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ERROR ESTIMATE OF THE NONUNIFORM L1 TYPE FORMULA
FOR THE TIME FRACTIONAL DIFFUSION-WAVE EQUATION∗

HONG SUN† , YANPING CHEN‡ , AND XUAN ZHAO§

Abstract. In this paper, a temporal nonuniform L1 type difference scheme is built up for the time
fractional diffusion-wave equation with the help of the order reduction technique. The unconditional
convergence of the nonuniform difference scheme is proved rigorously in L2 norm. Our main tool is
the discrete complementary convolution kernels with respect to the coefficient kernels of the L1 type
formula. The positive definiteness of the complementary convolution kernels is shown to be vital to the
stability and convergence. To the best of our knowledge, this property is proved for the first time on
the nonuniform time meshes. Two numerical experiments are presented to verify the accuracy and the
efficiency of the proposed numerical methods.

Keywords. Diffusion-wave equation; weak singularity; nonuniform mesh; unconditional conver-
gence.
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1. Introduction
In recent years, various phenomena in science and engineering are modeled by the

fractional differential equations (FDEs), which in some cases are selected to describe
the memorial and the hereditary properties of many viscoelastic materials, economics
and dynamics of interfaces between nanoparticle and substrates [1–4]. Much attention
has been placed on the development and the research of fractional differential equations
[5–7]. However, finding the analytical solutions is difficult for most FDEs due to the
fundamental nonlocal property of the fractional derivatives. Existing works are devoted
to develop efficient numerical algorithms for FDEs considering even the singularity of
the problem.

Grünwald-Letnikov (GL) formula is a natural way used to compute the fractional
derivative in the beginning. Oldham and Spanier developed the first-order GL formula
based on the Grünwald-Letnikov derivative [8] to numerically solve the FDEs. Yuste et
al. [9, 10] presented the explicit and weighted averaged finite difference schemes using
the shifted GL formula for the time fractional diffusion-wave equation. In order to
improve the accuracy of the approximation, a weighted and shifted Grünwald difference
(WSGD) operator with second-order accuracy was presented for solving space fractional
diffusion equations in [11]. Consequently, the WSGD formula is applied to solve the
time fractional sub-diffusion or diffusion-wave equation [12,13].

Besides, some commonly used numerical methods with higher accuracy to approx-
imate the Caputo derivative are derived from the idea of interpolation. A widely used
method with 2−α order accuracy, called L1 formula in [14,15], was proposed by using
linear interpolation for the time fractional sub-diffusion equation. By combining L1
formula with order reduction method, the authors [14] presented a difference scheme
to approximate the time fractional diffusion-wave equation. Li et al. [16] applied the
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center difference scheme to approximate the second order derivative in the Caputo
derivative of order β∈ [1,2]. In [17], the authors constructed the L1-2 formula to dis-
cretize the Caputo derivative with order O(τ3−α) by using quadratic interpolation on
all intervals except linear interpolation on the interval [t0,t1]. Alikhanov [18] proposed
the L2-1σ formula with 3−α order accuracy at the point t= tn+σ(σ=1− α

2 ). The for-
mula applied quadratic interpolation on all intervals and linear interpolation on the last
interval [tn,tn+σ]. In [19], by using order of reduction, Sun et al. applied the L2-1σ
formula to discrete the time fractional diffusion-wave equation. Xu et al. [20] presented
a high-order finite difference scheme to approximate the Caputo fractional derivative
by applying quadric interpolation polynomial on all intervals. The scheme achieves
(3−α)-order accuracy in time.

It is noteworthy that the existing numerical analysis in the above proposed numer-
ical algorithms, especially for high order formulas, are valid under the smooth solution
hypothesis. The error estimate based on the L1 formula or L2-1σ requires the solution
of the time fractional differential equation to belong to C2[0,T ] or C3[0,T ] in time.
However, the weak singularity of the fractional Caputo operator at t=0 cannot be
avoided in the time fractional differential equation, which implies that the regularity
condition of the solution is restrictive even for the homogeneous problem with a smooth
initial data [21–25]. The low regularity brings low-accuracy numerical solutions and
large computational cost on the temporal uniform mesh.

Furthermore, the initial singularity has been taken into consideration by many
researchers for the time fractional equation. In order to overcome the loss of accuracy
caused by the low regularity, some efficient methods are implemented on the nonuniform
meshes for the time fractional sub-diffusion equation. Stynes et al. [25] presented a
difference scheme by using L1 formula on the graded meshes for the time fractional
diffusion equation. The stability and convergence of the scheme are proved rigorously.
They demonstrated that the regularity of the solution and the grading of the mesh
affected the order of convergence of the difference scheme. Consequently, there are
many numerical algorithms for the time fractional diffusion equation based on the L1
formula on the graded meshes, such as the finite element method [26], the spectral
method [27], the discontinuous Galekin method [28], the fast finite difference method
[29]. In [30], the Caputo derivative was approximated by L2-1σ formula on the graded
mesh. Then a finite difference method was presented for the time-fractional sub-diffusion
equation. Under reasonable assumption, the temporal convergence order of the fully
discrete scheme is proved to be O(N−min{rα,2}). There are also existing works devoted
to the construction of the numerical schemes on the nonuniform meshes and the adaptive
meshes for the sub-diffusion equations [31–34].

Meanwhile, there are relatively few works on approximating the time fractional
diffusion-wave equation compared to that for the sub-diffusion equation. Shen et al. [35]
presented the modified L1 approximation by virtue of the order reduction on the graded
meshes for the time fractional diffusion-wave equation. The stability and convergence
of the scheme are also analysed under an assumption condition. Lyu and Vong [36] con-
structed a temporal nonuniform L2 formula (the same as the modified L1 formula above)
for the Caputo derivative of order β (1<β<2). Based on this formula, a linearized
difference scheme was presented for the time-fractional Benjamin-Bona-Mahony-type
equation by mathematical induction. In [37], a symmetric fractional order reduction
method was introduced to construct L1 scheme and L2-1σ scheme on the nonuniform
temporal meshes for the semilinear fractional diffusion-wave equations, respectively. By
use of the mathematical induction method, the convergence is obtained by H2 energy
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method.
It is noted that the analysis on the convergence of the proposed scheme is a challenge

for the time fractional diffusion-wave equation. In this paper, we construct the temporal
nonuniform difference scheme [35] by combining the order of reduction with the modified
L1 formula for the time fractional diffusion-wave. The aim of this paper is to present
a method different from [35–37] for the convergence of the difference scheme. It relies
on a useful discrete tool: the discrete complementary convolution (DCC) kernels [32]
generated by the discrete convolution kernels of the modified L1 formula. The properties
of the DCC kernels play important roles in proving the convergence of the difference
scheme. With the help of the verified positive definiteness of the DCC kernels, we
demonstrate the L2 error estimate of the difference scheme.

We consider the two dimensional fractional diffusion-wave equation in the following
form

C
0 D

β
t u(x,t)=∆u(x,t)+f(x,t), x∈Ω, t∈ (0,T ], (1.1)

u(x,0)=φ1(x), ut(x,0)=φ2(x), x∈ Ω̄, (1.2)

subjected to the periodic boundary conditions, where Ω=(0,L)2⊂R2 and C
0 D

β
t u(t),

(1<β<2) denotes Caputo fractional derivative of order β defined by

C
0 D

β
t u(t)=

∫ t

0

ω2−β(t−s)u′′(s)ds, where ωγ(t)=
tγ−1

Γ(γ)
.

The rest of the paper is arranged as follows. In Section 2, the discrete L1 type for-
mula on the nonuniform meshes is presented for the Caputo derivative of order 0<α<1.
The useful properties of the coefficient kernels of the proposed scheme are discussed.
The DCC kernels are introduced with some proved properties. Section 3 is devoted
to constructing the temporal nonuniform difference scheme. The unconditional conver-
gence of the scheme in L2 norm is proved rigorously in Section 4. In Section 5, two
numerical examples are provided to verify the theoretical results. The paper ends with
a brief conclusion in Section 6.

2. The discrete formula of the Caputo derivative
For the nonuniform time levels 0= t0<t1<t2< ·· ·<tN =T, we denote τn= tn−

tn−1 as the n-th step size and τn− 1
2
= τn+τn−1

2 for n>1, τ 1
2
= τ1

2 . Denote tn− 1
2
= tn−1+

τn
2 for n>1 and t− 1

2
= t0. Let v

k≈v(tn), ∇τv
n=vn−vn−1, δtv

n− 1
2 =∇τv

n/τn and

vn−
1
2 = 1

2 (v
n+vn−1). In this paper, the basic assumption on the nonuniform time meshes

is as follows

τn−1≤ τn, 2≤n≤N. (2.1)

Now, we present the approximation formula for the Caputo derivative of order α (0<
α≤1) at the point tn− 1

2
. Let Π1,kv(t) be linear interpolation of v(t) over the small

interval [tk− 3
2
,tk− 1

2
] for 1≤k≤n. Then we get

C
0 D

α
t v(tn− 1

2
)=

n∑
k=1

∫ t
k− 1

2

t
k− 3

2

ω1−α(tn− 1
2
−s)v′(s)ds

≈
n∑

k=1

1

τk− 1
2

∫ t
k− 1

2

t
k− 3

2

ω1−α(tn− 1
2
−s)(vk− 1

2 −vk− 3
2 )ds
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=

n∑
k=1

a
(n)
n−k∇τv

k− 1
2 :=Dα

τ v
n− 1

2 , n≥1, (2.2)

where ∇τv
1
2 = 1

2 (v
1−v0) and

a
(n)
n−k=

1

τk− 1
2

∫ t
k− 1

2

t
k− 3

2

ω1−α(tn− 1
2
−s)ds, 1≤k≤n. (2.3)

The properties of the discrete coefficient kernels a
(n)
n−k are stated in the following lemma.

These properties are necessary to prove the theoretical results of the numerical methods
for the fractional diffusion-wave equation.

Lemma 2.1. For any α and {a(n)n−k} defined in (2.3), it holds that

(I) a
(n)
k >0, 0≤k≤n−1, a

(n)
k ≤a(n)k−1, 1≤k≤n−1,

(II) a
(n)
k ≤a(n−1)

k−1 , a
(n−1)
k−1 a

(n)
k+1≥a

(n−1)
k a

(n)
k , 1≤k≤n−2,

(III) a
(n)
k <a

(n−1)
k , 0≤k≤n−2,

(IV)
a
(k)
0

a
(k)
k−2

<
(t

k− 1
2
−t 1

2
)α

(1−α)(τ
k− 1

2
)α , 2≤k≤n,

(V) 0<ω1−α(tn− 1
2
− tk− 1

2
)−ω1−α(tn− 1

2
− tk− 3

2
)≤a(n)n−k−1−a

(n)
n−k, 2≤k≤n−1.

Proof.
(I) Making use of the integral mean value theorem, there exists constant ξk such that

a
(n)
k =

1

τn−k− 1
2

∫ t
n−k− 1

2

t
n−k− 3

2

ω1−α(tn− 1
2
−s)ds=ω1−α(tn− 1

2
−ξk),

where ξk ∈ (tn−k− 3
2
,tn−k− 1

2
). Noticing the monotonic decreasing of ω1−α(s) and

ω1−α(s)>0, one can get the inequality in (I).
(II) We introduce the following two auxiliary sequences

ψ
(n)
n−k=

a
(n)
n−k

a
(n−1)
n−1−k

, bn,k(θ)=
1

τk− 1
2

∫ t
k− 3

2
+θτ

k− 1
2

t
k− 3

2

ω1−α(tn− 1
2
−s)ds for 1≤k≤n−1.

Applying the Cauchy mean-value theorem, there exists ζk ∈ (0,1) such that

ψ
(n)
n−k=

bn,k(1)−bn,k(0)
bn−1,k(1)−bn−1,k(0)

=
b′n,k(ζk)

b′n−1,k(ζk)
=
ω1−α(tn− 1

2
− tk− 3

2
−ζkτk− 1

2
)

ω1−α(tn− 3
2
− tk− 3

2
−ζkτk− 1

2
)

=

(
tn− 3

2
− tk− 3

2
−ζkτk− 1

2

tn− 1
2
− tk− 3

2
−ζkτk− 1

2

)α

, 1≤k≤n−1.

It follows that

0≤ψ(n)
n−k≤1, 1≤k≤n−1,

which implies the first inequality is valid in (II). Noticing that y=
t
n− 3

2
−x

t
n− 1

2
−x is decreasing

with respect to x>0, it yields

ψ
(n)
k−1<ψ

(n)
k , 1≤k≤n−1, n≥2.
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Then we get the second inequality in (II).

(III) By the definition of a
(n)
n−k and the variable substitution t=

s−t
k− 3

2

τ
k− 1

2

, it yields

a
(n)
n−k=

∫ 1

0

ω1−α

(
tn− 1

2
− tk− 3

2
−τk− 1

2
t
)
dt.

With the help of the differential mean-value theorem, there exists ηj ∈ (0,1) such that

a
(n)
n−k−a

(n−1)
n−k

=
1

Γ(1−α)

∫ 1

0

[(
tn− 1

2
− tk− 3

2
−τk− 1

2
t
)−α

−
(
tn− 3

2
− tk− 5

2
−τk− 3

2
t
)−α]

dt

=
α

Γ(1−α)

∫ 1

0

(tn− 3
2
−ηj)−α−1

(
τk− 1

2
t+τk− 3

2
(1− t)−τn− 1

2

)
dt.

The condition τk−1≤ τk, (2≤k≤n) implies that

τk− 1
2
t+τk− 3

2
(1− t)−τn− 1

2
≤0.

Consequently, we obtain the desired inequality (III).

(IV) It follows from (2.3) that

a
(k)
0 =

1

τk− 1
2

∫ t
k− 1

2

t
k− 3

2

ω1−α(tk− 1
2
−s)ds= 1

τk− 1
2

ω2−α(τk− 1
2
)

and

a
(k)
k−2=

1

τ 3
2

∫ t 3
2

t 1
2

ω1−α(tk− 1
2
−s)ds≥ω1−α(tk− 1

2
− t 1

2
).

Then, it yields

a
(k)
0

a
(k)
k−2

≤
ω2−α(τk− 1

2
)

τk− 1
2
ω1−α(tk− 1

2
− t 1

2
)
≤

(tk− 1
2
− t 1

2
)α

(1−α)(τk− 1
2
)α
.

(V) Exchanging the order of integration, it arrives at

a
(n)
n−k−ω1−α(tn− 1

2
− tk− 3

2
)=

1

τk− 1
2

∫ t
k− 1

2

t
k− 3

2

[
ω1−α(tn− 1

2
−s)−ω1−α(tn− 1

2
− tk− 3

2
)
]
ds

=− 1

τk− 1
2

∫ t
k− 1

2

t
k− 3

2

(∫ s

t
k− 3

2

ω−α(tn− 1
2
−µ)dµ

)
ds

=

∫ t
k− 1

2

t
k− 3

2

µ− tk− 1
2

τk− 1
2

ω−α(tn− 1
2
−µ)dµ.

Define the following auxiliary function

ck(θ)=

∫ t
k− 3

2
+θτ

k− 1
2

t
k− 3

2

µ− tk− 3
2
−θτk− 1

2

τk− 1
2

ω−α(tn− 1
2
−µ)dµ, 1≤k≤n,
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it is easy to check ck(0)= c
′
k(0), 1≤k≤n. By virtue of the Cauchy mean-value theorem,

there exists γk, ρk ∈ (0,1) such that

a
(n)
n−k−ω1−α(tn− 1

2
− tk− 3

2
)

a
(n)
n−k−1−ω1−α(tn− 1

2
− tk− 1

2
)

=
ck(1)−ck(0)

ck+1(1)−ck+1(0)
=

c′k(γk)

c′k+1(γk)
=

c′k(γk)−c′k(0)
c′k+1(γk)−c′k+1(0)

=
c′′k(ρk)

c′′k+1(ρk)

=
τk− 1

2
ω−α(tn− 1

2
− tk− 3

2
−ρkτk− 1

2
)

τk+ 1
2
ω−α(tn− 1

2
− tk− 1

2
−ρkτk+ 1

2
)
≤
( tn− 1

2
− tk− 1

2
−ρkτk+ 1

2

tn− 1
2
− tk− 3

2
−ρkτk− 1

2

)1+α

≤
( tn− 1

2
− tk− 1

2

tn− 1
2
− tk− 1

2
+(1−ρk)τk− 1

2

)1+α

≤1.

The proof ends.

2.1. The properties of the DCC kernels. In this section, we present the

DCC kernels generated by the discrete convolution kernels a
(n)
n−k (proposed in [32, 38]).

The DCC kernels are the key to prove the convergence of the difference scheme (3.7)-

(3.9). The discrete tool DCC kernels p
(n)
n−k are defined by

p
(n)
0 =

1

a
(n)
0

, p
(n)
n−k=

1

a
(k)
0

n∑
j=k+1

(a
(j)
j−k−1−a

(j)
j−k)p

(n)
n−j , 1≤k≤n−1. (2.4)

It is equivalent to the following identity

n∑
j=k

p
(n)
n−ja

(j)
j−k≡1, 1≤k≤n. (2.5)

The following lemma presents the linear interpolation error formula with an integral
remainder.

Lemma 2.2. Assume q∈C2(0,T ]) and let Π1,kq(t) be linear interpolation of q(t) over
the small interval [tk− 3

2
,tk− 1

2
] for 1≤k≤n, then, the linear interpolation error gives

q(t)−Π1,kq(t)=

∫ t
k− 1

2

t
k− 3

2

χk(t,λ)q
′′(λ)dλ, t∈ [tk− 3

2
,tk− 1

2
], 1≤k≤n,

where the Peano kernel χk(t,λ)=max{t−λ,0}−
t−t

k− 3
2

τ
k− 1

2

(tk− 1
2
−λ) such that

−
(tk− 1

2
−λ)

τk− 1
2

(t− tk− 3
2
)≤χk(t,λ)≤0, t,λ∈ [tk− 3

2
,tk− 1

2
].

Proof. By similar process of Lemma 3.1 in [32], it is easy to obtain the result.

The properties of the DCC kernels p
(n)
n−k are demonstrated in the following two

lemmas.

Lemma 2.3. The DCC kernels p
(n)
n−k are non-negative, i.e.,

p
(n)
n−k≥0, 1≤k≤n.



H. SUN, Y. CHEN, AND X. ZHAO 1713

Moreover, the DCC kernels p
(n)
n−k satisfy the following property

n∑
j=1

p
(n)
n−j ≤ω1+α(tn− 1

2
).

Proof. Noticing the property a
(n)
j−1≥a

(n)
j in Lemma 2.1, we get p

(n)
n−k≥0.

We approximate the Caputo derivative of the function ω1+α(t) by the formula (2.2)
at t= tj− 1

2
and let Sj be the truncation error. We have

Sj =C
0 D

α
t ω1+α(tj− 1

2
)−

j∑
k=1

a
(j)
j−k∇τω1+α(tk− 1

2
)

=

j∑
k=1

∫ t
k− 1

2

t
k− 3

2

ω1−α(tj− 1
2
−s)

(
ω1+α(s)−Π1,kω1+α(s)

)′
ds

=:

j∑
k=1

Sj
k, (2.6)

then, by applying the integration by parts and Lemma 2.2, one arrives at

Sj
k=

∫ t
k− 1

2

t
k− 3

2

ω−α(tj− 1
2
−s)

(
ω1+α(s)−Π1,kω1+α(s)

)
ds

=

∫ t
k− 1

2

t
k− 3

2

ω−α(tj− 1
2
−s)ds

∫ t
k− 1

2

t
k− 3

2

χk(s,λ)ω
′′
1+α(λ)dλ≤0, (2.7)

where we used the fact that ω−α(tj− 1
2
−s)<0, χk(s,λ)≤0 and ω′′

1+α(λ)≤0 in the last

step. Noticing that C
0 D

α
t ω1+α(t)=1, it follows from (2.6) and (2.7) that

1−
j∑

k=1

a
(j)
j−k∇τω1+α(tk− 1

2
)≤0. (2.8)

Multiplying the inequality (2.8) by p
(n)
n−j and summing up j from 1 to n, it yields

n∑
j=1

p
(n)
n−j ≤

n∑
j=1

p
(n)
n−j

j∑
k=1

a
(j)
j−k∇τω1+α(tk− 1

2
)=ω1+α(tn− 1

2
).

This completes the proof.

Lemma 2.4 ([38]). Assume that the two kernels ξ
(n)
n−k and η

(n)
n−k satisfy the following

orthogonal identity

n∑
k=j

ξ
(n)
n−kη

(k)
k−j = δnj , 1≤ j≤n.

Then ξ
(n)
n−k are positive definite if and only if η

(n)
n−k are positive definite.

With the help of Lemma 2.4, we obtain the following lemma which plays an im-
portant role in proving the convergence of the numerical scheme for the time fractional
diffusion-wave equation.
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Lemma 2.5. The DCC kernels p
(n)
n−k defined by (2.4) are positive definite.

Proof. Denote

ζ
(k)
k−j =

{
a
(k)
0 , j=k,

a
(k)
k−j−a

(k)
k−j−1, j ̸=k,

the equality (2.4) is rewritten as

n∑
k=j

p
(n)
n−kζ

(k)
k−j = δnj , 1≤ j≤n.

By virtue of Lemma 2.4, we only need to prove that ζ
(k)
k−j is positive definite.

Next, we prove the positive definiteness of the kernels ζ
(k)
k−j . For any real sequence

{wk}nk=1, with the help of Young’s inequality, it holds that

n∑
k=1

wk

k∑
j=1

ζ
(k)
k−jwj =

n∑
k=1

wk

(
ζ
(k)
0 wk+

k−1∑
j=1

ζ
(k)
k−jwj

)

=

n∑
k=1

a
(k)
0 w2

k+

n∑
k=1

wk

k−1∑
j=1

(a
(k)
k−j−a

(k)
k−j−1)wj

≥
n∑

k=1

a
(k)
0 w2

k−
1

2

n∑
k=1

w2
k

k−1∑
j=1

(a
(k)
k−j−1−a

(k)
k−j)

− 1

2

n∑
k=1

k−1∑
j=1

(a
(k)
k−j−1−a

(k)
k−j)w

2
j

=
1

2

n∑
k=1

(a
(k)
0 +a

(k)
k−1)w

2
k−

1

2

n−1∑
j=1

w2
j

n∑
k=j+1

(a
(k)
k−j−1−a

(k)
k−j).

For the second term on the right-hand side of the above inequality, using the property
(III) in Lemma 2.1, we have

n−1∑
j=1

w2
j

n∑
k=j+1

(a
(k)
k−j−1−a

(k)
k−j)=

n−1∑
j=1

w2
j

[
a
(j+1)
0 +

n−1∑
k=j+1

(a
(k+1)
k−j −a(k)k−j)−a

(n)
n−j

]

≤
n−1∑
j=1

a
(j+1)
0 w2

j .

Then, it follows from the fact a
(k)
0 ≤a(k−1)

0 in Lemma 2.1 (III) that

n∑
k=1

wk

k∑
j=1

ζ
(k)
k−jwj ≥

1

2

n∑
k=1

(a
(k)
0 +a

(k)
k−1)w

2
k−

1

2

n−1∑
j=1

a
(j+1)
0 w2

j

≥1

2

n−1∑
k=1

(
a
(k)
0 −a(k+1)

0

)
w2

k≥0,
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which implies ζ
(k)
k−j is positive definite. The proof ends.

We denote the local consistency error of the formula (2.2) at the time tn− 1
2
by

Rn=C
0 D

α
t v(tn− 1

2
)−Dα

τ v
n− 1

2 :=

n∑
k=1

Rn
k , n≥1,

where, by exchanging the order of integration, one arrives at

Rn
k =− 1

τk− 1
2

∫ t
k− 1

2

t
k− 3

2

ω1−α(tn− 1
2
−s)

[∫ t
k− 1

2

s

v′′(t)(tk− 1
2
− t)dt

−
∫ t

k− 3
2

s

v′′(t)(tk− 3
2
− t)dt

]
ds

=− 1

Γ(2−α)

∫ t
k− 1

2

t
k− 3

2

[ tk− 1
2
− t

τk− 1
2

(tn− 1
2
− tk− 3

2
)1−α−

tk− 3
2
− t

τk− 1
2

(tn− 1
2
− tk− 1

2
)1−α

−(tn− 1
2
− t)1−α

]
v′′(t)dt

=

∫ t
k− 1

2

t
k− 3

2

Π̃1,kω2−α(tn− 1
2
− t)v′′(t)dt, 1≤k≤n, (2.9)

where Π̃1,kω2−α(tn− 1
2
− t) is the linear interpolation error of the function ω2−α(tn− 1

2
− t)

on the interval [tk− 3
2
,tk− 1

2
], 1≤k≤n.

We are now in the position to estimate the global approximation errors
n∑

j=1

p
(n)
n−j |Rj |.

Lemma 2.6. Assuming v∈C2((0,T ]) with
∫ T

0
t|v′′(t)|dt<∞, if the nonuniform grid

satisfies (2.1), it holds that

n∑
j=1

p
(n)
n−j |R

j |≤2

n∑
j=1

p
(n)
n−ja

(j)
0

∫ t
j− 1

2

t
j− 3

2

(
t− tj− 3

2

)
|v′′(t)|dt.

Proof. For 1≤k≤n−1, by using Lemma 2.2, it reads

Π̃1,kω2−α(tn− 1
2
− t)=

∫ t
k− 1

2

t
k− 3

2

χk(t,λ)ω
′′
2−α(tn− 1

2
−λ)dλ

≤(tk− 3
2
− t)

∫ t
k− 1

2

t
k− 3

2

ω′′
2−α(tn− 1

2
−λ)dλ

=(t− tk− 3
2
)
[
ω1−α(tn− 1

2
− tk− 1

2
)−ω1−α(tn− 1

2
− tk− 3

2
)
]

≤(t− tk− 3
2
)(a

(n)
n−k−1−a

(n)
n−k), for t∈ (tk− 3

2
,tk− 1

2
). (2.10)

For k=n, noticing the decreasing of ω2−α(tn− 1
2
− t) with respect to t, it yields

0≤ Π̃1,nω2−α(tn− 1
2
− t)≤ω2−α(tn− 1

2
− tn− 3

2
)−Π1,nω2−α(tn− 1

2
− t)=(t− tn− 3

2
)a

(n)
0 .

(2.11)
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Now, we estimate the truncation errors Rn
n and Rn

k (1≤k≤n−1), respectively. Denote

Gk=

∫ t
k− 1

2

t
k− 3

2

(t− tk− 3
2
)|v′′(t)|dt, 1≤k≤n.

It follows from (2.9) and (2.11) that

|Rn
n|≤

∫ t
n− 1

2

t
n− 3

2

Π̃1,nω2−α(tn− 1
2
− t)|v′′(t)|dt

≤a(n)0

∫ t
n− 1

2

t
n− 3

2

(t− tn− 3
2
)|v′′(t)|dt=a(n)0 Gn, n≥1. (2.12)

For 1≤k≤n−1 (n≥2), with the help of (2.10), we have

n−1∑
k=1

|Rn
k |≤

n−1∑
k=1

∫ t
k− 1

2

t
k− 3

2

Π̃1,kω2−α(tn− 1
2
− t)|v′′(t)|dt

≤
n−1∑
k=1

(a
(n)
n−k−1−a

(n)
n−k)

∫ t
k− 1

2

t
k− 3

2

(t− tk− 3
2
)|v′′(t)|dt

=

n−1∑
k=1

(a
(n)
n−k−1−a

(n)
n−k)G

k. (2.13)

Combining the inequality (2.12) with the inequality (2.13), the estimate holds

|Rj |=
j∑

k=1

|Rj
k|≤

j−1∑
k=1

(a
(j)
j−k−1−a

(j)
j−k)G

k+a
(j)
0 Gj , 1≤ j≤n. (2.14)

Multiplying (2.14) by p
(n)
n−j , summing up j from 1 to n and then exchanging the sum-

mation order

n∑
j=1

p
(n)
n−j |R

j |≤
n∑

j=2

p
(n)
n−j

j−1∑
k=1

(a
(j)
j−k−1−a

(j)
j−k)G

k+

n∑
j=1

p
(n)
n−ja

(j)
0 Gj

=

n−1∑
k=1

Gkp
(n)
n−ka

(k)
0 +

n∑
j=1

Gjp
(n)
n−ja

(j)
0

≤2

n∑
j=1

p
(n)
n−ja

(j)
0

∫ t
j− 1

2

t
j− 3

2

(
t− tj− 3

2

)
|v′′(t)|dt.

The proof ends.
It follows that the error bound in Lemma 2.6 is asymptotically compatible with the

truncation error of the backward Euler scheme. Actually, as the fractional order α→1,

it yields p
(n)
n−j → τj and a

(j)
0 = 1

τj
for 1≤ j≤n. Then we arrive at

n∑
j=1

p
(n)
n−ja

(j)
0

∫ t
j− 1

2

t
j− 3

2

(
t− tj− 3

2

)
|v′′(t)|dt→

n∑
j=1

∫ t
j− 1

2

t
j− 3

2

(
t− tj− 3

2

)
|v′′(t)|dt,
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which achieves the temporal order O(τ). However, the following corollary is not asymp-
totically compatible as the fractional order α→1 due to the lack of the proper estimates

for the DCC kernels p
(n)
n−j .

Corollary 2.1. Assume v∈C2((0,T ]) and there exists a constant cv>0 such that

|v′′(t)|≤ cv(1+ tσ−2), 0≤ t≤T, (2.15)

where σ∈ (0,1)∪(1,2) is a regularity parameter. If the nonuniform grid satisfies (2.1),
it holds

n∑
j=1

p
(n)
n−j |R

j |≤ cv
(
τσ1 +

1

1−α
max
2≤j≤n

(tj− 1
2
− t 1

2
)αtσ−2

j− 3
2

τ2−α
j− 1

2

)
, n≥1.

Proof. Noticing that |v′′(t)|≤ cv(1+ tσ−2), we have

G1≤ cvτσ1 , and Gk≤
∫ t

k− 1
2

t
k− 3

2

(t− tk− 3
2
)cvt

σ−2dt≤ cv(τk− 1
2
)2tσ−2

k− 3
2

, 2≤k≤n.

It follows from p
(n)
n−k>0, a

(n)
n−k>0 and the identity (2.4) that

∑n
j=2p

(n)
n−ja

(j)
j−2=1. Then

making use of Lemma 2.1 (IV), one arrives at

n∑
j=1

p
(n)
n−j |R

j |≤2p
(n)
n−1a

(1)
0 G1+2

n∑
j=2

Gjp
(n)
n−ja

(j)
0

≤2G1+
2

1−α

n∑
j=2

Gjp
(n)
n−ja

(j)
j−2(tj− 1

2
− t 1

2
)α(τj− 1

2
)−α

≤ cvτσ1 +
cv

1−α

n∑
j=2

p
(n)
n−ja

(j)
j−2(tj− 1

2
− t 1

2
)αtσ−2

j− 3
2

(τj− 1
2
)2−α

≤ cv
(
τσ1 +

1

1−α
max
2≤j≤n

(tj− 1
2
− t 1

2
)αtσ−2

j− 3
2

(τj− 1
2
)2−α

)
.

The proof ends.

Remark 2.1. Giving a uniform mesh τ = T
N and tk=kτ, then it follows from Corollary

2.1 that

n∑
j=1

p
(n)
n−j |R

j |=cv
(
τσ+

1

2−β
τmin{σ, 3−β} max

2≤k≤n

(
k− 3

2

)β+σ−3

τσ−min{σ, 3−β}
)

≤cv
(
τσ+ t

σ−min{σ, 3−β}
k− 3

2

τmin{σ, 3−β}
)
.

The above error estimate shows that the convergence order of the difference scheme in
time increases along with the improvement of the regularity of the solution for σ≤3−β.
Moreover, the convergence order achieves the accuracy of O(τ3−β) for σ∈ [3−β,2).

Besides, we consider the truncation error on the graded time mesh tk=T (k/N)γ

with γ>1(
t 3
2
− t 1

2

)β−1

tσ−2
1
2

τ3−β
3
2

≤
(
T (

2

N
)γ
)2(1

2
T (

1

N
)γ
)(σ−2)

=22γ−2+σTσN−σγ
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and it is easy to check the time-step τk≤TN−γγkγ−1. Noticing that k≤3(k−2), k≥3,
we have

(tk− 1
2
− t 1

2
)β−1tσ−2

k− 3
2

τ3−β

k− 1
2

≤T β−1
( k
N

)(β−1)γ

Tσ−2
(k−2

N

)γ(σ−2)(
γkγ−1TN−γ

)3−β

≤Tσ32(γ−1)+β−1(k−2)min{γσ, 3−β}−(3−β)
(k−2

N

)γσ−min{γσ, 3−β}
γ3−βN−min{γσ, 3−β}

≤Tσ32(γ−1)+β−1γ3−βN−min{γσ, 3−β}, k≥3,

the above inequalities gives

n∑
j=1

p
(n)
n−j |R

j |≤ cvN−min{γσ, 3−β}, (2.16)

where cv is a constant.

Remark 2.2. It follows from the estimate (2.16) that the temporal convergence order
improves as γ increases and the accuracy achieves the optimal O(Nβ−3) by taking
γ=max{1, (3−β)/σ}.

3. The temporal nonuniform L1 type difference scheme
In this section, we construct a nonuniform difference scheme for the time fractional

diffusion-wave equation. Applying the order reduction technique, the problem (1.1)-
(1.2) can be rewritten by an equivalent equation. Let α=β−1 and

v(x,t)=
∂u

∂t
(x,t), (3.1)

it reduces

C
0 D

β
t u(x,t)=

1

Γ(2−β)

∫ t

0

∂2u

∂s2
(x,s)

1

(t−s)β−1
ds

=
1

Γ(1−α)

∫ t

0

∂v

∂s
(x,s)

1

(t−s)α
ds

=C
0 D

α
t v(x,t). (3.2)

Thus, Equations (1.1)-(1.2) are equivalent to

C
0 D

α
t v(x,t)=∆u(x,t)+f(x,t), x∈Ω, t∈ (0,T ], (3.3)

v(x,t)=ut(x,t), x∈ (a,b), t∈ (0,T ], (3.4)

u(x,0)=φ1(x), v(x,0)=φ2(x), x∈ Ω̄. (3.5)

Let M be a positive integer. Set Ω=(0,L)2 and xi= ih, yj = jh with the spatial
lengths h=L/M. The discrete spatial grid Ωh :=

{
xh=(xi,yj) | 1≤ i,j≤M−1

}
and

Ω̄h :=
{
xh | 0≤ i,j≤M

}
. Denote

Vh :=
{
vh=v(xh) | xh∈ Ω̄h and vh is L-periodic in each direction

}
.

Given a grid function vh∈Vh, introduce the following notations δxvi+ 1
2 ,j

=(vi+1,j−
vij)/h and δ2xvij =(δxvi+ 1

2 ,j
−δxvi− 1

2 ,j
)/h. Similarly, we define δyvi,j+ 1

2
and δ2yvij .
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The discrete Laplacian operator ∆hvij = δ
2
xvij+δ

2
yvij and the discrete gradient vector

∇hvij =(δxvi− 1
2 ,j
, δyvi,j− 1

2
)T can be defined. For any u,v∈Vh, the inner product and

norms are defined by

(u,v)=h2
∑

xh∈Ωh

uhvh, ∥u∥=
√

(u,u).

Considering the Equation (3.3) and (3.4) at the point (xh,tn− 1
2
), it yields

Dα
τ V

n− 1
2

h =∆hU
n− 1

2

h +f
n− 1

2

h +Υn
h, xh∈Ωh, 1≤n≤N−1,

V
n− 1

2

h = δtU
n− 1

2

h +rnh , ,xh∈Ωh, 1≤n≤N,
U0
h =φ1(xh), V 0

h =φ2(xh), xh∈ Ω̄h,

where Υn
h =R

n
h+ξ

n
h , andR

n
h is the truncation error in time direction, ξnh is the truncation

error in space direction. There exists a constant c0 such that

|rnh |≤ c0τ2n, |ξnh |≤ c0h2, xh∈Ωh, 1≤n≤N−1. (3.6)

Omitting the truncation errors, we construct the difference scheme for the fractional
diffusion-wave equation as follows

Dα
τ v

n− 1
2

h =∆hu
n− 1

2

h +f
n− 1

2

h , xh∈Ωh, 1≤n≤N−1, (3.7)

v
n− 1

2

h = δtu
n− 1

2

h , xh∈Ωh, 1≤n≤N, (3.8)

u0h=φ1(xh), v0h=φ2(xh), xh∈ Ω̄h. (3.9)

4. The error estimate of the difference scheme
Applying the important discrete tool p

(n)
n−k, we present the convergence analysis of

the nonuniform difference scheme (3.7)-(3.9). Denote

enh =U
n
h −unh, ρnh =V

n
h −vnh , xh∈ Ω̄h, 0≤n≤N,

the error equation gives as follows

Dα
τ ρ

n− 1
2

h =∆he
n− 1

2

h +Υn
h, xh∈Ωh, 1≤n≤N, (4.1)

ρ
n− 1

2

h = δte
n− 1

2

h +rnh , xh∈Ωh, 1≤n≤N, (4.2)

e0h=0, ρ0h=0, xh∈ Ω̄h. (4.3)

Theorem 4.1. Suppose the problem (1.1) has a unique smooth solution and unh ∈Vh

is the solution of the difference scheme (3.7)-(3.9). The proposed scheme (3.7)-(3.9) is
convergent in L2 norm,

∥en∥≤ cv
(

max
1≤k≤n

k∑
j=1

p
(k)
k−ja

(j)
0

∫ t
j− 1

2

t
j− 3

2

(
t− tj− 3

2

)
|∂ttU |dt+ tβ−1

n− 1
2

h2
)
.

Proof. Multiplying (4.1) by p
(n)
n−k and summing up k from 1 to n, it yields

n∑
k=1

p
(n)
n−k

k∑
j=1

a
(k)
k−j∇τρ

j− 1
2

h =

n∑
k=1

p
(n)
n−k∆he

k− 1
2

h +

n∑
k=1

p
(n)
n−kΥ

k
h. (4.4)
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Exchanging the summation order, we have

n∑
k=1

p
(n)
n−k

k∑
j=1

a
(k)
k−j∇τρ

j− 1
2

h =

n∑
j=1

∇τρ
j− 1

2

h

n∑
k=j

p
(n)
n−ka

(k)
k−j =ρ

n− 1
2

h .

Consequently, it yields

ρ
n− 1

2

h =

n∑
k=1

p
(n)
n−k∆he

k− 1
2

h +

n∑
k=1

p
(n)
n−kΥ

k
h. (4.5)

Taking the inner product of (4.5) with en−
1
2 , we have

⟨ρn− 1
2 ,en−

1
2 ⟩=

n∑
k=1

p
(n)
n−k⟨∆he

k− 1
2 ,en−

1
2 ⟩+

n∑
k=1

p
(n)
n−k⟨Υ

k,en−
1
2 ⟩, (4.6)

and the inner product of (4.2) with en−
1
2 , one arrives at

⟨ρn− 1
2 ,en−

1
2 ⟩= ⟨δten−

1
2 ,en−

1
2 ⟩+⟨rn,en− 1

2 ⟩. (4.7)

Substituting (4.7) into (4.6), and summing k from 1 to n, we get

n∑
k=1

⟨δtek,ek−
1
2 ⟩=

n∑
k=1

k∑
l=1

p
(k)
k−l⟨∆he

l− 1
2 ,ek−

1
2 ⟩+

n∑
k=1

k∑
l=1

p
(k)
k−l⟨Υ

l,ek−
1
2 ⟩

−
n∑

k=1

⟨rk,ek− 1
2 ⟩.

It is easy to obtain

n∑
k=1

⟨δtek,ek−
1
2 ⟩=

n∑
k=1

∥ek∥2

2τk
−

n∑
k=2

∥ek−1∥2

2τk

≥
n∑

k=1

∥ek∥2

2τk
−

n∑
k=2

∥ek−1∥2

2τk−1
=

∥en∥2

2τn
.

With the help of the positive definiteness of p
(k)
k−l, we have

n∑
k=1

k∑
l=1

p
(k)
k−l⟨∆he

l− 1
2 ,ek−

1
2 ⟩=−

n∑
k=1

k∑
l=1

p
(k)
k−l⟨∇he

l− 1
2 ,∇he

k− 1
2 ⟩≤0.

Then, it follows that

∥en∥2≤2τn

n∑
k=1

k∑
l=1

p
(k)
k−l∥Υ

l∥·∥ek− 1
2 ∥+2τn

n∑
k=1

∥rk∥·∥ek− 1
2 ∥. (4.8)

Choosing some integer n0(0≤n0≤n) such that ∥en0∥= max
0≤k≤n

∥ek∥ and then taking

n=n0 in the above inequality, it yields

∥en0∥2≤2τn

n∑
k=1

( k∑
l=1

p
(k)
k−l∥Υ

l∥
)
·∥en0∥+2τn

n∑
k=1

∥rk∥·∥en0∥.
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Consequently, by virtue of Lemma 2.3, Lemma 2.6 and noticing α=β−1, it yields

∥en∥≤∥en0∥≤2τn

n∑
k=1

( k∑
l=1

p
(k)
k−l∥Υ

l∥
)
+2τn

n∑
k=1

∥rk∥

≤2tn max
1≤k≤n

τn
τk

max
1≤k≤n

k∑
l=1

p
(k)
k−l(∥R

l∥+∥ξl∥)+2c0tnτ
2
n max
1≤k≤n

τn
τk

≤cv
(

max
1≤k≤n

k∑
j=1

p
(k)
k−ja

(j)
0

∫ t
j− 1

2

t
j− 3

2

(
t− tj− 3

2

)
|∂ttU |dt+ tβ−1

n− 1
2

h2+ tnτ
2
n

)
where we assume τmax/τmin is bounded. Thus we obtain the desired result. The proof
ends.

Remark 4.1. The present analysis takes advantage of the non-negativeness (Lemma
2.3) and the positive definiteness (Lemma 2.5) of the DCC kernels defined by (2.5).
The current framework is extendable to the nonlinear diffusion-wave problems if the
numerical solution is bounded in certain discrete norm (such as the H1 norm). This
issue is interesting and will be studied in the further study.

To improve the time accuracy, one can employ some high-order approximations for
the reduced Equation (3.3). Typically, we can apply the fractional BDF2 formula [40,41]
to build the following second-order variable-step scheme

Dα
τ v

n
h =∆hu

n
h+f

n
h , xh∈Ωh, 1≤n≤N−1,

vnh =
1+2rn
τn(1+rn)

∇τu
n
h−

r2n
τn(1+rn)

∇τu
n−1
h , xh∈Ωh, 1≤n≤N,

u0h=φ1(xh), v0h=φ2(xh), xh∈ Ω̄h,

where the fractional BDF2 formula is given asDα
τ v

n
h =

n∑
k=1

B
(n)
n−k∇τv

k
h and the coefficients

are written as

B
(1)
0 =a

(1)
0 , B

(n)
0 =a

(n)
0 +

r2nϖ
(n)
0 +ϖ

(n)
1

rn(1+rn)
, n≥2,

B
(n)
1 =a

(n)
1 − r2nϖ

(n)
0 +ϖ

(n)
1

1+rn
+

ϖ
(n)
2

rn−1(1+rn−1)
, n≥2,

B
(n)
n−k=a

(n)
n−k−

ϖ
(n)
n−k

1+rk+1
+

ϖ
(n)
n−k+1

rk(1+rk)
, 2≤k≤n−1, n≥3,

B
(n)
n−1=a

(n)
n−1−

ϖ
(n)
n−1

1+r2
, n≥2,

in which the parameters a
(n)
n−k and ϖ

(n)
n−k are shown in the integral forms

a
(n)
n−k=

1

τk

∫ tk

tk−1

ω1−α(tn−s)ds, 1≤k≤n

and

ϖ
(n)
n−k=

1

τk

∫ tk

tk−1

2s− tk− tk−1

τk
ω1−α(tn−s)ds, 1≤k≤n.
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Another second-order nonuniform scheme can also be constructed by using the well-
known L2−1σ formula [39]. The associated stability and convergence analysis on
nonuniform time meshes are also very interesting, however, these tasks are rather chal-
lenging due to the nonuniform setting and the inhomogeneity of the discrete coefficients

B
(n)
n−k. These issues are planned to explore and will be presented in separate reports.

5. Numerical Experiment
In this section, some numerical examples are demonstrated for the fractional

diffusion-wave equation to verify the efficiency of the difference scheme (3.7)-(3.9).

Example 5.1. Take Ω=(0,2π)2, consider the problem (1.1) with the source term

f(x,t)=
(
2tσ+1+

Γ(2+σ)

Γ(σ+2−β)
tσ+1−β

)
sinxsiny.

The problem has an exact solution

u(x,t)= tσ+1 sinxsiny.

Denote

e(N)=∥UN −uN∥∞, Orderτ =log2(e(N)/e(2N))

for the error and the convergence order.

Example 5.1 is presented to measure the accuracy of the difference scheme (3.7)-
(3.9) in time direction. We take the graded mesh tn=T (n/N)γ . The spatial grid node
is fixed to M =1000. Table 5.1 and Table 5.2 demonstrate the L2 norm errors e(N) and
the convergence orders of the difference scheme (3.7)-(3.9) in time direction with the reg-
ularity parameter σ=β−1 and σ=β/2 for γ=1,2,3, respectively. From two tables, we
observe that the difference scheme (3.7)-(3.9) reaches the accuracy of O(N−min{γσ, 3−β})
in time which is in accordance with our theoretical result.

γ=1 γ=2 γ=3

β N e(N) orderτ e(N) orderτ e(N) orderτ

40 2.79e-01 - 2.01e-01 - 1.39e-01 -

80 2.66e-01 0.07 1.75e-01 0.20 1.13e-01 0.30

1.1 160 2.51e-01 0.09 1.52e-01 0.20 9.18e-02 0.30

320 2.35e-01 0.09 1.33e-01 0.20 7.45e-02 0.30

min{γσ,3−β} 0.1 0.2 0.3

40 5.56e-02 - 9.19e-03 - 9.19e-05 -

80 4.28e-02 0.38 4.93e-03 0.90 2.69e-05 1.72

1.5 160 3.19e-02 0.42 2.57e-03 0.94 8.60e-06 1.70

320 2.34e-02 0.45 1.33e-03 0.96 2.81e-06 1.61

min{γσ,3−β} 0.5 1.0 1.5

40 8.45e-04 - 2.94e-03 - 3.64e-03 -

80 9.82e-04 -0.22 1.43e-03 1.04 1.66e-03 1.13

1.9 160 7.99e-04 0.30 6.86e-04 1.06 7.67e-04 1.12

320 5.70e-04 0.49 3.25e-04 1.08 3.55e-04 1.11

min{γσ,3−β} 0.9 1.1 1.1

Table 5.1. L2 errors and convergence orders of the difference scheme in time for σ=β−1.

Example 5.2. Consider the following fractional Klein-Gordon equation

C
0 D

β
t u−ε2∆u+u3=f, xh∈ (0,2π)2, t∈ [0,1],
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subjected to the periodic boundary condition, where f is a source term such that the
exact solution is

u(xh,t)= t
β sinxsiny.

γ=1 γ=2 γ=3

β N e(N) orderτ e(N) orderτ e(N) orderτ

40 5.75e-02 - 7.71e-03 - 7.10e-04 -

80 4.02e-02 0.52 3.64e-03 1.08 2.43e-04 1.55

1.1 160 2.78e-02 0.53 1.71e-03 1.09 8.30e-05 1.55

320 1.91e-02 0.54 8.02e-04 1.09 2.89e-05 1.52

min{γσ,3−β} 0.55 1.1 1.65

40 2.54e-02 - 9.88e-04 - 1.18e-03 -

80 1.63e-02 0.64 3.71e-04 1.41 4.06e-04 1.54

1.5 160 1.02e-02 0.68 1.37e-04 1.44 1.39e-04 1.54

320 6.24e-03 0.71 5.01e-05 1.45 4.75e-05 1.55

min{γσ,3−β} 0.75 1.5 1.5

40 2.86e-03 - 1.45e-03 - 1.98e-03 -

80 1.95e-03 0.55 6.93e-04 1.06 8.67e-04 1.19

1.9 160 1.23e-03 0.66 3.31e-04 1.07 3.89e-04 1.16

320 7.46e-04 0.72 1.57e-04 1.08 1.77e-04 1.13

min{γσ,3−β} 0.95 1.1 1.1

Table 5.2. L2 errors and convergence orders of the difference scheme in time for σ=β/2.

γ=2 γ=3 γ=5

β N e(N) orderτ e(N) orderτ e(N) orderτ

40 1.46e−1 − 1.00e−1 − 4.58e−2 −
80 1.29e−1 0.17 8.35e−2 0.26 3.35e−2 0.45

1.1 160 1.14e−1 0.18 6.89e−2 0.28 2.43e−2 0.46

320 1.00e−1 0.19 5.65e−2 0.29 1.76e−2 0.46

min{γσ,3−β} 0.2 0.3 0.5

40 6.64e−3 − 1.01e−2 − 1.89e−2 −
80 3.66e−3 0.86 4.88e−3 1.05 8.82e−3 1.10

1.5 160 1.95e−3 0.91 2.40e−3 1.02 4.20e−3 1.07

320 1.01e−3 0.94 1.19e−3 1.01 2.04e−3 1.05

min{γσ,3−β} 1.0 1.5 1.5

40 6.66e−3 − 9.37e−3 − 1.56e−2 −
80 3.17e−3 1.07 4.28e−3 1.13 6.85e−3 1.19

1.9 160 1.53e−3 1.05 2.02e−3 1.09 3.15e−3 1.12

320 7.41e−4 1.04 9.65e−4 1.06 1.49e−3 1.08

min{γσ,3−β} 1.1 1.1 1.1

Table 5.3. L2 errors and convergence orders of the difference scheme in time

The purpose of this test is to verify the convergence rate of the scheme in time for
the fractional Klein-Gordon equation. We also take the graded mesh tn=T (n/N)γ on
the interval [0,1]. The spatial domain (0,2π)2 is discretized with 10002 grids. Table 5.3
lists the L2 norm errors and the convergence orders for the different fractional orders
β=1.2,1.5,1.9 and grading parameters γ=2,3,5, and the regularity parameter σ=β−1.
From Table 5.3, we observe that the difference scheme achieves the expected temporal
accuracy O(τmin{γσ, 3−β}).
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6. Conclusion

In this paper, by using the order reduction technique, we presented a nonuniform L1
type difference scheme for the fractional diffusion-wave equation at the half grid points

based on piecewise linear interpolation. By virtue of the discrete DCC kernels p
(n)
n−k,

the unconditional L2 norm convergence analysis is obtained for the proposed difference
scheme. We employed the scheme on the graded mesh to perform some numerical tests.
These tests suggested that the nonuniform difference scheme (3.7)-(3.9) can achieve
min{γσ,3−β} order accuracy which confirmed the theoretical result. In the future
work, we will study the nonuniform numerical scheme for the time fractional nonlinear
equation with the Caputo derivative β∈ (1,2).
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