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COMBINING RESAMPLING AND REWEIGHTING FOR FAITHFUL
STOCHASTIC OPTIMIZATION*

JING ANt AND LEXING YINGH

Abstract. Many machine learning and data science tasks require solving non-convex optimization
problems. When the loss function is a sum of multiple terms, a popular method is the stochastic
gradient descent. Viewed as a process for sampling the loss function landscape, the stochastic gradient
descent is known to prefer flat minima. Though this is desired for certain optimization problems such
as in deep learning, it causes issues when the goal is to find the global minimum, especially if the global
minimum resides in a sharp valley.

Illustrated with a simple motivating example, we show that the fundamental reason is that the
difference in the Lipschitz constants of multiple terms in the loss function causes stochastic gradient
descent to experience different gradient variances at different minima. In order to mitigate this effect
and perform faithful optimization, we propose a combined resampling-reweighting scheme to balance
the variance at local minima and extend to general loss functions. We explain from the numerical
stability perspective how the proposed scheme is more likely to select the true global minimum, and
from the local convergence analysis perspective how it converges to a minimum faster when compared
with the vanilla stochastic gradient descent. Experiments from robust statistics and computational
chemistry are provided to demonstrate the theoretical findings.
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1. Introduction

This paper is concerned with optimizing a non-convex smooth loss function. Iden-
tifying a global minimum is known to be computationally hard, especially in the high-
dimensional setting. One possible approach, originating from early work in statistical
mechanics and Monte Carlo methods, is to turn this into the task of sampling approx-
imately the Gibbs distribution associated with the loss function at a sufficiently low
temperature. The rationale is that the samples from the Gibbs distribution have a
good chance of being near the global minimum.

In modern machine learning, the loss function often takes the form of an empirical
sum of individual terms from finitely many sampled data points. Due to the large size
of the dataset, efficient optimization methods such as the stochastic gradient descent
(SGD) are commonly used. For non-convex loss function, an increasingly more popular
viewpoint is to consider SGD as a sampling algorithm.

One important feature of stochastic gradient-type algorithms is that the noise drives
SGD to escape from sharp minima quickly and hence SGD prefers flat minima [8, 25,
29,31, 32]. Such a bias towards flat minima leads to better generalization properties
for problems such as deep learning. However, when the ultimate goal is to identify the
global minimum and the landscape around the global minimum happens to be sharper
compared to the non-global local minima, this bias is often not desired as SGD often
misses the global minimum in a sharp valley'.

For many data science and physical science problems, the ultimate goal is to find
the global minimum for a non-convex landscape, independent of whether it is sharp or
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flat. In data sciences, one example is the handling of contaminated data, where a simple
approach is to use non-convex loss functions in robust statistics [3,9,18,24]. However, as
shown later in a motivating example, if we naively apply the vanilla stochastic gradient
over a dataset comprised of two subgroups, where one has much larger features (more
sensitive) compared to the other (less sensitive), the resulting optimal parameter will
be biased towards the less sensitive subgroup. This scenario is not rare in real applica-
tions: For example, when researchers adjust a medicine’s ingredients by evaluating the
tested group’s responses, inherently different hormone levels in individuals can affect
the faithfulness of the evaluation. In physical sciences, examples of non-convex global
minimization include finding the ground state wave function in quantum many body
problems [13], geometry optimization of the potential energy surface of a molecule in
computational chemistry [14], etc. Though applying vanilla stochastic gradient can re-
duce computational cost for these large scale problems, one also takes the risk of missing
the global minimum.

1.1. Main contributions. Below we summarize the main contributions of this
paper.

(1) Starting from a motivating example, we identify the fundamental reason behind the
selection bias is that the difference in the Lipschitz constants of multiple terms in
the loss function causes stochastic gradient descent to experience different gradient
variances at different local minima.

(2) To mitigate this selection bias, we propose a combined resampling-reweighting strat-
egy for faithful minimum selection. We also derive stochastic differential equation
(SDE) models to shed lights on how the proposed strategy balances variances in
different regions. This proposed strategy also recovers the importance sampling
SGD for faster training (for example, [11,30]) from a different perspective.

(3) For a comparison purpose, we provide a stability analysis and a local conver-
gence rate for the importance sampling SGD in non-convex optimization problems.
The quantitative numerical results demonstrate how the combined resampling-
reweighting strategy improves stability and convergence.

(4) We show also empirically that the proposed strategy outperforms SGD with exam-
ples from robust statistics and computational chemistry.

1.2. Related work. Our proposed combined resampling-reweighting strategy
can be viewed as a form of importance sampling. This line of work can be traced back to
the randomized Kaczmarz method [26] that selects rows with probability proportional
to their squared norms. Later, [22] connects the randomized Kaczmarz method with
a SGD algorithm with importance sampling. In convex optimization, many works [4,
22, 30] show that the importance sampling among stochastic gradients can improve
the convergence speed. Since importance sampling reduces the stochastic gradient’s
variance, this method and its variants can also accelerate the neural networks training
[1,10,11,16]. However, it has not been studied yet that how the importance sampling
impacts the minimum selection in learning non-convex problems.

around the parameter 6, the sharpness of loss L(6) is defined as

maxgrep, L(0') — L(0)
1+ L(6)

sharpness := x 100.

Taking Taylor expansions, one can show that the sharpness is proportional to the local gradient
VL)l
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Our approach to understanding the dynamics of the combined resampling-
reweighting strategy is based on the numerical analysis for stochastic systems. We
mention that the dynamical stability perspective has been used in, for example, [17,28].
Studying convergence rates for stochastic gradient algorithms for non-convex loss func-
tions is also rapidly growing in recent years [7,20,27]. On the other hand, taking the
continuous-time limit and using SDEs to analyze stochastic algorithms have become
popular especially for stochastic non-convex problems. Using the developed stochastic
analysis can lead to numerous new insights of the non-convex optimization [5,6,15,19].
Here we take the SDE approximation approach as it gives us a clearer picture of the
global minimum selection.

2. Main idea from a motivating example
Given a dataset consisting of n samples {z;}!_;, we consider an optimization prob-
lem

1 n
in— Y V(x;,0).
mglnn; (24,0)

The samples are assumed to come from m different subgroups, each representing a
proportion a; € (0,1) of the overall population, i.e., Z;”:l a; =1. Assuming for simplicity
that the loss term V' (z;,0) only depends on the subgroup index of z;, i.e., V(x;,8) =V;(0)
if ; is from subgroup 7, the optimization problem can be simplified as

0* = argmin, V(6), V(Q)EZaﬂ/j(ﬁ), (2.1)

in the large n limit. If the terms V;(¢) are non-convex loss functions, the overall loss
function V() is in general non-convex as well. From the next example, we will show
that applying the vanilla SGD to solve (2.1) becomes problematic when Vj’s exhibit
drastically different Lipschitz constants.

2.1. An illustrative example. Consider the case of two subgroups with the
following loss functions,

6+1/—1, <0 —eh, 9<0
vi(e)=4 o+ . (0=
€, >0 |[K6—1|—-1, 6>0

with e€(0,1) small, K>1, and as >a;. The total loss function is V(0)=a1V1(0)+
a2 V5(0) with local minima 8 =—1 and § =1/K. By construction, the loss function has a
sharp global minimum at #=1/K and a flat local minimum at § =—1 (see for example
Figure 2.1 (1)).2

The following lemma states that the optimization trajectory of the vanilla SGD is
biased towards one of the local minima, in the small learning rate 7 limit.

LEMMA 2.1.  When n is sufficiently small, the equilibrium distribution of the vanilla
SGD is given by

exp (— alzznV(G)) for <0,

p(0) ~
) %exp (—mV(@)) for 6>0,

2Tt is necessary to have O(e) terms in the loss function for SGD to work. Without the O(e) terms,
if the SGD starts in (—o0,0) it will stay in this region because there is no drift from Va(z). Similarly,
if the SGD starts in (0,00), it will stay in this region. That means the result of SGD only depends on
the initialization when O(€) term is missing.
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up to a normalizing constant.

The derivation follows from approximating the SGD updates by an SDE with a
numerical error of order O(,/7) in the weak sense. We construct this example with a
piecewise linear loss function in order to illustrate the point because the approximate
SDEs are of Langevin dynamics form with piecewise constant noise coefficients. In par-
ticular, based on the convergence of probability distribution to the equilibrium measure
(e.g., [23]), when the stochastic dynamics reaches equilibrium, the stationary distribu-
tion of the stochastic process is a Gibbs distribution. The detailed computations of
Lemma 2.1 are given in the Appendix A.

With the longtime asymptotics derived in Lemma 2.1, we can explain how the
dynamics prefers different minima depending on the value of K. This example can be
also extended to higher dimensions under piecewise affine constraints, in a similar spirit
as Lemma 7 of our previous work [2].

From Lemma 2.1, we can make the following surprising observation: When K >1,
even though 0 =1/K is the global minimum, the SGD trajectory spends most of the time
near the non-global local minimum 6 =—1. This is illustrated in Figure 2.1 (2) and the
fundamental reason is that the Lipschitz constant of the individual loss term affects the
SGD variance at individual local minimum, thus resulting in an undesired equilibrium
distribution.
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Fig. 2.1: We set a1 =0.4, a2 =0.6, e=0.1, K =5 so that the global minimum is at 0 =1/5. For both
the vanilla SGD and the resampling-reweighting (RR) scheme, we start from g =0.25 and use a fized
step size n=0.04. We can see that the vanilla SGD jumps to the non-global local minimum 6=—1
after several iterations while the RR method stays around the global minimum 0 =1/K all the time.
We include more comparisons with various learning rates in the Appendiz C to show that the RR
scheme is stable for a wider range of n.

To fix this issue, we propose to resample two subgroups with proportion f; and
fa, respectively (with fi, fo>0,f1+ f=1). In order to maintain the same overall loss
function, we also need to reweight each loss term with weights wq :=a1/f1,ws:=as/ fa >
0. The values of fi, fo,w1, and wy are to be determined depending on a;,as and K.
After reweighting and resampling, the loss function can be reformulated equivalently as

2 “Va(0)). (22)

vOr=h (Fro)+he (5

In each iteration, a data point is sampled from the two subgroups following proportion
f1 and fo, and then either %vl(e) or %‘/2(0) is used for computing the stochastic
gradient. In what follows, we refer to this approach as the resampling-reweighting (RR)
scheme.

Although the expectation of the stochastic gradients in (2.2) remains the same
by design, the variance experienced in different regions now can be balanced by the

a
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parameters fi,fs. A direct computation shows that in the four regions (—oo,—1),
(7170)7 (Oal/K)a and (1/K,OO)
e with probability f1, the gradients are —ay/f1, a1/f1, €a1/f1, €a1/f1 respec-
tively;

e with probability fo, the gradients are —eas/fo, —€as/fa, —Kaa/fa, Kas/ fo
respectively;

2
e the wvariances of the gradients are equal to (au/%—eag,/%) ,
2 2 2
(a1 %—&—eag,/%), (eal %—FK@M%), (6@11/%—1(@2\/%), re-
spectively.

The dynamics of RR becomes straightforward if we view it as a numerical approximation
of SDEs: with a sufficiently small step size n >0, taking e — 0, it is given by

dO;=—V"(0)dt+ a1/ fa/ f1/ndW4, in the region 6 <0,
dOy=—-V"(0)dt+ Kaa/ f1/ fa/ndWs,  in the region 6> 0.

In order to balance the variance at the two local minima § =—1 and § =1/K, we impose
VR =K il — f=—2 f=l-fi=
a1+ Kas a1+ Kag

As a result, the assigned weights for the two subgroups are

al a1 +Ka2 ag ay +Ka2
w ==, W i —m—F—=——7"7F—

fi 1 f2 K
The above computation suggests that in order to fix the selection bias, each subgroup
should be reweighted by the reciprocal of its Lipschitz constant. We then undersample
from subgroup 1 and oversample from subgroup 2 so that their sample size ratio ap-
proaches Kas/aj. In numerical tests, comparing Figure 2.1 (2) and (3), we can see that
the RR scheme adjusts the dynamics of the stochastic optimization trajectory to stay
around the global minimum.

REMARK 2.1. The motivating example considers different slopes 1 and K, which can
reflect the feature magnitude disparities in data science. Suppose a dataset containing n
samples {x;,y; }7 {1, x; € R?,y; € R, and a;-proportion of the data features has magnitude
|z;:]]2 ~ K, while the rest has magnitude ||z;||2 ~ 1, then an optimization problem of the
form
IR 2
min == " (f(0-;) —y:) (2.3)

HcRd 2m, 4
=1

can be thought of as a more complex model of our motivating example.

3. Analysis of the general case
In this section, we consider the general empirical loss for § € R%,d > 1.

L(0) = %Zzi(a). (3.1)
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3.1. The general RR scheme. Motivated by the illustrative example in
Section 2, we propose the following resampling-reweighting scheme in R%, d>1: at each
k-th iteration with current parameter 6, for each term 1=1,2,---n,

(1) reweight the i-th term /;(6y) with a weight proportional to 1/{|V1;(0k)]|2,
(2) set the resampling probability for the (reweighted) i-th term to ||VI;(0k)]|2.

The resampling proportions and weights are decided by comparing the RR scheme
with SGD in the continuous-time limit. More specifically, since the proposed RR scheme
is designed for variance-balancing, in the limit it should share the same drift with the
vanilla SGD but experience more balanced noises across different local minima. We lay
out computation details in the next subsection.

3.1.1. RR scheme derivations. Recall for the vanilla SGD, the update rule
with time step size >0 is given by

9k+1:9k_77VZj(0k)7 (3-2)

where the index j is chosen from 1 to n with uniform probability 1/n. Note that
m(0y) =E,, [V1i(0)] sz (0r)=VL(6y), (3.3)

and we can rewrite (3.2) as

Or+1 =0k —nm(0k) +/nV1(0r), with Vi(0x)=/n(m(0x) —V1;(6k))-

By taking the simplifying assumption that the gradient noise is Gaussian®, the dynamics
can be approximated by

d@tz—m(@t)dt—k\/ﬁol(@t)th, (34)

where  $1(0;):=01(0;)01(0;)" is given by X1(0)=13" VI;(0,)VI;(0,)" —
m(@t)®2.

On the other hand, as indicated in the illustrative example, the RR scheme with
the same time step size 1 >0 should be given by

C(0k)

O (3:5)

Ori1=0r—n
Here we set C(0x) =237 [|VI;i(6x)|l2, and the index j is chosen from 1 to n with

probability ||V;(0k)||2/Z(0k), with the normalizing factor Z(0)=> ., [|VI;(k)|2, so
that the mean for this approach matches with the one for SGD (3.3),

Now we rewrite (3.5) in the form

||2

O1 =0k —mm(0k) +/7Va(0k),  with Va(0k) =/ (m(ek) - Hv?-((m

3We are aware that this approximation might not be valid in many situations. However, this
assumption streamlines the SDE analysis.

vzj(ek)>.
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Thus, the resulting dynamics can be approximated as

d@t:—m((%t)dt—i— ﬁUg(@t)dWh (36)

where $5(01)=03(8)r2(60)T s given by £p(6r)= ALY, TGITLOIL
m(@t)®2.

Note that (3.4) and (3.6) are derived in the same time scale and have the same drift,
so that the comparison of those two reduces to comparing covariance matrices Y1, >s.

REMARK 3.1. The RR scheme (3.5) from the derivation turns out to be similar to [30]
for faster convergence of regularized convex minimization problems, [11] for training
deep learning with importance sampling, and even [26] for solving linear systems of
equations earlier on.

In terms of computational complexity, recomputing the weights and sampling pro-
portions in each iteration is obviously expensive. In practice, as discussed in [22], one
can use a rejection sampling scheme to select stochastic gradients from a weighted dis-
tribution. Algorithm 1 in [11] presents a practical guidance on how to speedup the
importance sampling SGD/RR scheme in deep learning, by only updating parameters
by (3.5) when the variance of gradients can be reduced.

3.2. Stability analysis. Let us step back to discrete-time stochastic algorithms,
and compare SGD and RR scheme from the numerical analysis perspective. In fact,
especially for stiff problems, the RR scheme allows a wider range of step-sizes to keep
stochastic linear stability compared to SGD. We consider minimizing the empirical loss
function (3.1) of the form

n

LO) =3 10) =5 3 (Fi6) ~ ), (37)
i=1

i=1
where f is the learning model and {(z;,y;)}",2; €R% y; ER are i.i.d sampled data
points. We assume that for the model f, there is an interpolation solution #* such that

yi=f(24,0%), V1<i<n.

By definition, a stationary point 6 is stochastically stable if there exists a uniform con-
stant 0<C <1 such that E[||6 —0||2] <C||6p —0||3,k>1, where 6 is the k-th iterate
of the stochastic algorithm. Suppose {6} are sufficiently close to the interpolation
solution #*, then SGD iteration can be written as

Or1="0k —n(f(x:,0k) —yi) Vo f(xi,01)

~ Ok —nVof(xi,0")Vof(xi,0%) (0 —07),

where we take a Taylor expansion approximation f(z;,0k)—y;= f(x:,0k) — f(2:,0%) =
Vof(2:i,0°) T (0 —0%) and also take Vof(z;,0k)~Vof(x;,0*) approximately. Let us
denote

1 n
Hy:=Vof(2:,0°)Vof(2:,0")" and H:==) H;, (3.9)
[t
then we have the following stability conditions for SGD and RR scheme.

LEMMA 3.1.  Suppose that the starting point 0y is close to the interpolation solution 6*,
that is, there exists small >0 such that ||6g —6*|2 <€ , and Vo f(2;,0) is bounded and
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continuous around 0* for all 1 <i<mn. Then the condition for the SGD to be stochasti-
cally stable around 0* is

)\maz{(I—7]H)2+772 <;§:HE—H2> -I-O(e)} <1, (3.10)

=1

and the condition for the RR scheme to be stochastically stable around 0* is, for each
k>0,

)\Ww{(I—nH)Q—i-nQ (1 > GinH? —H2) +0(e)} <1, (3.11)
n i=1

AT VeS0TV fa50%) T (00"
where Gk = *SG, 1, 5719 w0 O 0 -

Proof. The first part (3.10) closely follows from [28]. Indeed, the iteration (3.8)
can be rewritten more precisely as

Ot — 0" = (I —nH; +0(e)) (6, —0%). (3.12)

Conditioned on {||0; —6*||2 <€}, we have the expectation on the second moment as

Ep 1641~ "] =En [ (6 — )T (I—nH; +0(e))” (6~ ")

=0 —6%)" ((I—nH)2+772 (iihﬂ —H2> +O(e)> (0, —0%).

i=1
(3.13)
The step (3.13) can be iterated down to 6y, and the expectation is taken over uniform
distribution D. To ensure that the stochastic stability condition is satisfied, we then
need (3.10). On the other hand, the iteration for the RR scheme reads

Op+1="01 —nG(x;,0,)(f(x:,0r) —yi) Vo f(x:,0k)

=0, —n(Gir+0(e) (Vaf(l“iﬁ*)vef(xi,e*f+0(e)) (0 —0"), (3.14)

where each data sample z; ~ D) is selected with probability

|(f(z4,0k) —yi) Vo f(xi,0k)|2
i0k) = —=m
P08 = S 1 80— 5y Vo F ey, B
el @) Vel (1,6 (0 —0)l
i lIVaf(2,0%)Ve f(x,0%)T (0, —0%)]l2

given {||0x —0*||2 <€}, and G(x;,0r) =C(0)/||VI1;(0k||2, which can be rewritten here as

w2l (f (2, 0k) —y) Vo f (i, 0k) |2
I (f(zi,0k) —yi) Vo f (24,0k) |2
a2l Vaf(x,0)Vo f(x,0) T (0 —0%)|2

= NS 0 Ve w0 O, T OGO

Therefore, the RR iteration (3.14) can be rewritten as

+0(e)

G(l‘i,ek) =

6k+1—0*:(I—néi,kHi—i—O(e))(Qk—G*). (315)
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Conditioned on {||0x —0*|2 <€}, we compute the expectation on the second moment
. 2
Epcw [[|0k+1 — 0" ||§] =Epw) {(Qk - 9*)T (I_nGiHi +O(€)) (O — 9*)}

=(0,—0")" ((InH)2 +n? (:L iéi,ka - H2> +0(e)> (0, —0%). (3.16)

i=1

Similar to what we analyzed for SGD, the stability condition for RR scheme is deduced
to be (3.11). |

REMARK 3.2. When d=1, all matrices in Lemma 3.1 are scalar. It is straightforward
to see that, for the second component in RR scheme, by Cauchy-Schwarz inequality, we
get

1< - I~ 20 [ Vaf(2;,0%)
N GipHR-H2 ==Y 2 : Vof(z:,0%)*—H?
n . Vo f(xi,6%)] IVof ()]

n
i=1 i=1

2
1 (< . 1 & . 1 &
== <2|V9f(xi,9 )|2> —HZSEZ;WQf(mi,G )\4—H2:EZ;HZ.2—H2.

When the model f has drastically different gradient magnitude in different data samples,
compared to SGD, the RR scheme fundamentally acts as gradient magnitude averaging
to allow a broader range of learning rates 7 for stochastic stability. The RR scheme
exhibits its particular strength of maintaining stability for stiff problems.

3.3. Local convergence analysis. In the non-convex scenario, it is relatively
easier to obtain convergence results locally. In order to make a direct comparison with
SGD in terms of local convergence rates, we adapt Theorem 4 and its proof strategy
from [20] to establish convergence analysis of the RR scheme. We use the same setup
as in [20], which takes a step-size schedule of the form n, = m for some pe (1/2,1]
with sufficiently large v,m >0. The key ingredient is the following decomposition for
stochastic gradients

Vi :=V1;(0r) =V L(0x)+ Z;(6r), j~D for SGD, (3.17)
Vii i =G(01)V1j(0k) =V L0+ Z;(0k), j~D™ for RR, (3.18)
where D denotes the uniform distribution over samples, and D(*) is the weighted distri-
bution used in the RR scheme. G;(6;)=23"", [ Vi;(0x)|l2/[VL;i(0k)]||2 as before. Note

that for both cases Ep[Z;(01)] =Epw [Z;(0x)] =0, and we further assume that given a
neighborhood U of 0., for each 1 <j<n, there exists o; >0 such that

sup||VI;(0)[|3 <o?. (3.19)
oeu
THEOREM 3.1. Suppose in a convexr compact neighborhood of 0., there exists a >0 so
that V2L(0) =al. Given the assumptions and the step-size schedule introduced above,

for a fized 6 € (0,1), there exist neighborhoods U,Uy containing 6. such that

IP(EOO:{GIC eu fOT’ allk21}|6‘1 Eul)21—5. (320)
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Furthermore, we have the local convergence rate for SGD

2

E[||6x Q*MEOO]_(1—5)(2a7—1)ksgp03+0(1/k)’ ifp=1, (3.21)
E[||0), — 0, 2| Eas] < ———supo2+o(1/k?), if p<1. 22
1650, 81 ] < 5 g s (1), i< (322

And for the RR scheme, we have

2 n
z:l
E[[|6 0.3 Exc] < all—8Vr < ZU >+0 1/kP), if p<l. (3.24)

When p=1, we choose v large so that 2ay > 1.

Proof. First of all, due to the local convexity of L(6) near 6., we have
(6—6.,VL(0)) > a|0—0. |3,

for all € K, where K is a convex compact neighborhood of #,.. We have the stochastic
gradient updates as 0,1 =6* — Nk Vi,;. Let Dy =6k — 0.3, then
Di1 =10k — 0. =i Vi 5113
=10k — 0. 113 — 208 (1 — 0, Vi j) + 1| Vi 5115
= (1601 — 0113 — 2k (O — 0., VL(Ok)) — 201 Ok — 0, Z3(01)) + 13| Vi 5113
< (1 —20mk) Dy + 20k j + 7| Vie s 113,

(3.25)

where & ;=—(0k —0+,Z;(0r)) and E[{; ;|Fk]=0. Same computations hold for RR
scheme as well by replacing notations accordingly. The key idea of the proof is to
control the error aggregation in 2n& ; +n7|| Vi, ;||3. We will only sketch the main steps
and highlight where the difference between SGD and RR emerges, since the proof details
can be found in [20]. From now on, unless it is necessary, we omit the second subscript

in &,V for simplicity as they change in each iteration. For the error terms, one can
define

k k
Mk:Qmel and Sk:ZU12||W||§~ (3.26)
= =1

Define the cumulative mean square error Ry =M ,3 + Sk, then we have

Ry = (My—1+20k&k)* + Sk—1 + 7| Vi |13

(3.27)
= Ry_1 +AMy_ 1l + 42 + | Vil 5.

It is easy to check that Ry is sub-martingale, E[Ry|F)] > Rir—1. The proof uses a finer
condition by introducing the following events, let &/ be a neighborhood of 8* and e >0,

Ey={0el for all 1<I<k} and Hp={R;<eforall 1<I<k}. (3.28)
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The property analysis of Ej and Hj is the same as in Lemma D.2 in [20], except for
(D.19). Notice that (D.26) can be estimated as

Ep[[|Vi;|31m, ] <sup||Vii(8x)|5, for SGD, (3:29)
J
Epon (Vi 131 m, ] <Epon [G; ()2 VL (08) 5] ZHW (0x)ll2)", for RR,
(3.30)

and moreover,

Epl& j1m, ] <2010k — 0.3 (sup [ V1 (0113 + |V L(6x)|[3),  for SGD, (3.31)
J

1, 2
ED(w)[Ei,ﬂlH“]S2||9k*9*||§(§(Z||Vlj(9k)||2) +[VL(0x)|3), for RR. (3.32)

Putting together with other terms, we have (D.12) modified to be
Ep[Rily, .| <Ep[Rrk—1lp,_,]—eP(Hy—2\ Hi-1)
£ (81101 — 0.3+ 1)sup | V1, (00|13 + 81161 — 0. |31V L0 32~ (3-33)
J

for SGD, and
Ep(w)[Rk]lHk_l]SED«w)[qulHk_z]— P(Hp—2\ Hi—1)

+ (8116 =013 +1) — vaz (O1)]12)* + 8]0k — 0. |2V L(Ox)|[3) n?

(3.34)

for the RR scheme.
One should control the probability of escaping the neighborhood of 6,. Denote
Ty =sUPgcy |10 — O+ ||2, by taking the telescoping sums of (3.33) and (3.34), we get that

n

k k
Ep|Rilpm, ] < ((8ru+1)supa +8r7 Y 07) Z —€> P(H_2\H1) (3.35)
=1 =1

=1
for SGD, and

n

k k
Ep [Relm, ] < ((8rF+1) Za +87‘MZJ Z —€Y P(Hi_5\H,_) (3.36)
I=1 =1

for the RR scheme. Since the left-hand sides are non-negative, we get that

k
R. & 2 R
< — .
l§:1P(H171\Hl)_ 2 N = § Hm (3.37)

~

with R, = (87 +1)sup; 05 +8r7 > 1 07 for SGD and R.=rZ+1)13" o2+

8rf > " o7 for RR scheme, respectively. Because p>1/2, the sum on the right-
hand side is finite. For any d€(0,1), we can choose m sufficiently large, so that

R*ew Yo (1+71n)22" < 6. With that, for any k, we get

k
P(Hy)=1-> P(H_1\H)>1-0. (3.38)
=1
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As a consequence, since Eo =\, Ex, we will obtain

P(Eoo) =infP(Ey) > infP(Hj—1) >1-0. (3.39)

For the convergence rate, from (3.25) we have
E[DkJrl]lEk-H} <E[Dk+1]1Ek] (1 20477k)E[Dk1Ek} + 7% E[||Vk||2]lEk] (340)

The estimate of the second term above is similar to (3.29) and (3.30). Now we insert the
expression of 7 and only consider p=1 for shortness, since the result can be derived
for p<1 verbatim, we get that

2c0
Ep[Dii1lg,,.)<(1- k+zn)Ep[Dk]lEk]+(k17m)25upa]2, for SGD,  (3.41)
J
20 2
Epe) [Drt11E,,.] < ( 7

_ T N2
iy VB [Dilg,] + (k+m)2;aw for RR. (3.42)

Therefore, we eventually get that, with + large so that 2ay>1,

Ep (|0 — 0. 13| Boo] <

]ED[Dk]lEOO] 72 ‘ )
P(En) = (1-0)(2ay D)k 2% Tol/k) (3.43)

for SGD, and

Ep o [0k —0.[13] Eac] < = 5)(2a7 Ok ( Za>+o 1/k) (3.44)

for the RR scheme. 0

REMARK 3.3. The convergence rate comparison result is similar to [22], in the spirit
that for loss functions with drastically different subfunction slopes, the RR scheme
performs as averaging to speed up the convergence rate. We should point it out that
the analysis in [22] only considers strong convex objectives, and the weighted SGD they
investigate has weights proportional to Lipschitz constants of VI; rather than ||VI;||2.

3.4. Comments from the asymptotic viewpoint. = With the derivations of
(3.4) and (3.6), one would hope to leverage stochastic calculus tools to give a short and
illustrative picture for stochastic algorithm behavior comparisons. We make following
remarks which fully use the trace information of covariance matrices, which may indicate
the faster local convergence and less oscillation behaviors of the RR scheme.

REMARK 3.4 (Local convergence rate in the continuous-time limit).  Suppose 6, is
a local minimum, and there exists >0 such that the stochastic trajectories ©; with
the starting point ©y=0y € B(0.,r) stay inside the ball B(f.,r) for t>0. Also the
local strong convexity holds: There exists co >0 such that (z—vy) " (VL(z)—VL(y)) >
collz —yl3 for z,y € B(0.,r), then the trajectory driven by (3.6) converges faster to 6.
compared to the trajectory driven by (3.4) in the L?(0,t; L%(R?))-sense.

Let us elaborate on the Remark 3.4. We denote the solutions to (3.4) and (3.6) as
©! and ©2 respectively and compute their convergence rate to the local minimum in
L?(0,;L*(R?)). Consider the function f(z)=1(z—6.)" (z—6.). By Ito’s lemma,

Af(07) = (= (8 —0.) Tm(©}) + 2 Te(:(6})) ) dt + (0} 0.) T0:(©}) W
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for i=1,2. Therefore, for i =1,2,
E[6} - 6. 3] = 160 — 0.3+ E| / (— (0L =0.)TVL(©}) + 4 Te(xi(0})) )ds|

t t
<loo—0.3+2 [ E[1x(2i(O)] ds—co [ B0} 0. 131ds
0 0

where the last line uses the local strong convexity and VL(6,)=0. Then we deduce

that
t S
[ Ell0; 0. Blas [ et 0 (a-0.1+1 [ E[m @] ar ) ds.
0 0 0

Unfortunately, a direct comparison between two independent stochastic processes is un-
clear and out of our reach, but we speculate that in order to obtain a faster convergence
to the global minimum, it should have a smaller trace of the covariance matrix. Indeed,
by Cauchy-Schwarz, the covariance matrix from (3.6) has a smaller trace at every small
neighborhood of points coinciding with the trajectory from (3.4) since

n

T (3%( (©)]3

SEZHWZ-(@»H%—Hm(@t)H%:Tr(El(@t)). (3.45)

i=1

Back to the discrete algorithms, the above computations also indicate that the RR
scheme (3.5) improves the convergence rate to a local minimum.

REMARK 3.5 (Deviation from the deterministic gradient descent). Suppose that VL
is uniformly Lipschitz continuous, i.e., there exists B >0 such that |VL(z) — VL(y)||2 <
Bllz—yl|2 for all z,y €R?. Let ¢, denote the solution to

¢r=—VL(¢)
with ¢g =0, and O, be the solution to
d@t = —VL(et) + \/ﬁa(@t)th

with ©g =46, then we have an upper bound on the probability of deviation.

LEMMA 3.2. For any 6 >0 and 0 <7 < oo, we have the inequality

T
Py (sup @t—¢t||2>5><nc’E9 / Tr(0(0,)0(0,) " )ds| (3.46)
0

tel0,T

where ¢’ only depends on §,T and B.

The proof of inequality (3.46) can be found in the Appendix B. Now if we consider
©1, in (3.4) for SGD along with O, in (3.6) for the RR scheme, the trace bound in
Lemma 3.2 implies that (3.6) is closer to ¢; with a higher probability, simply by taking
(3.45). In terms of discrete stochastic algorithms, it also indicates that the RR scheme
is more deterministic compared to SGD.
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4. Experiments

The analysis above suggests that, for non-convex optimization problems, the RR
scheme is more likely to find the global minimum compared to the vanilla SGD, espe-
cially when the global minimum lies in the sharp valley. We empirically verify this in
several examples from both data sciences and physical sciences. In particular, we study
(1) robust statistics problems under data feature disparities, and (2) geometric opti-
mization problems in computational chemistry. For real applications in deep learning,
we refer to empirical works in [11,30].

4.1. Robust classification/regression. In this example, we consider to use
the Welsch loss (see [3]) from robust statistics, where the corresponding loss for each
data sample i is

1:(0) =1 —exp(—(y; — 0" 2:)?/2). (4.1)

This loss function has found many applications in regression problems dealing with
outliers. Suppose that the goal is to find a global optimizer for a mixed population of
multiple subgroups: part of them are quite sensitive in a certain trait, while the rest
are much less sensitive in the same trait. In the following two examples, the RR scheme
randomly selects the sub-population j with the probability proportional to a;||Vi;(0%)]|2
with replacement in each iteration, where a; denotes the sub-population proportion.

05 05 04\ —RR

-1 -0.5 o 0.5 1 15 2 A 0.5 0 0.5 1 15 2 0 500 1000 1500 2000
0 [4 Iterations

(1) Vanilla SGD (2) RR (3) Loss

Fig. 4.1: We set the starting point 0o =—0.5 with a constant learning rate n=0.015 in the robust
classification problem. The color gradient of circles from green to blue shows how iterations proceed.
Plots (1) and (2) show the trajectories for one trial under vanilla SGD and RR, respectively. Plot (3)
show the loss comparisons over 10 trials.

4.1.1. Classification. The dataset {(z;,4;) }1<i<n,z: €R,y; €{0,1} consists of

z from two subgroups

e Subgroup 1: z; =20+AN(0,1); total number N; =800.

e Subgroup 2: z; =0.5+N(0,1/4); total number N2 =4000.
Here ay/a2=1/5. The class y; ~Ber(1/2) is preassigned for each data point, as we
assume that each subgroup contains individuals belonging to different classes. The goal
is to find the global minimum rather than a local minimum, even though it is flat. From
Figure 4.1 we can see that in contrast to the vanilla SGD trajectory escaping to the
nearby flat local minimum, the RR scheme trajectory stays inside the sharp valley to
reach the global minimum.

4.1.2. Regression.  The dataset {(x;,9;)}1<i<n,%; €ER?,d=10 is composed of
samples from two subgroups

e Subgroup 1: x; =20e+N(0,14); total number Ny =2000.
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e Subgroup 2: x; = %e—!— %./\/'(O,Id); total number N =800.
Here a; /as =5/2. The exact regression coefficient 3* € R? is picked by 8* ~N(0,1;) and
the uncorrupted response variables are y; zxz—»'—ﬂ*. The corrupted response variables
are generated by y; =y} +u;+¢;, where u;~Unif([=3||y*||oc,3|y*[loc]), €: ~ 75N (0,1).
Figure 4.2 shows that for a wide range of learning rate choices, the RR scheme selects
a better minimum at a faster speed compared to SGD.

0.95 \ 0.95 \ 0.95

oS!
2 °
& 2
Loss
°
2
Loss
o
2

0.85 0.85

0.8 08 08
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

lterations Iterations Iterations

(1) n=0.5 (2) n=04 (3) n=0.3

Fig. 4.2: Comparisons of the vanilla SGD and the RR scheme for various learning rates over 10
trials in robust Tegression. For each plot, we start from the same Bo=pB*+5e+e€,e~N(0,15). We
observe with a relatively large learning rate, SGD can deviate while the RR scheme is stable around
the local minimum. Even when the learning rate decreases and SGD converges to the same minimum
that the RR scheme arrives, the convergence speed of SGD is slower.

4.2. Computational chemistry. The problem here is to find the global mini-
mum of a potential energy surface (PES) that typically gives a mathematical description
of the molecular structure and its energy. In general, assuming that there are n atoms
to form a molecule, we consider minimizing the particle interacting energy of the form

E(zlazQa“' 7Zm) :ZV(Zi?Zj)a

1<J

where V is a bi-atom potential function, and zj € Rd, 1<k<m,d>1 denote the atom’s
position. In particular, the global minimum represents the most stable conformation
with respect to location arrangements of atoms. Though using SGD for a large sys-
tem is computationally efficient, trying to find the global minimum with SGD can be
difficult, especially when the global minimum lies in a sharp valley. The RR scheme
outperforms SGD in terms of the likelihood of identifying the global minimum. This
is demonstrated in Figure 4.3 by looking at two examples. The first one is the Miiller-
Brown potential [21]. The second one is an artificial large system with the interacting
function of Gaussian type

Vii(zi,2i) =exp (—(zi —z) " My(zi—2x)), My= {bZI/CQ bif} ’

with z=(z,y) €R% We assume that except for the atom 4, the rest of
atoms’ positions are fixed, then it is to consider minimizing the potential energy
min,, ﬁzkm# Vi(2;,2zx) and finding the optimal z;. Detailed parameters setups are
provided in the Appendix C.

5. Conclusion
To deal with data feature disparities in non-convex optimization problems, we pro-
pose in this paper a combined resampling-reweighting (RR) scheme to balance variances
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(b) Training comparison for example (1)

5
‘ SGD
o 0 —RR
2
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c
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S
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-
o
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-30
0 1000 2000 3000 4000 5000
Iterations
(c) Example (2): a large system (d) Training comparison for example (2)

Fig. 4.3: Ezample (1): the global optimization problem for the 1/4-rescaled Miiller-Brown poten-
tial with a learning rate n=0.002. Both start at (zo,yo)=(—0.8,1.0). Ezample (2): a large system
with m=1000 atoms in 5000 iterations. Because this problem is rather stiff, we use a monotonically
decreasing learning rate starting from n=0.002 and ending at n=1e—5 for the optimization. Both
trajectories start at (xo,y0) =(3.0,1.0). For both examples (1) and (2), the left plot shows the trajec-
tories for one trial, and the right plot shows the potential energy over 10 trials.

experienced in different regions. The RR scheme connects with the importance sampling
SGD that was previously proposed and analyzed for convex optimization problems. We
extend the analysis of the importance sampling SGD to non-convex problems from the
viewpoints of stochastic stability and local convergence speed. Numerical experiments
verify that the RR scheme outperforms the SGD in capturing the sharp global minimum,
making it more reliable and faithful for optimization purposes.
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ment of Energy, Office of Science, Office of Advanced Scientific Computing Research,
Scientific Discovery through Advanced Computing (SciDAC) program and also by the
National Science Foundation under award DMS-1818449. J.A. was supported by Joe
Oliger Fellowship from Stanford University.

Appendix A. Proof of Lemma 2.1.

Proof. Due to the construction of the loss, the stochastic iterates experience differ-
ent gradients depending on the location. In different regions, the associated variances
are different:

e In regions (—oo,—1), (—1,0), (0,1/K), (1/K,0).
e With probability a;, the gradients are —1, 1, €, € respectively.
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e With probability as, the gradients are —e, —e, —K, K respectively.
e Corresponding variances are ajas(1—e€)?, ajaz(1+¢€)?, ajas(K +€)?, ajas(K —
€)? in each region.
With the above computed, we then derive the SGD, and use the first order Euler-
Maruyama approximation (see [15]) to obtain stochastic modified equations. Indeed,
we take e —0. Let N denote a standard normal random variable. For x <0, the SGD
is approximately

00—V (0)n++/araznN, (A1)
and the corresponding SDE is
dO;=—V"(0)dt +/a1azndWy. (A.2)
For x>0, the SGD is approximately
O+ 0—-V'(0)n+K\/araznN, (A.3)
and the corresponding SDE is
dOy=—V"(0)dt + K /arazndW,. (A.4)

The resulted equilibrium measures on two sides are

p(0)= ZLIQXP <— alenV(9)> for 6<0, p(f)=—-exp (—QV(9)> for 6> 0.
(A.5)

To determine the normalization constants Z; and Zs, consider a SDE with non-smooth
diffusion
dXt = ,U(Xt,t)dt"'O'(Xt,t)dBt,

the corresponding Kolmogorov forward equation is

0up(,5) =~ [, )p(,)]+ 52102 (2,9, 9],

for s >t. The equilibrium measure should satisfy d,p(#) =0, which suggests that o2p is
continuous at #=0. Because V(0) =0, the continuity implies that

1

1
Zalagn = ZKQalagn — Z,=K?%Z.
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Appendix B. Proof of Lemma 3.2.
Proof.  Since there exists B >0 such that |VL(z)—VL(y)|2 < Bl|jz—yl2 for all
z,y €R%. Then we have

T T
u@fQMSg/H@f%mw+¢ﬁ/‘d&mws
0 0

2
By Gronwall’s inequality, we get

sup || —¢tlle < /me”" sup
te[0,T] te[0,T]

ATd®gmm

2

Therefore,

ATdegﬂm

IF’9< sup ||@t—¢>t|2>5> <IP’9< sup

t€[0,T] t€[0,T]

4 —BT
>—e
, V1 )

)

where we use Chebyshev’s inequality for the second last inequality and Burkholder-
Davis-Gundy maximal inequality for the last inequality. 0

ATd@omm

n
< ———==Ey sup
52¢—2BT (te[O,T]

<nc'Eg

T
/0 Tr(a(@s)a(@s)T)ds] ,

Appendix C. Extended numerical results and parameters setup.

C.1. Numerical comparisons with different learning rates.  Here we show
more numerical comparisons between SGD and the RR scheme with various learning
rates. See Figure C.1.

C.2. Parameters setup in Section 4.2.
Miiller- Brown potential

4
V(Jﬁ,y)ZZAieXP(ai(x—fi)2+bi($—$i)(y—yi)+Ci(y—yi)2),
i=1
A=(—150,-100,—170,15), a=(—1,—1,—6.5,0.7), (C.1)
b=(0,0,11,0.6), c¢=(—10,—10,—6.5,0.7),
=(1,0,-0.5,—1), y=(0,0.5,1.5,1).
A large system
2, =2.0—0.006k, for 1<k<500; x=1.8+0.0024k, for 500< k< 1000.
ye=2.0—0.006k, for 1<k<500; y,=—1.0+0.006k, for 500 <k < 1000.

A =—50.0—0.15k, aj =—2.0—0.018k,
be = —0.1-+0.0002k, cx =—10+0.009k, for 1<k <1000.

(C.2)
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C.1: Eaxtended comparisons of SGD (upper row) and RR (lower row) with a; =0.4,a2=0.6,e=

0.1, K =5 at various learning rates n. All experiments start at 0o =0.25. We can see that unless the
learning rate n<0.36, RR is more reliable in the sense that its trajectory stays around the desired
minimum. FEven when SGD and RR both stay around the sharp global minimum, the oscillation in
RR is smaller.
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