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RIEMANN-HILBERT PROBLEM FOR THE FOCUSING HIROTA
EQUATION WITH COUNTERPROPAGATING FLOWS∗

XIAO-FAN ZHANG† , SHOU-FU TIAN‡ , JIN-JIE YANG§ , AND ZHI-QIANG LI¶

Abstract. The focusing Hirota equation is analyzed with a general initial condition via the in-
verse scattering transform, whose asymptotic behavior at infinity consists of counterpropagating waves.
According to some necessary conditions, including jump condition, normalization condition, residue
conditions and suitable growth condition near the branch points, the inverse problem is transformed
into a matrix Riemann-Hilbert (RH) problem jumping along the branch cuts and real axis, the prob-
lem is transformed into a set of linear algebraic integral equations, and the reconstruction formula of
potential is successfully obtained. In addition, the zero point of the analytical scattering coefficient
on the continuous spectrum is placed on a sufficiently large circle, so a modified piecewise analytical
RH problem is further successfully constructed. Finally, the exact expressions of soliton solution and
breathing solution of focusing Hirota equation under degenerate initial value conditions are discussed.
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1. Introduction
Since Gardner, Greene, Kruskal and Miura have studied the initial value problem

of the fast decay of the well-known Korteweg-de Vries (KdV) equation, an inverse scat-
tering transform (IST) was proposed to solve the initial value problem of nonlinear
integrable systems [15]. Later, Zakharov and Shabat extended the IST to the initial
value problem of the classical nonlinear Schrödinger (NLS) equation [42]. After that,
the IST was further applied to the defocusing NLS equation with nonzero boundary
conditions (NZBCs) for the first time in [43], the situation has been studied and sum-
marized by various works [13, 14]. It is worth mentioning that until recently, the only
result of IST with NZBCs for the focusing NLS equation can only partially solve the
problem, because only the case where the processing potential has no asymptotic phase
difference and amplitude difference were studied in [16, 25]. For the assumption of the
same amplitude in two infinite spaces, the development of potential energy with arbi-
trary asymptotic phase difference is considered by Biondini et al. in [6], which was used
to improve the study of the soliton solution for the focusing NLS equation via the IST
method with NZBCs. The nonlinear Schrödinger equation is

iut+uxx−2ℓ(|u|2−u20)u=0, (1.1)

where ℓ=±1 denote the defocusing and focusing case. The additional term −2u20u in
(1.1), which not only makes the boundary value condition satisfy the solution of the
equation, but also the boundary value is independent of time t. The work in [6] stud-
ied the situation with symmetric boundary values (that is, lim

x→+∞
u(x,t)= lim

x→−∞
u(x,t))
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[5,13,45,46], which means that the potential has no asymptotic phase difference, while
in another work it further studied the situation with non-asymmetric boundary value
conditions (that is one-sided boundary conditions) for initial values [12, 29]. Addition-
ally, the problem of soliton solutions corresponding to the second-order poles of the
scattering coefficients has also been further discussed [28, 47]. Since then, the study of
soliton solutions and long-time asymptotic behavior of nonlinear evolution equations
with NZBCs and ZBCs has attracted extensive attention [8, 9, 20, 21, 26, 33–38, 40, 41].
Recently, Charlier and Lenells developed the inverse scattering theory to study the exact
expression for the leading asymmetric term of the Boussinesq equation together with a
precise error estimate in ten main asymptotic sectors in the (x,t)-plane [10].

The NLS equation is one of the basic models in nonlinear integrable systems. It is
widely used in many aspects, such as deep water waves, nonlinear optics, Bose-Einstein
condensation, and other phenomena [1,2,27,31], but it is insufficient in describing fem-
tosecond propagation and resonance phenomena. Thus, it is necessary to consider high-
order effects and even multi-component systems [22,23,39]. In 1973, Hirota proposed a
high-order nonlinear evolution equation which is called the Hirota equation [18]. It can
not only be reduced to the classical Schrödinger equation but also to the well-known
complex KdV equation.

The focusing Hirota equation [18] is typically written in the form

iut+α[uxx+2(|u|2−u20)u]+ iβ(uxxx+6|u|2ux)=0, (x,t)∈R2, (1.2)

where the real constants α and β denote the second-order and third-order dispersions,
respectively, and the subscripts x and t denote partial differentiation, which also has
been shown in many meaningful works in other documents. The focusing Hirota equa-
tion has some applications in physics, which can be used to describe the propagation
of ultrashort optical pulses in optical fibers [3, 11, 17, 19, 32, 44]. This work focuses on
the IST and solutions for the focusing Hirota equation [18] with counterpropagating
flows for solving the initial value problem with a more general class of initial conditions
u(x,0), which reduce to plane waves only as x→±∞, that is,

u(x,0)=A±e
−iW |x|±iϵ(1+O(1)), x→±∞, (1.3)

whereW,ϵ∈R and A±>0. Hereafter, the potential u :R×R+→C. In [44], the IST and
soliton solutions of the focusing and defocusing Hirota equation with NZBCs are studied.
Here, we discuss the IST for the focusing Hirota equation with counterpropagating flows.
It is worth noting that there are some differences in the following four aspects compared
with previous work.

(i) The difference of initial value conditions. Our work is to discuss with a more
general initial value condition (1.3), which is a condition with counterpropagating
flows (that is, W ̸=0). But it is worth mentioning that for the more general initial
value condition u(x,0)=A±e

iW±x+iε±(1+O(1)) as x→±∞, it can be simplified
to the initial value condition (1.3) by using the phase invariance (that is,W±=±W
and ϵ±=±ϵ).

(ii) The locations of the branch cuts are different because W ̸=0 throughout this
work, which makes the branch cuts originally on the imaginary axis shift to other
positions. Obviously, if W =0, the result of our work can be reduced to that of
the work [44].

(iii) The structure of the Jost solutions Φ±(x,t,k) is different. To begin with, assuming
that Ψ̃±(x,t,k) are the solutions of the first part of the Lax pair (1.4), then the
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specific expressions of Ψ̃±(x,t,k) are derived, which depend on x, t, and k. Then,
suppose that Φ̃±(x,t,k) are the solutions of both parts of Lax pair (1.4), so that
Ψ̃±(x,t,k) and Φ̃±(x,t,k) are linearly related to the space part of Lax pair, one
has Φ̃±(x,t,k)=Ψ̃±(x,t,k)B±(t,k), and then we make time evolution for B±(t,k).
Finally, the Jost solution is obtained.

(iv) There are two differences in the structure of the RH problem. (i) Due to the exis-
tence of the branch points, when constructing the RH problem, we not only need
to consider jump conditions, normalization conditions and residue conditions, but
also need to discuss the growth conditions near the branch points. The existence
of the limit of the matrix function M(x,t,k) at the branch points is used as the
growth condition of the RH problem in general to ensure the uniqueness of the so-
lution. (ii) By utilizing a sufficiently large circle BR and the vanishing lemma, the
constructed modified RH problem has no singular behavior at the branch points.
All the behavior of the matrix function M(x,t,k) near the branch points and the
residue conditions generated by the discrete spectrum is encoded along the ∂BR

into the jump matrix G(1)(k) (that is, the jump on the circle), which is defined in
RH Problem 1.2.

(v) Finally, the initial value condition with counterpropagating flow is degenerated
into a finite density initial value. Therefore, the explicit expressions of the soliton
solution and breathe solution of the focusing Hirota equation under the corre-
sponding initial value conditions are obtained.

Remark 1.1. For W =0, the results of this work can be reduced to the NZBCs with
symmetrical amplitude, corresponding to the work [44]; for α=0,β=1, the focusing
Hirota equation with initial conditions (1.3) reduces to the complex modified Korteweg-
de Vries (mKdV) equation with initial conditions, while for β=0,α=1, the focusing
Hirota equation with initial conditions (1.3) reduces to the NLS equation [7] with initial
conditions (1.1).

1.1. The spectrum problems of the focusing Hirota equation. The inverse
scattering method for integrable systems is used to obtain the solution of the equation,
such as the focusing Hirota equation. As a special class of nonlinear dynamic systems
or nonlinear differential and difference equations, integrable systems have a remark-
able characteristic, that is, Lax pairs. It was introduced in [24] after integrating the
Korteweg-de Vries equation by Gardner, Greene, Kruskal, and Miura [15]. The Lax pair
we use for the focusing Hirota equation is

Φx=UΦ, (1.4a)

Φt=V Φ, (1.4b)

where

U =U(x,t;k)= ikσ3+Q(x,t), (1.5a)

V =V (x,t;k)=αV1(x,t;k)+βV2(x,t;k), (1.5b)

V1=V1(x,t;k)=−2kU(x,t;k)+ iσ3(Qx−Q2), (1.5c)

V2=V2(x,t;k)=−2kV1(x,t;k)+[Qx,Q]+2Q3−Qxx, (1.5d)

with

σ3=

(
1 0
0 −1

)
, Q(x,t)=

(
0 u(x,t)

−u∗(x,t) 0

)
.
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The superscript ∗ denotes complex conjugate. The Equations (1.4) are referred to as
the scattering problem, Φ(x,t;k) inferred to as the eigenfunction, k is the scattering
parameter, and u(x,t) is the scattering potential.

As we all know, satisfying the normalization condition is one of the conditions for
constructing RH problem. Since Φ±(x,t;k) are the simultaneous fundamental matrix
solutions of Lax pair (1.4), in order to find the relationship between the solution and
RH problem later, we introduce a piecewise meromorphic function M(x,t;k) to meet
the conditions required for constructing RH problem. The specific preparatory work is
given in the spectral analysis in Section 2. In what follows, we only give the definition
of piecewise meromorphic function M(x,t;k) and the modified Lax pair it satisfies.

Lemma 1.1. The sectionally meromorphic matrix M(x,t,k) holds the modified Lax
pair as follows:

Mx(x,t;k)− ik[σ3,M(x,t;k)]=Q(x,t)M(x,t;k), (1.6a)

Mt(x,t;k)+(2iαk2−4iβk3)[σ3,M(x,t;k)]= Ṽ1αM(x,t;k)+ Ṽ2βM(x,t;k), (1.6b)

where

Ṽ1=−(2kQ− iσ3(Qx−Q2)),

Ṽ2=4k2Q−2ikσ3(Qx−Q2)+[Qx,Q]−2Q3−Qxx.

The inverse scattering method in our work recovers the solution of the focusing Hi-
rota equation from the scattering data. Here, we first introduce a piecewise meromor-
phic function M(x,t,k) to eliminate the oscillation of asymptotic exponent, such that
M(x,t;k)= I+O(1/k) as k→∞ with detM(x,t;k)=1 and

M(x,t;k)=Ψ(x,t;k)e−iθ0σ3 , k∈C\Σ, (1.7)

where θ0=k[x−(2αk−4βk2)t] and Σ=R∪Σ+∪Σ− is shown in Figure 2.1.

1.2. Riemann-Hilbert problems. The RH Problem 1.1 provides a Riemann-
Hilbert problem to solve a matrix with jump condition from segment line and real axis.
Different from the previous description, the piecewise meromorphic function M(x,t;k)
constructed here not only has discontinuity across Σ0 (which is defined in Section 2.1),
but also breaks the symmetry of x 7→−x. Moreover, the jump matrix is nonsingular on
Σ0

± defined in Section 2.1, but it grows infinitely at the branch points. The Riemann-
Hilbert approach to inverse scattering was first introduced in [30]. A Riemann-Hilbert
problem, or RH problem, for a 2×2 matrix M(x,t;k) consists of finding M(x,t;k) such
that:

RH Problem 1.1. The matrix M(x,t;k) satisfies the properties as follows:
(i) Analyticity: M(x,t;k) is analytic in C\(Σ∪Z∪ Z̄), where Z={k1,. ..,kN}⊂C+ \

Σ.
(ii) Jump condition:

M+(x,t;k)=M−(x,t;k)G(x,t;k),

where the jump matrix G(x,t,k) is defined by

G(x,t;k)=eiθ0(x,t;k)σ3G0(k)e
−iθ0(x,t;k)σ3 , (1.8)
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with

G0(k)=



(
1 ρ(k)

ρ∗(k) 1+ρ(k)ρ∗(k)

)
, k∈R,(

iρ(k)e−iδ 0

−ie−iδ − ieiδ

ρ(k)

)
, k∈Σ0

+,1,(
1 −r(k)
0 1

)
, k∈Σ0

−,1,(
ie−iδ

ρ∗(k∗) −ieiδ

0 −iρ∗(k∗)eiδ

)
, k∈Σ0

+,2,(
1 0

r∗(k∗) 1

)
, k∈Σ0

−,2.

(1.9)

(iii) Asymptotic behavior:

M(x,t;k)= I+O
(
1

k

)
.

(iv) Residue conditions:

Res
k=kn

M(x,t;k)=
(
0 γne

2iθ0(x,t;kn)M1(x,t;kn)
)
, (1.10a)

Res
k=k∗

n

M(x,t;k)=
(
−γne−2iθ0(x,t;k

∗
n)M2(x,t; k̄n) 0

)
. (1.10b)

(v) Growth conditions: If (u−u±)∈L1,1
x (R±), for all t∈R with V ̸=0, in generic

case, µ+,1(x,t;k) and µ−,2(x,t;k) are linearly independent at branch points p±,m

(m=1,2), the function M(x,t;k) satifies growth conditions (3.4) at branch points
p±,m.

Specifically, M1(x,t;k) and M2(x,t;k) denote the first and second column of
M(x,t;k), respectively. r(k) and ρ(k) are called reflection coefficients. If the scattering
data s22(k) has a finite set of simple zeros, Z={k1,. ..,kN}⊂C+ \Σ, such thatM(x,t;k)
is analytic in C\(Σ∪Z∪ Z̄). Not only that,M(x,t,k) has simple poles at branch points,
and c1,c2,. ..,cn∈C satify the residue conditions (3.1). We need to discuss not only the
normalization condition, jump condition and residue condition of matrix M(x,t;k), but
also the appropriate growth condition near the branch points. In fact, we will describe
the behavior of the Jost solution at the branch points in Section 2.7 Moreover, it is
observed that Φ+,1(x,t;k) and Φ−,2(x,t;k) are growing towards their respective branch
points p+,m (m=1,2) with the power of −1/4, and the scattering data s11(k) and s22(k)
are growing towards the branch points p±,m with the power of −1/4, respectively. It is
the behavior near the branch points that determines the growth condition of the inverse
problem. Therefore, in generic case, the growth conditions of M(x,t;k) are disscussed
according to the above results and the definition of matrix function M(x,t;k).

Since the matrix function M(x,t;k) constructed above has spectral singularity at
the branch points, the existence and uniqueness of the solution for the RH problem
involves singular behavior. In a recent work, an alternative matrix and RH problem are
defined, which are also regular at the branch points. Thus, a new modified piecewise
analytic matrixM (1)(x,t;k) defined by (5.2) is constructed, which satisfies the modified
RH problem as follows.
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RH Problem 1.2. The modified, piecewise analytic function matrix M (1)(x,t;k)
meets the following conditions:

(i) Analyticity: M (1)(x,t;k) is analytic in C\Σ(1), where Σ(1)=(−∞,−R)∪BR∪
(R,∞).

(ii) Jump condition:

M
(1)
− (x,t;k)=M

(1)
+ (x,t;k)G(1)(x,t;k),

where the jump matrix G(1)(x,t;k) is defined by

G(1)(x,t;k)=eiθ0(x,t;k)σ3G
(1)
0 (k)e−iθ0(x,t;k)σ3 , (1.11)

with

G
(1)
0 (k)=


G0(k), k∈ (−∞,R)∪(R,+∞),

C(k), k∈∂BR∩C+,

C−1(k), k∈∂BR∩C−,

where C(k) is defined in (5.2).

(iii) Asymptotic behavior: M (1)(x,t;k)= I+O
(
1
k

)
.

BR BR

Im k

Re k

·

·

·

·

·

·

·

·Σ+ Σ−
Σ− Σ+

Im k

Re k

Fig. 1.1. The branch cuts Σ± with A−<A+ for W >0(left) and W <0(right).

The details of function M (1)(x,t;k) can be described as (5.2). It is not difficult to
find that the modified RH problem is different from the RH Problem 1.1. To begin
with, we choose a large enough ball, which is a sphere BR with radius R centered
on the origin of the complex k-plane, and the sphere contains the zeros generated by
scattering coefficients s11(k), s22(k) and branch cutting Σ± (see Figure 1.1 for details).
Since all zeros of scattering coefficients s11(k), s22(k) are in the interior of BR, the
function ψ(x,t;k) we chose in Proposition 5.2 is analytic, M (1)(x,t;k) here is piecewise
analytic function rather than piecewise meromorphic function. It means that the residue
condition is not necessary in the modified RH problem (1.2). Because the branch cuts
are covered by the big circle, M (1)(x,t;k) is analytic on the branch cuts and at the
branch point. In other words, the behavior of M(x,t;k) near the branch points and the
residue condition of discrete spectrum are rearranged to the jump matrix G(1)(x,t;k)
along ∂BR.



X.F. ZHANG, S.F. TIAN, J.J. YANG, AND Z.Q. LI 1631

1.3. Plan of the proof. For the focusing Hirota equation with counterpropogat-
ing flows, we study a series of spectral analysis properties at the branch points from the
spectral problem, and then recover the potential from the scattering data by means of
RH problem.

Section 2 mainly employs the Lax pair of focusing Hirota equation to do spectral
analysis to find the necessary conditions for establishing the corresponding RH prob-
lem, including analyticity, symmetry, asymptotic behavior, the distribution of discrete
spectrum. Note that the existence and uniqueness of the eigenfunction is guaranteed
by the conditions u−u±∈L1

x(R). However, these regions do not include branch points
p±,m (m=1,2), so the asymptotic behavior of Jost solutions Φ±(x,t,k) and scattering
coefficients at these branch points are further analyzed in detail.

In Section 3, the inverse problem of focusing Hirota Equation (1.2) is discussed.
Firstly, in order to regularize the established RH problem (1.1), the residue conditions
at discrete spectral points are analyzed in Section 3.1. As discussed in Section 2, Jost
functions have singularity at these branch points p±,m (m=1,2), so it is necessary to find
a condition that makes the established RH problem have a unique solution, that is, the
growth condition discussed in Section 3.2. As usual, the solution of the focusing Hirota
equation under the condition (1.3) can be transformed into a closed algebraic system
by Pelemlj formula combined with residue conditions, which is the content of Section
3.3. Using the technique discussed in [4], we find an alternative solution of Lax pair and
further define it in a sufficiently large circle BR, which contains all discrete spectrum
and branch points, so that the newly constructed matrix-valued function M (1)(x,t,k)
(5.2) is a piecewise analytical function. The existence and uniqueness of the solution of
the modified RH problem satisfied by this new matrix-valued function M (1)(x,t,k) can
be guaranteed by the vanishing lemma shown in Section 5.

At last, the exact expressions of one-soliton solution and breathe solution of focusing
Hirota equation under special degenerate initial value conditions are given in Section 6.
Some conclusions and discussions are presented in Section 7.

2. Direct scattering problem
In this section, we mainly consider the Jost solutions under conditions (2.1) and

introduce Riemann surface to study the related properties of eigenvalue functions. The
analytical properties, symmetry and asymptotic properties at the branch points p±,m

(m=1,2), the asymptotic behaviors of the modified eigenfunctions µ±(x,t,k) are defined
in (2.22) as k→∞ and scattering coefficients are studied.

2.1. Boundary conditions and Jost solutions. In this subsection, we estab-
lish IST for the initial value problem of the focusing Hirota equation with NZBCs, which
we then use in the subsequent sections to compute the solution of the equation with
counterpropagating flows. The following two exact plane wave solutions satisfying the
focusing Hirota equation are considered,

u±(x,t)=A±e
−2ih±(x,t)±iϵ, (2.1)

with

h±(x,t)=
1

2

[
±Wx+((W 2−2A2

±)α±Wβ((±W )2−6A2
±))t

]
. (2.2)

The symbols ± indicate the asymptotic behavior as x→±∞. We obtain the following
asymptotic matrix spectral problem under the nonzero boundary condition (1.3)

Φ±,x=U±Φ±, (2.3a)
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Φ±,t=V±Φ±, (2.3b)

where

U±(x,t)= ikσ3+Q±(x,t), (2.4a)

V±(x,t)=−2ik2σ3+ iσ3((Q±,x(x,t)−Q2
±(x,t))−2kQ±(x,t), (2.4b)

with

Q±(x,t)=e
−ih±(x,t)σ3(A±σ3e

±iϵσ3σ1)e
ih±(x,t)σ3 . (2.5)

The purpose of the following is to obtain the solution ψ̃±(x,t;k) of Lax pair (1.4)
about the first part, a simple calculation reveals that

U±(x,t;k)=e
−ih±σ3 [ikσ3+A±σ3e

±iϵσ3σ1]e
ih±σ3

≜e−ih±σ3Û±(x,t;k)e
ih±σ3 . (2.6)

Therefore, Lax pair (1.4) can rewrite the space part as(
eih±σ3 ψ̃±(x,t;k)

)
x
= Û±

(
k±W

2

)
eih±σ3 ψ̃±(x,t;k). (2.7)

At this time, the matrix Γ±(k) composed of the eigenvector corresponding to the eigen-
value are

Γ±(k)=

(
1 iA±eiϵσ3

λ±(k)+(k+W/2)
iA±e−iϵσ3

λ±(k)+(k+W/2) 1

)
, (2.8)

detΓ±(k)=
2λ±(k)

λ±(k)+(k+W/2)
≜D±(k)≜ (d±(k))

2, (2.9)

where

λ±(k)=
√

(k+W/2)2+A2
±. (2.10)

Therefore, the fundamental matrix solution to the first part of the Lax pair (1.4) is
derived as

ψ̃±(x,t;k)=e
−ih±σ3Γ±(k)e

iλ±σ3x. (2.11)

Our purpose is to seek the simultaneous solutions Φ̃±(x,t;k) of Lax pair. We know
that the original Lax pair is a first-order linear equation system. For this reason,
ψ̃±(x,t;k) and Φ̃±(x,t;k) are linearly related, they have

Φ̃±(x,t;k)= ψ̃±(x,t;k)H±(t;k). (2.12)

We further make time evolution so that H(0,k) is not lost in generality, letting H(0,k)=

I, the fundamental simultaneous matrix solutions are obtained by Φ̃±(x,t)

Φ̃±(x,t)=e
−ih±(x,t)σ3Γ±(k)e

iθ±(x,t), (2.13)

where

θ±(x,t;k)=λ±(k)
{
x−2

[
α(k∓W/2)−β[2(k+W/2)2−A2

±]
]
t
}
. (2.14a)
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Some notations are explained as follows in this work:

• R±={k∈R :±Rek>0}, C±={k∈C :±Imk>0}, where the superscripts ± represent
the limit taken from the left (right) side of the positive (negative) side of the oriented
contour in k-plane, respectively.

• The branch cuts Σ+ and Σ− are introduced with p±,1=∓W/2+ iA±, p±,2=∓W/2−
iA± (see Figure 2.1 for details).

• Σ+=[p+,1,p+,2]=Σ+,1∪Σ+,2 and Σ−=[p−,1,p−,2]=Σ−,1∪Σ−,2 (see Figure 2.1 for
details).

• Σ±,1=Σ±∩(C+∪∓W/2)=∓W/2+[0,iA±] and Σ±,2=Σ±∩(C−∪∓W/2)=
∓W/2+[−iA±,0] (see Figure 2.1 for details).

• Σ0
+,1=Σ+,1 \{p+,1,−W/2}, Σ0

+,2=Σ+,2 \{p+,2,−W/2},
Σ0

−,1=Σ−,1 \{p−,1,−W/2}, Σ0
−,2=Σ−,2 \{p̄−,2,W/2}.

Inspired by (2.13), the Jost solutions Φ±(x,t,k) that satisfy the simultaneous solution
of the Lax pair (1.4), which are defined by

Φ±(x,t;k)∼
1

d±
e−ih±(x,t)σ3Γ±(k)e

iθ±(x,t)σ3 , x→±∞. (2.15)

An application of Abel’s theorem yields detΦ±(x,t;k)=1.
Attention is now turned to investigating some properties and asymptotic behavior

of the Jost solutions Φ±(x,t;k) at the branch points p±,m (m=1,2).

Imk

Rek

p+,1•
Σ+,1

p+,2

•
Σ+,2

p−,1
•

Σ−,1

p−,2

•
Σ−,2

Imk

Rek

p+,1

•
Σ+,1

p+,2

•
Σ+,2

p−,1
•

Σ−,1

p−,2

•
Σ−,2

Fig. 2.1. The contours Σ±,1 and Σ±,2 for W >0 (left) and W <0 (right), where A+>A−.

2.2. Riemann surface. For all k∈R, since the eigenvalues are doubly branched,
we introduce the two-sheeted Riemann surface defined by

λ(k;A)=
√
k2+A2=(k− iA) 1

2 (k+ iA)
1
2 . (2.16)

It is worth noting that λ(k;A)∈R as k∈R∪ [−iA,iA] shown in Figure 2.2. We take
the branch cut of λ(k;A) to lie along [−iA,iA] oriented upward, and define λ(k;A) as
continuous from the right. The branch points are k=±iA. Letting{

k+ iA= r1e
iφ1 ,

k− iA= r2e
iφ2 ,

(2.17)

where φ1, φ2 ∈ (−π
2 ,

3π
2 ), then the single-valued analytic function on the Riemann
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Im k

Re k

iA

−iA

θ1

θ2

k

r1

r2

λ(k;A)=
√
r1r2e

i(ψ1+ψ2)/2

Fig. 2.2. The Riemann surface defined by λ2=k2+A2, where λ(k;A)=
√
r1r2ei(ψ1+ψ2)/2 with

angles ψ1,ψ2∈ [−π/2,3π/2].

surface can be obtained. Moreover, lim
x→∞

λ(k;A)=k in any direction.

Lemma 2.1. The function λ(k;A) defined by (2.16) admits the properties as follows:

Imλ(k;A)≷0, k∈C± \ [−iA,iA], Resλ(k;A)≷0, k∈R±∪ iR, (2.18a)

λ(−k;A)=−λ(k;A), k∈C\ [−iA,iA], λ(k∗;A)=λ∗(k;A), k∈C. (2.18b)

As usual, define

λ±(k;A)= lim
ϵ→0

λ(k+ϵ;A)=∓λ(k;A), k∈ [−iA,iA], (2.19)

λ±±(k;A)=∓λ±(k;A), k∈Σ±. (2.20)

After that, when λ±(k) do not produce ambiguity, we will suppress their dependence
on k. To be clear, it is easy to prove that

D+
±(k)=

4λ2±
A2

±D±(k)
, k∈Σ±, (2.21)

and D±(k) are analytic in k∈C\Σ±. Similarly, we have to understand the discontinuity
of d±(k).

2.3. Analyticity properties. In this subsection, we introduce the modified
eigenfunctions µ±(x,t;k) and derive the integral equation. Similar to [6, 7], by analyz-
ing the Neumann series of the integral equation, the existence and uniqueness of the
eigenfunctions µ±(x,t;k) for all k∈Σ± are proved. Providing that u(x,t)−u±∈L1

x(R±)
the analytic property of the modified eigenfunctions µ±(x,t;k) are obtained.

In order to eliminate the asymptotic exponential oscillation and poles in factor
d±(k), the modified eigenfunctions are introduced

µ±(x,t;k)=d±(k)e
ih±(x,t)σ3Φ±(x,t;k)e

−iθ±(x,t)σ3 . (2.22)

Using standard methods, we then obtain linear integral equations of Volterra type for



X.F. ZHANG, S.F. TIAN, J.J. YANG, AND Z.Q. LI 1635

µ±(x,t;k):

µ±(x,t;k)=Γ±(k)+

∫ x

±∞
Γ±(k)e

iλ±(x−y)σ̂3Γ−1
± (k)e2ih±(y,t)σ3∆Q±(y,t)µ±(y,t;k)dy,

(2.23)

where Γ± are defined by (2.14), eσ̂3A=eσ3Ae−σ3 and ∆Q±(x,t;k) =Q(x,t;k)−
Q±(x,t;k). In addition, µ±,1(x,t;k), Φ±,1(x,t;k) and µ±,2(x,t;k), Φ±,2(x,t;k) represtent
the first and second column of µ±(x,t;k), Φ±(x,t;k), respectively. The existence and
uniqueness of the eigenfunctions Φ±(x,t;k) can be guaranteed by introducing the Neu-
mann series for the integral Equations (2.23) for all k∈Σ provided that u−u±∈L1

x(R±)
and t∈R.

Theorem 2.1. Provided that u−u±∈L1
x(R±) for t∈R, the eigenfunctions Φ±(x,t;k)

can be analytically extended onto the corresponding regions of the complex k-plane as
shown in Table 2.1.

Φ+,1(x,t;k) Φ+,2(x,t;k) Φ−,1(x,t;k) Φ−,2(x,t;k)
C+ \Σ+,1 C− \Σ+,2 C− \Σ−,2 C+ \Σ−,1

Table 2.1. The analyticity of Φ±(x,t;k).

Moreover, Φ±(x,t;k) are continuous on k∈R, which implies that Φ±(x,t;k) are
a continuous real differentiable function of k, i.e., C1(R). Since Φ±(x,t;k) are two
fundamental matrix solutions of the scattering problem, hence, there exists a 2×2
constant scattering matrix S(k)=(sij(k)) (i,j=1,2) such that

Φ−(x,t;k)=Φ+(x,t;k)S(k), k∈R, (2.24)

where sij(k) are called the scattering coefficients. Similarly, the scattering relationship
on the left-side is defined as

Φ+(x,t;k)=Φ−(x,t;k)R(k), k∈R, (2.25)

where R(k)=(rij) (i,j=1,2). It follows from (2.24) that sij(k) have the Wronskian
representations:

s11(k)= r22(k)= |Φ−,1(x,t;k),Φ+,2(x,t;k)| , k∈R∪C− \{p±,2}, (2.26a)

s22(k)= r11(k)= |Φ+,1(x,t;k),Φ−,2(x,t;k)| , k∈R∪C+ \{p±,1}, (2.26b)

s12(k)= r12(k)= |Φ−,2(x,t;k),Φ+,2(x,t;k)| , k∈R∪Σ0
+,1∪Σ0

−,2, (2.26c)

s21(k)= r21(k)= |Φ+,1(x,t;k),Φ−,1(x,t;k)| , k∈R∪Σ0
−,1∪Σ0

+,2, (2.26d)

where |f,g| denotes the determinant of the solutions f , g.

Theorem 2.2. Suppose that u−u±∈L1
x(R±), then s11(k) and r22(k) can be an-

alytically extended to C− \Σ, while s22(k) and r11(k) can be analytically extended to
C+ \Σ.

As usual, we define the reflection coefficients as

ρ(k)=
s12(k)

s22(k)
, k∈R∪Σ0

+,1, (2.27a)
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r(k)=
1

r21(k)s22(k)
, k∈R∪Σ0

−,1. (2.27b)

To sum up what has been stated above, if u−u±∈L1
x(R±), and for t∈R, the scattering

matrix S(k) is a continuous real differentiable function, that is C1(R). But the reflection
coefficient ρ(k)∈C1(R\Z), where Z is the set of zero points of s22(k), which will be
introduced below.

Based on the scattering relationship and in order to facilitate the expression of
the inverse problem in the future, it is still possible to introduce the piecewise function
matrix solution Ψ(x,t;k) for k∈C\Σ. It is worth noting that Ψ(x,t;k), the fundamental
matrix solution of Lax pair (1.4) with detΨ(x,t;k)=1, is defined by

Ψ(x,t;k)=


(
Φ+,1(x,t;k)

Φ−,2(x,t;k)

s22

)
, k∈C+ \Σ,(

Φ−,1(x,t;k)

s11
Φ+,2(x,t;k)

)
, k∈C− \Σ.

(2.28)

2.4. Symmetry properties. The symmetries

X∗(x,t;k∗)=−σX(x,t;k)σ, T ∗(x,t;k∗)=−σT (x,t;k)σ, k∈C, (2.29)

where σ=

(
0 1
−1 0

)
, from which some symmetry properties can be derived as follows.

The first symmetry. If u−u±∈L1
x(R±), for all t∈R, the Jost solutions and

scattering coefficients have the symmetries:

ϕ∗+,1(x,t;k
∗)=σϕ+,2(x,t;k), k∈R∪C−∪Σ0

+,1 \{p+,2}, (2.30a)

ϕ∗+,2(x,t;k
∗)=−σϕ+,1(x,t;k), k∈R∪C+∪Σ0

+,2 \{p+,1}, (2.30b)

ϕ∗−,1(x,t;k
∗)=σϕ−,2(x,t;k), k∈R∪C+∪Σ0

−,2 \{p−,1}, (2.30c)

ϕ∗−,2(x,t;k
∗)=−σϕ−,1(x,t;k), k∈R∪C−∪Σ0

−,1 \{p−,2}, (2.30d)

which in turns yields the symmetry conditions{
s∗22(k

∗)=s11(k) ,

r∗11(k
∗)= r22(k),

k∈R∪C− \{p±,2} ,

{
s∗12(k

∗)=−s21(k) ,
r∗21(k

∗)=−r12(k),
k∈R∪Σ0

+,2∪Σ0
−,1 .

Lemma 2.2. If u−u±∈L1
x(R±), for all t∈R, one admits the condition

Ψ†(x,t;k)=Ψ(x,t;k)−1, k∈C\Σ, (2.31)

where the subscript † means the Schwarz conjugate-transpose.

In addition to the symmetries mentioned above, another symmetry about Jost eigen-
function and scattering coefficients is also derived. But this symmetry will change be-
cause Φ±(x,t;k) are defined by the scaling factors d±(k), which will cause Φ±(x,t;k) to

contain the factors iA±
λ±+(k±W/2) .

The second symmetry. If u−u±∈L1
x(R±), for all t∈R and cyclic indices j,ℓ,

the Jost eigenfunctions have the following relations:

Φ+
+,j(x,t;k)=−ie(−1)jiϵΦ+,ℓ(x,t;k), k∈Σ0

+,j , (2.32a)
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Φ+
−,j(x,t;k)=−ie(−1)ℓiϵΦ−,ℓ(x,t;k), k∈Σ0

+,ℓ. (2.32b)

Proof. With the symmetries of λ+±(k)=−λ±(k), the expressions of Γ±(λ± 7→−λ±)
are calculated directly, then we are combining with the expression of eigenfunctions
Φ±(x,t;k). Using the above results, the calculation of Φ±(x,t;k) (λ± 7→−λ±) can be
directly derived.

Under the assumption of (2.1) and W ̸=0, the symmetries of the scattering coeffi-
cients satisfy

s+22(k)= ie
−iϵs12(k), r+11(k)=−ie−iϵr12(k), k∈Σ0

+,1, (2.33a)

s+22(k)=−ie−iϵs21(k), r+11(k)= ie
−iϵr21(k), k∈Σ0

−,1, (2.33b)

s+11(k)= ie
iϵs21(k), r+22(k)=−ieiϵr21(k), k∈Σ0

+,2, (2.33c)

s+11(k)=−ieiϵs12(k), r+22(k)= ie
iϵr12(k), k∈Σ0

−,2. (2.33d)

2.5. Continuous spectrum and discrete eigenvalues. As the scalar case
and the two-component case, the continuous spectrum is composed of all the values
of k such that the eigenvalue λ(k)∈R, that is, all k∈R∪Σ±. A discrete set Z∪ Z̄ of
eigenvalues is called the discrete spectrum. In the unusual case, the set of two columns
of Φ+(x,t;k) is consistent with the set of two columns of Φ−(x,t;k), and this set contains
the continuous spectrum of the scattering problem. As a matter of fact, Φ±(x,t;k) are
defined only on k∈R at the same time. Here, considering the domain of definition and
analytic region of Jost solution, for k∈Σ0

+, the analytic column of Φ−(x,t;k) can be
represented by the linear combination of the columns of Φ+(x,t;k). Similarly, the same
is true for k∈Σ0

−.

Lemma 2.3. Provided that u−u±∈L1
x(R±) and for all t∈R, Φ+,1(x,t;k), Φ+,2(x,t;k),

Φ−,1(x,t;k) and Φ−,2(x,t;k) are bounded, in R∪Σ0
−,1, R∪Σ0

−,2, R∪Σ0
+,2 and R∪Σ0

+,1,
respectively.

Afterwards, we define Σ0 :=R∪Σ0
+∪Σ0

−, which constitutes a continuous spectrum.
The existence of eigenfunctions with those values of k∈C\Σ constitutes the discrete
spectrum of the scattering problem. If u−u±∈L1

x(R±) and for all t∈R, these are the
values of k in C+ \Σ precisely, where s22(k)=0, and the values of s11(k̄)=0 in C− \Σ.

The set Z∪ Z̄ of discrete eigenvalues consists of an infinite number of isolated points
in C\Σ, where Z⊂C+ \Σ. Specially, we must also pay closer attention to the fact
that the set of discrete eigenvalues may have one or more accumulation points in Σ=
R∪Σ+∪Σ−. Typically, s11(k) and s22(k) are not analytic at branch points, and the
spectral singularities are the zeros of s11(k) and s22(k) along the continuous spectrum;
the scattering coefficients do not vanish on Σ0

+ and Σ0
−. In what follows, we discuss the

relations of the scattering coefficients at the branch points.
In what follows, we obtain the residue conditions that will be needed for the inverse

problem.

Theorem 2.3. Provided that u−u±∈L1
x(R±) and for all t∈R, if s22(k) has

a finite set of simple zeros, Z={k1,. ..,kN}⊂C+ \Σ, there exists norming constants
{γ1,. ..,γn}∈C such that

Res
k=kn

Φ(x,t;k)=
(
0 γnΦ1(x,t;kn)

)
, n=1,. ..,N, (2.34a)

Res
k=k∗

n

Φ(x,t;k)=
(
−γ∗nΦ2(x,t;k

∗
n) 0

)
, n=1,. ..,N. (2.34b)
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2.6. Asymptotic behavior as k→∞. In order to set up the inverse prob-
lem correctly, we need to consider asymptotic propertities of the Jost eigenfunctions
Φ±(x,t;k) and scattering coefficients as k→∞, to recover the potential from the scat-
tering data.

Theorem 2.4. If u is continuously differentiable with u−u±∈L1
x(R±) for all t∈R,

the following equality can be derived as

Φ±(x,t;k)=e
iθ0σ3(I+O(1)), k→∞, (2.35)

and the reconstruction formula of the solution can be expressed as

u(x,t)=−2i lim
k→∞

k(e−iθ0σ3Φ−(x,t;k))12. (2.36)

Proof. The modified eigenfunctions µ±(x,t;k) admit the behaviors

µ±(x,t;k)= I+O(
1

k
), k→∞. (2.37)

Furthermore, we have

u(x,t)=−2i lim
k→∞

e−2ih−(x,t)k(µ−(x,t;k))12. (2.38)

Using the asymptotic properties of each factors as well as the expression for
Φ±(x,t,k) defined in (2.22), one has

Φ±(x,t;k)=e
i(θ±−h±)σ3(I+O(1)), k→∞,

with

λ±(k)=(k±W

2
)+

(A±)
2

2(k± W
2 )

+O(k−3), k→∞, (2.39)

and

θ±(x,t;k)=θ0(x,t;k)+h±(x,t)+O(
1

k
), k→∞, (2.40)

where θ0(x,t;k)=k[x−(2αk−βk2)t]. This completes the proof of Theorem 2.4.

2.7. Asymptotic behavior at the branch points. We ensure the existence,
analyticity and continuity of the Jost eigenfunctions in appropriate open regions on
the complex plane with the conditions u−u±∈L1

x(R±) and for all t∈R. However,
the regions covered in the course of these discussions do not include branch points
p±,1,p±,2. It is clear that a complete characterisation of the inverse problem is insep-
arable from the discussions of the behaviours of the scattering coefficients, the Jost
eigenfunctions Φ±(x,t;k) and the modified Jost eigenfunctions µ±(x,t;k) at the branch
points p±,1,p±,2. Introducing the weighted L1 spaces

L1,j(R±) :=
{
f :R→C|(1+ |x|)jf ∈L1(R±)

}
, j=1,2.

Lemma 2.4. If u−u±∈L1,1
x (R±) and for all t∈R, the modified eigenfunctions

µ±(x,t;k) are continuous at the branch points p±,1,p±,2 and the asymptotic behavior
of the modified eigenfunctions µ±(x,t;k) has the following form

µ+,1(x,t;k)=ω
(0)
p+,1

(x,t)+O(1), k→p+,1, (2.41a)



X.F. ZHANG, S.F. TIAN, J.J. YANG, AND Z.Q. LI 1639

µ+,2(x,t;k)=ω
(0)
p+,2

(x,t)+O(1), k→p+,2, (2.41b)

µ−,2(x,t;k)=ω
(0)
p−,1

(x,t)+O(1), k→p−,1, (2.41c)

µ−,1(x,t;k)=ω
(0)
p−,2

(x,t)+O(1), k→p−,2, (2.41d)

where some vectors ω
(0)
p±,1(x,t) and ω

(0)
p±,2(x,t) are never zero.

Lemma 2.5. If u−u±∈L1,2
x (R±) and for all t∈R, the modified eigenfunctions

µ±(x,t,k) are continuous at the branch points p±,1,p±,2 and the asymptotic behavior
of the modified eigenfunctions µ±(x,t;k) has the following form

µ+,1(x,t;k)=ω
(0)
p+,1

(x,t)+ω(1)
p+,1

(x,t)(k−p+,1)
1
2 +O(k−p+,1)

1
2 , k→p+,1, (2.42a)

µ+,2(x,t;k)=ω
(0)
p+,2

(x,t)+ω(1)
p+,2

(x,t)(k−p+,2)
1
2 +O(k−p+,2)

1
2 , k→p+,2, (2.42b)

µ−,2(x,t;k)=ω
(0)
p−,1

(x,t)+ω(1)
p−,1

(x,t)(k−p−,1)
1
2 +O(k−p−,1)

1
2 , k→p−,1, (2.42c)

µ−,1(x,t;k)=ω
(0)
p−,2

(x,t)+ω(1)
p−,2

(x,t)(k−p−,2)
1
2 +O(k−p−,2)

1
2 , k→p−,2, (2.42d)

where some vectors ω
(0)
p±,1(x,t), ω

(1)
p±,1(x,t), ω

(0)
p±,2(x,t) and ω

(1)
p±,2(x,t) are never zero.

Proof. The behavior of µ(x,t;k) at the branch points is studied in a more rigorous
space u−u±∈L1,2

x (R±). Although the derivatives of the eigenfunctions with respect to
k at the branch points are not well-defined, the derivative of z can be asymptotically
estimated at the branch points. Therefore, we introduce the variable z

z(k)=λ+(k)+(k+
V

2
), (2.43)

such that

k+
W

2
=

1

2
(z−

A2
+

z
), λ+(k)=

1

2
(z+

A2
+

z
), (2.44)

and write the dependence of the integral equation on k as the dependence on z. The
limits of K(ξ,z) and ∂K

∂z at z→±iA+ are further obtained. Once again, the Neumann

series is used for the integral equation to discuss the properties of
∂µ+,1

∂z , then one has

∂µ+,1

∂z
(x,t;z)=

∂µ+,1

∂z
(x,t;iA+)+O(1), z→ iA+. (2.45)

However,

µ+,1(x,t;z)=µ+,1(x,t;iA+)+

∫ z

iA+

∂µ+,1

∂z
(x,t;s)ds. (2.46)

Finally, returning to k, we have

µ+,1(x,t;z)=ω
(0)
p+,1

(x,t)+ω(1)
p+,1

(x,t)(λ+(k)−p+,1)+O(λ+(k)−p+,1), k→p+,1.

The final results are derived obviously.

In order to facilitate the inscriptions of the behaviour of the Jost solutions µ±(x,t;k)
near the branch points p±,1 and p±,2, we need to know the behaviours of d±(k) in
advance.
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Lemma 2.6. The asymptotic behaviors of d±(k) at the branch points with m=1,2 are
given by

d±(k)=

(
8(k−p±,m)

iA±

) 1
4

+O(1), k→p±,m. (2.47a)

Lemma 2.7. Under the hypothesis of Lemma 2.4, one has

Φ+,1(x,t;k)=
ζ
(0)
p+,1(x,t)

(k−p+,1)
1
4

+O
(
(k−p+,1)

− 1
4

)
, k→p+,1, (2.48a)

Φ+,2(x,t;k)=
ζ
(0)
p+,2(x,t)

(k−p+,2)
1
4

+O
(
(k−p+,2)

− 1
4

)
, k→p+,2, (2.48b)

Φ−,2(x,t;k)=
ζ
(0)
p−,1(x,t)

(k−p−,1)
1
4

+O
(
(k−p−,1)

− 1
4

)
, k→p−,1, (2.48c)

Φ−,1(x,t;k)=
ζ
(0)
p−,2(x,t)

(k−p−,2)
1
4

+O
(
(k−p−,2)

− 1
4

)
, k→p−,2, (2.48d)

for some vectors ζ
(0)
p±,m(x,t) ̸=0 (m=1,2).

Lemma 2.8. Under the hypothesis of Lemma 2.5, one has

Φ+,1(x,t;k)=
ζ
(0)
p+,1(x,t)

(k−p+,1)
1
4

+
ζ
(1)
p+,1(x,t)

(k−p+,1)−
1
4

+O
(
(k−p+,1)

1
4

)
, k→p+,1, (2.49a)

Φ+,2(x,t;k)=
ζ
(0)
p+,2(x,t)

(k−p+,2)
1
4

+
ζ
(1)
p+,2(x,t)

(k−p+,2)−
1
4

+O
(
(k−p+,2)

1
4

)
, k→p+,2, (2.49b)

Φ−,2(x,t;k)=
ζ
(0)
p−,1(x,t)

(k−p−,1)
1
4

+
ζ
(1)
p−,1(x,t)

(k−p−,1)−
1
4

+O
(
(k−p−,1)

1
4

)
, k→p−,1, (2.49c)

Φ−,1(x,t;k)=
ζ
(0)
p−,2(x,t)

(k−p−,2)
1
4

+
ζ
(1)
p−,2(x,t)

(k−p−,2)−
1
4

+O
(
(k−p−,2)

1
4

)
, k→p−,2, (2.49d)

for some vectors ζ
(0)
p±,m(x,t) ̸=0 and ζ

(1)
p±,m(x,t) ̸=0 (m=1,2).

The asymptotic behaviours of the scattering coefficients at the branch points p±,m

(m=1,2) are also derived from the determinant expression, Lemma 2.7 and Lemma 2.8.

Lemma 2.9. Under the hypothesis of Lemma 2.4 with m=1,2, one has

s11(x,t;k)= ζ
(0)
±,11(k−p±,2)

− 1
4 +O(k−p±,2)

− 1
4 , k→p±,2, (2.50a)

s12(x,t;k)= ζ
(0)
+,12(k−p+,1)

− 1
4 +O(k−p+,1)

− 1
4 , k→p+,1, (2.50b)

s12(x,t;k)= ζ
(0)
−,12(k−p−,2)

− 1
4 +O(k−p−,2)

− 1
4 , k→p−,2, (2.50c)

s21(x,t;k)= ζ
(0)
+,21(k−p+,2)

− 1
4 +O(k−p+,2)

− 1
4 , k→p+,2, (2.50d)

s21(x,t,k)= ζ
(0)
−,21(k−p−,1)

− 1
4 +O(k−p−,1)

− 1
4 , k→p−,1, (2.50e)

s22(x,t,k)= ζ
(0)
±,22(k−p±,1)

− 1
4 +O(k−p±,1)

− 1
4 , k→p±,1, (2.50f)

for some constants ζ
(0)
±,11, ζ

(0)
±,12, ζ

(0)
±,21 and b

(0)
±,22.
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Clearly, we observe that µ+,2(x,t;k) and µ−,1(x,t;k) are linearly independent at
the branch points p−,m (m=1,2). Meanwhile, µ+,1(x,t;k) and µ−,2(x,t;k) are linearly

independent at the branch points p+,m. Finally, ζ
(0)
±,11,ζ

(0)
±,12,ζ

(0)
±,21 and ζ

(0)
±,22 are either all

zero or all nonzero depending on the linear dependence of µ+,1(x,t;k) and µ−,2(x,t;k)
at p+,m. The generic case is defined when µ+,1(x,t;k) and µ−,2(x,t;k) are linearly

independent at branch points such that ζ
(0)
±,11,ζ

(0)
±,12,ζ

(0)
±,21 and ζ

(0)
±,22 are all zero.

Lemma 2.10. Under the hypothesis of Lemma 2.5 with m=1,2, one has

s11(x,t;k)= ζ
(0)
±,11(k−p±,2)

− 1
4 +ζ

(1)
±,11(k−p±,2)

1
4 +O(k−p±,2)

1
4 , k→p±,2,

s12(x,t;k)= ζ
(0)
+,12(k−p+,1)

− 1
4 +ζ

(1)
+,12(k−p+,1)

1
4 +O(k−p+,1)

1
4 , k→p+,1,

s12(x,t;k)= ζ
(0)
−,12(k−p−,2)

− 1
4 +ζ

(1)
+,12(k−p−,2)

1
4 +O(k−p−,2)

1
4 , k→p−,2,

s21(x,t;k)= ζ
(0)
+,21(k−p+,2)

− 1
4 +ζ

(1)
+,21(k−p+,2)

1
4 +O(k−p+,2)

1
4 , k→p+,2,

s21(x,t;k)= ζ
(0)
−,21(k−p−,1)

− 1
4 +ζ

(1)
−,21(k−p−,1)

1
4 +O(k−p−,1)

1
4 , k→p−,1,

s22(x,t;k)= ζ
(0)
±,22(k−p±,1)

− 1
4 +ζ

(1)
±,22(k−p±,1)

1
2 +O(k−p±,1)

1
4 , k→p±,1,

for some constants ζ
(0)
±,11, ζ

(0)
±,12, ζ

(0)
±,21, ζ

(0)
±,22, ζ

(1)
±,11, ζ

(1)
±,12, ζ

(1)
±,21 and ζ

(1)
±,22.

The asymptotic behavior of the reflection coefficients at the branch points are de-
rived via utilizing the same method, which we omit here.

3. Inverse problem
In order to solve the focusing Hirota Equation (1.2) with the initial conditions (2.1),

we need to introduce a generalized RH problem based on the analyticity, symmetries
and asymptotic behaviours of the Jost solution Φ±(x,t;k) and scattering data sij(z)
discussed above. By solving the RH problem, we can obtain the solution of the equation.
In Section 1, the RH problem as we have constructed it has been accounted for, and
this section focuses on finding the conditions that underpin the RH problem separately.

3.1. Residue conditions. As in most cases, the matrix M(x,t;k) will have
singularities at the eigenvalues that form a non-empty discrete spectrum. This moti-
vates us to complete the formulation of the RH problem via taking these singularities
into account when discussing the RH problem. Immediately afterwards, we come to a
discussion of the residue conditions for M(x,t;k).

Lemma 3.1. If u−u±∈L1
x(R±) and for all t∈R, providing that s22(k) contains

finite simple zeros, Z=k1,. ..,kn⊂C+ \Σ, the matrix M(x,t;k) is analytic in C\(Σ∪
Z∪ Z̄), which has simple poles at kn∈Z and k∗n∈ Z̄, then there exists norming constants
γ1,. ..,γn∈C so that

Res
k=kn

M(x,t;k)=
(
0 γnM1(x,t;kn)e

2iθ0(x,t,kn)
)
, n=1,. ..,N, (3.1a)

Res
k=k∗

n

M(x,t;k)=
(
−γ∗nM2(x,t;k

∗
n)e

−2iθ0(x,t,k
∗
n) 0

)
, n=1,. ..,N. (3.1b)

We now break the symmetry of x→−x in M(x,t;k) by starting from the scattering
relation from the right. Indeed,

M̂(x,t;k)=


(
ϕ−,2(x,t;k)e

iθ0(x,t;k)σ3
ϕ+,1(x,t;k)e

iθ0(x,t;k)σ3

r11

)
, k∈C+ \Σ,(

ϕ+,2(x,t;k)e
iθ0(x,t;k)σ3

r22
ϕ−,1(x,t;k)e

iθ0(x,t;k)σ3

)
, k∈C− \Σ.

(3.2)



1642 THE FOCUSING HIROTA EQUATION WITH COUNTERPROPAGATING FLOWS

The jump condition: M̂+(x,t;k)=M̂−(x,t;k)Ĵ(x,t;k), where

Ĵ(x,t;k)=J(x,t;k)[(ρ,r,θ0,Σ+,Σ−) 7→ (ρ̂, r̂,−θ0,Σ−,Σ+)],

with ρ̂(k)= r21(k)
r11(k)

and r̂(k)= 1
r11(k)s12(k)

.

3.2. Growth conditions. In addition to discussing the normalization condition,
jump condition and residue conditions of the matrixM(x,t,k) as before, the appropriate
growth conditions near the branch points should be considerd. In accordance with the
behaviors of Jost solutions near the branch points, the following lemma is obtained.

Lemma 3.2. Providing that u−u±∈L1,1
x (R±), for all t∈R, and W ̸=0 in the generic

case, one has

M(x,t;k)=


(
H(0)

p+,1
(x,t)+O(1)

)
(k−p+,1)

−σ3
4 , k→p+,1,(

H(0)
p+,2

(x,t)+O(1)
)
(k−p+,2)

σ3
4 , k→p+,2,

H(0)
p−,m

(x,t)+O(1), k→p−,m,

(3.3)

for some invertible matrices H
(0)
p±,m(x,t) (m=1,2).

Especially, Lemma 3.2 implies that the limit of the following expression exists

lim
k→p+,1

M(x,t;k)(k−p+,1)
σ3
4 , lim

k→p−,1
M(x,t;k), (3.4a)

lim
k→p+,2

M(x,t;k)(k−p+,2)
−σ3

4 , lim
k→p−,2

M(x,t;k). (3.4b)

The conditions for the existence of the limits will be used as the growth conditions for
the RH problem in the general case to ensure that the solution exists uniquely. In the
exceptional case of linear correlation of Φ+,1(x,t;k) and Φ−,2(x,t;k) at branch points

p±, p̄±, the asymptote changes. Assuming the case where ζ
(0)
±,11 and ζ

(0)
±,22 are zero and

ζ
(1)
±,11 and ζ

(1)
±,22 are not zero, where ζ

(0)
±,11, ζ

(0)
±,22, ζ

(1)
±,11 and ζ

(1)
±,22 are given by Lemma

2.10, the following result is given.

Lemma 3.3. LetW ̸=0, providing that u−u±∈L1,2
x (R±) and for all t∈R, the modified

eigenfunctions µ±(x,t;k) are continuous at the branch points p±,m (m=1,2), in the
exceptional case we have

M =



(
H(0)

p+,1
+H(1)

p+,1
(k−p+,1)

1
2 +O(k−p+,1)

1
2

)
(k−p+,1)

− 1
4 , k→p+,1,(

H(0)
p+,2

+H(1)
p+,2

(k−p+,2)
1
2 +O(k−p+,2)

1
2

)
(k−p+,2)

1
4 , k→p+,2,(

H(0)
p−,1

+H(1)
p−,1

(k−p−,1)
1
2 +O(k−p−,1)

1
2

)
(k−p−,1)

− 1
4+

σ3
4 , k→p−,1,(

H(0)
p−,2

+H(1)
p−,2

(k−p−,2)
1
2 +O(k−p+,2)

1
2

)
(k−p−,2)

− 1
4−

σ3
4 , k→p−,2,

(3.5)

where M =M(x,t;k), H=H(x,t), and some matrices H
(0)
p±,m(x,t) and H

(1)
p±,m(x,t) with

detH
(0)
p±,m =0 (m=1,2).

We can obviously notice that the growth conditions at p+,1 and p+,2 are not of the
same form as those at p−,1 and p−,2. This asymmetry is due to the fact that we have
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chosen to obtain the relationship of Φ−(x,t;k) from the right-hand side by obtaining
the analytic scattering coefficients, which further leads to the definition of M(x,t;k). If
we choose the definition of M̂(x,t;k) in (3.2), then the growth conditions would match
exactly to the above, except that the difference in p±,1 needs to interchange. In Section
1, we show the RH problem given in RH Problem 1.1.

Remark 3.1. For W ̸=0 and t∈R, if u−u±∈L1,1
x (R±) and (u−u±)x∈L1,1

x (R±)
with µ+,1(x,t;k) and µ−,2(x,t;k) are linearly independent at the branch points p±,m

(m=1,2), then the matrix M(x,t;k) still admits RH Problem 1.1.

3.3. Linear algebraic-integral equation and reconstruction formula.
We have attempted to convert the solution of the above RH problem into a suitable

set of the linear algebraic-integral equations. For the sake of brevity, we will suppress
the dependence of M,J and θ0 in time t and space x, but this does not create the
ambiguity.

Lemma 3.4. Let M(x,t;k) be any solution of the RH problem, then M†(x,t;k)−1 also
solves the RH problem. Furthermore, detM(x,t;k)=1 for k∈C\(Σ∪Z∪ Z̄).

Theorem 3.1. The solution of the RH problem for k∈C\(Σ∪Z∪ Z̄) with reflection-
less is given as

M(x,t;k)= I+

N∑
n=1

Res
k=k∗

n

M−

k−k∗n
+

N∑
n=1

Res
k=kn

M+

k−kn
+

1

2πi

∫
Σ

M−(ξ)(J(ξ)−I)
ξ−k

dξ

= I+

N∑
n=1

(
−γ

∗
ne

−2iθ0(k̄n)M2(k̄n)

k− k̄n
,
γne

2iθ0(kn)M1(kn)

k−kn

)
.

In what follows, we will reconstruct the solution of the focusing Hirota equation.

Lemma 3.5. The matrix M(x,t;k) is the solution of the RH problem, then M(x,t;k)
admits the modified Lax pair in Lemma 1.1 with

Q(x,t) :=−i lim
k→∞

k[σ3,M(x,t;k)]. (3.6)

Corollary 3.1. The matrix M(x,t;k) is the solution of the RH problem, then the
corresponding solution of the focusing Hirota equation is derived by

u(x,t)=−2i

N∑
n=1

γne
2iθ0(kn)M11(kn)−

1

π

∫
Σ

[M−(ξ)(J(ξ)−I)]12dξ. (3.7)

4. Soliton solution
In what follows, the soliton solution without reflection potential is considered.
Considering the element 1,2 of M−(x,t,k) at k=k∗n and the element 1,1 of

M+(x,t,k) at k=kn, we find

M12(x,t,k
∗
n)=

N∑
j=1

M11(x,t,kj)e
2iθ0(kj)γn(kj)

k∗n−kj
, (4.1a)

M11(x,t,kn)=1+

N∑
j=1

M12(x,t,k
∗
j )e

−2iθ0(k
∗
j )γ∗n(k

∗
j )

kn−k∗j
. (4.1b)
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For later convenience and use, we introduce

C∗
j (k

∗
ℓ )=−

γ∗n(k
∗
j )

kℓ−k∗j
e−2iθ0(k

∗
j ), Cj(kn)=

γn(kj)

k∗n−kj
e2iθ0(kj). (4.2)

Substituting (4.2) into the expression about M11(x,t,k), and finally we can obtain

M11(x,t,kn)=1+

N∑
j=1

N∑
ℓ=1

C∗
j (k

∗
n)Cℓ(kj)M11(kℓ). (4.3)

In order to write the solution into a simplified matrix form, the following notation is
further introduced,

W=(W1,W2, ·· · ,WN )T , Wn=M11(kn), I= IN×1=(1,1, ·· · ,1)T , (4.4)

G=Gn,ℓ=

N∑
j=1

C∗
j (k

∗
n)Cℓ(kj)M−,11(kj), n,j=1,2,. ..,N, (4.5)

then M11(kn) can be expressed by (I+G)W= I≜FW= I, the solution of the Hirota
equation can be derived by

u(x,t)=−2i
Faug

F
, (4.6)

where

Faug =


0 −γ1e−2iθ0(k

∗
1 ) ·· · −γNe−2iθ0(k

∗
N )

1 1+G11 ·· · G1N

1
...

. . .
...

1 GN1 ·· · 1+GNN

, F=

 1+G11 ·· · G1N

...
. . .

...
GN1 ·· · 1+GNN

 .
5. The modified Riemann-Hilbert problem

5.1. Alternative solutions of the Lax pair. This section of work prepares
for the construction of the modified RH problem, for which a solution is found for the
Lax pair with the initial value conditions.

Proposition 5.1. Suppose that u(x,t) is a bounded classical solution of the Equation
(1.2) defined for (x,t)∈R× [0,∞). For any k∈C, there is a unique simultaneous funda-
mental solution ψ(x,t;k) for both parts of Lax pair (1.4) together with initial conditions
ψ(0,0;k)= I. Furthermore, ψ(x,t;k) is an entire function with respect to k. Moreover,
detψ (x,t;k)=1.

Proposition 5.2. Under the hypotheses of Theorem 2.1 and the Lemma 5.1, one has

ψ(x,t;k)=Ψ(x,t;k)C−1(k), k∈C\(Σ∪Z∪ Z̄), (5.1)

where C(k)=Ψ(0,0;k).

This definition is given above as the definition of ψ(x,t;k), and it is not difficult to
find that ψ(x,t;k) is still an entire function. The symmetry is then passed to ψ(x,t;k),
although it follows directly from (2.29) and Lemma 5.1 that ψ(x,t;k) satisfies the fol-
lowing symmetry property. Under the hypotheses of Lemma 5.1 with k∈C, one has
ψ∗(x,t;k∗)=−σψ(x,t;k)σ.
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5.2. Existence and uniqueness of solutions of the RH problem. Owing
to the singular behavior of M(x,t;k) at the branch points, the existence and uniqueness
of the solution to the RH problem is nontrivial. We can define a substitutable matrix
and the RH problem that are also regular at the branch points, and we develop this
result below. First we choose a sufficiently large R>0 such that the ball BR, centre at
the origin of the complex k-plane and with R as its radius, contains the branch cuts
Σ± and the zeros of analytic scattering coefficients s11(k) and s22(k). The modified
piecewise analytic matrix function will be introduced as follows.

M (1)(x,t;k)=

{
Ψ(x,t;k)e−iθ0(x,t;k)σ3 , k∈C\(−∞,−R]∪BR∪ [R,∞),

ψ(x,t;k)e−iθ0(x,t;k)σ3 , k∈BR,
(5.2)

where Ψ(x,t;k) and ψ(x,t;k) are defined in (2.28) and Proposition 5.2, respectively. In
this way, we put all the points with spectral singularities in a large circle, so that the
constructedM (1) is a completely analytic function (detail in Section 1, the modified RH
problem). The modified RH problem is constructed, which places the zeros of s11(k)
and s22(k) inside BR, ψ(x,t;k) is analytic, so M

(1) is not only piecewise meromorphic,
but piecewise analytic. It also indicates that the modified RH problem does not need
the residue conditions, and it is obvious that M (1) is analytic on the branch cuts Σ±
and also on the branch points p±,m (m=1,2). In Section 1, we show the RH problem
given in (5.2).

Theorem 5.1. For all t∈R, if u−u±∈L1
x(R±) and (u−u±)x∈L1

∞(R±), then the
matrix M (1)(x,t;k) is defined in Section 5.2 still admits the modified RH problem.

Compared with RH Problem 1.1, the advantage of modified RH problem 1.2 is that
the singularity of branch secant line and branch points p±,m (m=1,2) are eliminated
by introducing a large enough circle BR. It is worth noting that the existence and
uniqueness of the solution of modified RH problem can be guaranteed by vanishing
lemma [48]. For simplicity, we state the vanishing inducements explicitly.

Lemma 5.1 (The vanishing lemma shown in [48]). For the simple smooth closed curves
Σ(1), an oriented contour, with a finite number of self-intersections, find a matrix
M (1)(x,t;k) satisfies the RH problem as follows:

(a) M (1)(x,t;k) can be analytical in k∈C\Σ(1).

(b) M
(1)
+ (x,t;k)=M

(1)
− (x,t;k)G(1)(x,t;k),k∈Σ(1).

(c) M (1)(x,t;k)= I+O( 1k ),k→∞.

Suppose the contour Σ(1) is Schwarz symmetric and the jump matrix G(1)(x,t;k) such
that the conditions:

(i) G(1)(x,t;k) is C1(Σ(1)),

(ii) G(1)(x,t;k)=(G(1))†(x,t;k),k∈Σ(1) \R, where † denotes the Schwarz conjugate-
transpose,

(iii) ResG(1)(x,t;k) is positive definite for k∈Σ(1)∩R. Then the RH problem admits
a unique solution.

Because the contour of RH problem is not closed, Lemma 5.1 is not applicable to
RH Problem 1.1, but it does satisfy the requirements of the modified RH Problem 1.2.

Theorem 5.2. Providing that ρ(k)∈C1(R\(−R,R)) and C(k)∈C1(∂BR∩C±) with
C(k)C†(k)= I. The modified RH problem admits a unique solution.
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Finally, we construct an appropriate mapping between the two RH problems (RH
problem and modified RH problem) to find the correlation, so as to further establish
the uniqueness of the solution of the first RH problem. In detail, if Mc(x,t;k) is any
solution to the first RH problem, then let C0(k)=Mc(0,0;k). From Lemma 3.4, we
know that C0(k) must have the same determinant. After fixing C0(k), we now define
the following mapping Fc that operates on the matrix-valued function ν(x,t;k).

Fc(m)(x,t;k)=

{
ν(x,t;k), k∈C\(Σ∪BR),

ν(x,t;k)eiθ0(x,t;k)σ3C−1
0 (k)e−iθ0(x,t;k), k∈BR \Σ.

(5.3)

Theorem 5.3. For x∈R and t∈R+, the RH problem has a unique solution under the
condition that ρ(k)∈C1(R\(−R,R)) and the RH problem processes a solution C0(k)

such that C0(k)C
†
0(k)= I.

6. Solution for special case
In this section, we discuss the soliton solution and simple breather solution of the

focusing Hirota equation with special initial value conditions, that is, the initial value
is a nonzero constant at infinity, i.e., for t=0 and the constants A−=A+>0, where
considering the initial condition u(x,0)=A, x→±∞ with ϵ=h±=0.

In this case, the fundamental solution of Lax pair (1.4) can be written as

ΦA(x,t,k)=E
(1)
± (k)eiθAσ3 (6.1)

with

E
(1)
± (k)=

(
1 i(λ−k)

A
i(λ−k)

A 1

)
, θA(x,t,k)=λ(k)

[
x+4βk2t−2αkt−2βA2t

]
. (6.2)

We then define the Jost solutions of Lax pairs under boundary conditions as

Φ±(x,t,k)=υ±(x,t,k)e
iθAσ3 , x→±∞, (6.3)

which satisfy the following Volterra integral form as

υ−(x,t,k)=E
(1)
+ (k)+

∫ x

−∞
E

(1)
− (k)eiλ(x−y)σ̂3(E

(1)
− (k))−1∆Q−(y,t)υ−(y,t,k)dy, (6.4a)

υ+(x,t,k)=E
(1)
+ (k)−

∫ +∞

x

E
(1)
+ (k)eiλ(x−y)σ̂3(E

(1)
+ (k))−1∆Q+(y,t)υ+(y,t,k)dy, (6.4b)

where ∆Q±=Q−Q±.
Proposition 6.1. Assume that u−u±∈L1(R±), the matrices υ± have the following
properties:

(1) The columns υ+,1 and υ−,2 are analytic in k∈C+\Σ+;

(2) The columns υ−,1 and υ+,2 are analytic in k∈C−\Σ−;

(3) The solution υ±(x,t,k) of (6.4) are existent and unique,

where we denote by υ±,j (j=1,2) the j-th column of υ±(x,t,k), C±={k∈C : Imk≷0},
Σ±=Σ∩C± and Σ= i[−q0,q0]. There is no doubt that υ± and Φ± have the same
analytical properties.
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An application of Abel’s theorem yields

detΦ±= lim
x→±∞

detΦ±(x,t,k)=
2λ

λ+k
≜d(1)(k). (6.5)

Not only that, we can obtain the symmetry property as follows:

Q∗(x,t)=−σ∗Q(x,t)σ∗; Φ∗(x,t,k∗)=−σ∗Φ(x,t,k)σ∗, (6.6)

with σ∗=

(
0 1
−1 0

)
. The scattering matrix S(k) is defined by Φ−(x,t,k)=Φ+(x,t,k)S(k)

with k∈Σ. We can further rewrite the scattering matrix into the following form via
using the symmetry condition

S(k)=

(
s11(k) −s∗21(k∗)
s21(k) s∗11(k

∗)

)
. (6.7)

Note that s11(k) has Schwarz conjugate s∗11(k), which means s11(k)=s
∗
11(k). Fur-

ther, the elements are represented by Wronskian determinant, and it can be deduced
that s11(k) is analytic in C− \Σ− and s∗11(k

∗) is analytic in C+ \Σ+. The jump discon-
tinuity of λ(k) across i[−A,A] induces a corresponding jump for the eigenfunctions and
scattering data. Taking Σ to be oriented upwards, we have

υ++,1(x,t,k)=
λ+k

iu+
υ+,2(x,t,k), υ++,2(x,t,k)=

λ+k

iu∗+
υ+,1(x,t,k), (6.8a)

υ+−,1(x,t,k)=
λ+k

iu−
υ−,2(x,t,k), υ+−,2(x,t,k)=

λ+k

iu∗−
υ−,1(x,t,k), (6.8b)

(s∗11)
+(k∗)=

u−
u+

s11(k). (6.8c)

Using the scattering relation, the analytic properties about ϵ±,j j=1,2 are further
assigned, and the meromorphic function matrix M̌(x,t,k) is defined by

M̌(x,t,k)=


(
υ+,1(x,t;k)

s∗11(k)d
(1)(k)

,υ−,2(x,t;k)

)
, k∈C+ \Σ+,(

υ−,1(x,t;k)
υ+,2(x,t;k)

s11d(1)(k)

)
, k∈C− \Σ−,

(6.9)

and

r1(k)=− s21(k)

s∗11(k
∗)
, M̌±(x,t,k)= lim

ε→0+
M̌(x,t,k+ iε). (6.10)

It follows that the limit value M̌±(x,t,k) satisfies

M̌+(x,t,k)=M̌−(x,t,k)J(x,t,k), (6.11)

where

J(k)=



(
1+r(k)r∗(k)

d(1)(k)
r∗(k)e2iθA

r(k)e−2iθA d(1)(k)

)
, k∈R\{0},( −λ−k

iu−
r∗(k)e2iθA 2λ

iu∗
−

u∗
−

2iλ [1+r(k)r
∗(k)] −λ+k

iu∗
−
r(k)e−2iθA

)
, k∈Σ+,(

λ+k
iu−

r∗(k)e2iθA u−
2iλ [1+r(k)r

∗(k)]
2λ
iu−

λ−k
iu∗

−
r(k)e−2iθA

)
, k∈Σ−.

(6.12)
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Note that if s11(kℓ)=0 for some kℓ∈C− \Σ−, then s∗11(k
∗
ℓ )=0. Consequently, as-

sume s11(kℓ)=0, then either (a) kℓ is a purely imaginary number; (b) −k∗ℓ is also a zero
point of s11(k). We assume that s11(kℓ)=0 for simple zeros kℓ∈C− \Σ− (ℓ=1,2,. ..,n)
and then obtain the following residue formulae

Res
k=kℓ

M̌(x,t,k)= lim
k→kℓ

M̌(x,t,k)

d(1)(k)

(
0 Ckℓe

2iθA

0 0

)
,

Res
k=k∗

ℓ

M̌(x,t,k)= lim
k→k∗

ℓ

M̌(x,t,k)

d(1)(k)

(
0 0

Ck∗
ℓ
e−2iθA 0

)
,

(6.13)

with Ckℓ =
ckℓ
˙s11(kℓ)

, ˙s11(kℓ) is the derivative of s11(k) at k=kℓ, which is a number that

is not equal to 0. In addition, ckℓ is a nonzero constant. If kℓ is not purely imaginary,
we also derive the relevant residue conditions as follows

Res
k=−kℓ

M̌(x,t,k)= lim
k→−kℓ

M̌(x,t,k)

d(1)(k)

(
0 0

Ckℓe
−2iθA 0

)
,

Res
k=−k∗

ℓ

M̌(x,t,k)= lim
k→−k∗

ℓ

M̌(x,t,k)

d(1)(k)

(
0 −Ck∗

ℓ
e2iθA

0 0

)
.

(6.14)

Finally, the main Riemann-Hilbert problem is obtained, which is stated as follows.
RH Problem 6.1. The matrix M̌(x,t;k) satifies the properties as follows:

(i) Jump condition:

M̌+(x,t;k)=M̌−(x,t;k)J(x,t;k),

where the jump matrix J(x,t,k) is defined in (6.12).

(ii) Asymptotic behavior:

M̌(x,t;k)= I+O
(
1

k

)
.

(iii) Residue conditions: M̌(x,t;k) has simple poles at which the residue conditions
(6.13) and (6.14) satisfy.

Finally, the solution u(x,t) of the focusing Hirota equation can be expressed from
the solution of the RH Problem 6.1 as follows:

u(x,t)=−2i lim
k→∞

(kM̌(x,t,k))12. (6.15)

6.1. One soliton solution. In this section, the RH problem when the reflection
coefficient r(k)=0 is discussed.

RH Problem 6.2. According to the definition of piecewise analytic function M̌(x,t,k),
the RH problem admits

(i) Jump condition: The jump conditions are determined by

M̌+(x,t,k)=M̌−(x,t,k)J1(x,t,k), k∈R\{0}, (6.16a)

M̌+(x,t,k)=M̌−(x,t,k)J2(x,t,k), k∈Σ+, (6.16b)

M̌+(x,t,k)=M̌−(x,t,k)J3(x,t,k), k∈Σ−, (6.16c)
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where Jℓ(x,t,k) ℓ=1,2,3 are

J1(x,t,k)=

(
1+r(k)r∗(k)

d(1)(k)
r∗(k)e2iθA

r(k)e−2iθA d(1)(k)

)
, (6.17a)

J2(x,t,k)=

( −λ−k
iu−

r∗(k)e2iθA 2λ
iu∗

−
u∗
−

2iλ [1+r(k)r
∗(k)] −λ+k

iu∗
−
r(k)e−2iθA

)
, (6.17b)

J3(x,t,k)=

(
λ+k
iu−

r∗(k)e2iθA u−
2iλ [1+r(k)r

∗(k)]
2λ
iu−

λ−k
iu∗

−
r(k)e−2iθA

)
. (6.17c)

(ii) Residue condition:

Res
k=−ik1

M̌(x,t,k)= lim
k→−ik1

M̌(x,t,k)

d(1)(k)

(
0 iηe2iθA

0 0

)
,

Res
k=ik1

M̌(x,t,k)= lim
k→ik1

M̌(x,t,k)

d(1)(k)

(
0 0

iηe−2iθA 0

)
,

(6.18)

where η ̸=0 is a real constant.

(iii) Normalization: M̌(x,t,k)→ I, as k→∞.

In order to solve the RH Problem 6.2, firstly, we make the following transformation

M̂(x,t,k)=


M̌(x,t,k)

(√
d(1)(k) 0
0 1√

d(1)(k)

)
, k∈C+ \Σ+,

M̌(x,t,k)

(
1√

d(1)(k)
0

0
√
d(1)(k)

)
, k∈C− \Σ−,

(6.19)

such that

M̂(x,t,k)=M̃(x,t,k)T (k), (6.20)

where T (k) is the solution of the continuous spectrum component problem

T+(k)=T−(k)

(
0 −i
−i 0

)
, k∈ i(−A,A), (6.21)

T (k)→ I,as k→∞, (6.22)

with

T (k)=
1

2

(
ℓ(k)+ℓ−1(k) ℓ(k)−ℓ−1(k)
ℓ(k)−ℓ−1(k) ℓ(k)+ℓ−1(k)

)
=

(
t11 t12
t12 t11

)
(6.23)

and ℓ(k)=
(

k+iA
k−iA

) 1
4

. We rearrange (6.20) to M̃(x,t,k)=M̂(x,t,k)T−1(k), which infers

that M̃(x,t,k) is the discrete spectral component of M̂(x,t,k). In addition, it also
signifies analytic anywhere in k∈C except for the poles ik1 and −ik1 satisfying the
residue condition

Res
k=−ik1

M̃1(k)=−W12(−ik1)δ(x,t)M̂1(−ik1), (6.24a)
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Res
k=−ik1

M̃2(k)=W11(−ik1)δ(x,t)M̂1(−ik1), (6.24b)

Res
k=ik1

M̃1(k)=−W11(ik1)δ
∗(x,t)M̂1(ik1), (6.24c)

Res
k=ik1

M̃2(k)=W12(ik1)δ
∗(x,t)M̂1(ik1). (6.24d)

Therefore, applying Liouville’s theorem without reflection potential, there appears the
relation

M̃(k)= I+
Res

k=−ik1

M̃(k)

k+ ik1
+

Res
k=ik1

M̃(k)

k− ik1
. (6.25)

Considering (6.23), (6.24), and (6.25), we have

M̂1(x,t,k)=T1(k)+T11(k)

(
−W12(−ik1)δ(x,t)M̂1(−ik1)

k+ ik1
−W11(ik1)δ

∗(x,t)M̂2(ik1)

k− ik1

)

+T12(k)

(
W11(−ik1)δ(x,t)M̂1(−ik1)

k+ ik1
−W12(ik1)δ

∗(x,t)M̂2(ik1)

k− ik1

)
,

M̂2(x,t,k)=T2(k)+T12(k)

(
−W12(−ik1)δ(x,t)M̂1(−ik1)

k+ ik1
−W11(ik1)δ

∗(x,t)M̂2(ik1)

k− ik1

)

+T22(k)

(
W11(−ik1)δ(x,t)M̂1(−ik1)

k+ ik1
−W12(ik1)δ

∗(x,t)M̂2(ik1)

k− ik1

)
.

Ulteriorly, one has

[I+δ(x,t)D]M̂1(−ik1)=T1(−ik1)+Fδ∗(x,t)M̂2(ik1), (6.26a)

[I−δ∗(x,t)D∗]M̂2(ik1)=T2(ik1)+Fδ(x,t)M̂1(−ik1). (6.26b)

It is thereby inferred that

M̂1(−ik1)=
T1(−ik1)(I−δ∗(x,t)D∗)+T2(ik1)δ

∗(x,t)F)

(I+δD)(I−δ∗(x,t)D∗)+F2|δ|2
, (6.27a)

M̂2(ik1)=
T2(ik1)(I+δ(x,t)D)+T1(−ik1)δ(x,t)F)

(I+δD)(I−δ∗(x,t)D∗)+F2|δ|2
, (6.27b)

where

D=−T11(−ik1)Ṫ12(−ik1)+ Ṫ11(−ik1)T12(−ik1)=
iA

2(k21−A2)
, (6.28a)

F =
|T11(−ik1)|2+ |T12(−ik1)|2

2ik1
=− i

2
(k21−A2)−

1
2 . (6.28b)

Based on the above discussion and the expression of the focusing Hirota solution, we
give the following theorem to illustrate the specific expressions of the soliton solution
of the focusing Hirota equation.

Theorem 6.3. A pair of single soliton solutions for purely imaginary discrete spec-
trums ±ik1 are obtained for the focusing Hirota equation on a constant background A
satisfying

u(x,t)=A−2i

(
T 2
11(−ik1)δ(I−δ∗D∗)+T 2

12(ik1)δ
∗(I−δD+2F|δ|2T11(−ik1)T12(ik1))

(I+δD)(I−δ∗(x,t)D∗)+F2|δ|2

)
,

(6.29)
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where δ(x,t)= iηe2iθA(x,t,−ik1) and the expressions of T1ℓ(k) ℓ=1,2 are defined in
(6.23).

6.2. Simple breather solution. In this section, the simple breathers solution
of the focusing Hirota equation with the nonzero constant background is dicussed. We
first expound the corresponding RH problem.

RH Problem 6.4. The piecewise analytic function matrix M̌(x,t,k) with simple poles
at k1=a+ ib and k

∗
1 =a− ib, where a>0,b<0, satisfies the RH problem

(I) Jump condition: The limit valueM±(x,t,k) satisfies the jump relation (6.11) with
the jump matrices derived in (6.12);

(II) Residue condition:

Res
k=k1

M̌(x,t,k)= lim
k→k1

M̌(x,t,k)

d(1)(k)

(
0 ϖe2iθA

0 0

)
,

Res
k=k∗

1

M̌(x,t,k)= lim
k→k∗

1

M̌(x,t,k)

d(1)(k)

(
0 0

−ϖ∗e−2iθA 0

)
,

(6.30)

where η ̸=0 is a complex constant.

(III) Normalization: M̌(x,t,k)→ I, as k→∞.

As in the previous section, we do the same transformation M̌(x,t,k)→M̂(x,t,k).
We know that M̂(x,t,k) satisfies the same jump condition (6.21), and the residue con-
dition at the pole is restated as

Res
k=k1

M̂1(k)= lim
k→k1

M̂1(k1)

(
0 ϖe2iθA(x,t,k)

0 0

)
, (6.31a)

Res
k=k∗

1

M̂1(k)= lim
k→k1

M̂1(k1)

(
0 0

−ϖ∗e−2iθA(x,t,k) 0

)
. (6.31b)

The function M̂(x,t,k) can be solved in the form M̂(x,t,k)=M̃(x,t,k)T (k), T (k) is
defined as in the previous section and M̃(x,t,k) reads

M̃(x,t,k)=

(
1+ F

k−k1
− H∗

k−k∗
1

− K∗

k−k∗
1
+ L

k−k1

K
k−k1

− L∗

k−k∗
1

1+ F∗

k−k∗
1
− H

k−k1

)
, (6.32)

where F =F (x,t), H=H(x,t), K=K(x,t) and L=L(x,t) are unknown functions to be
determined. Accordingly, the residue conditions of M̂(x,t,k) at k=k1 is such that

F (x,t)T11(k1)+L(x,t)T12(k1)=0,

K(x,t)T11(k1)−H(x,t)T12(k1)=0,

F (x,t)T12(k1)+L(x,t)T11(k1)=η

[
T11(k1)

(
1− F ∗(x,t)

k1+k∗1

)
+F (x,t)Ṫ11(k)

+T12(k1)

(
−K

∗(x,t)

k1−k∗1

)
+L(x,t)Ṫ12(k1)

]
,

K(x,t)T12(k1)−H(x,t)T11(k1)=η

[
T11(k1)

(
−L(x,t)

∗

k1−k∗1

)
+K(x,t)Ṫ11(k)

+T12(k1)

(
1+

F (x,t)∗

k1−k∗1

)
−H(x,t)Ṫ12(k1)

]
,

(6.33)



1652 THE FOCUSING HIROTA EQUATION WITH COUNTERPROPAGATING FLOWS

with η=ϖe2iθA . We divide the last two equations in Equation (6.33) by T12(k) at the
same time. Letting A=F + iK and B=F − iK, one has

cA+(if)B∗=Υ+ i,

(if)A+(c∗)B∗=Υ∗+ i,
(6.34)

where Υ(k)= T11(k1)
T12(k1)

and

c=− η−1

T 2
12(k1)

−Υ̇(k1), f =
1+ |R|2

k1−k∗1
.

Utilizing Cramer’s rule, we have

A=
X + iY

U
, (6.35)

where

X ≜X1+ iX2=Υc∗−f, Y≜Y1+ iY2= c
∗+fΥ∗, U = |c|2−h2. (6.36)

It is worth noting that e and f are purely imaginary, and U and V are real. Based
on the above discussion and the expression of the focusing Hirota solution, we give
the following theorem to illustrate the specific expression of the soliton solution of the
focusing Hirota equation.

Theorem 6.5. The solution of the focusing Hirota equation obtained from the solution
of RH problem 6.4 with discrete spectrum k1 and complex parameter ϖ on a constant
background A satisfying

u(x,t)=A+4Im(ΥF −K)

=A− 4U(Υ1X2+Υ2X1−Y2)

U2
, (6.37)

where Υ(k)≜Υ1(k)+ iΥ2(k)=− i
√

k2
1+A2+ik1

A .

7. Conclusions and discussions
In general, we extended the IST rigorously to study the focusing Hirota equation

at infinity with a class of initial value conditions. Spectral characteristics of scattering
problem describes that there are four branch points due to W ̸=0 with counterpropa-
gating flows. Therefore, we should not only discuss the properties of the eigenfunctions
and scattering coefficients in the appropriate region, including analytical properties,
symmetries and asymptotic behaviors, but also discuss the asymptotic behaviors of the
eigenfunctions and scattering coefficients at the branch points. In this work, we can not
introduce a uniformization variable to map the multivalued eigenvalues to the complex
plane, which makes it a single-valued function. Then, the inverse problem is transformed
into a matrix RH problem jumping along the real axis and branch cuts, and the recon-
struction formula is successfully obtained. Finally, using the strict framework given by
Zhou [48], we transform the residue condition of the existing spectral singularity (the
possible zero of the analytical scattering coefficient on the continuous spectrum) into a
jump on the circumference, which is solved by introducing a modified RH problem.
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