, one often has
to choose interfaces that are much thicker than the actual physical scale. Therefore,
in order to ensure the accuracy of the simulation and to be able to compare with the
data of physical experiments, the sharp interface limit becomes extremely important in
immiscible two-phase flow dynamics.

Now we briefly review the establishment of diffusion interface model. Taking any
volume element V' in the two-phase flow, M; is assumed to be the mass of the components

in the representative material volume V, we define Xi:% the mass concentration,

0i= % the apparent mass density of the fluid i (i=1,2), p=p1+ p2 the total density,
and y =x1 — x2 the difference of the two components for the fluid mixture. y is also
known as the phase function or phase field. Obviously, physically speaking, formally,
—1<x <1, the region with x =—1 is occupied by one phase field and the region with
x=1 is occupied by another phase field, and the diffusion interface between the two
phases is described below

def

L. (t)= {xeR"| - 1<x(x,t) <1}, (1.1)

for any time ¢ >0, and T'.(¢) divides the whole domain R" into two separated domains
Q- (t) and QF () which represents the domains occupied by two phase fields respectively,
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more precisely

dcf dcf

Q- {XER”|xxt 1}, QF {XER"}th —1}

and
R"=Q_ (t)UT ()UQF (), Vt>0.

With the introduction of the above notation, the Navier-Stokes/Allen-Cahn (called
as NSAC) system is proposed by Blesgen [3] and Heida-Mdlek-Rajagopal [13] to describe
the compressible immiscible two-phase flow with diffusion interface, the one-dimensional
Cauchy problem model is as follows

pt+ (pu), =0, z€R, t>0,
1
(pu)e+ (pu” +p(p)) = v(e )um—in( e)(x3),  T€R, t>0, (1.2)
(X))t + (pux)z = —Lale)p, T€ER, t>0,
pr=p(x* = x) = 1(€) Xaz» z€R, t>0,

with the initial condition

(p’u’X)(x’O):(pOaUOaXO)<x)’ TER, (1-3)

and the asymptotic constraints on initial condition

mgm (p(),anXO)(x):(p:tau:tail)v (14)
where the unknown p(z,t) is the total density, u(z,t) the mean velocity, x(x,t) the
concentration difference of the immiscible two-phase flow, respectively. pu(x,t) is the
chemical potential, and p=p(p) the pressure. py >0,ur are the given positive con-
stants. €>0 is the parameter. 7(e) represents the gradient energy coefficient related
to the interfacial width, L4(€) the phenomenological mobility coefficient related to the
speed at which the system approaches an equilibrium configuration, and v(e) the vis-
cosity coefficient for the immiscible two-phase flow respectively. In this paper, these
parameters satisfy the following relationships:

v(e)=e, Ld(e):%, n(e)=e>. (1.5)

Moreover, we assume that initial phase field x( satisfies the following physical assump-
tion

—1<yo<1. (1.6)

REMARK 1.1. The physical meaning of hypothesis (1.5) is that, the diffusion coefficient
of the phase field decreases with the increase of viscosity or the thickness of the interface
for the immiscible two-phase flow. What we notice from mathematical model (1.2), the
interface between different fluids is a thin layer determined by the phase field y, i.e.
T'c(t). This thin layer can essentially be thought of as being caused by a chemical
potential (u) imbalance. Following the conclusions in Heida-Malek-Rajagopal [13] and
Lowengrub-Truskinovsky [16], the generalized chemical potential p is defined by

(1.7)
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where f is the phase-phase interfacial free energy density, and satisfies

o 1
Floo, V) &

La—ep+ Koy, (19

substituting (1.8) into (1.7), (1.2)4 is achieved.

For the convenience of analyzing density and velocity, the Lagrange coordinates are
introduced. Without losing generality, we still use (z,t) to represent this coordinate
system

(z,t)
t=t, z= pdx — pudt. (1.9)
(0,0)

Letting v— = by using (1.5), the system (1.2)—(1.4) can be rewritten as follows:

v —uy =0, reR,t>0,
ut+pm(v):e(%)zf ;(X—g)x, zeR,t>0,

th—glh xR >0, (1.10)
,u:(XB—X)—ez(&)z, r€eR,t>0,
(v,u,x)(x,0) = (vo,u0,X0)(z), zER,

with

hm (’UO,UO,XO)(JI):(Ui,Ui,il), _1§X0§17 (111)

r—+

here vg= -+, vy =-1. Formally, as the parameter ¢ — 07", the interface thickness of
Po Pt

two-phase flow tends to zero, and the system (1.10) tends to the following standard
two-phase compressible inviscid Navier-Stokes equations:

vi—u, =0, in QF(¢),

ug+pe(v) =0, in QF(t), (1.12)
x==+1, in QF (),
where for fixed ¢t >0,
def def

Q- {xER’X@"t 1}, Qr {xER‘th 1}

and
L) ER\{Q(HUQT ()},  measT(t)=0.

The diffuse-interface model (1.2) for compressible immiscible two-phase flow has
been studied extensively, both theoretically and numerically. In all of these works, the
sharp interface limit to the diffusion interface model of compressible immiscible two-
phase flow was an open and challenging problem. Even for the smooth solution, there
is almost no rigorous analysis work.

We briefly review the recent analytical and computational work on compressible
Navier-Stokes/Allen-Cahn system. The global existence of finite energy weak solutions
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in 3-D is established for the adiabatic exponent of pressure v > 6 by Feireisl-Petzeltova-
Rocca-Schimperna [12], this result was subsequently generalized to v > 2 by Chen-Wen-
Zhu [10]. The existence and uniqueness of strong solutions are obtained by Kotschote
[15], Ding-Li-Lou [11], Chen-Wang-Xu [9], Chen-Guo [8], Chen-He-Huang-Shi [4]-[5],
etc. The generalized Navier boundary condition and the relaxation boundary condition
are established and discussed by Chen-He-Huang-Shi [6]. The large-time behavior of
strong solutions to the Cauchy problem with small perturbations for the perturbation
near a particular initial phase field in 3D was discussed by Zhao [25], and the stability
of the rarefaction wave, contact wave, and stationary solution were investigated by
Yin-Zhu [24], Luo-Yin-Zhu [17], and Luo-Yin-Zhu [18]. More recently, Chen-Hong-
Shi [7] have extended the result of [25] to the general case which allows the strength of
initial phase field to vary arbitrarily within its physical meaning. Compared with the
well-posedness of the solutions, there are few results for sharp interface limit problem,
and the results mainly focus on numerical analysis. Witterstein [23] points out that,
formally, the sharp-interface limit of compressible NSAC system is the standard two-
phase compressible Navier-Stokes equations.

The motivation of this paper is to explore the sharp interface limit for compress-
ible NSAC system. Considering the complexity and difficulty of this problem, we first
analyze the disturbance near the shock wave solution. By introducing the scaling trans-
form, we know that the sharp interface limit problem is equivalent to the large-time
behavior of the solutions, the details are as follows. Without causing any confusion, the
coordinate system, after the transformation, we still call it (z,t):

t
e=2, = (1.13)
€ €

then the system (1.10)—(1.11) can be rewritten as the following:

vy — U, =0, reR,t>0,
Ug 1, y2
ut+p$(v):(7)l—§(%)m,xeR,t>0,
Xt = —Vfh, reR >0, (1.14)
=0 =) - (35, TR, >0,
U,u,x)(m,O)=(U0,u0,X0)(a3), .Z'GR,
with
gr:il (vo,u0,X0) () = (vg,ug,+1), —1<xo<1. (1.15)

Without loss of generality, p(v) is assumed to be a smooth function of v satisfying

P'(v)<0, p"(v)=0, p"(v)ZO0. (1.16)
and vy,uq satisfy the following entropy conditions
1 1
po=—>pr=—2>0, u_>uy. (1.17)
v_ V4

The left state (v—,u_) and the right state (vy,uy) are connected by the 2-shock with
the speed s> 0, where s is determined by the following R—H conditions

{s(v+v_><u+u_>o,

—s(uy —u_)+p(vy) —pv_)=0, (1.18)



YUNKUN CHEN, BIN HUANG, AND XTAODING SHI 1491
and has the following expression

oo |_Pl+)—p(o-) (1.19)
vy —v_

Now we begin to give our main results. Considering the following Riemann problem
for Euler system

Ve —Up =0,

v_,u_), <0, .
()0 = )

(vy,uy), >0,

Note that the eigenvalues of system (1.20) are Ay =—+/—p'(v) <0, Ay =+/—p'(v) >0,
from the entropy condition (1.17), one has

0<A2(vp,uy) <s<Ag(v_,u_). (1.21)
The strength of initial specific volume vy is defined below
01=|vy —v_|. (1.22)
From the theory of hyperbolic equations, we know that the unique entropy solution
(v¥,u®) of (1.20) is

v_,u_), xr<st,
( ) (1.23)

(vs,us)(x,t):{

(vg,uq), T > st.

As we know, the 2-viscous shock wave of the Cauchy problem for Navier-Stokes system

v — Uz =0, reR,t>0,
ut+px(v):(%@)m, zERL>0, (1.24)
(v,u)(x,0) = (vo,up)(x), rER,

has the form (V,U)(z — st) which connects (v_,u_) on the left and (v4,u4) on the right
uniquely up to a shift and satisfies

—sV, —U, =0, yeR,

U,
—sUy+p(V)y=(37),» yER, (1.25)
ygrj?oo(v,U) = (’Uiﬂ.l,i),

where t =t,y=x — st. The existence and decay properties of this 2-viscous shock wave
is given below

LEMMA 1.1 (cf. Matsumura-Nishihara [19]).  Assume that (1.16),(1.17)—(1.19), there
exists a unique smooth solution (V,U)(y) of the system (1.25) up to a shift, and satisfies

V=L o) + 520 V) (V)]
O<Vy§v—+(p(v_)+52v_), (1.26)

s
U, =—-sV, <0, v <V <wy.
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Moreover, there are positive constants c such that

IV (z— st) — vy | = O(1)5 e~ cx0tlo=st]
|U(£E*St)*Uj:|:O(l)élefci&lx*st\’ (1.27)
|Vy7Uy| = O(l)(s%e*ciél\wfst\ )

For the convenience of obtaining derivative estimates of v, similar as He-Huang [14]
and Vasseur-Yao [22], the following effective velocity is introduced, which was proposed
by Shelukhin [21] and Bresch-Desjardins [1], [2] to obtain the entropy estimates.

v V,
M) =u—"2,  H(y)=U-L. (1.28)

Substituting (1.28) into Equations (1.14) and (1.25) respectively, we have

vtfsvyfhy:(%)y, yeR,t>0,

1,x2
he = shy+py(v) = =5 (23)y: YyERE>0,
Xt — SXy = —UfL, yeR,1>0,

X
M:(X3_X)_(Ty>y7 y€R7t>07
(v,h,x)(y,O) = (’UOahOvXO)(y)a yeRa

(1.29)

and

v
{W_Svy_Hy:(‘;)y’yeR’ (1.30)
H,—sH,+p,(V)=0, yeR,

with

lim (vo,h0,x0)(y) = (v+,us,+1),  lim (V.H)(y)=(v+,uz), (1.31)

y—too y—+oo

where hg=ug— % The antiderivatives are defined as follows

<I>(y,t)d:d/y (v(z,t) =V (z+a))dz, \I/(y,t)d:ef/y (h(z,t)—H(z+a))dz, (1.32)

and
‘bosz(y,O):/j (vo(z)fV(quoz))dz,\IlO:\I'(y,O):/iy (ho—H(z+a))dz, (1.33)
where the shift « is
+oo
o=t [ () - VW) (1.34)
V4 V- J_so
and then
+oo “+oo
| ) -virady=o, [ (h(o)~Hy+a)dy=0 (1.35)

Suppose that
®o, Vg€ L*(R), (vo—V,hg— H)€ H*(R)NL*(R), x2—1€ L*(R), xo0. € H*(R), (1.36)
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and
i%fvo>0, Ixo| <1, on R. (1.37)

THEOREM 1.1.  Assume that (1.33)-(1.37), then there exists a positive constant §,
such that if

(@0, %0173 2y + 1 X0 112 ) G = Ll 2 gy -4 = | <8, (1.38)
the Cauchy problem (1.14)-(1.15) has a unique strong solution (v,u,X) satisfying
(v=V,u—U) €C([0,400); H*(R)), x*—1€C([0,400);L*(R)),
Xo €C([0,+00); H*(R)), Xz € L*([0,+00); H*(R)), (1.39)
v—VELQ([O,—&—oo);H?’(R)), u—UGLZ([O,—i—oo);HQ(]R)),

and —1<x<1. Moreover

tiigrnoo | (v(z,t) = V(z—st+a),u(z,t) - Uz —st+a)) HLOO(R) =0, (1.40)
and
tii?oc||xz’1||w(ﬂ%>:0' (1.41)

THEOREM 1.2.  Assume that (1.33)-(1.37), then there exists a positive constant §,
such that if

(o, %0) 2y + 13 — L sy +vs —v-| <6, (1.42)

the Cauchy problem (1.10)-(1.11) admits a family of global smooth solutions (v,u,x) and
the following sharp interface limit holds

51_i>%1+ H(U—Us,u—us,XQ—l)

HLDO(Eh) =0, (1.43)

where

Zh:{(x,t)‘|x—st|2h,h§t§+oo},

for any positive constant h>0, and (v®,u®) is the entropy solution of (1.20) with the
expression (1.23).

REMARK 1.2. Theorem 1.1 allows the initial phase field to oscillate between =+1,
therefore, it can be used to explain the phase separation phenomenon.

REMARK 1.3. Theorem 1.2 shows that the phase field jumps and phase separation
occurs as the interface thickness approaches zero. Theorem 1.1 and Theorem 1.2 show
that, under certain conditions, the sharp interface limit is consistent with the large-time
behavior for compressible immiscible two-phase flow.

We now make some comments on the analysis of this paper. One key issue that needs
to be addressed is to obtain the higher-order derivative estimate of the specific volume
v, this difficulty arises due to the strong coupling between v and x in the compressible
NSAC system (1.10). The key to solving this problem is that, the effective velocity h
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(1.28) is introduced, so that the hyperbolic equation (1.14); becomes parabolic equation
(1.29)1, and this makes it relatively easy to obtain higher-order derivative estimates of v.
Another key issue that needs to be addressed is that what we consider here is the shock
wave perturbation of specific volume v and the velocity field u, while the phase field is
the perturbation near the phase separation of immiscible two-phase flow, the stability
analysis of the former requires anti-derivative method, while the latter does not, this is
bound to face the disunity of analytical methods. To overcome this difficulty, we adopt
the method of using the antiderivative only for v and u, while keeping the phase field
x unchanged. The last key point to resolve is that the initial value of the phase field
varies between 41, and such large amplitude of initial phase field make it difficult to
obtain the energy estimates. Fortunately, the estimate (2.15) is observed, from which
we get the uniformly bounded estimation for ||x? —1]| r2®)- Therefore, the strength of
the phase field can vary arbitrarily in its physical meaning.

Notations. Throughout this paper, L? denotes the space of measurable functions on
. . . 1

R which are square integrable, with the norm || f[| = ([ | f[*dy)=. H'(1>0) denotes the

Sobolev space of L*-functions f on R whose derivatives @7 f,j=1,--- are L* functions

too, with the norm || f||;= (32 _o 193 £1|?)%.

2. The Proof of the Theorem
Subtracting (1.29); 2 from (1.30)1 2 and taking the antiderivative, one has

1 1
@t—Séy—\I/y—V(I)yy+W%q)y:F7 y€R7t>0,
1 X
U, —s¥ 'V, =G —=—4L R,t>0
t S yJFp( ) Yy 2(V+(by)27y€ ) > ) (21)
Xt =Xy =—(V+0y)p, yeR,t>0, '
3 Xy
= —x)— : ER,>0,
p=(x"=x) (VJF% , y
(q)7\I/aX)(y’O):(¢)07\I/07X0)(y)3 yeRv
with
lim (¢07\I/07X0):<0707i1)3 _1§X0§17 (22)
Yy—r—+o0
where
1 1 1 1 1
F:(f——><1> (f—f —<I>)V,
T A TR T R A O (2.3)

G == (p(v)=p(V) =P (V)(0=V)).
For any given m,M >0, we define the solution space X,, (0,7 as follows

Xoar(0,7) :{(<I>,\I/,X)’(\If,<b) €C(0,T; H?), 2~ 1€ C(0,T;L?), x, € C(0,T; H?),
sup (|1(®, )3+ [Ixyll2+ X () = 1) < M,

te(0,T)

inf ) >m>05. 2.4
yER,ltIé(O,T)U(y )_m } ( )

PROPOSITION 2.1.  Assume that (1.5), (1.16)—(1.19), (1.32)-(1.37). If

1(@o, Wo)lls + [[x0y ll2 + x5 — 1l < M, (2.5)
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and

inf <V+<I>oy> >m>0, (2.6)

then there exists T* small enough, such that, the Cauchy problem (2.1)-(2.2) admits a
unique solution (O, ¥, x) GX%’gM([QT*]), satisfying

t
@B+ =11+ I+ | (1 5+ 19 + ) ar

<C (11(@o, %0) I3+ Ixd = 1112+ Ixo 1) (2.7)
and
-1<x<1, (2.8)

where C' is the positive constant which may depend on (v_,u_).

Proposition 2.1 is the conclusion about the existence and uniqueness of local solu-
tions for the system (2.1), it can be can be proved by the usual linearization method
and the fixed point theorem, the details are omitted. In order to obtain the existence
of global solution, we will establish the a prior estimates in Proposition 2.2 as follows.
From the definition (2.4), choosing M small enough, called as &y, by using Sobolev
embedding theorem, there exist mgy >0, such that

3 5
0< v _<V+d,<-v_, inf  3x>—1>my>0. .
1= + v=3" yeR,lf,Ié(o,T) X =1mo (2.9)

Thus, the space X, as can be simplified as follows
X5, (0,1) ={ (@, 9,)|(®, W) € C(0,T; H?),x* ~ 1 € C(0,T; L), x, € C(0, T3 H?),

sup (I[(@,®)lls+ Iy ll2+ I = 1) <o }. (2.10)
te(0,T)

)

PROPOSITION 2.2.  Suppose that (P, ¥, x) GX(;([O,Jroo)) is the solution of the Cauchy
problem (2.1)-(2.2) for some T >0, there exist the positive constants &g independent of
T, such that if

1(®@0, Wo) I3+ [Ix0y ll2+ 1x5 — 1l + vy —v—| <o, (2.11)
it holds that

+oo
1@, @)+ D0 = 1+ ey (13 + Jy ™ (19413 + 19 13+ Iy 13 dr

) ) ) ) (2.12)
< C(11(@0, Wo) I3+ I3 = 1112+ Ixoy13)

and

oo 2 2 2
I ||+ | 1 1P|+
< C(11(@0, o) I+ I3 — 112+ l1xoy 13

(2.13)

where C' is the positive constant which may depend on (v_,u_) but is independent of
T.
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The proof of Proposition 2.2 is given below, which is divided into the following
lemmas.

LEMMA 2.1.  Suppose (®,VU,x)€ X5(0,T) is the solution of system (2.1), then, for
t€[0,T1], the following inequalities hold

Ix(z,t)] <1, Y(z,t) € (—00,400) x [0,T], (2.14)
and

1@, =1 O+ fy (124112 + /T W2+ 12+ I = 112 ) dr (215)
< C||(®0, W0, x3 V)| +C fy | @y, |1 %dr,

where C'is the positive constant which may depend on (v_,u_) but is independent of T

Proof. By using the maximum principle for parabolic equation (see Lemma 2.1
in [20]) and (2.9), one obtains

X’ <1, (2.16)

which yields (2.14). Multiplying (2.1); by @, (2.1)2 by —p,‘(ll—v), (2.1)3 by x® —x, adding
them together, one has

G B L P2 T0e-12)

?*2;9/(1/)+ 4 2wV) 2 V4

s p'(V
= (O =), +6BX7 =D +(V +2) (x* —x)° +V<I>f, (‘D(();QV@/‘I’Q
Vy+yy 2 1 X?QJ v G
— Yty S R A S - 217
vie, TS ey T ) (247

Integrating (2.17) over (—oo,~+00) X [0,t) by parts, one gets

/m(@z p\/P(QV)Jr(XQ;” )dyt+/_:o(3x 1)\ dydr

+oo 2 N, V +(I)yy Qv
// V+<I)) W)~ V+o, XyX(X* = 1)+ F® - UG )>dyd7'. (2.18)

Since

1 1 1 1
|F| ’(v V)(I)yy"‘(g_V""ﬁq)y)Vy’

<C (12,1, + 1V, 12, ?)
<C(1®y 1@y, |+ 02~ |0, 2), (2.19)
and

2
|G| <CPy, (2.20)
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combining with (2.9) and (2.4), one obtains
t “+o00 t t —+o00
‘/ / F(IDdydT‘gCéf (||<I>y||2+\|q>yy||2)d7+ca’f/ / eI ||, |2 dydr
0 J—o0 0 0 J—o0
t t 400
<05 [ (12,1 + |9 P)dr+Cost [ [ e, Payar
0 0 J—o0
t t
SC5/0 (||‘I>y||2+H‘I)yy||2)dT+C5051/0 (19”41 @y, |*) dwdr

t
<08 [ (1, +12,]) (2.21)

L5

Moreover, by using (2.9) and (2.4) again, one gets

and

’<05/ @, ||2dr. (2.22)

t 400 X2 \I/ t )
v d dT‘ <05/ dr, 2.23
]/0 /_Oo s ] <6 [l (2.23)
and
+°°V+<I>yy
‘// Vo, L Y x(XP )dydT‘
t t
<5 [ wlearscn [ -xarc [ ot (224

From (2.21)-(2.24), combining with Lemma 1.1, choosing d;, and ¢ small enough, (2.15)
is achieved. Thus, the proof of Lemma 2.1 is completed. 0

LEMMA 2.2.  Suppose (®,U,x) € Xs(0,T) is the solution of system (2.1), then, for
t€[0,T7], the following inequality holds

t
1@y ) O+ [ (12 P12+ ) r
0

SC(H(¢0y7\1’0y7><0y)HQa (225)

where C' is the positive constant which may depend on (v_,u_) but is independent of
T.

Proof. Multiplying (2.1); by —®,,, (2.1)2 by —%7 (2.1)3 by Xxyy, adding them
together, one has

o2 2 5P v, sU G
LV 4y2 — 0D+ D, Ty + — L XXy — e
(5 2p,(v)+xy)t+( R A T BT e p,(v))y

o7 V)V,
(V4 2)0F 20) +HV+2)EC - DG+ + 2+ LU

qu)q) 1

1 /
=F®,, — V2 (W)yp (V)q)y‘yy - W

Gy,
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Vy+@yy
_ (Ver‘I)yy)(X?’fX)Xy WXyny (2.26)

Integrating (2.26) over (—oo,~+00) X [0,t) by parts, one gets

+oo (1)2 \I/z +oo
/ (—— 5 (V / / (V+o,) 3X )X dydTt
+oo 7
yy sp ( Vy g2
W2 | dyd
// [+ e v
—+00
1
= F<I> y<I> o,y Ve, v, — ——G,¥,|dyd
[ o et () st st

+oo V-l—@
/0/ [ = (Vi +@4) (¢ = X)X +nyxyy}dydf (2.27)

Noting that (2.4), (2.19)-(2.20), one has

t ptoo V. t t
’/0/ (Fq>yy—v—gq>yq>yy)dyd7’§05/o ||<I>yy||2dT+C/0 |®y|1dr,  (2.28)

and
t ptoo )
’/ / [* )yp’(V)fby\IfnyGy\py]dydT‘
/o/m;y‘lﬂdyd”/ 1yl dT+C5/ 19,12+ Wy, 12)dr.  (2.29)
Moreover,

t +oo V+(I)
[ 00— on g v

1 t 1 t t
<5 [ ol oo [y dr e €6 lo—o)) [ -xlPar. (230)
0 v+ Jo 0

From (2.28)-(2.30), combining with Lemma 1.1, choosing 4, and |v; —v_| small enough,
one obtains

+oo “+o0
/ (®2+\I/2+Xy dy+/ / <I’2 +V, \I/2+ny+xy)dyd7'

+oo +oo
<C/ 0y + Y0, +x8y)dy+c/ / o) dydr. (2.31)
0 J—oo

Combining with (2.15), choosing ¢ small enough, one gets

t
1@ %) O + [ (190 1T, P+ s 2
§C||(®0y7\110y7>(0y)||2' (2.32)

Multiplying (2.1); by ¥,, differentiating (2.1); with respect to y, and multiplying the
result by by @, adding them together, one has

2
w2 =(@W,),+ ((p(v) - p(V)) 2 — 50U +I(V(Kg))
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®,,U 1 Pyx;
— —p(V))®, - Y _Fy, - IV 2.33
(p(v) p( )) Yy % U V+,)2 ( )
integrating (2.26) over (—o0,+00) x [0,t), by using (2.32) and Lemma 2.1, then, (2.25)
is achieved, and the proof of Lemma 2.2 is completed. 0

LEMMA 2.3.  Suppose (®,U,x)€ X5(0,T) is the solution of system (2.1), then, for
t€[0,T7], the following inequality holds:

t
1(@yys Ty xyy) O+ Jo (1 Pyyy > + 12y I* + 1 xyyy 1) dr

2 (2.34)

< CH q)Oyya\I]OyvaOyy)’

where C' is the positive constant which may depend on (v_,u_) but is independent of T'.

Proof. Multiplying (2.1) by v)7
respect to y twice respectively, one has

)

differentiating the resultant, (2.1), (2.1)5 with

Pyt — 5Pyyy — Wyyy — (%‘I)yy) ( Vy® ) =Fy
(zﬁwt)yy_s(z%)yf@yyy:( )yy %( v+<1> ))yy’ (2.35)

Xtyy — Snyy—_((V+‘I’y)ﬂ)
=0 ) - (V+<I> )

Multiplying (2.35)1 by ®yy, (2.35)2 by —¥y,, (2.35)3 by Xxyy, adding up these results,
one obtains

)

vy

1 1 X2 1 sp’ (V)Y
7@2 _ \112 vy ) 7@2 Y \I}2
(2 v (V) VY + 2 /. + Vo uwy + 2p2(V) yyy
2
SXyy

2 2
( sWyy 5P Pyy

20/ (V) 7%7 (T)yq)yy*q)yy‘l'yy + ((V+ q)y)”)yny *Fy@yy)y

(p’ (1V) ) yyp/ (V)‘py ‘ijy

— 2<ﬁ)y (p’(V)q)y)y\I/yy * p/(IV) <(Vj'<q)y)2 )yy\l’yy

- (Vy + ‘I)yy)(X3 - X)nyy + (Vy + (I)yy) [(

2

1 2 GyyV

=—F ® +(7) I Jr(i) @2 Yy *yy
Y FYyyy Vyyyyyy Vyy yy p()

2

Y

1 nynyy}
Vo, )Xo Xy + Vo,

1
—(V+ (I)y)(?’X2 - 1)Xynyy +(V+ (I)y) (V + o, )yyXynyy

+2(V+<I>y)( (2.36)

1
m)ynyny%

Integrating (2.36) over (—oo,+00) X [O,t) by parts, one gets

00 2 2 oo 2
G S S [ [ S T i
2 2p 2p/2(v) yyy

—+oo +oo 2
/ / F, (I)yyydyd7+/ / yyy Dy Dy + (V)yyéiy} dydr

Aﬁﬁ#wAum

yp/(v)q)y\l'yydydT
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_z/ot/j:(p,(lv) (' (V)o, \Ilyydyd7+/ /m Yy (X 5),, dydr

V+<I> v)?
e 3 2
_// [(Vy+q)yy)(X = X)XyyydydT +(V + &) (3x _1)Xynyy}dydT

400
1 Xyy Xyyy
+// (Vy+Pyy) [(—5) , XuXyuy + T2 | dydr
0 . Yy vy [(‘}+¢)y)y YAYYY ‘/_|_(D ]

e 1 1
+~/0 /Oo [(V"‘(I)y)(m)yyXynyy+2(V+(I)y)(m)ynynyy]dydT'

By using
1 1 1

| y|—‘ (I)yyy+( V"‘Wq)y)vyy

1 1 1 1 1
[(W—?)%yﬁ-(ﬁ—E)Vy—ﬁ%y}%y
1 1 1 1 1
+[(W vg)‘bvu+(vz ;"'W@U)VU}VU
< (10,1 @yl + 1Dy 2+ 102+ 12,242, (2.37)

making use of (2.4), (2.37) and Sobolev’s inequality, yields

t —+oo t +oo
/0/ chbyyydydr’gCé/O/ (1@ 124+ (| @y |12+ | @y 1) dr
+o<> 2 +oo
‘// lw@¢w+w%ywdwﬂ<q// (19, 112, ) dr
e Gy"/ yy 2 2
dydr <C§ H‘I) [ "‘H‘I)yu” ‘*‘H‘I)yyy” )
C e SOV, |
[L[m(ﬂv)<ﬂWﬁw;%mwﬂg 4MOUW+CA(@A4H%N)M
t +o00 t
] o) 02,0 dvir| <C [ (1,12 0,2+ ,)%)dr
0 . p/(v) Yy Y=y — 0 Yy vy Yy

[ (), v

t
§CA<MN%WMA%M+§AHMWWM,

—+oo
’/ / V +Pyy) ( = X)Xyyydydr +(V + @, )(3 1)Xynyy]dydT’

, 1/t
<¢ [ =i+ b+ [ o lir

Hoe 1 XyyXyyy
’ ) (VyJF‘I)yy)[(m)yXynyer Vo, }dydr
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e 1 1
+/0 /OO [(V+(I)y)(m)yyXynyy+2(V+(I>y)(m)ynynyy]dydT’

t t
1
SCA (||XyH2+Hny”2)dT+§/O ”nyszdTa

combinations of the estimates above and Lemmas 2.1-2.2, under (2.10) and choosing 47,
¢ small enough, one has

t
(@4 Ty x) (D2 + / (1@ 12+ 1/ Vy @y 12+ g |12 dr
0
SCH((I)Oyyv\I'OyanOyy)||2~ (2-38)

Multiplying (2.1)1 by ¥,,,, combining with (2.1), we get

P, 1 x;
\1’32111 :((I)y\l'yy>t + (“bt\l}yy TV, Wy, + ( Vv ) Wy + ( W)yq)y)y

d 1 X
+ (p(0)=P(V),, @y = (1), Ton+ F s — (5 m)y% (2.39)

making use of (2.38), (2.4), and Sobolev’s inequality, yields

t
L 1w ar <ci@ovoxoli, (2.40)

combining with (2.38), (2.34) is achieved, and the proof of Lemma 2.3 is completed. O

The estimates of the third derivative are given by Lemma 2.4 in a similar way, the
details of the proof are omitted.

LEMMA 2.4.  Suppose (®,¥,x) € X5(0,T) is the solution of system (2.1), then, for
t€[0,T7], the following inequality holds

t
1@y Ty X)) ()12 + / (1412 + [ Ly 12+ Xy 1) dr

SC”(@Oyyy’q’Oyyy’XOyyy)W» (2.41)

where C' is the positive constant which may depend on (v_,u_) but is independent of
T.

Now only (2.13) remains unproved in the proof of Proposition 2.2. To do this,
differentiating (2.1); twice with respect to y, multiplying it by ®,,, and integrating the
resulting equality over R with respect to y, one obtains

1d ) oo 1
5@”‘1)3;11” =- (‘I’yyq)yyyder(Vq)yy)yq)yyy>dy
—+o0 1 +oo
+ / (vsvue ) Byyydy— | Fy®yyydy. (2.42)

Then, by using (2.12), we have

/ |21y 7] < Co(I(@0, W) B+ DG -1+ oy ). (248)
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Similarly, (2.1)2 3 and the estimate (2.12) give us

teod d
L G0l Gl |r < Coll (@0, w3+ G - 1P+ o). (249

And therefore, (2.43)-(2.44) yield the a priori estimate (2.13). The proof of Proposition
2.2 is completed.

Proof. (The proof of Theorems 1.1-1.2.) Combining with (1.28), by using
Sobolev inequality, the asymptotic stability of the solution is obtained

lim ||y, Wy x* = 1] o ) =0, (2.45)

t—0

i.e. (1.40)-(1.41). Thus, the Theorem 1.1 is achieved. Further, the sharp interface
limit (1.43) is a direct consequence of the Theorem 1.1. Note that due to the scaling
transformation, only small energy disturbance is required for the initial conditions, and
no restriction on oscillations of the initial data are needed. Moreover, the constraint
h>0 in (1.43) is necessary, and then, the proof of the theorem is completed. ]
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