
COMMUN. MATH. SCI. © 2023 International Press

Vol. 21, No. 6, pp. 1679–1705

SOBOLEV TRAINING
FOR PHYSICS-INFORMED NEURAL NETWORKS∗

HWIJAE SON† , JIN WOO JANG‡ , WOO JIN HAN§ , AND HYUNG JU HWANG¶

Abstract. Physics-Informed Neural Networks (PINNs) are promising applications of deep learning.
The smooth architecture of a fully connected neural network is appropriate for finding the solutions of
PDEs; the corresponding loss function can also be intuitively designed and guarantees convergence for
various kinds of PDEs. However, the high computational cost required to train neural networks has been
considered as a weakness of this approach. This paper proposes Sobolev-PINNs, a novel loss function
for the training of PINNs, making the training substantially efficient. Inspired by the recent studies
that incorporate derivative information for the training of neural networks, we develop a loss function
that guides a neural network to reduce the error in the corresponding Sobolev space. Surprisingly,
a simple modification of the loss function can make the training process similar to Sobolev Training
although PINNs are not fully supervised learning tasks. We provide several theoretical justifications
that the proposed loss functions upper bound the error in the corresponding Sobolev spaces for the
viscous Burgers equation and the kinetic Fokker–Planck equation. We also present several simulation
results, which show that compared with the traditional L2 loss function, the proposed loss function
guides the neural network to a significantly faster convergence. Moreover, we provide empirical evidence
that shows that the proposed loss function, together with the iterative sampling techniques, performs
better in solving high-dimensional PDEs.

Keywords. Physics-Informed Neural Networks; Sobolev Training; Partial Differential Equations;
Neural Networks.

AMS subject classifications. 68T07; 65M99; 35Q84.

1. Introduction
Deep learning has achieved remarkable success in many scientific fields, including

computer vision and natural language processing. In addition to engineering, deep
learning has been successfully applied to the field of scientific computing. Particularly,
the use of neural networks for the numerical integration of Partial Differential Equations
(PDEs) has emerged as a new important application of deep learning.

Being a universal approximator [7, 12, 23], a neural network can approximate solu-
tions of complex PDEs. To find the neural network solution of a PDE, a neural network
is trained on a domain wherein the PDE is defined. Training a neural network comprises
the following: Feeding the input data through forward pass and minimizing a prede-
fined loss function with respect to the network parameters through backward pass. In
the traditional supervised learning setting, the loss function is designed to guide the
neural network to generate the same output as the target data for the given input data.
However, while solving PDEs using neural networks, the target values that correspond
to the analytic solution are not available. One possible way to guide the neural network
to produce the same output as the solution of the PDE is to penalize the neural network
to satisfy the PDE itself. Early approaches, for instance, [21, 22], proposed to train a

∗Received: May 12, 2022; Accepted (in revised form): December 15, 2022. Communicated by
Siddhartha Mishra.

†Department of Artificial Intelligence Software, Hanbat National University, Daejeon, Republic of
Korea (hjson@hanbat.ac.kr).

‡Department of Mathematics, Pohang University of Science and Technology, Pohang, Republic of
Korea (jangjw@postech.ac.kr).

§Department of Mathematics, Pohang University of Science and Technology, Pohang, Republic of
Korea (wjhan@postech.ac.kr).

¶Department of Mathematics, Pohang University of Science and Technology, Pohang, Republic of
Korea (hjhwang@postech.ac.kr).

1679

mailto:hjson@hanbat.ac.kr
mailto:jangjw@postech.ac.kr
mailto:wjhan@postech.ac.kr
mailto:hjhwang@postech.ac.kr

1680 SOBOLEV TRAINING FOR PHYSICS-INFORMED NEURAL NETWORKS

trial function that exactly satisfies the boundary conditions on a set of predefined grid
points. Later, [4, 14,17,28,31] reported for various kinds of problems involving PDEs.

Unlike the traditional mesh-based schemes including the Finite Difference Method
(FDM) and the Finite Element Method (FEM), neural networks are inherently mesh-free
function-approximators. Advantageously, as mesh-free approximators, neural networks
can be applied to solve high-dimensional PDEs [31] and approximate the solutions
of PDEs on complex geometries [4]. Recently, [14] showed that, in the continuous
loss setting, the neural networks could approximate the solutions of kinetic Fokker–
Planck equations under not only various kinds of kinetic boundary conditions but also
several irregular initial conditions. Moreover, they showed that the neural networks
automatically approximate the macroscopic physical quantities including the kinetic
energy, the entropy, the free energy, and the asymptotic behavior of the solutions.
Additionally, [18] reported a constrained optimization formulation to impose physical
constraints to PINNs for the Fokker–Planck equation and the Boltzmann equation.
Further issues including the inverse problem were investigated by [19,28].

Although the neural network approach can be used to solve several complex PDEs
in various kinds of settings, it requires relatively high computational cost compared to
the traditional mesh-based schemes even for very simple differential equations due to
its high dimensional optimization nature. To resolve this issue, we propose a novel loss
function using Sobolev norms in this paper. Inspired by a recent study that incorporated
derivative information for the training of neural networks [8], we develop a loss function
that efficiently guides neural networks to find the solutions of PDEs. We prove that the
H1 and H2 norms of the approximation errors converge to zero as our loss functions
tend to zero for the 1-D Heat equation, the 1-D viscous Burgers equation, and the 1-D
kinetic Fokker–Planck equation. Moreover, we show via several simulation results that
the number of epochs to achieve a certain accuracy is significantly reduced as the order
of derivatives in the loss function gets higher, provided that the solution is smooth. This
study might pave the way for overcoming the issue of high computational cost when
solving PDEs using neural networks.

The main contributions of this work are threefold: (1) We propose Sobolev-PINNs,
a novel training framework with new loss functions, that enables the Sobolev Training
of PINNs. (2) We prove that the proposed Sobolev-PINNs guarantee the convergence
of PINNs in the corresponding Sobolev spaces although it is not a supervised learning
task. (3) We empirically demonstrate the effect of Sobolev Training for several regression
problems and the improved performances of Sobolev-PINNs in solving several PDEs
including the heat equation, Burgers’ equation, the Fokker–Planck equation, and high-
dimensional Poisson equation.

2. Related works

Training neural networks to approximate the solutions of PDEs has been intensively
studied over the past decades. For example, [21, 22] used neural networks to solve
Ordinary Differential Equations (ODEs) and PDEs on a predefined set of grid points.
Subsequently, [31] proposed a method to solve high-dimensional PDEs by approximating
the solution using a neural network. They focused on the fact that the traditional finite
mesh-based scheme becomes computationally intractable when the dimension becomes
high. However, because neural networks are mesh-free function-approximators, they
can solve high-dimensional PDEs by incorporating mini-batch sampling. Furthermore,
the authors showed the convergence of the neural network to the solution of quasilinear
parabolic PDEs under certain conditions.

Recently, [28] reported that one can use observed data to solve PDEs using Physics-

H. SON, J.W. JANG, W.J. HAN, AND H.J. HWANG 1681

Informed Neural Networks (PINNs). Notably, PINNs can solve a supervised regression
problem on observed data while satisfying any physical properties given by nonlinear
PDEs. A significant advantage of PINNs is that the data-driven discovery of PDEs, also
called the inverse problem, is possible with a small change in the code. The authors
provided several numerical simulations for various types of nonlinear PDEs including
the Navier–Stokes equation and Burgers’ equation. The first theoretical justification for
PINNs was provided by [30], who showed that a sequence of neural networks converges
to the solutions of linear elliptic and parabolic PDEs in L2 sense as the number of
observed data increases. After that, the authors in [26] discovered some upper bounds
of generalization error in terms of training error, number of training samples, and the
stability of the PDE. [9] proved that ReLU-networks can approximate solutions of scalar
conservation laws and also provided an upper bound on the generalization error.

A line of research that aims to deal with the stability and convergence issue of PINNs
is recently drawing attention. [25] proposed a self-adaptive loss balancing algorithm
that gives more weight to the region where the solution exhibits sharp transition. [34]
claimed that the stiff gradient statistics causes an imbalance in the back-propagation and
proposed a learning rate annealing algorithm to resolve it. [35] investigated the training
dynamics of PINNs in the neural tangent kernel regime and proposed an adaptive loss
balancing algorithm based on the eigenvalues of the tangent kernels. Another branch
of works considered the training of PINNs as multi-objective learning (See, [5, 29, 33]
for more information). There also exists a study aiming to enhance the convergence of
PINNs [32,33].

Additionally, several works related deep neural networks with PDEs but not by the
direct approximation of the solutions of PDEs. For instance, [24] attempted to discover
the hidden physics model from data by learning differential operators. A fast, iterative
PDE-solver was proposed by learning to modify each iteration of the existing solver [13].
A deep Backward Stochastic Differential Equation (BSDE) solver was proposed and
investigated in [11, 36] for solving high-dimensional parabolic PDEs by reformulating
them using BSDE.

The main strategy of the present study is to leverage derivative information while
solving PDEs via neural networks. The authors of [8] first proposed Sobolev Training
that uses derivative information of the target function when training a neural network
by slightly modifying the loss function. They showed that Sobolev Training had lower
sample complexity than regular training, and therefore it is highly efficient in many
applicable fields, such as regression and policy distillation problems. We adopt the con-
cept of Sobolev Training to develop Sobolev-PINNs, a novel framework for the efficient
training of a neural network for solving PDEs.

3. Loss functions
We consider the following Cauchy problem of PDEs:

Pu=f, (t,x)∈ [0,T]×Ω, (3.1)

Iu=g, (t,x)∈{0}×Ω, (3.2)

Bu=h, (t,x)∈ [0,T]×∂Ω, (3.3)

where P denotes a differential operator; I and B denote the initial and boundary opera-
tors, respectively; f , g, and h denote the inhomogeneous term, and initial and boundary
data, respectively. In most studies that reported the neural network solutions of PDEs, a
neural network was trained on uniformly sampled grid points {(ti,xj)}Nt,Nx

i,j=1 ∈ [0,T]×Ω,
which were completely determined before training. One of the most intuitive ways

1682 SOBOLEV TRAINING FOR PHYSICS-INFORMED NEURAL NETWORKS

to make the neural network satisfy PDEs (3.1)–(3.3) is to minimize the following loss
functional:

L(unn;p)=∥Punn−f∥pLp([0,T]×Ω)+∥Iunn−g∥pLp(Ω)+∥Bunn−h∥pLp([0,T]×∂Ω),

where unn denotes the neural network and p=1 or 2, as they have been the most com-
monly used exponents in regression problems in previous studies. Evidently, an analytic
solution u satisfies L(u)=0, and thus one can conceptualize a neural network that makes
L(unn)=0 a possible solution of PDEs (3.1)–(3.3). This statement is in fact proved for
second-order parabolic equations with the Dirichlet boundary condition in [19], and
for the Fokker–Planck equation with inflow and specular reflective boundary conditions
in [14]. Both the proofs are based on the following inequality:

∥u−unn∥L∞(0,T ;L2(Ω))≤CL(unn;2),

for some constant C, which states that minimizing the loss functional implies minimizing
the approximation error.

The main concept behind Sobolev Training is to minimize the error between the
output and the target function, and that between the derivatives of the output and those
of the target function. However, unlike the traditional supervised regression problem,
neither the target function nor its derivative is provided while solving PDEs via neural
networks. Thus, a special treatment is required to apply Sobolev Training for solving
PDEs using neural networks. In this and the following sections, we propose several loss
functions and prove that they guarantee the convergence of the neural network to the
solution of a given PDE in the corresponding Sobolev space. Therefore, the proposed
loss functions play similar roles to those in Sobolev Training.

We define the loss function that depends on the Sobolev norm W k,p as follows:

LGE(unn;k,p,l,q)=
∥∥∥∥P (unn(t,·))−f(t,·)∥q

W l,q(Ω)

∥∥∥p
Wk,p([0,T])

, (3.4)

LIC(unn;l,q)=∥Iunn(t,x)−g(x)∥q
W l,q(Ω)

, (3.5)

LBC(unn;k,p,l,q)=
∥∥∥∥Bunn(t,·)−h(t,·)∥q

W l,q(∂Ω)

∥∥∥p
Wk,p([0,T])

. (3.6)

Remark 3.1. Here, the total loss with zero derivatives

L(0)
TOTAL(unn)=LGE(unn;0,2,0,2)+LIC(unn;0,2)+LBC(unn;0,2,0,2)

coincides with the traditional L2 loss function employed by [4, 14,28,31].

When we train a neural network, the loss functions (3.4)–(3.6) are computed by
Monte-Carlo approximation. Because the grid points are uniformly sampled, the loss
functions are approximated as follows:

LGE(unn;k,p,l,q)≈
T |Ω|
NtNx

∑
|β|≤k

Nt∑
i=1

∣∣∣∣∣∣ d
β

dtβ

∑
|α|≤l

Nx∑
j=1

|DαP (unn(ti,xj))−Dαf(ti,xj)|q
∣∣∣∣∣∣
p

,

LIC(unn;l,q)≈
|Ω|
Nx

∑
|α|≤l

Nx∑
j=1

|Dαunn(0,xj)−Dαg(xj)|q,

H. SON, J.W. JANG, W.J. HAN, AND H.J. HWANG 1683

LBC(unn;k,p,l,q)≈
T |∂Ω|
NtNB

∑
|β|≤k

Nt∑
i=1

∣∣∣∣∣∣ d
β

dtβ

∑
|α|≤l

∑
xj∈∂Ω

|Dαunn(ti,xj)−Dαh(ti,xj)|q
∣∣∣∣∣∣
p

,

where α and β denote the conventional multi-indexes, and D denotes the spatial deriva-
tives.

4. Theoretical results
In this section, we theoretically validate our claim that our loss functions guarantee

the convergence of the neural network to the solution of a given PDE in the correspond-
ing Sobolev spaces and that they play a similar role to those in Sobolev Training while
solving PDEs via neural networks. Throughout this section, we will denote the strong
solution of each equation by u, neural network solution by unn, and Sobolev spaces W 1,2

andW 2,2 byH1 andH2, respectively. We also assume that unn∈C∞ by considering the
hyperbolic tangent function as a nonlinear activation function. The statements in this
section are written in relatively intuitive forms. Mathematically rigorous statements
and proofs are provided in Section 7. The proofs for the heat equation (Section 7.1)
and the Poisson equation (Section 7.4) are straightforward from the well-known PDE
theory.

4.1. The heat equation and Burgers’ equation. We define the following
three total loss functions for the heat equation and Burgers’ equation:

L(0)
TOTAL(unn)=LGE(unn;0,2,0,2)+LIC(unn;0,2)+LBC(unn;0,2,0,2), (4.1)

L(1)
TOTAL(unn)=LGE(unn;0,2,0,2)+LIC(unn;1,2)+LBC(unn;0,2,0,2), (4.2)

L(2)
TOTAL(unn)=LGE(unn;1,2,0,2)+LIC(unn;2,2)+LBC(unn;0,2,0,2). (4.3)

We then obtain the following convergence theorem:

Theorem 4.1. For the following 1-D heat and Burgers’ equations:

The heat equation Burgers’ equation

ut−uxx=0 in (0,T]×Ω,

u(0,x)=u0(x) on Ω,

u(t,x)=0 on [0,T]×∂Ω,

ut+uux−νuxx=0 in (0,T]×Ω,

u(0,x)=u0(x) on Ω,

u(t,x)=0 on [0,T]×∂Ω,

there hold, provided that unn is smooth,

max
0≤t≤T

∥u(t)−unn(t)∥L2(Ω)→0 as L(0)
TOTAL→0,

esssup
0≤t≤T

∥u(t)−unn(t)∥H1
0 (Ω)→0 as L(1)

TOTAL→0,

esssup
0≤t≤T

∥u(t)−unn(t)∥H2(Ω)→0 as L(2)
TOTAL→0.

Proof. Proofs are provided in Theorem 7.1 for the heat equation, and Theorem
7.2 for Burgers’ equation.

4.2. The Fokker–Planck equation. For the Fokker–Planck equation, we need
additional parameters for a new input variable v. We define the following two total loss
functions for the Fokker–Planck equation:

L(0;FP)
TOTAL(unn)=LGE(unn;0,2,0,2,0,2)

1684 SOBOLEV TRAINING FOR PHYSICS-INFORMED NEURAL NETWORKS

+LIC(unn;0,2,0,2)+LBC(unn;0,2,0,2,0,2), (4.4)

L(1;FP)
TOTAL(unn)=LGE(unn;0,2,1,2,1,2)

+LIC(unn;1,2,1,2)+LBC(unn;0,2,0,2,0,2). (4.5)

We then have the following convergence theorem:

Theorem 4.2. For the 1-D Fokker–Planck equation with the periodic boundary con-
dition:

ut+vux−β(vu)v−quvv =0, for (t,x,v)∈ [0,T]× [0,1]×R,
u(0,x,v)=u0(x,v), for (x,v)∈ [0,1]×R,
∂α
t,x,vu(t,1,v)−∂α

t,x,vu(t,0,v)=0, for (t,v)∈ [0,T]×R,

there hold, under assumptions (7.50) and (7.51),

sup
0≤t≤T

∥u(t)−unn(t)∥L2(Ω×[−V,V])→0 as L(0;FP)
TOTAL→0,

sup
0≤t≤T

∥u(t)−unn(t)∥H1(Ω;L2([−V,V]))→0 as L(1;FP)
TOTAL→0.

Proof. Proofs are provided in Theorem 7.3 and Theorem 7.4

Remark 4.1. The theorems in this section imply that the proposed loss functions
guarantee the convergence of neural networks in the corresponding Sobolev spaces,
thereby coinciding with the main idea of Sobolev Training. However, the theoretical
results in this section imply the convergence of unn to u only when LTOTAL→0. In
Section 5, we empirically demonstrate faster convergence of the error of the proposed
Sobolev-PINNs.

Remark 4.2. The theorems in this section cannot be directly generalized to the high-
dimensional cases because even the 2-dimensional case starts involving the convexity
of the boundary. Though it has also been shown that the Fokker-Planck operator has
strong hypoellipticity and the solutions to the boundary problems are smooth even in
the higher dimensional case, the proof requires long rigorous mathematical analysis. For
more information, see [15,16].

Remark 4.3. Because we cannot access the label (which corresponds to the ana-
lytic solution) on the interior grid, solving PDEs using a neural network is not a fully
supervised problem. Interestingly, by incorporating derivative information in the loss
function, the proposed approach enables Sobolev Training even if neither the labels nor
the derivatives of the target function are provided.

5. Experimental results
In this section, we provide experimental results for toy examples that comprise sev-

eral regression problems and various kinds of differential equations, including the heat
equation, Burgers’ equation, the kinetic Fokker–Planck equation, and high-dimensional
Poisson’s equation. We employ a fully connected neural network, which is a natural
choice for function approximation. We use the hyperbolic tangent function as a nonlin-
ear activation function. Although ReLU(x)=max(0,x) is a frequent choice in modern
machine learning, it is not appropriate for solving PDEs because the second derivatives
of the neural network vanish.

In appreciation of Automatic Differentiation, we can easily compute derivatives of
any order of a neural network with respect to input data despite the compositional

H. SON, J.W. JANG, W.J. HAN, AND H.J. HWANG 1685

structure; see [2] and references therein. We implemented our neural network using
PyTorch, a widely used deep learning library [27]. For the numerical experiments,
we used a neural network with three hidden layers each of which had d-256-256-256-1
neurons, where d denotes the input dimension. We used the ADAM optimizer [20], a
popular gradient-based optimizer.

To see whether our loss functions performed more efficiently than the traditional
L2 loss function introduced in Remark 3.1, we kept everything the same except the
loss function. We compared the loss functions on the basis of ∥u−unn∥L2(Ω)/∥u∥L2(Ω)

test error for the toy examples and the high-dimensional Poisson equation, and ∥u−
unn∥L∞(0,T ;L2(Ω)) test error for the heat, Burgers, Fokker–Planck equation as in the
left-hand side of the estimates in Theorems 4.1, 4.2. For each loss function, we recorded
the number of epochs required to meet a certain error threshold and the test error.
Considering the randomness due to network initialization, we repeated the training a
hundred times. Conversely, we initialized a hundred different neural networks with
uniform initialization and trained them in the same manner. To compute the test
error, we used analytic solutions for the Heat equation, Burgers’ equation, and the
high-dimensional Poisson equation, and a numerical solution from [38] for the kinetic
Fokker–Planck equation.

In Figures 5.1-5.4, histograms in the first column are generated using the number
of epochs required to achieve a certain accuracy, the plots in the second column are
the error plots for a hundred training instances, and the third column shows the actual
computation time for training in seconds. We provide the average errors over a hundred
instances in the error plot with the logarithmic axis scale. Evidently, our loss function
significantly reduces the number of epochs and test errors when solving various kinds
of PDEs using neural networks.

5.1. Toy examples. First, we consider two simple regression problems with
target functions sin(x) and ReLU(x), respectively. For these toy examples, we define
the loss functions as follows:

L2 loss=∥unn(x)−y(x)∥22,
H1 loss=∥unn(x)−y(x)∥22+∥u′

nn(x)−y′(x)∥22,
H2 loss=∥unn(x)−y(x)∥22+∥u′

nn(x)−y′(x)∥22+∥u′′
nn(x)−y′′(x)∥22,

where y(x) denotes either sin(x), or ReLU(x). We uniformly sampled a hundred grid
points from [0,2π] for training sin(x). Similarly, we uniformly sampled a hundred grid
points from [−1,1] for training ReLU(x). We expected the training to become fast
using higher order derivatives as many as possible when training sin(x) and ReLU(x).
Figure 5.1 confirms our assumption to be true. Interestingly, although ReLU(x) is not
twice weakly differentiable at only one point x=0, the H2 loss does not facilitate the
training.

In order to explore the nature of Sobolev Training, we design more complicated
toy examples. Consider the target functions sin(kx), for k=1,2,...,5, and ReLU(kx)=
max(0,kx), for k=1,2,3...,10. As k increases, the target functions and their derivatives
contain drastic changes in their values, so it is difficult to learn those functions. We
hypothesize that in Sobolev Training, the training becomes faster since we give explicit
label for the derivatives and it becomes easier to capture the drastic changes in the
derivatives. This is empirically shown to be true in Figure 5.2. We train neural networks
to approximate sin(kx), and ReLU(kx) for different k and record the number of training
epochs to achieve certain error threshold which can be regarded as a difficulty of the

1686 SOBOLEV TRAINING FOR PHYSICS-INFORMED NEURAL NETWORKS

Fig. 5.1. First row: results for sin(x), Second row: results for ReLU(x). First column: His-
tograms generated from the repeated training of neural networks for training sin(x), and ReLU(x).
Second column: Test L2 errors. Third column: Average training time for each loss function to achieve
certain error threshold. Error bars are for standard deviations. The thresholds for the error are set to
10−4.

Fig. 5.2. Average number of epochs to make error less than 10−3 increases in L2 loss as k
increases. However, when we use H1, and H2 losses, required number of epochs increases much more
slowly or stays the same as k increases.

problem. As one can see in Figure 5.2, the difficulty changes little to none when we train
with H1 and H2 losses while the difficulty increases with k when L2 loss is used. This
implies that the difficulty of training barely changes in Sobolev Training even when
the target function has stiff changes. The same observations are made when solving
PDEs. The improvement of our loss functions as compared to L2 loss function are
more dramatic for Burgers’ equation (which has stiff solution [28]) than for the heat
equation, with the initial condition of f2 (which has a higher frequency) than with
the initial condition of f1 in the Fokker–Planck equation, and as k increases for the
high-dimensional Poisson equation, see Figure 5.5.

5.2. The heat equation & Burgers’ equation. We now demonstrate the
results of the Sobolev Training of the neural networks for solving PDEs. We begin
with the 1-D heat equation, and Burgers’ equation, which is the simplest PDE that
combines both the nonlinear propagation effect and diffusive effect. Burgers’ equation
often appears as a simplification of a more complex and sophisticated model, such as
the Navier–Stokes equation. The equations with the homogeneous Dirichlet boundary
condition read as follows:

The heat equation attains a unique analytic solution u(t,x)=sin(x)exp(−t); an
analytic solution of Burgers’ equation is provided in [1].

H. SON, J.W. JANG, W.J. HAN, AND H.J. HWANG 1687

The Heat equation Burgers’ equation

ut−uxx=0 in (0,10]× [0,π],

u(0,x)=sin(x) on [0,π],

u(t,x)=0 on [0,10]×{0,π}.

ut+uux−0.2uxx=0 in (0,0.01]× [0,1],

u(0,x)=−sin(πx) on [0,1],

u(t,x)=0 on [0,0.01]×{0,1}.

Although [31] indicated that iterative random sampling reduces the computational
cost, we fixed the grid points before training because we aimed to compare the efficiency
of our loss function with that of the traditional one. For the heat equation and the
Burgers’ equation, we uniformly sampled the grid points {ti,xj}Nt,Nx

i,j=1 from (0,T]×Ω,
where Nt and Nx denote the number of samples for interior t and x, respectively. For the
initial and boundary conditions, we sampled the grid points from {t=0,xj}Nx

j=1∈{0}×Ω

and {ti,xj}Nt,NB

i,j=1 ∈ [0,T]×∂Ω, respectively, where NB denotes the number of grid points
in ∂Ω. Here, we set Nt,Nx,NB =31. We use 10,000 points uniformly sampled from
[0,T]× Ω̄ as a test dataset.

The L2, H1, and H2 losses are the Monte-Carlo approximations of (4.1), (4.2), and
(4.3), respectively, for the heat equation and Burgers’ equation. Working on achieving
a smooth solution, we observed that the H2 loss performed the best, followed by the
H1 loss and then the L2 loss in both accuracy, and computation time. We show the
corresponding results in Figure 5.3.

Fig. 5.3. First row: results for the heat equation. Second row: results for Burgers’ equation. First
column: Histograms for the heat and Burgers’ equation generated from a hundred neural networks for
each loss function. Second column: Test L∞(0,T ;L2(Ω)) errors. Third column: Average training time
for each loss function to achieve certain error threshold. Error bars are for standard deviations. The
thresholds for the error are set to 10−5.

5.3. The Fokker–Planck equation. The kinetic Fokker–Planck equation
describes the dynamics of a particle whose behavior is similar to that of the Brownian
particle. The Fokker–Planck operator has a strong regularizing effect not just in the
velocity variable but also in the temporal and the spatial variables by the hypoellipticity.
The Fokker–Planck equation has been considered in numerous physical circumstances
including the Brownian motion described by the Uhlenbeck-Ornstein processes.

We provide two simulation results for different initial conditions for the 1-D Fokker–
Planck equation with the periodic boundary condition. For the Fokker–Planck equation,

1688 SOBOLEV TRAINING FOR PHYSICS-INFORMED NEURAL NETWORKS

we adopted the idea of sampling from [14]. Because it is practically difficult to consider
the entire space for the v∈R variable, we truncated the space for v as [−5,5]. We then

uniformly sampled the grid points {ti,xj ,vk}Nt,Nx,Nv

i,j,k=1 from (0,T]×Ω× [−5,5], where
Nv denotes the number of samples for v. The grid points for the initial and periodic
boundary conditions were accordingly sampled. The truncated equation reads as follows:

ut+vux−β(vu)v−quvv =0, for (t,x,v)∈ (0,3]× [0,1]× [−5,5],

u(0,x,v)=f(x,v), for (x,v)∈ [0,1]× [−5,5],

∂α
t,x,vu(t,1,v)−∂α

t,x,vu(t,0,v)=0, for (t,v)∈ [0,3]× [−5,5],

where f(x,v) is either

f1(x,v)=
exp(−v2)∫ 5

−5
exp(−v2)dv

, or

f2(x,v)=
(1+cos(2πx))exp(−v2)∫ 1

0

∫ 5

−5
(1+cos(2πx))exp(−v2)dvdx

,

and β=0.1,q=0.1.
We define a test dataset by using 50,000 uniformly sampled points from [0,3]×

[0,1]× [−5,5]. A numerical solution on the test data was computed by a method shown
by [38] and used for computing the test error. L2 loss and H1 loss denote the Monte-
Carlo approximations of (4.4) and (4.5), respectively. The values of Nt,Nx, and Nv

were set to be 31, and the grid points were uniformly sampled. Expectedly, a solution
of the Fokker–Planck equation could be estimated substantially faster using our loss
function in both cases. We have provided the detailed results in Figure 5.4.

Fig. 5.4. First row: results for f1 initial condition. Second row: results for f2 initial condition.
First column: Histograms generated from a hundred neural networks for each loss function. Second
column: Test L∞(0,T ;L2(Ω)) errors. Third column: Average training time for each loss function to
achieve certain error threshold. Error bars are for standard deviations. The thresholds for the errors
for the initial conditions f1(x,v), and f2(x,v) are set to 10−4, and 10−3, respectively.

5.4. The High-dimensional Poisson equation. The Poisson equation serves
as an example problem in the recent literature; see [13,37,39]. In this section, we provide
empirical results to demonstrate that the proposed loss functions perform satisfactorily

H. SON, J.W. JANG, W.J. HAN, AND H.J. HWANG 1689

when equipped with iterative sampling for solving high-dimensional PDEs; see [31] for
more information. Convergence result similar to those in Section 4 for the Poisson
equation is given in Section 7.4. We consider the following high-dimensional Poisson
equation with the Dirichlet boundary condition:

−△u=
π2

4

d∑
i=1

sin(
π

2
xi), for x∈Ω=(0,1)d,

u=
d∑

i=1

sin(
π

2
xi), for x∈∂Ω,

where x=(x1,x2,...,xd)∈Ω. One can readily prove that u(x)=
∑d

i=1 sin(
π
2xi) is a strong

solution. We compare the following three loss functions with each other:

L(0;Poisson)
TOTAL (unn)=LGE(unn;0,2)+LBC(unn;0,2), (5.1)

L(1;Poisson)
TOTAL (unn)=LGE(unn;1,2)+LBC(unn;0,2), (5.2)

L(2;Poisson)
TOTAL (unn)=LGE(unn;1,2)+LBC(unn;1,2). (5.3)

Notably, the aforementioned loss functions have only x variable. Table 5.1 presents
the relative errors on a predefined test dataset, which consists of 100,000 points uni-
formly sampled from Ω, for d=10,50, and 100. Evidently, in all cases, the proposed
loss functions outperform the traditional L2 loss function.

Dimension L(0;Poisson)
TOTAL L(1;Poisson)

TOTAL L(2;Poisson)
TOTAL

10 0.38% 0.22% 0.22%
50 2.00% 1.74% 1.52%
100 3.15% 3.06% 2.89%

Table 5.1. Average of the relative errors of a hundred neural networks for the high-dimensional
Poisson equations. We uniformly sampled 500 data points from Ω for each epoch and trained the
neural networks in 10000 epochs at a learning rate 10−4.

We next consider the high-dimensional Poisson equation with different boundary
condition. In Subsection 5.1, we pointed out that the “difficulty” of learning sin(kx)
increases as k increases. As a generalization of the argument, we consider the following
PDEs:

−△u=
(kπ)2

4

d∑
i=1

sin(
kπ

2
xi), for x∈Ω=(0,1)d,

u=
d∑

i=1

sin(
kπ

2
xi), for x∈∂Ω,

for d=10, k = 1,3, and 5. As one can see in Figure 5.5, the improvement of Sobolev
training gets bigger as k increases. This observation coincides with the one in Section
5, as we expected. Moreover, we present the comparison of training time to meet a
certain error value for different loss functions in Figure 5.5. The result shows that it is
advantageous to use the proposed loss functions in time, even in high-dimensional case.

1690 SOBOLEV TRAINING FOR PHYSICS-INFORMED NEURAL NETWORKS

Fig. 5.5. Left column: Test errors as training goes for different values of k. Right column:
Required Training Time to achieve a certain test error.

Fig. 5.6. Test errors as training goes for different learning rates.

5.5. Sobolev-PINNs with different learning rates. In this subsection, we
provide several experiments that show the proposed loss functions generally perform
better in different learning rates. We first show the results for Burgers’ equation. In
Figure 5.6, we show the test errors versus training epochs plot for different learning
rates. We used 10−3,10−4,10−5 as learning rates and we observe that H2 loss performs
best followed by H1 and L2 loss functions.

We next present similar experiments for the high-dimensional Poisson equation. We
trained 30 neural networks with different initializations with different learning rates.
The average errors are presented in Figure 5.7. As in the Burgers’ equation, our loss
functions perform better than the traditional one in all learning rates.

5.6. Sobolev-PINNs in low-data regimes. [8] empirically demonstrated
that the neural network captures the target function’s shape and the effect of Sobolev

H. SON, J.W. JANG, W.J. HAN, AND H.J. HWANG 1691

Fig. 5.7. Test errors as training goes for different learning rates.

Fig. 5.8. Test errors for different numbers of training samples.

Training is much stronger in low-data regimes. Here, we present similar results for the
proposed Sobolev-PINNs through the Burgers equation and the Fokker–Planck equa-
tion. Figure 5.8 shows test errors for different numbers of training samples for the
Burgers equation and the Fokker–Planck equation. In both equations, Sobolev-trained
networks successfully approximate the solutions with small test errors in extremely low-
data regimes. We also observe that the effect of Sobolev Training continues from the
low-data regime to the high-data regime.

6. Discussion and Conclusion

Inspired by Sobolev Training, we proposed Sobolev-PINNs, a novel framework in-
volving new loss functions, which efficiently guided the training of neural networks for
solving PDEs. We theoretically justified that the proposed loss functions guaranteed
the convergence of a neural network to a solution of PDEs in the corresponding Sobolev
spaces. We also discussed that the proposed theorems imply that the training becomes
Sobolev Training by slightly modifying the loss function, although the process of esti-
mating neural network solutions of PDEs is not fully supervised.

In addition to the toy examples, which showed the exceptional speed of Sobolev
Training, we provided empirical evidence to demonstrate that Sobolev-PINNs expedited
the training more than the traditional L2 loss function. We believe that this can solve
the problem associated with the high costs involved in estimating the neural network

1692 SOBOLEV TRAINING FOR PHYSICS-INFORMED NEURAL NETWORKS

solutions of PDEs. Moreover, our experiments on high-dimensional problems showed
that the proposed loss function performed better when equipped with iterative grid
sampling. The histograms in Figures 5.1-5.4 indicate that our loss function provided
more stable training in that it reduced the variance in the distribution of the number
of epochs (e.g., for the Burgers’ equation, L2 loss: 3651±812, H1 loss: 995±71, and H2

loss: 331±15). Thus, the training, when governed by our loss function, became robust
to the random initialization of the weights.

7. Formal statements and proofs for the Theorems in Section 4

7.1. The heat equation. We denote the strong solution of the heat equation

ut−uxx=0 in (0,T]×Ω,

u(0,x)=u0(x) on Ω,

u(t,x)=0 on [0,T]×∂Ω,

by u and the neural network solution by unn. Then, v=u−unn satisfies:

vt−vxx=f(t,x) in (0,T]×Ω,

v(0,x)=g(x) on Ω, (7.1)

v(t,x)=0 on [0,T]×∂Ω,

for some f, and g. Here, we can set the boundary to be zero by multiplying B(x), where

B(x) is a smooth function satisfying B(x)

{
=0, x∈∂Ω

̸=0, x∈Ω
. Then the following holds:

Theorem 7.1 (Theorem 7.1.5 in [10]). If g∈H2(Ω),ft∈L2(0,T ;L2(Ω)), then,

max
0≤t≤T

∥v(t)∥L2(Ω)≤C1(∥f∥L2(0,T ;L2(Ω))+∥g∥L2(Ω)), (7.2)

esssup
0≤t≤T

∥v(t)∥H1
0 (Ω)≤C2(∥f∥L2(0,T ;L2(Ω))+∥g∥H1

0 (Ω)), (7.3)

esssup
0≤t≤T

∥v(t)∥H2(Ω)≤C3(∥f∥H1(0,T ;L2(Ω))+∥g∥H2(Ω)), (7.4)

for some C1,C2,C3.

By applying above theorem to (7.1), we get the results of Theorem 4.1.

Remark 7.1. The left-hand sides in (7.2) - (7.4) are the errors of neural networks
in corresponding norms, and the right-hand sides are the losses (4.1) - (4.3) for the
heat equation, respectively. This implies that the proposed loss functions are the upper
bounds of the errors in the Sobolev spaces, and by minimizing them, we can expect the
effect of Sobolev Training when solving PDEs with neural networks.

In the rest of this section, we will show the similar results for Burgers’ equation and
the Fokker–Planck equation.

7.2. Burgers’ equation. We consider the strong solution u of the following
Burgers equation in a bounded interval Ω=[a,b],

∂tu+u∂xu−∂2
xu=0 in Ω, (7.5)

u=0 on ∂Ω, (7.6)

H. SON, J.W. JANG, W.J. HAN, AND H.J. HWANG 1693

and the corresponding neural network solution unn satisfying

∂tunn+unn∂xunn−∂2
xunn=f in Ω, (7.7)

unn=0 on ∂Ω, (7.8)

with the inital data u(0,·) and unn(0,·), respectively.
The following proposition ensures the existence of a strong solution to the initial

boundary value problem (7.5)–(7.6) (see [3]). Here, we multiply B(x) to unn(t,x) in
order to meet the boundary condition. We use the notation ≲ where the relation A≲B
stands for A≤CB, where C denotes a generic constant.

Proposition 7.1 (Theorem 1.2 in [3]). Let u0∈H1
0 . Then there exists a time T ∗=

T ∗(u0)>0 such that the problem (7.5)–(7.6) with initial data u0 has a unique solution
of u satisfying

u∈L2(0,T ∗;H2(Ω))∩C([0,T ∗);H1
0 (Ω)),

ut∈L2(0,T ∗;L2(Ω)).

Furthermore, if T ∗<∞, then ∥u∥H1(Ω)→∞ as t→T ∗.

We will show that the following theorem holds.

Theorem 7.2. Let u and unn be strong solutions of (7.5)–(7.6) and (7.7)–(7.8)
respectively, on the time interval [0,T]. For w :=unn−u, following statements are valid.

(1) There exists a continuous function

F0=F0

(
∥w(0,·)∥22,

∫ T

0

∥f∥22dt,
∫ T

0

∥∂xu∥22dt

)

such that

sup
0≤t≤T

∥w∥22+
∫ T

0

∥∂xw∥22dt≤F0→0,

as

∥w(0,·)∥22,
∫ T

0

∥f∥22dt→0.

(2) There exists a continuous function

F1=F1

(
∥w(0,·)∥2H1 ,

∫ T

0

∥f∥22dt,
∫ T

0

∥∂xu∥22dt

)

such that

sup
0≤t≤T

∥w∥2H1 +

∫ T

0

∥∂xw∥2H1 +∥∂tw∥22dt≤F1→0, (7.9)

as

∥w(0,·)∥2H1 ,

∫ T

0

∥f∥22dt→0.

1694 SOBOLEV TRAINING FOR PHYSICS-INFORMED NEURAL NETWORKS

(3) There exists a continuous function

F2=F2

(
∥w(0,·)∥2H2 ,

∫ T

0

∥f∥22+∥∂tf∥22dt, sup
0≤t≤T

∥∂xu∥22+
∫ T

0

∥∂tu∥22dt

)

such that

sup
0≤t≤T

(
∥w∥2H2 +∥wt∥22

)
+

∫ T

0

∥∂xw∥2H2dt≤F2→0, (7.10)

as

∥w(0,·)∥2H2 ,

∫ T

0

∥f∥22+∥∂tf∥22dt→0.

Remark 7.2. By Morrey’s embedding theorem and Poincare’s inequality, for f ∈
H1

0 (Ω), we have the following inequality,

∥f∥2∞≤C1(∥f∥22+∥fx∥22)≤C2∥fx∥22, (7.11)

for some C1,C2 only depending on Ω (see Theorem 5.6.4 in [10] and Proposition 8.13
in [6]). Throughout the proof, we widely use (7.11).

Proof. Subtracting (7.5) from (7.7), we get equations of w as follows.

wt−wxx+wwx+wux+uwx=f in Ω, (7.12)

w=0 on ∂Ω, (7.13)

w(0,·)=g in Ω. (7.14)

By multiplying w to (7.12) and integrating by parts in Ω, we have

1

2

d

dt
∥w∥22+∥wx∥22=

∫
Ω

fw−
∫
Ω

w2wx−
∫
Ω

w2ux−
∫
Ω

uwwx+

∫
∂Ω

wwx,

=
5∑

k=1

I0k . (7.15)

Now we estimate the terms on the right-hand side of (7.15). Applying Young’s
inequality, Hölder’s inequality, the Sobolev inequality, and the Poincare inequality, we
have

I01 ≤∥f∥2∥w∥2≤
1

ϵ
∥f∥22+ϵ∥w∥22

(7.11)

≤ 1

ϵ
∥f∥22+C1ϵ∥wx∥22, (7.16)

I02 =

∫
∂Ω

1

3
w3=

1

3
w3(b)− 1

3
w3(a)=0, (7.17)

I03 ≤∥w∥∞∥w∥2∥ux∥2≤
1

ϵ
∥ux∥22∥w∥22+ϵ∥w∥∞, (7.18)

(7.11)

≤ 1

ϵ
∥ux∥22∥w∥22+C2ϵ∥wx∥22,

I04 ≤∥u∥∞∥w∥2∥wx∥2≤
1

ϵ
∥u∥∞∥w∥22+ϵ∥wx∥22, (7.19)

(7.11)

≤ C3

ϵ
∥ux∥22∥w∥22+ϵ∥wx∥22,

H. SON, J.W. JANG, W.J. HAN, AND H.J. HWANG 1695

I05 =w(b)wx(b)−w(a)wx(a)=0, (7.20)

for any small ϵ>0 and for some constants C1,C2, and C3 only depending on Ω. Overall,
we have

1

2

d

dt
∥w∥22+∥wx∥22≤

1

ϵ
∥f∥22+ϵ(C1+C2+1)∥wx∥22+

1+C3

ϵ
∥ux∥22∥w∥22.

If we take ϵ< 1
C1+C2+1 , then we obtain the following inequality

d

dt
∥w∥22+∥wx∥22≲∥ux∥22∥w∥22+∥f∥22, (7.21)

(7.21) and the Grönwall inequality imply that

sup
0≤t≤T

∥w∥22≲e
∫ T
0

∥ux∥2
2dt

(
∥g∥22+

∫ T

0

∥f∥22dt

)
. (7.22)

Let us denote ∫ T

0

∥ux∥22dt=β.

Now we integrate (7.21) between 0 and T and drop the term ∥w(T)∥22 on the left-hand
side to obtain ∫ T

0

∥wx∥2dt≲∥g∥22+
∫ T

0

∥ux∥22∥w∥22+∥f∥22dt

≲ (βeβ+1)

(
∥g∥22+

∫ T

0

∥f∥22dt

)
. (7.23)

This completes the proof of (1) of Theorem 7.2.
Next, by multiplying −wxx to (7.12) and integrating by parts in Ω, we obtain

1

2

d

dt
∥wx∥22+∥wxx∥22

=−
∫
Ω

fwxx+

∫
Ω

wwxwxx+

∫
Ω

uxwwxx+

∫
Ω

uwxwxx+

∫
∂Ω

wtwx,

=
5∑

k=1

I1k . (7.24)

Similarly to (7.16)–(7.20), we estimate the terms on the right-hand side of (7.24).

I11 ≤∥f∥2∥wxx∥22≤
1

ϵ
∥f∥22+ϵ∥wxx∥22, (7.25)

I12 ≤∥w∥∞∥wx∥2∥wxx∥2
(7.11)

≤ C1

ϵ
∥wx∥4+ϵ∥wxx∥22, (7.26)

I13 ≤∥w∥∞∥ux∥2∥wxx∥2
(7.11)

≤ C2

ϵ
∥ux∥22∥wx∥22+ϵ∥wxx∥22, (7.27)

I14 ≤∥u∥∞∥wx∥2∥wxx∥2
(7.11)

≤ C3

ϵ
∥ux∥22∥wx∥22+ϵ∥wxx∥22, (7.28)

1696 SOBOLEV TRAINING FOR PHYSICS-INFORMED NEURAL NETWORKS

I15 =wt(b)wx(b)−wt(a)wx(a)=0, (7.29)

for any small ϵ>0 and some constants C1,C2, and C3 only depending on Ω. Apply-
ing estimates (7.25)–(7.29) to (7.24) and choosing small enough epsilon, we have the
following inequality

d

dt
∥wx∥22+∥wxx∥22≲ (∥wx∥22+∥ux∥22)∥wx∥22+∥f∥22. (7.30)

It follows from (7.23), (7.30), and the Grönwall inequality that

sup
0≤t≤T

∥wx∥22≲e
∫ T
0

∥wx∥2
2+∥ux∥2

2dt

(
∥gx∥22+

∫ T

0

∥f∥22dt

)

≲eβeF0

(
∥gx∥22+

∫ T

0

∥f∥22dt

)
. (7.31)

In a similar way to (7.23), there exists a function F̃1=F1(∥f∥L2(0,T ;L2),∥g∥H1 ,β) such
that ∫ T

0

∥wxx∥22dt≲F1. (7.32)

(2) of Theorem 7.2 follows from (7.31), (7.32), and the fact that

wt=f+wxx−wwx−wux−uwx. (7.33)

Finally, we differentiate (7.12) with respect to t, then we obtain

wtt−wxxt+wtwx+wwxt+wtux+wuxt+utwx+uwxt=ft in Ω, (7.34)

wt=0 on ∂Ω, (7.35)

wt(0)=f+gxx−ggx−gu0x−u0gx in Ω. (7.36)

By multiplying wt to (7.34) and integrating by parts in Ω, we have

1

2

d

dt
∥wt∥22+∥wxt∥22=

∫
Ω

ftwt−
∫
Ω

w2
twx−

∫
Ω

wwtwxt−
∫
Ω

w2
t ux

−
∫
Ω

wwtuxt−
∫
Ω

utwtwx−
∫
Ω

uwtwxt+

∫
∂Ω

wtwxt,

=
8∑

k=1

I2k . (7.37)

Terms on the right-hand side of (7.37) are estimated by

I21 ≤∥ft∥2∥wt∥2
(7.11)

≤ 1

ϵ
∥ft∥22+C1ϵ∥wxt∥22, (7.38)

I22 ≤∥wt∥∞∥wt∥2∥wx∥2
(7.11)

≤ 1

ϵ
∥wx∥22∥wt∥22+C2ϵ∥wxt∥22, (7.39)

I23 ≤∥w∥∞∥wt∥2∥wxt∥2
(7.11)

≤ C3

ϵ
∥wx∥22∥wt∥22+ϵ∥wxt∥22, (7.40)

H. SON, J.W. JANG, W.J. HAN, AND H.J. HWANG 1697

I24 ≤∥wt∥∞∥wt∥2∥ux∥2
(7.11)

≤ 1

ϵ
∥ux∥22∥wt∥22+C4ϵ∥wxt∥22, (7.41)

I25 +I26 =

∫
Ω

wwxtut≤∥w∥∞∥ut∥2∥wxt∥2
(7.11)

≤ C5

ϵ
∥ut∥22∥wt∥22+ϵ∥wxt∥22, (7.42)

I27 ≤∥u∥2∥wt∥2∥wxt∥2
(7.11)

≤ C6

ϵ
∥ux∥22∥wt∥22+ϵ∥wxt∥22, (7.43)

I28 =0, (7.44)

for any small ϵ>0 and for some constants C1,C2,C3,C4,C5and ,C6 only depending on
Ω. Applying estimates (7.38)–(7.44) to (7.37) and choosing small enough ϵ, we have the
following inequality

d

dt
∥wt∥22+∥wxt∥22≲

(
∥wx∥22+∥ux∥22+∥ut∥22

)
∥wt∥22+∥ft∥22. (7.45)

It follows from (7.36), (7.45) and the Grönwall inequality that

sup
0≤t≤T

∥wt∥22≲e
∫ T
0

∥wx∥2
2+∥ux∥2

2+∥ut∥2
2dt

(
∥wt(0)∥22+

∫ T

0

∥ft∥22

)

≲eγeF0

(
∥f0∥22+∥gxx∥22+∥gx∥42+∥u0x∥22∥gx∥22+

∫ T

0

∥ft∥22dt

)
. (7.46)

where

γ=

∫ T

0

∥ux∥22+∥ut∥22dt.

In a similar way to the proof of (2) of Theorem 7.2, (3) of Theorem 7.2 follows from
(7.33) and (7.46). This completes the proof of the theorem.

7.3. The Fokker–Planck equation.

7.3.1. Boundary loss design. Define the loss function for the periodic boundary
condition as

LBC =
∑
|α|=1

∫ T

0

dt

∫ 5

−5

dv
∣∣∂α

t,x,vf
nn(t,1,v;m,w,b)−∂α

t,x,vf
nn(t,0,v;m,w,b)

∣∣2
≈ 1

Ni,k

∑
|α|=1,i,k

∣∣∂α
t,x,vf

nn(ti,1,vk;m,w,b)−∂α
t,x,vf

nn(ti,0,vk;m,w,b)
∣∣2 . (7.47)

7.3.2. The Fokker–Planck equation in a periodic interval. In this section,
we introduce an L2 energy method for the Fokker–Planck equation and introduce a
regularity inequality for the solutions to the equation. Throughout the section, we will
abuse the notation and use both notations ∂zu and uz for the same derivative of u with
respect to z.

We consider the Fokker–Planck equation in a periodic interval [0,1]:

ut+vux−β(vu)v−quvv =0, for (t,x,v)∈ [0,T]× [0,1]×R,
u(0,x,v)=u0(x,v), for (x,v)∈ [0,1]×R, and
∂α
t,x,vu(t,1,v)−∂α

t,x,vu(t,0,v)=0, for (t,v)∈ [0,T]×R,
(7.48)

1698 SOBOLEV TRAINING FOR PHYSICS-INFORMED NEURAL NETWORKS

for any 3-dimensional multi-index α such that |α|≤1 and a given initial distribution u0=
u0(x,v). Now we consider the Fokker–Planck equation that the corresponding neural
network solution unn would satisfy:

(unn)t+v(unn)x−β(vunn)v−q(unn)vv =f for (t,x,v)∈ [0,T]× [0,1]× [−5,5],

unn(0,x,v)=g, for (x,v)∈ [0,1]× [−5,5],∑
|α|=1

∫ T

0

dt

∫ 5

−5

dv

∣∣∣∣(∂α
t,x,vunn)(t,1,v)−(∂α

t,x,vunn)(t,0,v)

∣∣∣∣2≤L,

(7.49)

for any 3-dimensional multi-index α such that |α|≤1 and given f =f(t,x,v), g=g(x,v),
and a constant L>0. Suppose that f , g and h are C1 functions. Also, we suppose that
the a priori solutions u and unn are sufficiently smooth; indeed, we require them to be
in C1,1,2

t,x,v .

For the a priori solution u and unn to (7.48) and (7.49), assume that if |v| is
sufficiently large, then we have that for some sufficiently small ϵ>0,

sup
t∈[0,T]

∥∥∂α
t,x,vu(t,·,±5)−∂α

t,x,vunn(t,·,±5)
∥∥
L2

x([0,1])
≤ ϵ, (7.50)

for |α|≤1 and α=(0,0,2). Also, suppose that

|∂α
t,x,vu(t,x,±5)|,|∂α

t,x,vunn(t,x,±5)|≤C, (7.51)

for some C<∞ for |α|≤1 and α=(0,0,2). Now we introduce the following theorem on
the energy estimates:

Theorem 7.3. Let u and unn be the classical solutions to (7.48) and (7.49), respec-
tively. Then we have

sup
0≤t≤T

∥unn(t)−u(t)∥22+2(q−ε)

∫ T

0

∥∂vunn(s)−∂vu(s)∥22ds

≤
(
∥g−u0∥22+

L

2

)
exp

[(
1+

25β2

2ε

)
T

]
+

∫ T

0

∥f(s)∥22ds+2qϵCT,

for any ε∈ (0,q), where L,u0,f,g,β,q,m,ϵ, and C are given in (7.48)-(7.51).

Proof. Define w
def
= unn−u. Then by (7.48) and (7.49), w satisfies

wt+vwx−βvwv−qwvv =f for (t,x,v)∈ [0,T]× [0,1]× [−5,5],

w(0,x,v)=w0, for (x,v)∈ [0,1]× [−5,5],
(7.52)

where w0
def
= g−u0. By multiplying w to (7.52) and integrating with respect to dxdv, we

have

1

2

d

dt

∫∫
[0,1]×[−5,5]

|w|2dxdv+
∫∫

[0,1]×[−5,5]

vwxwdxdv−
∫∫

[0,1]×[−5,5]

qwvvwdxdv

=

∫∫
[0,1]×[−5,5]

fwdxdv+

∫∫
[0,1]×[−5,5]

βvwvwdxdv.

Then we take the integration by parts and obtain that

1
2

d
dt

∫∫
[0,1]×[−5,5]

|w|2dxdv+ 1
2

∫ 5

−5
dv v(w(t,1,v)2−w(t,0,v)2)+q

∫∫
[0,1]×[−5,5]

|wv|2dxdv

H. SON, J.W. JANG, W.J. HAN, AND H.J. HWANG 1699

=

∫∫
[0,1]×[−5,5]

fwdxdv+

∫∫
[0,1]×[−5,5]

βvwvwdxdv

+q

∫
[0,1]

wv(t,x,5)w(t,x,5)dx−q

∫
[0,1]

wv(t,x,−5)w(t,x,−5)dx

def
=I1+I2+I3+I4.

We first define

A(t)
def
=

∣∣∣∣12
∫ 5

−5

dv v(w(t,1,v)2−w(t,0,v)2)

∣∣∣∣.
We now estimate I1-I4 on the right-hand side. By the Hölder inequality and Young’s
inequality, we have

|I1|≤∥f∥2∥w∥2≤
1

2
∥f∥22+

1

2
∥w∥22,

where we denote

∥h∥2
def
=

∫∫
[0,1]×[−5,5]

|h|2dxdv.

Similarly, we observe that

|I2|≤5β∥wv∥2∥w∥2≤ε∥wv∥22+
25β2

4ε
∥w∥22,

for a sufficiently small ε>0 as |v|≤5. By (7.50), we have

|I3+I4|≤q∥wv(t,·,5)∥L2
x
∥w(t,·,5)−w(t,·,−5)∥L2

x

+q∥wv(t,·,5)−wv(t,·,−5)∥L2
x
∥w(t,·,−5)∥L2

x
≤2qϵC.

Altogether, we have

d

dt
∥w∥22+2(q−ε)∥wv∥22≤∥f∥2+

(
1+

25β2

2ε

)
∥w∥22+A(t)+2qϵC.

We integrate with respect to the temporal variable on [0,t] and obtain

∥w(t)∥22+2(q−ε)

∫ t

0

∥wv(s)∥22ds

≤∥w(0)∥22+
∫ t

0

(
∥f(s)∥2+

(
1+

25β2

2ε

)
∥w(s)∥22+A(s)+2qϵC

)
ds.

By (7.49)3, we have ∫ t

0

A(s)ds≤ L

2
.

Thus, by the Grönwall inequality, we have

∥w(t)∥22+2(q−ε)

∫ t

0

∥wv(s)∥22ds≤
(
∥w0∥22+

L

2

)
exp

[(
1+

25β2

2ε

)
t

]
+

∫ t

0

∥f(s)∥22ds+2qϵCt,

1700 SOBOLEV TRAINING FOR PHYSICS-INFORMED NEURAL NETWORKS

where w0(x,v)=g(x,v)−u0(x,v). This completes the proof for the theorem.

Regarding the derivatives ∂tw and ∂xw we can obtain the similar estimates as
follows.

Corollary 7.1. Let u and unn be the classical solutions to (7.48) and (7.49),
respectively. Assume that (7.51) holds. Then for z= t or x we have

sup
0≤t≤T

∥∂zunn(t)−∂zu(t)∥22+2(q−ε)

∫ T

0

∥∂v∂zunn(s)−∂v∂zu(s)∥22ds

≤
(
∥∂zg−∂zu0∥22+

L

2

)
exp

[(
1+

25β2

2ε

)
T

]
+

∫ T

0

∥∂zf(s)∥22ds+2qϵCT,

for any ε∈ (0,q), where L,u0,f,g,β,q,m,ϵ, and C are given in (7.48)-(7.51).

Proof. For both ∂z =∂t and ∂x, we take ∂z onto (7.52) and obtain

(∂zw)t+v(∂zw)x−βv(∂zw)v−q(∂zw)vv =∂zf,

for (t,x,v)∈ [0,T]× [0,1]× [−5,5],

(∂zw)(0,x,v)=(∂zw)0,

for (x,v)∈ [0,1]× [−5,5],

(7.53)

where (∂zw)0
def
= ∂zg−∂zu0. Then the proof is the same as the one for Theorem 7.3 with

∂zw replacing the role of w. This completes the proof.

Finally, we can also obtain the regularity estimates for the derivative ∂vw as follows:

Theorem 7.4. Let u and unn be the classical solutions to (7.48) and (7.49), respec-
tively. Assume that (7.51) holds. Then we have

sup
0≤t≤T

∥∂vunn(t)−∂vu(t)∥22+2(q−ε)

∫ T

0

∥∂vvunn(s)−∂vvu(s)∥22ds

≤(L+∥∂xg−∂xu0∥22+∥∂vg−∂vu0∥22)exp
[(

2+
25β2

2ε

)
T

]
+

∫ T

0

(∥∂xf(s)∥22+∥∂vf(s)∥22)ds+4qϵCT,

for any ε∈ (0,q), where L,u0,f,g,β,q,m,ϵ, and C are given in (7.48)-(7.51).

Proof. We take ∂v onto (7.52) and obtain

(∂vw)t+wx+v(∂vw)x−βv(∂vw)v−q(∂vw)vv =∂vf,

for (t,x,v)∈ [0,T]× [0,1]× [−5,5],
(7.54)

where (∂vw)0
def
= ∂vg−∂vu0. By multiplying ∂vw to (7.54) and integrating with respect

to dxdv, we have

1

2

d

dt

∫∫
[0,1]×[−5,5]

|∂vw|2dxdv+
∫∫

[0,1]×[−5,5]

v(∂vw)x(∂vw)dxdv

−
∫∫

[0,1]×[−5,5]

q(∂vw)vv∂vwdxdv

H. SON, J.W. JANG, W.J. HAN, AND H.J. HWANG 1701

=

∫∫
[0,1]×[−5,5]

(−wx+∂vf)∂vwdxdv+

∫∫
[0,1]×[−5,5]

βv(∂vw)v∂vwdxdv.

Then we take the integration by parts and obtain that

1

2

d

dt

∫∫
[0,1]×[−5,5]

|wv|2dxdv+
1

2

∫
[−5,5]

(
v(∂vw)

2(t,1,v)−v(∂vw)
2(t,0,v)

)
dv

+q

∫∫
[0,1]×[−5,5]

|wvv|2dxdv

=

∫∫
[0,1]×[−5,5]

∂vfwvdxdv+

∫∫
[0,1]×[−5,5]

βvwvvwvdxdv

+q

∫
[0,1]

wvv(t,x,5)wv(t,x,5)dx−q

∫
[0,1]

wvv(t,x,−5)wv(t,x,−5)dx

−
∫∫

[0,1]×[−5,5]

wxwvdxdv
def
= I1+I2+I3+I4+I5.

We first define

B(t)
def
=

∣∣∣∣12
∫ 5

−5

dv v(∂vw(t,1,v)
2−∂vw(t,0,v)

2)

∣∣∣∣.
We now estimate I1-I4 on the right-hand side. We now estimate I1-I5 on the right-hand
side. By the Hölder inequality and Young’s inequality, we have

|I1|≤∥∂vf∥2∥wv∥2≤
1

2
∥∂vf∥22+

1

2
∥wv∥22,

where we denote

∥h∥2
def
=

∫∫
[0,1]×[−5,5]

|h|2dxdv.

Similarly, we observe that

|I2|≤5β∥wvv∥2∥wv∥2≤ε∥wvv∥22+
25β2

4ε
∥wv∥22,

for a sufficiently small ε>0 as |v|≤5. By (7.50) and (7.51), we have

|I3+I4|≤q∥wvv(t,·,5)∥L2
x
∥wv(t,·,5)−wv(t,·,−5)∥L2

x

+q∥wvv(t,·,5)−wvv(t,·,−5)∥L2
x
∥wv(t,·,−5)∥L2

x
≤2qϵC.

Finally, we have

|I5|≤∥wx∥2∥wv∥2≤
1

2
∥wx∥22+

1

2
∥wv∥22.

Altogether, we have

d

dt
∥wv∥22+2(q−ε)∥wvv∥22≤∥∂vf∥2+∥wx∥22+

(
2+

25β2

2ε

)
∥wv∥22+

5L

2
+2qϵC.

Then we take the integration with respect to the temporal variable on [0,t] and obtain
that

1702 SOBOLEV TRAINING FOR PHYSICS-INFORMED NEURAL NETWORKS

∥wv(t)∥22+
∫ t

0

ds 2(q−ε)∥wvv(s)∥22≤∥wv(0)∥22

+

∫ t

0

ds

(
∥∂vf(s)∥2+∥wx(s)∥22+

(
2+

25β2

2ε

)
∥wv(s)∥22+B(s)+2qϵC

)
.

By (7.49)3, we have ∫ t

0

ds B(s)≤ L

2
.

Thus, by the Grönwall inequality, we have

∥wv(t)∥22+2(q−ε)

∫ t

0

∥wvv(s)∥22ds

≤
(
L

2
+∥∂vw0∥22

)
exp

[(
2+

25β2

2ε

)
t

]
+

∫ t

0

(∥wx(s)∥22+∥∂vf(s)∥22)ds+2qϵCt, (7.55)

where ∂vw0(x,v)=g(x,v)−u0(x,v). Then we use Corollary 7.1 for an upper-bound of
∥∂xw(s)∥22 and obtain that∫ T

0

∥wx(s)∥22ds

≤
(
L

2
+∥∂xg−∂xu0∥22

)
exp

[(
1+

25β2

2ε

)
T

]
+

∫ T

0

∥∂xf(s)∥22ds+2qϵCT.

Then by (7.55), we obtain that

sup
0≤t≤T

∥wv(t)∥22+2(q−ε)

∫ T

0

∥wvv(s)∥22ds

≤(L+∥∂xw0∥22+∥∂vw0∥22)exp
[(

2+
25β2

2ε

)
T

]
+

∫ T

0

(∥∂xf(s)∥22+∥∂vf(s)∥22)ds+4qϵCT,

where ∂vw0(x,v)=∂vg(x,v)−∂vu0(x,v). This completes the proof for the theorem.

7.4. The Poisson equation. We consider the Poisson equation with Dirichlet
boundary condition:

−△u=f in Ω,

u=g on ∂Ω.

Suppose there exists

g̃∈H2(Ω̄) s.t. g̃|∂Ω=g (7.56)

Then, the equation can be written by:

−△v= f̃ in Ω,

v=0 on ∂Ω,

where v=u− g̃, f̃ =f−△g̃. Therefore, we assume the homogeneous Dirichlet boundary
condition provided (7.56).

H. SON, J.W. JANG, W.J. HAN, AND H.J. HWANG 1703

Now, let u be a strong solution of

−△u=f in Ω,

u=0 on ∂Ω,
(7.57)

and let unn be a neural network such that

−△unn=fnn in Ω,

unn=0 on ∂Ω.
(7.58)

Here, we can set the boundary to be zero by multiplying B(x), where B(x) is a smooth

function satisfying B(x)=

{
0, x∈∂Ω

̸=0, x∈Ω
. By subtracting (7.58) from (7.57), we get

−△(u−unn)=(f−fnn) in Ω,

u−unn=0 on ∂Ω.
(7.59)

Then we apply below theorem to (7.59) to get the convergence results.

Theorem 7.5 (Theorem 6.3.5 in [10]). Let m be a nonnegative integer. Suppose that
u∈H1

0 (Ω) is a weak solution of the boundary-value problem (7.57). Assume ∂Ω is Cm+2.
Then,

∥u∥Hm+2(Ω)≤C(∥f∥Hm(Ω)+∥u∥L2(Ω)). (7.60)

Furthermore, if u is the unique solution of (7.57), then

∥u∥Hm+2(Ω)≤C∥f∥Hm(Ω). (7.61)

By applying (7.61) to (7.59), we obtain

∥u−unn∥Hm+2(Ω)≤C∥f−fnn∥Hm(Ω).

where the right-hand side corresponds to LossGE(unn;m,2).

Acknowledgments. Hwijae Son is supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-
2022R1F1A1073732) and the research fund of Hanbat National University in 2022. Jin
Woo Jang is supported by the German Science Foundation (DFG) CRC 1060, by the
National Research Foundation of Korea (NRF) grant funded by the Korean government
(MSIT) NRF-2022R1G1A1009044, and by the Basic Science Research Institute Fund
of Korea NRF-2021R1A6A1A10042944. Hyung Ju Hwang is supported by the National
Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT)
(RS-2022-00165268, NRF-2019R1A5A1028324).

REFERENCES

[1] C. Basdevant, M. Deville, P. Haldenwang, J.M. Lacroix, J. Ouazzani, R. Peyret, P. Orlandi, and
A.T. Patera, Spectral and finite difference solutions of the Burgers equation, Comput. Fluids,
14(1):23–41, 1986. 5.2

[2] A.G. Baydin, B.A. Pearlmutter, A.A. Radul, and J.M. Siskind, Automatic differentiation in
machine learning: a survey, J. Mach. Learn. Res., 18(1):5595–5637, 2017. 5

[3] Y. Benia and B.-K. Sadallah, Existence of solutions to Burgers equations in domains that can be
transformed into rectangles, Electron. J. Differ. Equ., 157:13, 2016. 7.2, 7.1

https://doi.org/10.1016/0045-7930(86)90036-8
https://doi.org/10.48550/arXiv.1502.05767
https://www.researchgate.net/publication/304249017_Existence_of_solutions_to_Burgers_equations_in_domains_that_can_be_transformed_into_rectangles

1704 SOBOLEV TRAINING FOR PHYSICS-INFORMED NEURAL NETWORKS

[4] J. Berg and K. Nyström, A unified deep artificial neural network approach to partial differential
equations in complex geometries, Neurocomputing, 317:28–41, 2018. 1, 3.1

[5] R. Bischof and M. Kraus, Multi-objective loss balancing for physics-informed deep learning, arXiv
preprint, arXiv:2110.09813, 2021. 2

[6] H. Brezis and H. Brézis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,
Springer, 2, 2011. 7.2

[7] G. Cybenko, Approximation by superpositions of a sigmoidal function, Math. Control Signals
Syst., 2(4):303–314, 1989. 1

[8] W.M. Czarnecki, S. Osindero, M. Jaderberg, G. Swirszcz, and R. Pascanu, Sobolev training for
neural networks, Adv. Neur. Inf. Process. Syst., 4278–4287, 2017. 1, 2, 5.6

[9] T. De Ryck and S. Mishra, Error analysis for deep neural network approximations of parametric
hyperbolic conservation laws, arXiv preprint, arXiv:2207.07362, 2022. 2

[10] L.C. Evans, Partial Differential Equations, Amer. Math. Soc., Providence, R.I., 2010. 7.1, 7.2,
7.5

[11] J. Han, A. Jentzen, and E. W., Solving high-dimensional partial differential equations using deep
learning, Proc. Natl. Acad. Sci., 115(34):8505–8510, 2018. 2

[12] K. Hornik, M. Stinchcombe, and H. White, Multilayer feedforward networks are universal ap-
proximators, Neural Netw., 2(5):359–366, 1989. 1

[13] J-T. Hsieh, S. Zhao, S. Eismann, L. Mirabella, and S. Ermon, Learning neural PDE solvers with
convergence guarantees, arXiv preprint, arXiv:1906.01200, 2019. 2, 5.4

[14] H.J. Hwang, J.W. Jang, H. Jo, and J.Y. Lee, Trend to equilibrium for the kinetic Fokker-Planck
equation via the neural network approach, J. Comput. Phys., 419:109665, 2020. 1, 3, 3.1, 5.3

[15] H.J. Hwang, J. Jang, and J. Jung, The Fokker-Planck equation with absorbing boundary condi-
tions in bounded domains, SIAM J. Math. Anal., 50(2):2194–2232, 2018. 4.2

[16] H.J. Hwang, J. Jang, and J.J.L. Velázquez, On the structure of the singular set for the kinetic
Fokker-Planck equations in domains with boundaries, Quart. Appl. Math., 77(1):19–70, 2019.
4.2

[17] H.J. Hwang, C. Kim, M.S. Park, and H. Son, The deep minimizing movement scheme, arXiv
preprint, arXiv:2109.14851, 2021. 1

[18] H.J. Hwang and H. Son, Lagrangian dual framework for conservative neural network solutions
of kinetic equations, Kinet. Relat. Models, 15(4):551–568, 2022. 1

[19] H. Jo, H. Son, H.J. Hwang, and E.H. Kim, Deep neural network approach to forward-inverse
problems, Netw. Heterog. Media, 15(2):247–259, 2020. 1, 3

[20] D.P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv preprint,
arXiv:1412.6980, 2014. 5

[21] I.E. Lagaris, A. Likas, and D.I. Fotiadis, Artificial neural networks for solving ordinary and
partial differential equations, IEEE Trans. Neural Netw., 9(5):987–1000, 1998. 1, 2

[22] I.E. Lagaris, A.C. Likas, and D.G. Papageorgiou, Neural-network methods for boundary value
problems with irregular boundaries, IEEE Trans. Neural Netw., 11(5):1041–1049, 2000. 1, 2

[23] X. Li, Simultaneous approximations of multivariate functions and their derivatives by neural
networks with one hidden layer, Neurocomputing, 12(4):327–343, 1996. 1

[24] Z. Long, Y. Lu, X. Ma, and B. Dong, PDE-Net: Learning PDEs from data, Int. Conf. Mach.
Learn., 80:3208–3216, 2018. 2

[25] L. McClenny and U. Braga-Neto, Self-adaptive physics-informed neural networks using a soft
attention mechanism, arXiv preprint, arXiv:2009.04544, 2020. 2

[26] S. Mishra and R. Molinaro, Estimates on the generalization error of physics-informed neural
networks for approximating a class of inverse problems for PDEs, IMA J. Numer. Anal.,
42(2):981–1022, 2022. 2

[27] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N.
Gimelshein, L. Antiga, et al., Pytorch: An imperative style, high-performance deep learn-
ing library, Adv. Neur. Inf. Process. Syst., 8026–8037, 2019. 5

[28] M. Raissi, P. Perdikaris, and G. Em Karniadakis, Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial dif-
ferential equations, J. Comput. Phys., 378:686–707, 2019. 1, 2, 3.1, 5.1

[29] F.M. Rohrhofer, S. Posch, and B.C. Geiger, On the Pareto front of physics-informed neural
networks, arXiv preprint, arXiv:2105.00862, 2021. 2

[30] Y. Shin, J. Darbon, and G. Em Karniadakis, On the convergence and generalization of physics
informed neural networks, Commun. Comput. Phys., 28:2042–2074, 2020. 2

[31] J. Sirignano and K. Spiliopoulos, DGM: A deep learning algorithm for solving partial differential
equations, J. Comput. Phys., 375:1339–1364, 2018. 1, 2, 3.1, 5.2, 5.4

[32] H. Son, S.W. Cho, and H.J. Hwang, AL-PINNs: Augmented Lagrangian relaxation method for
physics-informed neural networks, arXiv preprint, arXiv:2205.01059, 2022. 2

https://doi.org/10.1016/j.neucom.2018.06.056
https://doi.org/10.13140/RG.2.2.20057.24169
https://link.springer.com/book/10.1007/978-0-387-70914-7
https://link.springer.com/article/10.1007/BF02551274
https://dl.acm.org/doi/pdf/10.5555/3294996.3295182
https://doi.org/10.48550/arXiv.2207.07362
http://www.ams.org/publications/authors/books/postpub/gsm-19-R
https://doi.org/10.1073/pnas.1718942115
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.48550/arXiv.1906.01200
https://doi.org/10.1016/j.jcp.2020.109665
https://doi.org/10.1137/16M1109928
https://doi.org/10.1090/qam/1507
https://doi.org/10.48550/arXiv.2109.14851
https://doi.org/10.3934/krm.2021046
https://doi.org/10.3934/nhm.2020011
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1109/72.712178
https://doi.org/10.1109/72.870037
https://doi.org/10.1016/0925-2312(95)00070-4
https://proceedings.mlr.press/v80/long18a.html
https://doi.org/10.48550/arXiv.2009.04544
https://doi.org/10.1093/imanum/drab032
https://dl.acm.org/doi/10.5555/3454287.3455008
http://www.onacademic.com/detail/journal_1000040905582110_5f4b.html
https://doi.org/10.48550/arXiv.2105.00862
https://doi.org/10.4208/cicp.OA-2020-0193
https://doi.org/10.1016/j.jcp.2018.08.029
https://arxiv.org/abs/2205.01059v1

H. SON, J.W. JANG, W.J. HAN, AND H.J. HWANG 1705

[33] R. van der Meer, C. Oosterlee, and A. Borovykh, Optimally weighted loss functions for solving
PDEs with neural networks, J. Comput. Appl. Math., 405(15):113887, 2022. 2

[34] S. Wang, Y. Teng, and P. Perdikaris, Understanding and mitigating gradient flow pathologies in
physics-informed neural networks, SIAM J. Sci. Comput., 43(5):A3055–A3081, 2021. 2

[35] S. Wang, X. Yu, and P. Perdikaris, When and why PINNs fail to train: A neural tangent kernel
perspective, J. Comput. Phys., 449:110768, 2022. 2

[36] E. W., J. Han, and A. Jentzen, Deep learning-based numerical methods for high-dimensional
parabolic partial differential equations and backward stochastic differential equations, Com-
mun. Math. Statist., 5(4):349–380, 2017. 2

[37] E. W. and B. Yu, The deep Ritz method: A deep learning-based numerical algorithm for solving
variational problems, Commun. Math. Statist., 6(1):1–12, 2018. 5.4

[38] S. Wollman and E. Ozizmir, A deterministic particle method for the Vlasov–Fokker–Planck
equation in one dimension, J. Comput. Appl. Math., 213(2):316–365, 2008. 5, 5.3

[39] Y. Zang, G. Bao, X. Ye, and H. Zhou, Weak adversarial networks for high-dimensional partial
differential equations, J. Comput. Phys., 411:109409, 2020. 5.4

https://doi.org/10.1016/j.cam.2021.113887
https://doi.org/10.1137/20M1318043
https://doi.org/10.1016/j.jcp.2021.110768
https://link.springer.com/article/10.1007/s40304-017-0117-6
https://link.springer.com/article/10.1007/s40304-018-0127-z
https://doi.org/10.1016/j.cam.2007.01.008
https://doi.org/10.1016/j.jcp.2020.109409

