COMMUN. MATH. SCI. @ 2023 International Press
Vol. 21, No. 6, pp. 1549-1568

THE GLOBAL GENERALIZED SOLUTION OF
THE CHEMOTAXIS-NAVIER-STOKES SYSTEM
WITH LOGISTIC SOURCE*
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Abstract. In this paper, we consider the initial boundary value problem of the chemotaxis-Navier—
Stokes system with low regularity, and we show that the system has a global generalized solution, which
was first introduced by M. Winkler [SIAM J. Math. Anal., 47(4):3092-3115, 2015].
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1. Introduction and main results

1.1. Introduction. In this paper, we consider the following chemotaxis-Navier—
Stokes system:

n+u-Vn=An—V-(xnVm)+ f(n), e, t>0,

my+u-Vm=Am+g(n,m), x€eQ,t>0, (1.1)
ug+(u-V)u=Au+VP+nVuw, €N, t>0, '
V-u=0, re€N,t>0,

where Q CRR? is a smooth bounded domain, n=n(z,t) denotes the cell density, m=
m(z,t) is the chemical (oxygen) concentration, u=1wu(x,t) is the fluid velocity, P = P(x,t)
is the pressure of the fluid, w=w(x) represents the potential function, x represents
chemotaxis sensitivity, the function f € C*([0,+00)) describes the growth and death of
the cell, and g(n,m) represents the production and consumption of chemical substances.

Chemotaxis refers to the kinetic response of biological individuals (e.g. bacteria,
insects) or biological tissues (e.g. cells, tubes) to chemical substances. Generally, the
movement, of an organism or cell from a lower concentration of chemoattractant to a
higher concentration of chemoattractant is called positive chemotaxis. Similarly, the
opposite movement of an organism is called negative chemotaxis. In 1970, Keller and
Segel [7] established a mathematical model (called the Keller—Segel model) to describe
the chemotaxis phenomenon of amoeba through macroscopic analysis, which is not only
used in mathematics but also plays an important role in biology and pharmacology.
When the flow of culture medium is not considered, (1.1) becomes the classical Keller—
Segel model

ng=An—V-(xnVm)+ f(n),

my=Am—+g(n,m). (1.2)
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In recent years, there has been much research on the properties of (1.2).

When the substance m is produced by bacteria n and participates in chemical
reactions and is consumed, and the production and consumption rates are both linearly
related to n, we generally consider g(n,m)=—m+n. When f(n)=0, there are many
results of the Keller—Segel model regarding the global existence of the solution and
the blow-up of the solution (see, e.g., [1,6,13,14,21,24,32]). When f(n)=pn—un®,
Winkler [22] proved that under the Neumann boundary conditions, when p is large
enough, for sufficiently smooth initial values, (1.2) has a unique global-in-time classical
solution with a=2. Next, Lankeit [8] proved the existence of a global weak solution
for the chemotactic system for any small > 0. Furthermore, Viglialoro [20] proved the
existence of a very weak solution of the chemotactic system when a>2— é. Recently,
[28] and [34] extended the results of [20] to o> 2(1‘1%44 and azmin{%,%} when
d > 2, respectively. Particularly, Winkler [29] showed that logistic source f(n) can rule
out the occurrence of persistent Dirac-type singularities.

When the substance m is consumed by bacteria n, and no new substances are
produced in the area, we generally choose g(n,m)=—nm. Similarly, when f(n)=0, Tao
[15] proved that under suitable initial value assumptions, if 0 <y <

6(n+D[Im(-,0)[Loe (2)’
then the corresponding initial boundary value problem of system (1.2) has a unique
uniformly bounded global solution. At the same time, Tao and Winkler [16] proved
that the three-dimensional chemotaxis model has at least one global weak solution with
large data. In [36], the authors studied the asymptotic stability and decay rate of the
classical solution of (1.2) based on [15]. Next, Winkler [26] defined the concept of
a generalized solution, which requires the solution to satisfy only very mild regularity
assumptions. Then, Lyu [12] generalized the result of [26] to the Keller—Segel model with
logistic source f(n). For the global existence and boundedness results of the classical
solution of (1.2) with logistic source, we refer the reader to [2,11].

In addition, there are many results for the chemotaxis-Navier—Stokes system (1.1).
When f=0, Winkler [23] proved that in the absence of initial value smallness, the
chemotaxis-Navier—Stokes system has a unique two-dimensional global classical solu-
tion and at least one three-dimensional global weak solution. In addition, the stability
of the solution of the two-dimensional chemotaxis-Navier—Stokes system was obtained
in [25]. When f(n)=pn—un® a=2, Lankeit [9] constructed a weak solution of (1.3)
and proved its long-time behavior. Next, Winkler [27] showed that the chemotaxis-
Navier—Stokes system has at least one appropriate generalized global solution, and ob-
tained its asymptotic stability using appropriate assumptions about p and u. Recently,
when a>1,d=2,3, Wang [30,31] and Ding [5] obtained the global solvability and even-
tual smoothness of chemotaxis-(Navier—)Stokes, respectively. For more results on the
chemotaxis-Navier—Stokes system, we refer the reader to [3,10,17-19, 33, 35].

In this article, we consider the initial boundary value problem of (1.1) in the case
g(n,m)=—nm,x>0. That is, we consider (without loss of generality, we take y =1):

ni+(u-Vin=An—-V-(nVm)+ f(n), zeN,t>0

my+ (u-V)m=Am—nm, €N, t>0

ur+ (u-V)u=Au+VP+nVw, e, t>0 (1.3)
V-u=0, €N t>0
Vn-v=Vm-v=0,u=0, x €N, t>0
n(z,0)=no(z), m(z,0) =mo(z), u(z,0) =uo(z), z€Q,
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where we W1°°(Q), v is the unit outer normal vector of 92, and the logistic source
f€CH([0,+00)) satisfies

f(0)=0, f(s)<ps—us®, peR, u>0, a>1, (1.4)
for any s>0.
1.2. Main result. In this paper, we consider the existence of generalized so-

lutions for the initial boundary value problem (1.3). To state the main result of this
paper, we first introduce the definition of generalized solutions as follows.

DEFINITION 1.1 (Generalized solutions, see [26]). Let
Wo 7 (UR?) =Wy (R*) N LI (GR?),

where L2(Q;R?):={pe L2 (Q{;R?)|V-9=0 in D'(Q)} represents the solenoidal sub-
space of L?(Q;R?). Assume that the triple of functions

n e L}OC(Q X [07+OO))7
m € Lis, (2 x [0,400)) N L, ([0,400); WH2(92))
we L2, (10,400} Wi 2 (R)),

satisfies n>0,m >0 and

F(n) € Lioe(Qx[0,+00)).

Then (n,m,u) is said to be a global generalized solution of the initial boundary value

problem (1.3), if
¢
/Qn(o,t)g/ﬂn(ﬂr/o /Qf(n) for a.e. t>0

and
400 “+o00 +oo +o0

7/ /mcptf/moga(gO):f/ /Vm~V<pf/ /nmcer/ /mu~V<p
0 Q Q 0 Q 0 Q 0 Q (L5)

for all p € CS°(Q x [0,+00)), if

[ = [ oo [ e [ e

for all ¢ € C§° (2 x [0,400);R?) with V- =0 in Q x (0,+00), and if moreover there exists
a function ¢ € C?([0,+00)) satisfying

d(n)ue Ly, (Q X [0,—|—oo);R2)
¢(n),¢" (n)|Vn|?, f(n)¢' (n) € Lj,e(2x [0,4+00))

¢ (n)nVn, ¢/ (n)n € Li,e(2 x [0, +00))
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- - [ ot [ set-0)
> /O - /Q 8" (n) V20— /0 m /Q ¢ () VNV
v/ - [ & @mvn-Ime+ [ ” [ ¢ mmvm-ve

. o [ s [ +°° | s

holds for all nonnegative ¢ € C§° (2% [0,400)).

and

Now, we state our main results as follows.

THEOREM 1.1. Let QCR? be a bounded domain with smooth boundary, and f€
CL([0,4+00)) satisfies (1.4). Assume that the initial data (ng,mo,ug) satisfies

ng € LY(Q) s nonnegative with ng#0,
mo € WHP(Q) is nonnegative with p>2, (1.7)
up € L* (BR?) and V-ug=0 in D'(Q),

then the initial boundary value problem (1.3) possesses at least one global generalized
solution (n,m,u) defined by Definition 1.1.

REMARK 1.1. In fact, when f(n)=0, the existence of global weak solutions and
smooth solutions to Equation (1.3) was proved in [23], where the initial values were
chosen as

no €CY(Q), ny>0in O, B
mo € WH4(Q) for some ¢ >N, my>0 in €,
up € D (A®) for some a € (§,1).

Unlike their results, our initial values here only satisfy (1.7), and they have a lower
regularity.

1.3. Sketch of the proof. The rest of this paper is organized as follows. In
Section 2, we give an approximation system and show that its solutions satisfy the
properties similar to those of Definition 1.1. In Section 3, we derive the uniform esti-
mates of the solutions of the approximation system. In the last section, utilizing the
estimates established in Section 3, we pass the limit on the approximate solutions and
obtain the generalized solutions of the problem (1.3).

2. Regularized problem and basic properties

In order to obtain the generalized solution of (1.3), we introduce an approxima-
tion system in this section. First, we introduce a family of functions {ngc}oc(o,1) and
{uoe fee(o,1) that satisfy

{no:}ee(,1) CC°(Q) with np- >0 in, (2.1)
{uog}se(o,l)CCl(Q;RQ) with V-uge =0 in€, wug.=0 onod, (2.2)

nge —ng in LY(Q), up.—uo in L*(Q) as e =0, (2.3)
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/noE §2/ ng for all e€(0,1). (2.4)
Q Q
Second, we consider the following approximation system:
Net +Ue - Vne=An. — V- (n:Vme) + f (n.), e t>0
Met +Ue - Ve = Ame —ngomg, reN,t>0
Uet + (e - V)ue = Au. + VP +n.Vuw, z€N,t>0 (25)
V-u. =0, e t>0 '
Vn.-v=Vm.-v=0,u.=0, z €N, t>0
ne(2,0) =noe(z),me(x,0) =mo(x),ue (2,0) =uge (x), z€Q,

for e€(0,1).
Indeed, one can prove that the system (2.5) has a global classical solution.

LEMMA 2.1. Lete€(0,1). Suppose that (noe,mo,uoe) satisfies (2.1)~(2.4). Then (2.5)
admits a classical solution

ne € C%(Q2x [0,+00))NC*H(Qx (0,+00)),

me € [ C°([0,+00); WHP(2)) NC>! (1 x (0,+00)),

p>2 (2.6)
ue € CO(Qx [0,+00))NC%(Q x (0,400)),
P.cCH(Q x (0,400)).

Proof.  The proof is very similar to the one of Lemma 2.1 in [23], and we omit the
details here. O

Next we will prove that (n.,m.,u.) satisfies the properties similar to those of Defi-
nition 1.1.

LEMMA 2.2. Let ¢ €C%([0,+00)), then
/Q Brb(ne) p=— / ¢ (ne) [Vl — / ¢/ (n) Vi Vi
/(b Ne TLEQDVHE Vme + /na¢ (ne)vms'vw
/¢ ns Ug - v50+/f ne ne (27)

holds for any €€ (0,1) and ¢ € C=(Q x (0,+00)).

Proof.  Multiplying the first equation of (2.5) by ¢’(n. )¢ and integrating the result
over {2, we have

/Q i (n.) = /Q ¢/ (n)p(An. — - Vn. = V- (n.Vim.) + f (n.))
/Vn8 V(¢' (n5)<p)+/nevms V(¢ (ne)e)
/ & (ne)pue- Ve + / )& (ne) o (2.8)
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This, combined with the Green identity, gives

- / Vne V(@ (ne)p) = — / ¢ (ne) Vel o — / ¢ (n2) Vn. - Vo, (2.9)
Q Q Q

/ nVme-V(¢'(ne)p) = / ¢" (ne)nepVn. - Vm. + / n.¢' (n.) V.-V,  (2.10)

Q Q Q

—/ &' (ne)pue - Vne :—/ oVo(ne)-ue :/ d(ne)ue -V (2.11)
Q Q Q

where we have used V-u. =0 in Q x (0,+00) and u. =0 on 9 x (0,+00). Putting (2.9),
(2.10) and (2.11) into (2.8), we get (2.7) directly. ad

3. Uniform estimates
In this section, we derive some estimates about the solutions (n.,m.,u.) of (2.5).

3.1. Estimate of {n.}.c(,1)-
LEMMA 3.1.  Let (ne,me,u:) be a smooth solution of (2.5). Then
e For any e€(0,1), {nc}.c0,1) satisfies

/Qns(~,t)—/ﬂn05+/ot/ﬂf(n5) for all t>0. (3.1

o Let T >0, then there exists C=C(T) >0 satisfying

/OT/Q|f(nE)<C for all €€(0,1). (3.2)
e Furthermore,
sup sup/ ne(+,t) < o00. (3.3)
c€(0,1) t>0JQ
Proof. Integrating the first equation of (2.5) over 2, we can directly obtain

(3.1) due to the no-flux boundary conditions for n. and m. and homogeneous Dirichlet
boundary conditions for u.. It is deduced from (1.4) and [12, Lemma 3.3, Lemma 3.4]
that

f(ne) <Ci—ne, fi(ne) <Co (3.4)
with C7 >0, Co>0. Thus, (3.2) follows directly from the decomposition

|[f(ne)|=2f+(ne) — f(ne).

Finally, by the first equation of (2.5) and (3.4), we obtain

i nE:/f(nE)SCI|Q|_/nE7
dt Jo Q Q

that is

d t/ t
—(e ne) <C1|Qe’.
dt< 0 ) 1| |
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Integrating the above result with respect to ¢, we deduce

/ns(.,t)<cl\ﬂ|+/n05.
Q Q

Combining (2.4), we get (3.3). This completes the proof. |

We also have the uniform integrability of n., which is useful in the other estimates
in the rest of this paper. Indeed, we have

LEMMA 3.2.  Let T >0, then

{ns}se(o,l) and {(n€+1)_1f(n6)}se(0,1)
are uniformly integrable on Q x (0,T).

Proof. Tt is similar to the proof of de La Vallée Poussin’s theorem [4, Lemma 1.2],
we omit the details here. O

3.2. Estimate of {u.}.c(,1)-
LEMMA 3.3. Let (ne,me,us) be a smooth solution of (2.5). Assume T >0, then for any
e€(0,1), there exists C=C(T) >0 such that

/Q|u€(~,t)|2§0 (3.5)

and
T
/0 /QIWE(M)I2 <C (3.6)
for all te(0,7).

Proof.  Taking the L? scalar product of the third equation of (2.5) with u., we

obtain
s Jjoet+ [ 1vult= [
—— Ue|” Vuel“= [ neue-Vw.
37 [ el [ Fuc = [ nea,

If a > 2, thanks to the Holder inequality, Young’s inequality and the Poincaré inequality,
there exist positive constants C;:=||Vw| p~ and C3 such that

1d ) 2_/
2dt/Q|u€| +/Q|Vu€| = Qngug Vw

< ||UEHL2(Q) Hn€||L2(Q) ||VWHL00(Q)

S C1Co|[Vue| 2 gy el 20
1 ) 1 )
= Vel 720 +§O32 Inellz2(q) (3.7)
with C3:=max{C1,C>}. Recalling the definition of f in (1.4), we have
f(ns)gpnsflu’ngv p€R7M>O7O‘>1'

According to Lemma 3.1, there exists Cy =C4(T') such that

/OT/QWVX5/0T/§2”€+/0T/Q|f(ne)|§C4.
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Integrating (3.7) with respect to t yields
2 ! 2 ! 2 2
[ttt [ [ 190l [nelia + [ oo
Q 0 Ja 0 Q
T 2 2
< [ el + | Juoe
0 Q
with ¢ € (0,7") and for all e€(0,1).

If & €(1,2), by the Holder inequality, we get

2 2-a  _a 2oa ==
/Q nFe = /nn <l iy I ey -

According to Lemma 3.1 and Lemma 3.2, there exists C5 =C5(T") such that

T 5 \ 3—a T 2o L \3-a
7)< (|n 5 n“ns-a)
L) < [ (e,
2—« T
s<sup |ne||u<m> / / Inel®
te(0,T) 0o Jo

<Cs.

(3.8)

(3.9)

Employing the embedding inequality VVO1 2(Q) N (©) and the Poincaré inequality,

we obtain that

[uell |, 2

21 (@) <Cs|Vuell12(q)

with Cg=Cg(a,2) >0, and

| 5| + |Vu5| = nfuE -Vw
th

il 2, o el g IVl
<Ol 2 g el 2
§C1CG||VU5||L2(Q HnEHLﬁ(Q)

1 2
<5 [ 1Vl +5CE el o,

)

(@)

with C7:=max{C1,Cs}. Integrating above result with respect to ¢, we obtain

t t
2 2 2 2
Ue '7t + vue S/ Nell 2 +/ UQe
/Q\ ()] /O/QI P< ) el gzg )+ ] Tuoel
T
2 2
<
< [l s g+ | o

for all t€(0,7"). Therefore, combining (2.3), (3.8), (3.9) with (3.10) gives

sup /|u5 ,1)] —|—/ /|Vu5| <Cg for all e€(0,1)

te(0,T)

(3.10)
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with Cs = Cs(a, Q,T) > 0. O

LEMMA 3.4.  Let T>0, then {uc}ee(o,1) is relatively compact in L*((0,T); L (Q;R?))
with respect to the strong topology.

Proof. Multiplying the third equation of (2.5) by ¢ € C§°(€;R?) with V(=0 and
integrating by parts, we have

’/QuatC :‘_/Q(UE'V)“E'C+/QA“6'C+/QVP8'C+/Qn€Vw-g’

:’—/(uE-V)uE-C—/VuE:VC—i-/nEVw(’
o Q Q
<uellp2 o) Vuell 2@ 1€l 2o (@) + [ Vel 20 VI 22 (0)

+lInellr @ IVl Lo (o) 1<) o< ()
S (el o) IVuellz) + [ Vuel z29) + ”nsHLl(Q))”C”WOSQ(Q)

for any s € N and s > 1, where we have used W§*(Q) < L°°(Q) and the Holder inequality.
Combining (3.3), (3.5) with (3.6), and using the Young inequality, we get

luetll ey S e (51720 + Ve 2o () +lInell ) +1.
Moreover, we have

{uet}ee(o,ny is bounded in L'((0,7): (Wg™*(2) N LE(€2))").
Finally, by using the Aubin—Lions lemma, we complete the proof. 0

3.3. Estimate of {m.}.c(0,1).
LEMMA 3.5.  Let (ne,me,u:) be a smooth solution of (2.5). Then
[me ()| e () < Mol Lo ()

for all t>0.

Proof. 1t can be directly obtained by using the maximum principle, because n. is
nonnegative, me >0 and Vm,-v=0 on 0f). 0

LEMMA 3.6. Lete€(0,1), then there exists C >0, such that the solution (2.6) satisfies

+o0 +oo
/ /\vmgﬁgc, / /nEmESC. (3.11)
0 Q 0 Q

Proof. Taking the L? scalar product of the second equation of (2.5) with m., we
get

1d
5(7/|ms|2+/|vme|2=—/nsm8 for all £>0.
t Q Q Q

Since n. and m. are all nonnegative, by integrating with respect to t, we obtain (3.11).
Similarly, by integrating the second equation of (2.5) by parts over €2, we have

d
—/mg—i—/uE-VmE:/AmE—/ngme,
dt Jo Q Q Q



1558 GENERALIZED SOLUTION OF THE CHEMOTAXIS-NAVIER-STOKES SYSTEM

since
Vous=0 in Qx(0,+00)
and
Vne - v=Vm.-v=0,u.=0 on 099 x (0,400).
Therefore

G [me== [ nem
dtQE— QEE.

Integrating the above result with respect to ¢, we have

—+oo
/ /nsmeg/mo
0 Q Q

for any ¢ € (0,1). This completes the proof. O

LEMMA 3.7.  Let T>0, then {mc}.c(0) is relatively compact in L*(Qx (0,T)) with
respect to the strong topology.

Proof.  Let 1€N, then we multiply the second equation of (2.5) by (GWé’z(Q)
with [ >1, and integrate by parts, from the Holder inequality, we have

[t | [ mecs [ Amce [ e

Slue G0 20 Vel 2@ €l Lo ) + [[Vmel| 2o V|22 0

+[Ineme| L) 1<) o< )
By the embedding inequality Wé’Q(Q) — L*°(Q) and Young’s inequality, we get
”mEtH(V[ﬂ 2(Q))* ~ S lue(, )H%%Q) + vaEHQL?(Q) +Inemell Ly @) +1.

According to (3.5) and Lemma 3.6, we have

T
[} Iy ST

Therefore, by the Aubin-Lions lemma and W12(2) << L2(Q) < (W} *(Q))*, we obtain
Lemma 3.7. o

3.4. Estimate of {In(n.+1)}.c0,1)-
LEMMA 3.8.  Let T>0. Assume that (ne,me,uc) is a smooth solution of (2.5). Then
for any p>2, there exists C=C(T) >0 such that

/T/ |VIn(n.+1)*<C (3.12)
0 Q

and

T
/0 18en(e + 1) | g2+ <C (3.13)
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for all e €(0,1).
Proof. Letting p =1, ¢(n.)=In(n.+1) in Lemma 2.2. First, we have

T
/ /|Vln(n6+1)|2=/ln(ns(.’T)+1)—/ln(nO€+1)
o Ja
14
//ng+1 Ve Ve - //n5+1 3.14)
for all £€(0,1). Due to n:E <1 and Young’s inequality, we have
[ s [ [ s
o o (n5+1)2 Ne me x> TL€—|—1 Ne me
|Vn 1/T/ )
— 1
—2/ / o2 T3y Jo Vel (3.15)

//7{21 //'f ne)| (3.16)

Plugging (3.15), (3.16) into (3.14), thanks to (3.2) and (3.11), we get (3.12). Second,
we prove (3.13). By Lemma 2.2 we know that

and

/8tln ne+1) ‘ ’/|V1n ne+1)| go‘ ‘/Vln (ne+1)- Vgp‘

+ /@LVng Vme
Q ( +1)

e

ln(n€+1)u€~Vg0‘
Q

€
n€+1

where p € C§°(€2). According to Holder’s inequality, we get

/Qatln(nsﬂq)@‘ < HVln(nsﬁLl)“iz(Q) [l oo o) + I VIn(ne + 1)l 12q) Vel L2

+In(ne + 1) 2 (q) luell 2 0) Vel @)
+[Vin(n.+1) ||L2(Q) ||vm8||L2(Q) el zoe )
FIVmell 2 ) Vel 2@+ 1 (ne)ll L1 o) 1@l 2 (@) -

Furthermore, owing to the Sobolev embedding inequality, the Poincaré inequality and
Young’s inequality, we obtain

1010 (e + 1)l gy7p.2 27y« SV (e + D120+ e |2

IV + /Q F(no)|+1

with p > 2. By integrating the result with respect to ¢ and using (3.12), (3.5), (3.11) and
(3.2), we obtain (3.13). O
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LEMMA 3.9.  Let T>0, then {In(n.+1)}.c(0,1) is relatively compact in L*(2x (0,T))
with respect to the strong topology, and relatively compact in L?((0,T);W12(Q2)) with
respect to the weak topology.

Proof.  According to (3.1), (3.12) and the Poincaré inequality, we can get the
weak precompactness property immediately. Meanwhile, thanks to Lemma 3.8 and
Wh2(Q) s L2(Q) — (WP?(Q))*, we can obtain the above lemma by the Aubin-Lions
lemma. |

3.5. Estimate of {n.m.}.c,1)- In order to get the strong precompactness of
{Vm.}oe(o,1) in L?(Q x (0,+00)), we prove the following property of {neme}ec,)-

LEMMA 3.10.  For alle€(0,1),T >0, there exists C >0 such that

T
/ /nsln(ng—i—l)mESC. (3.17)
o Ja

Proof. Noting that

d Mg
i el ct+1)= etl et+1 — e
dt/Qm n(n.+1) /S)mtn(n+)+/§2ns+lnt

—/uE-Vmgln(nE—l—l)—l—/Am6~1n(n5—|—l)
Q Q

me
— 1 1)— -V A
/QnemE n(n:.+1) /Qnerlue ne—i—/ n5+1 Ne

me €
Qn5+1v (nEVmE)—&—/Qnerlf(nE)
é11—|—12+]3+14+15—/ngmgln(ns—i—l)—l—/ < f(’l'Lg),
Q Qnet+1

for all ¢>0. According to the no-flux boundary conditions for n. and m., and the
homogeneous Dirichlet boundary conditions for u., a direct calculation gives

I = /V (ueln(n.+1)) /msu6 Vin(n.+1),
f/Vms~Vln(n5+1),
Q

—/ mete - V(ln(n.+1))=—1,
Q

Mme
I, =— . -
4 /Qv<n€+1> v

:7/ vne ~Vm5+/|V1n(ns+1)\2ms,
Q

Qn5+1

Mg
I5/QnEVmE~V<nE+1>
Vn.

= vt [

and
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mene
= — 1 1)-Vme..
g el el R A

Thus

i/msln(nerl)qL/nsmsln(nerl)
:72/VmE~V1n(ns+1)+/ |VIn(ne +1)*m.
Q Q

f(’I’L5> MenNe
+ Vme|? + Me — Vin(ns+1)-Vme. 3.18
/Qne | | ane+1 ane+1 ( ) ( )

Integrating (3.18) with respect to t, we get

/ /ngmgln ne+1) /mE ,T)In(n(,T)+1)
/moln nge+1) — / /Vms -Vin(n:.+1)
/ /|V1n ne+1 | me / / Ve
n5+1

m n
,/0 e Evln(nerl -Vme + / TJ;—:l m.

é/moln(n05+1)+J1+J2+J3+J4+J5.
Q

By Young’s inequality and the Hélder inequality, we have

T T
Jlg/ /|Vm5|2+/ /|Vln(n5+1)|2,
0 Q 0 Q

T
J2§||mg\|Loc/ / |Vin(n. +1)%
o Ja

Due to 0 , we get
T
J3S/ /|vm8‘27
o Ja
T
J4§/ /mEVIrl(na—i—l)-VmE
0o Jo
T
§||m5||Loo/ /Vln(nngl)~Vms
1 2, 2
§||ma||Lw |VIn ne+1)| *IlmsllLoo \Vmsl
and

T
J5§||me||L°°/0 /Q|f(ne)‘
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Thus

/()T/Qngmsln(ne“i’1)+/§;m€(.7T)ln(nE(.’T)+1)

T T T
5/ /\Vm€|2+/ /|V1n(n€+1)|2+Hm5HLoo/ /|V1n(n5+1)|2
0 Q 0 Q 0 Q
T T
e / / Vel + e / / Fno)l.
0 Q 0 Q

According to Lemma 3.1, Lemma 3.5, Lemma 3.6 and Lemma 3.8, we obtain (3.17).
This completes the proof. ]

4. Proof of Theorem 1.1
First, we introduce two useful lemmas.

LEMMA 4.1 ([26]). Let n>1 and ACR"™ be measurable, and suppose that {c;}jen C
L*(A) is such that ¢; >0 a.e. in A for all jEN and

cj—cin L*(A) andc;—c ae. in A
with some c€ L*(A) as j— o0o. Then
cj—cin L*(A) asj— +oo.

LEMMA 4.2 ([26]). Let n>1 and ACR™ be measurable, and suppose that {c;};jen C
L>(A) and {k;j};en C L*(A) satisfy

le;|<Cin A for alljeN,

cj—c a.e in A,

kj—k inL*(A),
as j —+oo for some C >0, c€ L°(A) and k€ L*(A). Then

cjkj—ck inL*(A) asj— +oo.
Second, we have the convergence of solutions of (2.5) as follows.

LEMMA 4.3. There exists a sequence {€;};en C (0,1) and

ne L (Qx[0,4+00))

loc

me LE ([0,4+00); WH2(€2))

loc

we L, ([0,+00); W2 (2:R?))

with n,m >0, such that e =¢; \,0 as j —+oo and

ne—n in L, (Qx[0,4+00)) and a.e. in Qx (0,+00), (4.1)
In(n. +1)—=In(n+1) in L2, (Qx[0,400)), (4.2)
Vin(n.+1) = Vin(n+1) in L2, (Qx[0,+00)), (4.3)

me —m in L7, (Qx[0,4+00)) and a.e. in Qx (0,+00), (4.4)
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Vm.—Vm in L}, (Qx[0,+00)), (4.5)
me >m in LS, (2% [0,400)) and a.e. in Qx (0,+00), (4.6)
ue —u in L3, (Qx[0,400)) and a.e. in Qx (0,+00), (4.7)
Vu. —Vu in L2, (Qx[0,400)), (4.8)
Ue @ue —u@u in L}, (2x[0,+00)), (4.9)
neme —nm in L}, (2% [0,+00)), (4.10)
ueme —um in L, (Qx[0,400)), (4.11)
% — i(—fi in L}, (Qx[0,+00)). (4.12)

Proof.  According to Lemma 3.7, Lemma 3.6, and Lemma 3.5, we can directly
get (4.4), (4.5) and (4.6), respectively. Furthermore, (4.2) and (4.3) can be obtained by
Lemma 3.9. Thus

ne—n ae. in Qx(0,+00). (4.13)

Thanks to the Vitali convergence theorem, combining (4.13) with Lemma 3.2, we get
ne—n in L (Qx[0,400)). Similarly, due to the compactness of u., Lemma 3.4 shows
that (4.7) and (4.8) hold in further subsequences. (4.13) and (4.4) ensure that n.m. —
nm a.e. in Qx (0,400), as e =¢; \,0. Next, according to (4.1) and (4.6), we can prove
that

neme —nm in L, (2 x[0,+00)),

in the sense of subsequence (we do not use new notation). Combining the above results,
we can directly obtain (4.10) from Lemma 4.1. Moreover, we can get

) fn)

m m a.e. in Q X (O,"‘OO) (414)

In view of the uniform integrability of % and (4.14), we can conclude that (4.12)
holds by the Vitali convergence theorem, the averment (4.9) and (4.11) can be obtained
by (4.4) and (4.7). d

Now, assuming that ¢ and { satisfy the properties listed in Definition 1.1. Multi-
plying the second and the third equation of (2.5) by ¢, respectively, we have

+o0 +oo +oo too
/ /mggat—&—/mogo(-,O):/ /Vmg-VAp—l—/ /namggo—/ /m5u5~V<p
0 Q Q 0 Q 0 Q 0 Q

(4.15)

/O+OO/Qu5Ct+/Qu05C(',O):_A+wll(u5®u5):VC—/O+OO/Qn€Vw.C

and
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+ /0 o /Q V. V. (4.16)

According to (4.4), (4.5), (4.10) and (4.11), we can get (1.5) by taking e =¢; \,0 in each
integral respectively. Similarly, we can obtain (1.6). Furthermore, owing to (3.1), (4.1)
and Fatou’s lemma, we have

/Qn( )<€hnsljlg%/ ~,t)/Qno+/Ot/Qf(n). (4.17)

We also have the following L? strong compactness of Vm, (see [12, Lemma 4.2]).

LEMMA 4.4. Let {e;}en be as provided by Lemma 4.3. Then there exists a subsequence,
such that for a.e. T >0,

Vm. —Vm in L*(Qx (0,T)),

as e=¢; \,0.
Proof. According to (4.5), we get

T
/ |Vm|? <hm1nf/ /|Vmg|2
0

for all T'>0. Next, we only need to prove

T T
/ |Vm|? >hm1nf/ |Vm.|?.
o Ja e=e;\0 Q

In fact, multiplying (2.5), by m., we get

T , T 1 1
/ /|Vm€| :—/ /namg—i—f/m%—f/mg( T
0o Jo 0o Ja 2 Ja 2Ja

Thanks to (4.6) and (4.10), we have

T T
/ /ngmg%/ /an. (4.18)
0o Ja 0o Ja

In fact,

Nem NeMe —NM)Me |+ nm(mes —m)| —0,
€

as e =¢; \(0.
Similarly, according to (4.4), we have

/mg(.,T)—>/m2(-,T) for all T € (0,+00)\ M, (4.19)
Q Q

with some null set M C (0,400). Therefore, combining with (4.18) and (4.19) gives

T 2 T 9, 1 o 1 2
lim vm :7//nm+7/m77/m T
szsj\o/o /Q| g 0o Ja 2/ ° 2/ (
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for all T € (0,400)\ M, since
V-u:=0 in Qx(0,400) and u.=0 on 90 x (0,+00),

along with a similar method [26, Lemma 8.1], we get

T 1 1 T
[ o g [ [ mecm< [ ] wme
0 Q Q Q 0 Q

with a null set M; C (0,+00), for all T € (0,400)\Mj, i.e.,

T T
/ /|Vm|22hminf/ /|Vm6\2.
0 Jo e=eiN0Jo Ja
0

LEMMA 4.5.  Let (n,m,u) be given as in Lemma 4.3 and Lemma 4./, then there exists
a sequence {e;}jen C (0,1) such that

(ne+1)"%n.Vn. -Vm. — (n+1)"2nVn-Vm in L}, (9 [0,400)), (4.20)

(ne+1)""'nVme = (n+1)"'nVm  in L}, (2 x [0,+00)), (4.21)

In(n. +1u. —In(n+1u in L, (2 x[0,+00)), (4.22)
as e=¢; \,0.

Proof.  Since |n.(n.+1)71| <1, by (4.1), we can infer that n.(n.+1)"*—n(n+
1)~ a.e. in 2x (0,+00). According to Lemma 4.2 and Lemma 4.4, we can directly get
(4.21). Due to

(ne+ 1)72715VnE -Vm.=Vin(n.+1)-(n.+ 1)71 n.Vme,

the convergence (4.20) is an immediate result of (4.3) and (4.21). Similarly, we can get
(4.22) by (4.2) and (4.7). 0

Finally, we prove Theorem 1.1 based on the above lemmas.

Proof. (Proof of Theorem 1.1.) Let (n,m,u) be as constructed in Lemma 4.3.
Then (n,m,u) is a global generalized solution of (1.3) in the sense of Definition 1.1. In
fact, let

¢(ne)=In(ne+1)

in Lemma 2.2, for any ¢ € C§° (2 x [0,+00)), we take T'>0 such that suppe C Q x [0,77].
Integrating over ¢ € (0,400), we get

+oo
—/ /ln(n5+1)gpt—/ln(n05+1)g0(~70)
0 Q Q
—+o0 —+oo 1 “+oo
:/ /\Vln(n5+l)|2<p—/ / Vng.vw/ /1n(n6+1)ug.w
0 Q 0 Qnet1 0 Q

—+oo +oo +oo
Ne Ne f(ns)
— ——=Vn.-Vm +/ / Vme-V +/
/O /Q(p(’ll5+1)2 : : 0 anet+1 = VY 0 Qng+1¢




1566 GENERALIZED SOLUTION OF THE CHEMOTAXIS-NAVIER-STOKES SYSTEM

for all e€(0,1). Taking the advantage of (4.2), (4.3), (4.21) and (4.22), we obtain

+0o0 t+oo
—/ /ln(n6+1)<pt—>—/ /ln(n—l—l)cpt, (4.23)
0 Q 0 Q
+oo 1 +o0
— Vne-V —>—/ /Vln n+1)-Vo, 4.24
/ /Q Ve Ve [ [ Ve vy (1.24)
—+oo +oo
and
—+oo +oo
/ /ln(n5+l)u5~V<p%/ /ln(n+1)u-Vg0 (4.26)
0 Q 0 Q
as e=¢; \,0. Similarly, using (4.20) and (4.12), we get
—+oo —+oo
/ / ———Vn.-Vm, — — / / ——Vn-Vm, (4.27)
nEJrl n+1

+oo +oo
4.2
/ +1 / n+1 (4.28)

as e=¢; \,0. According to a lower semicontinuity argument, we have

+o0o +o0o
/ /\Vln(n+1)| g0<hm1nf/ /|Vln(n5+l)|2<p. (4.29)
0 Q Q

e=e;\0

Due to the nonnegativity of ¢, it follows

+o0 +oo
/ /|Vln(n—|—1 2p < liminf —/ /ln(n5+1)<pt—/ln(n08—|—1)<p(-,0)
0 Q 0 Q Q

e=¢e;\0

+/ /n VnE-Vnp—/ /ln(na+1)ue'V<P
—+oo —+oo
/ / Vng Vm,. — / /ns_’_le5 Ve
“+o0o
4.
/ n5+1 } (4.30)

Plugging (4.23)—(4.29) into (4.30), we conclude that

/*‘”/w V- /m/ln(nH)U'W
o e[ v
AN




for
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any function ¢, we deduce that n satisfies the condition required in Definition 1.1.

Combining (4.15), (4.16) with (4.17), we complete the proof of Theorem 1.1. d
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