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BOUNDEDNESS IN A THREE-DIMENSIONAL
CHEMOTAXIS-STOKES SYSTEM INVOLVING A SUBCRITICAL

SENSITIVITY AND INDIRECT SIGNAL PRODUCTION∗

GUOQIANG REN† AND BIN LIU‡

Abstract. This paper is concerned with the Keller-Segel-Stokes system

nt+u ·∇n=∇·(D(n)n)−∇·(S(n)∇v),

vt+u ·∇v=∆v−v+w,

wt+u ·∇w=∆w−w+n,

ut=∆u+∇P +n∇ϕ, ∇·u=0,

(∗)

under no-flux/no-flux/no-flux/Dirichlet boundary conditions in smoothly bounded domains Ω⊂R3,
with given suitably regular functions D, S and ϕ.

Under the assumption that there exist m0∈R, m≥m0, kD >0 and KD >0 such that

kDsm0−1≤D(s)≤KDsm−1 for all s>1,

and that S(0)=0 as well as

|S(s)|
D(s)

≤K0s
α for all s>1

with K0>0, it is shown that for all suitably regular initial data an associated initial-boundary value
problem (∗) possesses a globally defined bounded classical solution provided α< 8

9
. We underline that

the same results were established for the corresponding system with direct signal production in a well-
known result for α< 2

3
in [X. Cao, Z. Angew. Math. Phys., 71:61, 2020] and [M. Winkler, Appl. Math.

Lett., 112:106785, 2021]. Our result rigorously confirms that the indirect signal production mechanism
genuinely contributes to the global solvability of the three-dimensional Keller-Segel-Stokes system.
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1. Introduction
Processes of directed movement of cells in response to a chemical stimulus, referred

to as chemotaxis, plays an essential role in the interaction of cells with their environment
in various biological processes such as embryonic development, wound healing, disease
progression, the location of food sources, avoidance of predators, attracting mates, slime
mold aggregation, tumour angiogenesis, and primitive steak formation [16]. The pio-
neering works of the chemotaxis model was introduced by Keller and Segel in [19],
describing the aggregation of cellular slime mold toward a higher concentration of a
chemical signal, which reads{

nt=∆n−χ∇·(n∇c), x∈Ω, t>0,

ct=∆c−c+n, x∈Ω, t>0.
(1.1)
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The mathematical analysis of (1.1) and the variants thereof mainly concentrates on the
boundedness and blow-up of the solutions (refer to e.g. [13,22,40,43] and the references
therein).

However, from a physical point of view, the equation modeling the migration of
cells should rather be regarded as nonlinear diffusion [28], especially the slow diffusion
with finite propagation property, and other reason is the bacterial cells have positive
sizes which are not negligible, a so-called volume-filling effect is introduced by Hillen
and Painter in the Keller-Segel model [14]. The associated system accounting for this
is then quasilinear and involves more general functions D(·) and S(·),{

nt=∇·(D(n)∇n)−∇·(S(n)∇c), x∈Ω, t>0,

ct=∆c−c+n, x∈Ω, t>0,
(1.2)

where D and S fulfill

D∈C2([0,∞)), D>0 and S∈C2([0,∞)) with S(0)=0, (1.3)

as well as some m0∈R, m≥m0, kD>0 and KD>0 such that

kDsm0−1≤D(s)≤KDsm−1 for all s>1. (1.4)

If for all s>1, we have

S(s)

D(s)
≤KDSs

α with some KDS >0 and α<
2

N
, (1.5)

then (1.2) possesses a bounded solution if the initial data are sufficiently regular [29].
Whereas, if (1.5) is replaced by

S(s)

D(s)
≥ K̃DSs

α with some K̃DS >0 and α>
2

N
, (1.6)

provided some technical conditions are satisfied, the authors in [3–5,41] prove that the
solution blows up at finite time. That is, when N ≥2, Ω⊂RN be a ball, Winkler [41]

proved that if D(u)
S(u) grows faster than u

2
N as u→∞ and some further technical conditions

are fulfilled, then there exist solutions that blow up in either finite or infinite time. When
N ≥3, D,S∈C2([0,∞)) and there is β∈C2([0,∞)) such that D(s)>0, S(s)=sβ(s)
and β(s)≥ c0>0 for all s≥0, if G(s)≤αs2−α, s≥s0 with some α> 2

N as well as

H(s)≤γG(s)+b(s+1), s>0 with some γ∈ (0, N−2
N ), where G(s)=

∫ s

s0

∫ σ

s0

D(η)
S(η) dηdσ and

H(s)=
∫ s

0
σD(σ)
S(σ) dσ, Ciéslak and Stinner [3] showed that for any initial data satisfying

appropriate condition, the corresponding solution of (1.2) blows up at the finite time.
Furthermore, Ciéslak and Stinner [4] found critical exponents on the growth of S distin-
guishing between the possibility of finite-time blowup and the lack of it when D and S
satisfy the supercritical relation. For more related results, we refer to previous studies
e.g. [9, 15,17,29] and the references therein.

Models (1.1) and (1.2) assume that there is no interplay between cells/chemicals
and their ambient surroundings. However, some experimental observations have shown
that the motion of cells also can be substantially influenced by the surrounding fluid [33].
Tuval et al. [33] proposed a chemotaxis-fluid model by considering the bacteria-induced
motion of fluid through buoyant forces and the fluid-driven transport of bacteria and
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signal where the signal is consumed. Since then, considerable efforts have been made in
addressing the global existence, boundedness and asymptotic behavior of solutions to the
associated initial-boundary value problem of models (refer to e.g. [30,42,44–47] and the
references therein). As in the classical Keller-Segel model, where the chemoattractant
is produced rather than consumed by bacteria, the relevant Keller-Segel-Navier-Stokes
system with rotational effect of the form is given by:

nt+u ·∇n=∇·(D(n)n)−∇·(nS(x,n,v) ·∇v), x∈Ω,t>0,

ct+u ·∇c=∆c−c+n, x∈Ω,t>0,

ut+κ(u ·∇)u=∆u+∇P +n∇ϕ, ∇·u=0, x∈Ω,t>0.

(1.7)

When D(n)≡1 and S(x,n,v) is a tensor-valued sensitivity satisfying some dampening
condition, such as S(x,n,v) ≤CS(1+n)−α, Wang and Xiang [37] proved that the Keller-
Segel-Stokes system (1.7) with κ=0 possesses a global boundedness solution in a two-
dimensional smoothly bounded domain. To the best of our knowledge, this is the
first result on global existence and boundedness in a Keller-Segel-Stokes system with
tensor-valued sensitivity. Wang and Xiang [38] further showed that if α> 1

2 , the Keller-
Segel-Stokes system (1.7) with κ=0 also admits a global classical solution which is
uniformly bounded in three-dimensional smoothly bounded domain. Parallel to the
case of the corresponding Keller-Segel-Navier-Stokes system, Wang [34] proved that the
system (1.7) possesses at least one global very weak solution if α> 1

3 in three-dimensional
smoothly bounded domains. More recently, when S(x,n,v)≡1 and κ=1, Winkler [50]
showed that if ∥n0∥L1(Ω)<2π, the system (1.7) admits a globally defined generalized
solution; in particular, this hypothesis is fully explicit and independent of the initial
size of further solution components. Moreover, the obtained solution is seen to enjoy a
certain temporally averaged boundedness property which, inter alia, rules out any finite-
time collapse into persistent Dirac-type measures, as well as convergence to such singular
profiles in the large-time limit. When D(n) is replaced by ∆nm (m≥1), S(x,n,v)≡1,
Black [1] proved that if m> 4

3 , the system (1.7) possesses at least one global very weak
solution. Moreover, if m> 5

3 , the system (1.7) admits at least one global weak solution.
When the system (1.7) has a logistic source rn−µn2, Tao and Winkler [31] showed
that the corresponding initial-boundary problem possesses a global classical solution
which is bounded in three-dimensional smoothly bounded domains under the explicit
condition µ≥23. In two-dimensional smoothly bounded domains, Tao and Winkler [32]
proved that the Keller-Segel-Navier-Stokes possesses a global classical bounded solution
for each µ>0. Liu et al. [21] showed that if m≥ 1

3 and α> 6
5 −m, the corresponding

initail-boundary problem possesses at least one global bounded weak solution for the
Keller-Segel-Stokes system with nonlinear diffusion and logistic source in the three-
dimensional bounded domains. Jin [18] improved the results in [21], and established
the global existence and boundedness of weak solutions for any m>0 and α>0. For
more related results, we refer to previous studies e.g. [6,20,23,35,36,48,49,55] and the
references therein.

The chemotactic signal is produced directly by cells in the classical Keller-Segel
system, yet the signal generation undergoes intermediate stages in some realistic bio-
logical processes [27]. In recent years, much attention has been focused on the following
Keller-Segel system with indirect signal production

ut=∆u−χ∇·(u∇v), x∈Ω,t>0,

τvt=∆v−v+w, x∈Ω,t>0,

τwt=∆w−w+u, x∈Ω,t>0.

(1.8)
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For the system (1.8), when f ≡0, Fujie and Senba [11] proved that for all reasonable
initial data the solution of the system (1.8) in the case N ≤3 is global in the clas-
sical sense. In the case N =4, they construct a Lyapunov functional of the system
(1.8) and use the Adams-type inequality to derive that if there exists a constant 64π2

such that ∥u0∥L1(Ω)<
64π2

χ is radially symmetric, then the solution to the Neumann

boundary value problem of system (1.8) exists globally in time and remains bounded.
When the system (1.8) has a logistic source µ(u−uα), Zhang et al. [57] showed that
if α> N

4 + 1
2 , the system (1.8) possesses a global bounded classical solution. Moreover,

if µ>0 is sufficiently large, the global bounded solution (u,v,w) converges to (1,1,1).
When the system (1.8) with rotational sensitivity, that is, χ∇·(u∇v) is replaced by
∇·(S(x,u,v,w)∇v), and the rotational sensitivity function S=(Sij)i,j∈{1,2,...,N} sat-

isfies for all i,j∈{1,2,. ..,N}, Sij ∈C2(Ω× [0,∞)), and that |Sij(x,u,v,w)|≤Ku with
constant K>0, f(0)≥0 and f(s)≤k−µsα, Dong and Peng [8] proved that if α> N

4 + 1
2 ,

the system (1.8) possesses a unique global bounded classical solution. This implies that
the rotational flux in indirect signal production mechanism maintains the regularity of
the system. For the nonlinear diffusion case, when ∆u−χ∇·(u∇v)+f(u) is replaced
by ∇·(D(u)∇u−S(u)∇v) and D(u)≥a0(u+1)−α, 0≤S(u)≤ b0(u+1)β with a0,b0>0,
α,β∈R, Ding and Wang [7] proved that if α+β<min{1+ 2

N , 4
N }, the system (1.8)

possesses a globally bounded and classical solution.

As is observed above, on one hand, the mathematical studies on the fluid-free Keller-
Segel system (1.2) indicated that subcritical sensitivity is sufficient to suppress any
unboundedness phenomenon. To be more precise, Tao and Winkler [29] proved that
the system (1.2) admits global bounded classical solutions for all suitably regular but
arbitrarily large initial data whenever α<α∗(N) := 2

N . When the Keller-Segel(-Navier)-
Stokes system with subcritical sensitivity of the form in (1.6), that is, nS(x,n,v) is
replaced by S(n), Winkler [51] showed the global existence of bounded classical solutions
to (1.7) for widely arbitrary initial data actually within the entire range α< 2

3 in 3D

smoothly bounded domain with κ=0. As D and S satisfy (1.3)-(1.6) with S(s)
D(s) ≤

KDSs
1−α, Cao [2] proved that if α> 1

3 and either m> 1
3 or m≤ 1

3 and m+4α>1,
the Keller-Segel-Stokes system (1.7) admits a global bounded classical solution. On
the other hand, we noticed that Yu [56] investigated a 2D Keller-Segel-Stokes system
with indirect signal production, and showed that suitable saturation of chemotactic
sensitivity can prevent the blow-up of solution. Following [56], some recent results
rigorously revealed that the mechanism of indirect signal production is conductive to the
global solvability of two-dimensional Keller-Segel(-Navier)-Stokes system and 3D Keller-
Segel-Stokes system. Wang and Yang [39] claimed that global boundedness of classical
solution can be derived for the 2D Keller-Segel-Stokes system without any saturation
effect on sensitivity and for the 3D Keller-Segel-Stokes system with α> 1

9 when the
signal production is indirect. Winkler [51] showed the global existence of bounded
classical solutions to Keller-Segel-Stokes system (1.7) for widely arbitrary initial data
actually within the entire range α< 2

3 in 3D smoothly bounded domain. This inspires
us to ask the following interesting and significant question: Will the indirect signal
production mechanism genuinely contribute to the global solvability of the
three-dimensional Keller-Segel-Stokes system?

Main results. Motivated by some previous studies [26,39,51,52], in this paper, we
are concerned with the following Keller-Segel-Stokes system with subcritical sensitivity
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and indirect signal production mechanism

nt+u ·∇n=∇·(D(n)n)−∇·(S(n)∇v), x∈Ω,t>0,

vt+u ·∇v=∆v−v+w, x∈Ω,t>0,

wt+u ·∇w=∆w−w+n, x∈Ω,t>0,

ut =∆u+∇P +n∇ϕ, ∇·u=0, x∈Ω,t>0,
∂u
∂ν = ∂v

∂ν =
∂w
∂ν =0, u=0, x∈∂Ω,t>0,

n(x,0)=n0(x), v(x,0)=v0(x), w(x,0)=w0(x), u(x,0)=u0(x), x∈Ω,

(1.9)
where Ω⊂R3 is a bounded domain with smooth boundary ∂Ω and ∂

∂ν denotes the
derivative with respect to the outer normal of ∂Ω. Our main goal is to affirmatively
answer the above question. Specifically, we shall examine when α is larger
than 2

3 , whether the three-dimensional Keller-Segel-Stokes system (1.9) is
globally classical solvable.

To prepare a precise presentation of our main results, throughout this work we
assume that the given gravitational potential function ϕ fulfills

ϕ∈W 2,∞(Ω), (1.10)

and that the quadruple of initial data (n0,v0,w0,u0) satisfies

n0∈C0(Ω) is nonnegative,

v0∈W 1,∞(Ω) is nonnegative,

w0∈W 1,∞(Ω) is nonnegative and

u0∈
⋃

β∈( 3
4 ,1)

D(Aβ),

(1.11)

where A=−P∆ represents the Stokes operator with domain D(Aβ) :=W 2,2(Ω;R3)
∩W 1,2

0,σ (Ω;R3) with W 1,2
0,σ (Ω;R3) :=W 1,2

0 (Ω;R3)∩L2
σ(Ω;R3) and L2

σ(Ω;R3) :={φ∈
L2(Ω)|∇·φ=0}, and P represents the Helmholtz projection of L2(Ω;R3) onto L2

σ(Ω;R3).
Now, we state our main results of the present paper.

Theorem 1.1. Let Ω⊂R3 be a bounded domain with smooth boundary, the function
ϕ fulfills (1.10). If D and S satisfy (1.3), (1.4) as well as

|S(s)|
D(s)

≤K0s
α for all s>1 (1.12)

with some m0∈R, m≥m0, kD>0, KD>0, K0>0 and

α<
8

9
. (1.13)

Then for each (n0,v0,w0,u0) fulfilling (1.11), there exist

n∈C0(Ω× [0,∞))∩C2,1(Ω×(0,∞)),

v∈
⋂

p>3C
0([0,∞);W 1,p(Ω))∩C2,1(Ω×(0,∞)),

w∈
⋂

q>3C
0([0,∞);W 1,q(Ω))∩C2,1(Ω×(0,∞)),

u∈
⋂

β∈( 3
4 ,1)

C0([0,∞);D(Aβ))∩C2,1(Ω×(0,∞);R3)
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such that n,v,w≥0 in Ω×(0,∞), and that with some P ∈C1,0(Ω×(0,∞)), and such that
(n,v,w,u,P ) solves (1.9) in the classical sense in Ω×(0,∞). Moreover, this solution is
bounded in the sense that with some β∈ ( 34 ,1) and C>0,

∥n(·,t)∥L∞(Ω)+∥v(·,t)∥W 1,∞(Ω)+∥w(·,t)∥W 1,∞(Ω)+∥Aβu(·,t)∥L2(Ω)≤C (1.14)

for all t>0.

Remark 1.1. Compared with the existing result on the Keller-Segel-Stokes system
with direct signal production, Theorem 1.1 rigorously confirms that the indirect signal
production mechanism genuinely facilitates the global existence of bounded classical
solutions of the three-dimensional Keller-Segel-Stokes system. Indeed, the global exis-
tence of bounded classical solutions to the three-dimensional Keller-Segel-Stokes system
with α< 2

3 was obtained in [51, Theorem 1.3] and [2, Theorem 1.1] while Theorem 1.1
in the present work established the global existence of bounded classical solutions in the
same sense as that of [2, 51] to the three-dimensional Keller-Segel-Stokes system (1.9)
with suitably large α. In short, this result affirmatively answers the above question.

Remark 1.2. We leave the open question of how far the explicit condition (1.13)
indeed is optimal for the conclusion made in Theorem 1.1.

In this paper, we use symbols Ci and ci (i=1,2, ·· ·) as some generic positive con-
stants which may vary in the context. For simplicity, u(x,t) is written as u, the integral∫
Ω
u(x)dx is written as

∫
Ω
u(x) and

∫ t

0

∫
Ω
u(x,t)dxdt is written as

∫ t

0

∫
Ω
u(x,t).

In the remaining part of this paper, we will first give the local existence result and
some basic regularity estimates as preliminaries in Section 2. In Section 3, we give some
elementary estimates for the solution to the system (1.1) and prove the Theorem 1.1.

2. Preliminaries
Firstly, we have the following local existence result as well as a convenient extensibil-

ity criterion by means of some well-known arguments in the theory of chemotaxis-fluid
system. Since the proof is rather standard, we omit it for simplicity and refer the reader
to [42, Lemma 2.1] for more details.

Lemma 2.1. Let Ω⊂R3 be a bounded domain with smooth boundary, ϕ∈W 2,∞(Ω),
D∈C2([0,∞)), S∈C2([0,∞)) and initial data (n0,v0,w0,u0) fulfilling (1.11). Then
there exist Tmax∈ (0,∞] and quintuple (n,v,w,u,P ) with

n∈C0(Ω× [0,Tmax))∩C2,1(Ω×(0,Tmax)),

v∈
⋂

p>3C
0([0,Tmax);W

1,p(Ω))∩C2,1(Ω×(0,Tmax)),

w∈
⋂

q>3C
0([0,Tmax);W

1,q(Ω))∩C2,1(Ω×(0,Tmax)),

u∈
⋂

β∈( 3
4 ,1)

C0([0,Tmax);D(Aβ))∩C2,1(Ω×(0,Tmax);R3)

such that n,v,w≥0 in Ω×(0,Tmax), and that with some P ∈C1,0(Ω×(0,Tmax)), and
such that (n,v,w,u,P ) solves (1.9) in the classical sense in Ω×(0,Tmax). Moreover, if
Tmax<∞, then for all β∈ ( 34 ,1),

limsup
t↗Tmax

(∥n(·,t)∥L∞(Ω)+∥v(·,t)∥W 1,∞(Ω)+∥w(·,t)∥W 1,∞(Ω)+∥Aβu(·,t)∥L2(Ω))=∞.

(2.1)
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Lemma 2.2. Assume that the conditions of Lemma 2.1 hold, the solution of (1.9)
fulfills ∫

Ω

n(·,t)=m :=

∫
Ω

n0 for all t∈ (0,Tmax) (2.2)

and ∫
Ω

v(·,t)≤max

{∫
Ω

n0,

∫
Ω

v0,

∫
Ω

w0

}
for all t∈ (0,Tmax) (2.3)

as well as ∫
Ω

w(·,t)≤max

{∫
Ω

n0,

∫
Ω

w0

}
for all t∈ (0,Tmax). (2.4)

Proof. Integrating the first three equations, we readily conclude that (2.2)–(2.4) are
valid. We refer to [39, Lemma 2.2] for more details. The proof is complete.

Lemma 2.3 (Gagliardo-Nirenberg interpolation inequality [24, 25]). Let Ω⊂RN be a
bounded domain with smooth boundary. Assume p,q∈ [1,∞], and r∈ (0,p) with p<∞ for
q=N and p≤ qN

N−q for q<N . Then, for θ∈ (0,1] given by: −N
p =(1− N

q )θ−
N
r (1−θ)

and some CGN >0, we have

∥z∥Lp(Ω)≤CGN∥z∥θW 1,q(Ω)∥z∥
1−θ
Lr(Ω)

for any z∈W 1,q(Ω)∩Lr(Ω).

3. Proof of Theorem 1.1
The aim of this section is to establish a temporally independent L∞ bound for ∇v.

Recalling the arguments pursued in our recent work [26], and also [52], it is important
to turn to higher order conditional estimates as compared to W 1,∞-topology, which
is based on Lp-Lq estimates of the sectorial operator [15]. Although Lemma 3.1 to
Lemma 3.5 can be found in our recent work [26], for the convenience of the readers and
the integrity of this manuscript, we sketch the main steps of Lemma 3.1 to Lemma 3.5.
Here and throughout the sequel, we abbreviate B :=Bk denoting the sectorial realization
of −∆+1 under homogeneous Neumann boundary conditions in

⋂
k>1L

k(Ω), and let
(Bµ)µ>0 represent the associated family of positive fractional power Bµ=Bµ

k . Then the
respective domainsD(Bµ

k ) are continuous embedded intoW 1,∞(Ω) whenever 2µ− 3
k >1.

In order to express in more concise form, we let

Hp(t) :=1+ sup
s∈(0,t)

∥n(·,s)∥Lp(Ω), t∈ (0,Tmax) (3.1)

and

Ik,µ(t) :=1+ sup
s∈(0,t)

∥Bµ(v(·,s)−e−sBv0)∥Lk(Ω), t∈ (0,Tmax). (3.2)

Lemma 3.1. Let (n,v,w,u) be the solution constructed in Lemma 2.1. Then
for some β∈ ( 34 ,1), p≥2, k>3 and δ>0, there exist K1=K1(β,p,k,δ)>0 and K2=
K2(β,p,k,δ)>0 with the properties that

∥Aβu(·,t)∥L2(Ω)≤K1H
p

p−1 ·(
4β−1

6 +δ)
p (t) for all t∈ (0,Tmax) (3.3)
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and, whereafter, that

∥u(·,t)∥Lk(Ω)≤K2H
p

p−1 ·(
k−3
3k +δ)

p (t) for all t∈ (0,Tmax). (3.4)

Proof. Based on the fourth equation in (1.9), it follows from the reasoning of
Proposition 1.1 and Corollary 2.1 in [52], we can establish (3.3) and (3.4) immediately.
The proof is complete.

Lemma 3.2. Let (n,v,w,u) be the solution constructed in Lemma 2.1. Then for any
p≥2, q≥2 and k≥2, there exists K3=K3(β,p,k)>0 with the property that

∥v(·,t)∥Lk(Ω)≤K3H
p

p−1 ·
k−1
9k

p (t) for all t∈ (0,Tmax). (3.5)

Proof. Multiplying the third equation in (1.9) by wq−1 and integrating by parts,
we have

1

q

d

dt

∫
Ω

wq+
4(q−1)

q2

∫
Ω

|∇w
q
2 |2+

∫
Ω

wq =

∫
Ω

wq−1n. (3.6)

Owing to 1< 3q
2q+1 <

3
2 <p, by the Hölder inequality and Young’s inequality, we deduce∫

Ω

wq−1n≤∥w
q
2 ∥

2(q−1)
q

L6(Ω) ∥n∥L
3q

2q+1 (Ω)

≤ q−1

q

{
1

q

(∫
Ω

|∇w
q
2 |2+

∫
Ω

wq

)}
+

1

q
·
(
q

q−1
q c

q−1
q

1 ∥n∥
L

3q
2q+1 (Ω)

)q

≤ q−1

q2

∫
Ω

|∇w
q
2 |2+ q−1

q2

∫
Ω

wq+qq−2cq−1
1 ∥n∥

p(q−1)
3(p−1)

Lp(Ω) ∥n∥
2pq+p−3q

3(p−1)

L1(Ω)

≤ q−1

q2

∫
Ω

|∇w
q
2 |2+ q−1

q2

∫
Ω

wq+qq−2cq−1
1 m

2pq+p−3q
3(p−1) H

p(q−1)
3(p−1)
p (t) (3.7)

for all t∈ (0,Tmax), where c1>0 is a constant. Inserting (3.7) into (3.6) and using the
fact 1− q−1

q2 ≥1− 1
q ≥

1
2 ≥

1
q , we thus obtain that for any choice of t∗∈ (0,Tmax),

d

dt

∫
Ω

wq+

∫
Ω

wq ≤ qq−2cq−1
1 m

2pq+p−3q
3(p−1) H

p(q−1)
3(p−1)
p (t) for all t∈ (0,t∗).

In accordance with ODE comparison arguments,∫
Ω

wq ≤max

{∫
Ω

wq
0, q

q−2cq−1
1 m

2pq+p−3q
3(p−1) H

p(q−1)
3(p−1)
p (t∗)

}
for all t∈ (0,t∗].

When evaluated at t= t∗, in view of (1.11) this readily concludes that

∥w(·,t)∥Lq(Ω)≤ c2H
p

p−1 ·
q−1
3q

p (t) for all t∈ (0,Tmax) (3.8)

with constant c2>0. Likewise,

∥v(·,t)∥Lk(Ω)≤ c3

(
1+ sup

s∈(0,t)

∥w(·,s)∥Lq(Ω)

) q
q−1 ·

k−1
3k

for all t∈ (0,Tmax), (3.9)
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where c3>0 is a constant. Combining (3.8) with (3.9), we have

∥v(·,t)∥Lk(Ω)≤ c3

(
1+c2H

p
p−1 ·

q−1
3q

p (t)

) q
q−1 ·

k−1
3k

≤ c4H
p

p−1 ·
k−1
9k

p (t) for all t∈ (0,Tmax).

The proof is complete.

Lemma 3.3. Let (n,v,w,u) be the solution constructed in Lemma 2.1. Assume that
µ∈ ( 12 ,1), p≥2 and k>3. Then for all δ>0, there exists K4=K4(µ,k,δ,p)>0 such
that

∥∇(v(·,t)−e−tBv0)∥L∞(Ω)≤K4H
p

p−1 ·
(k−1)(2µk−k−3)

18k2µ
p (t) ·I

k+3
2kµ +δ

k,µ (t) (3.10)

for all t∈ (0,Tmax).

Proof. Due to µ∈ ( 12 ,1), one can find k>3 sufficiently large and δ>0 arbitrary
small such that

1− k+3

2kµ
>0 and δ<1− k+3

2kµ
,

we can thus take

ϑ(δ) :=
k+3

2kµ
+δµ<µ.

By the interpolation inequality in [10, Theorem 2.14.1] for fractional powers of sectorial
operators, there exist c1= c1(µ,k,δ)>0 and c2= c2(µ,k,δ)>0 such that

∥Bϑ(v(·,t)−e−tBv0)∥Lk(Ω)

≤ c1∥Bµ(v(·,t)−e−tBv0)∥
ϑ
µ

Lk(Ω)
∥v(·,t)−e−tBv0∥

1−ϑ
µ

Lk(Ω)

≤ c2H
p

p−1 ·
[

(k−1)(2µk−k−3)

18k2µ
− (k−1)δ

9k

]
p (t) ·I

k+3
2kµ +δ

k,µ (t)

≤ c2H
p

p−1 ·
(k−1)(2µk−k−3)

18k2µ
p (t) ·I

k+3
2kµ +δ

k,µ (t) for all t∈ (0,Tmax)

with c2 := c1(K3+∥v0)∥Lk(Ω))
p

p−1 ·
(k−1)(2µk−k−3)

18k2µ , which combined with the continuous

embedding D(Bϑ) ↪→W 1,∞(Ω) [12], implies that there is c3= c3(µ,k,δ)>0 such that

∥∇(v(·,t)−e−tBv0)∥L∞(Ω)≤ c3∥Bϑ(v(·,t)−e−tBv0)∥Lk(Ω)

≤ c2c3H
p

p−1 ·
(k−1)(2µk−k−3)

18k2µ
p (t) ·I

k+3
2kµ +δ

k,µ (t)

for all t∈ (0,Tmax), and thus, (3.10) follows with K4= c2c3. The proof is complete.

Lemma 3.4. Let (n,v,w,u) be the solution constructed in Lemma 2.1. Assume that
k≥3, p≥2 and µ∈ ( 12 ,1) are such that k(2µ−1)>3. Then for all δ>0 one can find
K5=K5(µ,k,p,δ)>0 fulfilling

∥Bµ(v(·,t)−e−tBv0)∥Lk(Ω)≤K5H
p

p−1 ·(
6µk+k−1

9k +δ)
p (t) for all t∈ (0,Tmax). (3.11)

Proof. Taking δ>0 sufficiently small such that

δ<min

{
1− k+3

2kµ
, 2k(1−µ)

}
, (3.12)
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we let

l :=
3k

3+2k(1−µ)−δ
, (3.13)

(3.12) asserts that δ<2k(1−µ) and k>3+2k(1−µ)+2kµδ>3+2k(1−µ), and thus,

k=
3k

3+2k−2kµ−2k(1−µ)
>l=

3k

3+2k(1−µ)−δ
>

3k

3+2k(1−µ)
>3. (3.14)

By the variation-of-constants formula for v and applying Bµ, we have

∥Bµ(v(·,t)−e−tBv0)∥Lk(Ω)≤
∫ t

0

∥Bµe−(t−s)Bw(·,s)∥Lk(Ω)ds

+

∫ t

0

∥Bµe−B(t−s)u(·,s)∇v(·,s)∥Lk(Ω)ds (3.15)

for all t∈ (0,Tmax), according to the Lp-Lq estimates for the corresponding semigroup
[15], we get∫ t

0

∥Bµe−(t−s)Bw(·,s)∥Lk(Ω)ds≤ c1

∫ t

0

(1+(t−s)−µ)e−(t−s)∥w(·,s)∥Lk(Ω)ds

≤ c2H
p

p−1 ·
q−1
3q

p (t)

∫ ∞

0

(1+σ−µ)e−σdσ

≤ c3H
p

p−1 ·
q−1
3q

p (t) for all t∈ (0,Tmax) (3.16)

with c1,c2>0 and c3 := c2
∫∞
0

(1+σ−µ)e−σdσ<∞ due to µ∈ ( 12 ,1), here we used (3.8)
in Lemma 3.2, and that for all t∈ (0,Tmax),∫ t

0

∥Bµe−(t−s)Bu(·,s)∇v(·,s)∥Lk(Ω)ds

≤ c4

∫ t

0

(
1+(t−s)−µ− 3

2 (
1
l −

1
k )
)
e−(t−s)∥u(·,s)∇v(·,s)∥Ll(Ω)ds

≤ c4

∫ t

0

(
1+(t−s)−µ− 3

2 (
1
l −

1
k )
)
e−(t−s)∥u(·,s)∥Ll(Ω)

×
(
∥∇(v(·,t)−e−tBv0)∥L∞(Ω)+∥∇e−tBv0)∥L∞(Ω)

)
ds

≤ c5H
p

p−1 ·
[

(k−1)(2µk−k−3)

18k2µ
+ l−3

3l +δ
]

p (t) ·I
k+3
2kµ +δ

k,µ (t) (3.17)

where c4,c5>0. Therefore, inserting (3.16) and (3.17) into (3.15), and using (3.12),
Young’s inequality, there exists c6>0 such that

∥Bµ(v(·,t)−e−tBv0)∥Lk(Ω)≤ c3H
p

p−1 ·
q−1
3q

p (t)+
1

2
Ik,µ(t)

+c6H
p

p−1 ·
[

(k−1)(2µk−k−3)

18k2µ
+ l−3

3l +δ
]
· 2µk
2µk−k−3−2µkδ

p (t)

for all t∈ (0,Tmax), which implies

Ik,µ(t)≤ c3H
p

p−1 ·
q−1
3q

p (t)+
1

2
Ik,µ(t)+c6H

p
p−1 ·

[
(k−1)(2µk−k−3)

18k2µ
+ l−3

3l +δ
]
· 2µk
2µk−k−3−2µkδ

p (t)
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for all t∈ (0,Tmax), and thus,

Ik,µ(t)≤2+2c3H
p

p−1 ·
q−1
3q

p (t)

+2c6H
p

p−1 ·
[

(k−1)(2µk−k−3)

18k2µ
+ l−3

3l +δ
]
· 2µk
2µk−k−3−2µkδ

p (t) (3.18)

for all t∈ (0,Tmax). Letting

φ(δ̃) :=
p

p−1
·

[
(k−1)(2µk−k−3)

18k2µ
+

2µk−k−3+ δ̃

3k
+ δ̃

]
· 2µk

2µk−k−3−2µkδ̃
,

we know that φ(δ̃)↘ p
p−1 ·

6kµ+k−1
9k as δ̃↘0, hence for some chosen δ̃ >0, it is possible

to select δ̂∈ (0,min{1− k+3
2kµ , 2k(1−µ)}) such that

φ(δ̂)≤ p

p−1
·
(
6kµ+k−1

9k
+δ

)
.

Therefore, by an elementary calculation, we make use of (3.13) having

p

p−1
·
[
(k−1)(2µk−k−3)

18k2µ
+

l−3

3l
+ δ̂

]
· 2µk

2µk−k−3−2µkδ̂

=φ(δ̂)≤ p

p−1
·
(
6kµ+k−1

9k
+δ

)
,

which in conjunction with (3.18) and (3.1) implies (3.11). The proof is complete.

Lemma 3.5. Let (n,v,w,u) be the solution constructed in Lemma 2.1. Assume that
p≥2 and δ>0. Then there exists K6=K6(p,δ)>0 such that

∥∇v(·,t)∥L∞(Ω)≤K6H
p

p−1 ·(
4
9+δ)

p (t) for all t∈ (0,Tmax). (3.19)

Proof. Given δ>0, we thus choose k=k(µ)> 3
2µ−1 suitably large satisfying

4(k+1)

9k
<

4

9
+δ,

which ensures that

φ(δ̃) :=
(k−1)(2µk−k−3)

18k2µ
+

(
6µk+k−1

9k
+ δ̃

)
·
(
k+3

2kµ
+ δ̃

)
, δ̃ >0 (3.20)

fulfills

φ(δ̃)↘ (k−1)(2µk−k−3)

18k2µ
+

(k+3)(6µk+k−1)

18k2µ
=

4(k+1)

9k
<

4

9
+δ,

and thus, we can find δ̆= δ̆(p,δ)>0 in such a way that

φ(δ̆)≤ 4

9
+δ. (3.21)

Consider Lemma 3.3 with Lemma 3.4, there exists c1= c1(p,k,µ,δ̆)>0 satisfying

∥∇(v(·,t)−e−tBv0)∥L∞(Ω)≤ c1H
p

p−1 ·
[

(k−1)(2µk−k−3)

18k2µ
+( 6µk+k−1

9k +δ̃)·( k+3
2kµ +δ̃)

]
p (t) (3.22)
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for all t∈ (0,Tmax). Furthermore, by the Neumann heat semigroup theory [40, Lemma
1.3], we get

∥∇e−tBv0∥L∞(Ω)≤ c2∥v0∥W 1,∞(Ω) for all t∈ (0,Tmax) (3.23)

with c2>0 being a constant. Thus, by combination of (3.1) and (3.21)–(3.23), we have

∥∇v(·,t)∥L∞(Ω)

≤∥∇(v(·,t)−e−tBv0)∥L∞(Ω)+∥∇e−tBv0∥L∞(Ω)

≤ c1H
p

p−1 ·
[

(k−1)(2µk−k−3)

18k2µ
+( 6µk+k−1

9k +δ̃)·( k+3
2kµ +δ̃)

]
p (t)+c2∥v0∥L∞(Ω)(t)

≤ c3H
p

p−1 ·φ(δ̆)
p (t)≤ c3H

p
p−1 ·(

4
9+δ)

p (t) for all t∈ (0,Tmax)

with c3= c1+c2K0 and K0 is as in (1.11), which implies (3.19). The proof is complete.

Lemma 3.6. Let the conditions of Theorem 1.1 hold, for all p>1 there exists C=
C(p)>0 such that

ζp(s) :=

∫ s

0

∫ σ

0

τm+p−3

D(τ)
dτdσ, s≥0

fulfills

1

C
sp−1≤ ζp(s)≤Csp+m−m0 +C for all s≥0.

Proof. The result can be obtained by a straightforward calculation.

Lemma 3.7. Assume that ϕ∈W 2,∞(Ω), that D and S satisfy (1.3), (1.4), (1.12) as
well as (1.13) with some m0∈R, m≥m0, kD>0, KD>0, K0>0 and α< 8

9 , and that
(1.11) holds. Let (n,v,w,u,P ) be as in Lemma 2.1. Then for all p∗>1 there exists
p≥p∗ such that

sup
t∈(0,Tmax)

∥n(·,t)∥Lp(Ω)<∞. (3.24)

Proof. Given p∗>1, owing to 8−9α>0, we can choose p≥p∗ such that η :=
m−m0≥0 and

p>max

{
8−9α+4η

8−9α
, 4−2α−m, 3−m,

3+η−3m

2

}
. (3.25)

By a simple calculation, it is easy to see 3(p+η−1)
(p−1)(4−3α) ·

4
9 <1, so that we can choose δ>0

such that

ρ :=
3(p+η−1)

(p−1)(4−3α)
·
(
4

9
+δ

)
<1. (3.26)

From Lemma 3.5, there exists c1>0 such that

∥∇v(·,t)∥L∞(Ω)≤ c1H
p

p−1 ·(
4
9+δ)

p (t) for all t∈ (0,Tmax). (3.27)

Inspired by [29, Lemma 3.3] and using ζp(n) in Lemma 3.6, Young’s inequality, we have

d

dt

∫
Ω

ζp(n)=−
∫
Ω

nm+p−3|∇n|2+
∫
Ω

nm+p−3 S(n)

D(n)
∇n ·∇v
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≤−1

2

∫
Ω

nm+p−3|∇n|2+ 1

2

∫
Ω

nm+p−3 S
2(n)

D2(n)
|∇v|2

=− 2

(m+p−1)2

∫
Ω

∣∣∣∇n
m+p−1

2

∣∣∣2+ 1

2

∫
Ω

nm+p−3 S
2(n)

D2(n)
|∇v|2 (3.28)

for all t∈ (0,Tmax). By (1.12), we deduce

1

2

∫
Ω

nm+p−3 S
2(n)

D2(n)
|∇v|2

=
1

2

∫
n≤1

nm+p−3 S
2(n)

D2(n)
|∇v|2+ 1

2

∫
n>1

nm+p−3 S
2(n)

D2(n)
|∇v|2

≤ c2

∫
Ω

|∇v|2+K2
0

2

∫
Ω

nm+p−3+2α|∇v|2 for all t∈ (0,Tmax) (3.29)

with constant c2>0. Combining (3.27) with (3.29), we get

1

2

∫
Ω

nm+p−3 S
2(n)

D2(n)
|∇v|2≤ c21c2|Ω|H

2p
p−1 ·(

4
9+δ)

p (t)+
K2

0c
2
1

2
H

2p
p−1 ·(

4
9+δ)

p (t)

∫
Ω

nm+p−3+2α

(3.30)

for all t∈ (0,Tmax). Thanks to (3.25), by a simple calculation, we derive 3(m+p−1)−
(m+p−3+2α)>0, and thus, 2

m+p−1 <
2(m+p−3+2α)

m+p−1 <6. Let r1 :=
2(m+p−3+2α)

m+p−1 , by the
Gagliardo-Nirenberg inequality, there exists c3>0 such that∫

Ω

nm+p−3+2α=
∥∥∥nm+p−1

2

∥∥∥r1
Lr1 (Ω)

≤ (2CGN )r1
∥∥∥∇n

m+p−1
2

∥∥∥r1ι1
L2(Ω)

∥∥∥nm+p−1
2

∥∥∥r1(1−ι1)

L
2

m+p−1 (Ω)

+(2CGN )r1
∥∥∥nm+p−1

2

∥∥∥r1
L

2
m+p−1 (Ω)

≤ c3

∥∥∥∇n
m+p−1

2

∥∥∥2· 3(m+p−4+2α)
3m+3p−4

L2(Ω)
+c3 (3.31)

for all t∈ (0,Tmax), where ι1=
3(m+p−1)(m+p−4+2α)
(3m+3p−4)(m+p−3+2α) ∈ (0,1) and 3(m+p−4+2α)

3m+3p−4 <1 thanks

to α< 4
3 , CGN is as in Lemma 2.3. Let γ := 3m+3p−4

3(m+p−4+2α) , it is easy to see that γ>1,

once more employing Young’s inequality, there exists c4>0 such that

K2
0c

2
1

2
H

2p
p−1 ·(

4
9+δ)

p (t) ·c3
∥∥∥∇n

m+p−1
2

∥∥∥2·m+p−4+2α
3m+3p−4

L2(Ω)

≤ 1

(m+p−1)2

∫
Ω

∣∣∣∇n
m+p−1

2

∣∣∣2+c4H
2p

p−1 ·(
4
9+δ)· γ

γ−1
p (t)

for all t∈ (0,Tmax), and thus,

1

2

∫
Ω

nm+p−3 S
2(n)

D2(n)
|∇v|2

≤K2
0c

2
1

2
H

2p
p−1 ·(

4
9+δ)

p (t) ·
(
c3

∥∥∥∇n
m+p−1

2

∥∥∥2·m+p−4+2α
3m+3p−4

L2(Ω)
+c3

)
+c21c2|Ω|H

2p
p−1 ·(

4
9+δ)

p (t)
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≤ 1

(m+p−1)2

∫
Ω

∣∣∣∇n
m+p−1

2

∣∣∣2+c4H
2p

p−1 ·(
4
9+δ)· γ

γ−1
p (t)

+
K2

0c
2
1c3
2

H
2p

p−1 ·(
4
9+δ)

p (t)+c21c2|Ω|H
2p

p−1 ·(
4
9+δ)

p (t)

≤ 1

(m+p−1)2

∫
Ω

∣∣∣∇n
m+p−1

2

∣∣∣2+c5H
p

p−1 ·(
4
9+δ)· 3m+3p−4

4−3α
p (t) (3.32)

for all t∈ (0,Tmax), where c5 := c4+c21c2|Ω|+
K2

0c
2
1c3

2 . From Lemma 3.6, there exists
c6>0 such that ∫

Ω

ζp(n)≤ c6

∫
Ω

np+η+c6 for all t∈ (0,Tmax). (3.33)

Let r2 :=
2(3m+3p−4)(p+η)
3(m+p−1)(p+η−1) . Once more employing the Gagliardo-Nirenberg inequality,

there exist c7 := (2c6)
3m+3p−4
3(p+η−1) ·(2CGN )r2 >0 and c8 := c7∥n0∥

r2·m+p−1
2

L1(Ω) +(2c6)
3m+3p−4
3(p+η−1) >0

such that(∫
Ω

ζp(n)

) 3m+3p−4
3(p+η−1)

≤ (2c6)
3m+3p−4
3(p+η−1)

∥∥∥nm+p−1
2

∥∥∥r2
L

2(p+η)
m+p−1 (Ω)

+(2c6)
3m+3p−4
3(p+η−1)

≤ c7

∥∥∥∇n
m+p−1

2

∥∥∥r2ι2
L2(Ω)

∥∥∥nm+p−1
2

∥∥∥r2(1−ι2)

L
2

m+p−1 (Ω)

+c7

∥∥∥nm+p−1
2

∥∥∥r2
L

2
m+p−1 (Ω)

+(2c6)
3m+3p−4
3(p+η−1)

≤ c8

∥∥∥∇n
m+p−1

2

∥∥∥r2ι2
L2(Ω)

+c8

= c8

∫
Ω

∣∣∣∇n
m+p−1

2

∣∣∣2+c8,

and thus,

∫
Ω

∣∣∣∇n
m+p−1

2

∣∣∣2≥ 1

c8
·
(∫

Ω

ζp(n)

) 3m+3p−4
3(p+η−1)

−1 for all t∈ (0,Tmax), (3.34)

where CGN is as in Lemma 2.3. By combination of (3.34) with (3.28), there exist
c9 :=

1
(m+p−1)2c8

and c10 := c5+
1

(m+p−1)2 such that

d

dt

∫
Ω

ζp(n)+c9 ·
(∫

Ω

ζp(n)

) 3m+3p−4
3(p+η−1)

≤ c10H
p

p−1 ·(
4
9+δ)· 3m+3p−4

4−3α
p (t∗)

for all t∈ (0,t∗). By an ODE comparison argument, we have

∫
Ω

ζp(n(·,t))≤max


∫
Ω

ζp(n0),

(
c10
c9

H
p

p−1 ·(
4
9+δ)· 3m+3p−4

4−3α
p (t∗)

) 3(p+η−1)
3m+3p−4


for all t∈ (0,t∗), and thus,∫

Ω

ζp(n(·,t))≤ c11H
p· 3(p+η−1)

(p−1)(4−3α)
·( 4

9+δ)
p (t∗)= c11H

pρ
p (t∗)
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for all t∈ (0,t∗) with c11 :=max

{∫
Ω
ζp(n0),

(
c10
c9

) 3(p+η−1)
3m+3p−4

}
. By Lemma 3.6, there exists

c12>0 such that ∫
Ω

np≤ c12

∫
Ω

ζp(n)+c12 for all t∈ (0,Tmax)

this implies∫
Ω

np(·,t)≤ c11c12H
pρ
p (t∗)+c12 for all t∗∈ (0,Tmax) and t∈ (0,t∗).

In accordance with the definition of Hp, we get

Hp(t∗)≤1+[c12(c11+1)]
1
pHρ

p (t∗)=: c13H
ρ
p (t∗) for all t∗∈ (0,Tmax).

Due to ρ<1, we readily obtain

Hp(t∗)≤ c
1

1−ρ

13 for all t∗∈ (0,Tmax).

The proof is complete.

From a combination of Lemma 3.1, Lemma 3.5 and Lemma 3.7, we immediately
obtain the quantities v and w. For w, the corresponding boundedness needs to be
verified by similar means as performed in Lemma 3.4 and Lemma 3.5. Finally, on basis
of the boundedness of v,w and u, the temporally independent L∞ bounds of n can be
obtained through a suitable application of heat semigroup theories as done in [52].

Lemma 3.8. Assume that ϕ∈W 2,∞(Ω), that D and S satisfy (1.3), (1.4), (1.12) as
well as (1.13), and that (1.11) holds. Then there exists β> 3

4 such that Tmax as well as
the functions v,w and u from Lemma 2.1 fulfill

sup
t∈(0,Tmax)

∥v(·,t)∥W 1,∞(Ω)<∞ (3.35)

and

sup
t∈(0,Tmax)

∥w(·,t)∥W 1,∞(Ω)<∞ (3.36)

as well as

sup
t∈(0,Tmax)

∥Aβu(·,t)∥L2(Ω)<∞. (3.37)

Proof. From a combination of Lemmas 3.1, 3.5 and 3.7, both (3.35) and (3.37)
are immediately derived. In particular, owing to β∈ ( 34 ,1), the continuous embedding
together with (3.37) provides c1>0 and c2>0 such that

∥u(·,t)∥L∞(Ω)≤ c1∥Aβu(·,t)∥L2(Ω)≤ c2 for all t∈ (0,Tmax). (3.38)

For any q>3, we let ϖ∈ ( 12 ,1) satisfying ϖ> q+3
2q , then there exists ς ∈ ( 12 ,1) fulfilling

ϖ>ς >
q+3

2q
. (3.39)
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Applying Bϖ on both sides of the variation-of constants formula of w and employing
the Lq estimates of the sectorial operator [15], we deduce∥∥∥Bζ(w(·,t)−e−tBw0)

∥∥∥
Lq(Ω)

≤c3

∫ t

0

(
1+(t−s)−ϖ)

e−(t−s)∥u(·,s)∇w(·,s)∥Lq(Ω)ds

+c3

∫ t

0

(
1+(t−s)−ϖ)

e−(t−s)∥n(·,s)∥Lq(Ω)ds (3.40)

for all t∈ (0,Tmax) with c3>0 is a constant. From Lemma 3.7, there exists c4>0 such
that ∥n(·,t)∥Lq(Ω)≤ c4 for all t∈ (0,Tmax). Due to the embedding D(Bς) ↪→W 1,q(Ω)
asserted by (3.39), we have∥∥∇(w(·,t)−e−tBw0)

∥∥
Lq(Ω)

≤ c5
∥∥Bς(w(·,t)−e−tBw0)

∥∥
Lq(Ω)

for all t∈ (0,Tmax),

where c5>0 is a constant. Applying the following interpolation inequality of the frac-
tional power of sectorial operators [10, Theorem 2.14.1],∥∥Bς(w(·,t)−e−tBw0)

∥∥
Lq(Ω)

≤
∥∥Bϖ(w(·,t)−e−tBw0)

∥∥ ς
ϖ

Lq(Ω)

∥∥w(·,t)−e−tBw0

∥∥1− ς
ϖ

Lq(Ω)

for all t∈ (0,Tmax), and thus,

∥u(·,t)∇w(·,t)∥Lq(Ω)

≤∥u(·,t)∥L∞(Ω)

(∥∥∇(w(·,t)−e−tBw0)
∥∥
Lq(Ω)

+
∥∥∇e−tBw0

∥∥
Lq(Ω)

)
≤ c2c5

∥∥Bϖ(w(·,t)−e−tBw0)
∥∥ ς

ϖ

Lq(Ω)

(
∥w(·,t)∥Lq(Ω)+∥w0∥Lq(Ω)

)1− ς
ϖ

+c2c6∥∇w0∥Lq(Ω)

≤ c7
∥∥Bϖ(w(·,t)−e−tBw0)

∥∥ ς
ϖ

Lq(Ω)
H

p
p−1 ·

q−1
3q

p (t)+c7

≤ c8
∥∥Bϖ(w(·,t)−e−tBw0)

∥∥ ς
ϖ

Lq(Ω)
+c8 for all t∈ (0,Tmax) (3.41)

with some c6,c7,c8>0 are constants, here we used (3.1), (3.8) and (3.24). Inserting
(3.41) into (3.40) and again using (3.24), we get∥∥Bϖ(w(·,t)−e−tBw0)

∥∥
Lq(Ω)

≤ c3(c4+c8)

∫ t

0

(
1+(t−s)−ϖ

)
e−(t−s)ds

+c3c8 · sup
σ∈(0,t)

∥∥Bϖ(w(·,σ)−e−σBw0)
∥∥ ς

ϖ

Lq(Ω)
·
∫ t

0

(
1+(t−s)−ϖ

)
e−(t−s)ds

≤ c9+c9 · sup
σ∈(0,t)

∥∥Bϖ(w(·,σ)−e−σBw0)
∥∥ ς

ϖ

Lq(Ω)
(3.42)

with c9 := c3(c4+c8)
∫∞
0

(1+ϱ−ϖ)e−ϱdϱ<∞ thanks to ϖ<1 for all t∈ (0,Tmax). Define

Ψϖ,q(t) :=1+ sup
s∈(0,t)

∥∥Bϖ(w(·,s)−e−sBw0)
∥∥
Lq(Ω)

for all t∈ (0,Tmax).

Hence, (3.42) implies

Ψϖ,q(t)≤1+2c9Ψ
ς
ϖ
ϖ,q(t)≤ c10Ψ

ς
ϖ
ϖ,q(t) for all t∈ (0,Tmax),
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where c10=1+2c9. Since ϖ>ς, it is easy to see that ς
ϖ <1, and thus,

Ψϖ,q(t)≤ c
ϖ

ϖ−ς

10 for all t∈ (0,Tmax), (3.43)

which combined with the embedding D(Bϖ) ↪→W 1,∞(Ω) provides c11= c11(q,ζ,K0,
|Ω|)>0 such that∥∥∇(w(·,t)−e−tBw0)

∥∥
L∞(Ω)

≤ c11 for all t∈ (0,Tmax).

Combining (1.11) with the heat semigroup estimates [40, Lemma 1.3], we derive

∥∇w(·,t)∥L∞(Ω)≤
∥∥∇(w(·,t)−e−tBw0)

∥∥
L∞(Ω)

+
∥∥∇e−tBw0

∥∥
L∞(Ω)

≤ c11+c12∥∇w0∥L∞(Ω)

≤ c11+c12K0 for all t∈ (0,Tmax)

with some c12>0 being a constant. The proof is complete.

Lemma 3.9. Assume that ϕ∈W 2,∞(Ω), that D and S satisfy (1.3), (1.4), (1.12) as
well as (1.13), and that (1.11) holds. Then with Tmax and n taken from Lemma 2.1, we
have

sup
t∈(0,Tmax)

∥n(·,t)∥L∞(Ω)<∞. (3.44)

Proof. Let J1 :=S(n)∇v+nu. Then for each q>3, Lemmas 3.7 and 3.8 assert the
existence of c1= c1(q)>0 such that

∥J1(·,t)∥Lq(Ω)≤ c1 for all t∈ (0,Tmax).

From a Moser-type iterative argument on the basis of the identity nt=∇·(D(n)∇n)−
∇·J1 [29, Lemma A.1], we get (3.44). The proof is complete.

Proof. (Proof of Theorem 1.1.) Theorem 1.1 is a direct consequence of Lemma
2.1, Lemma 3.8 and Lemma 3.9. The proof is complete.
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