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THE INITIAL-BOUNDARY VALUE PROBLEM FOR THE
LANDAU-LIFSHITZ EQUATION WITH GILBERT DAMPING TERM∗

QI GUO† AND YAMIN XIAO‡

Abstract. In this paper, we establish the existence of global smooth solutions for the Landau-
Lifshitz type system on a finite interval [0,L]. The proof is based on the technique of finite difference-
differential and a priori estimates. Our result matches the known result on periodic boundary condition
in [Guo and Huang, Discrete Contin. Dyn. Syst., 5(4):729–740, 1999].
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1. Introduction
In this paper, we consider the initial-boundary value problem (IVP) on a finite

interval [0,L] for the Landau-Lifshitz type system
Z⃗t= Z⃗× Z⃗xx+ Z⃗×f(Z⃗), (x,t)∈ [0,L]×R+

Z⃗(0,t)= g⃗0(t),Z⃗(L,t)= g⃗1(t), t∈R+

Z⃗(x,0)= φ⃗(x), x∈ [0,L]

(1.1)

and the system with the Gilbert damping term
Z⃗t=−εZ⃗×(Z⃗× Z⃗xx)+ Z⃗× Z⃗xx+ Z⃗×f(Z⃗), (x,t)∈ [0,L]×R+

Z⃗(0,t)= g⃗0(t),Z⃗(L,t)= g⃗1(t), t∈R+

Z⃗(x,0)= φ⃗(x), x∈ [0,L]

(1.2)

where Z⃗(x,t)=(z1(x,t),z2(x,t),z3(x,t)) : [0,L]×R+→S2⊂R3 is an unknown vector-

valued function with normalized length, S2 is the unit sphere in R3, f⃗ =(f1,f2,f3) is a
given three-dimensional vector function, the φ⃗(x), g⃗0(t) and g⃗1(t) are three-dimensional
initial and boundary vector functions, respectively. ε>0 is the Gilbert damping param-
eter, “×” is the cross-product operator of two 3-dimensional vectors. And the system
(1.1) and (1.2) satisfies the additional compatibility condition φ⃗(0)= g⃗0(0). Without
loss of generality, we take L=1.

The Landau-Lifshitz system was introduced by Landau and Lifshitz [12], which
describes the evolution of spin fields in continuum ferromagnetism. The Cauchy problem
for the Landau-Lifshitz system for ferromagnets

Z⃗t= Z⃗× Z⃗xx+ Z⃗×JZ⃗ (1.3)

has been proved by the inverse transform method in [16], where J =diag(J1,J2,J3),J1≤
J2≤J3 is a diagonal matrix. The Landau-Lifshitz system after neglecting the Gilbert
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damping term is known as the Heisenberg system [18]

Z⃗t= Z⃗× Z⃗xx. (1.4)

For system (1.4), the existence and uniqueness of global smooth solutions have been es-
tablished in [21]. Guo and Han [5] proved the multidimensional case for system (1.4) un-
der the condition that the gradient of the solutions is bounded in space L2(0,T ;L∞(Rn)).
Zhou and Guo [20] considered the system (1.4) with several variables

Z⃗t= Z⃗× Z⃗xx+f(x,t,Z⃗), (1.5)

and they proved the global existence of weak solutions with the nonlinear boundary con-
ditions Z⃗x(0,t)=gradψ0(t,Z⃗(0,t)),−Z⃗x(L,t)=gradψ1(t,Z⃗(L,t)), and the initial condi-

tion Z⃗(x,0)= φ⃗(x), where f(x,t,Z⃗) is a known three-dimensional vector function with

variables x, t, Z⃗, ψ0(t,Z⃗) and ψ1(t,Z⃗) are the scalar functions, “grad” denotes the gra-

dient operator with respect to Z⃗. Guo and Hong [6] studied the existence of global
smooth solutions for the 2D system (1.6)

Z⃗t=−εZ⃗×(Z⃗× Z⃗xx)+ Z⃗× Z⃗xx, (1.6)

by using the properties of Harmonic mapping. Recently, Guo and Huang [9] considered
the global well-posedness for the n−dimensional system (1.6) in a critical Besov space
with n≥3. There are several interesting results for the system (1.6) (see, e.g., [1, 4, 8,
10,13,14,17]).

In this paper, we mainly consider the initial-boundary problem for system (1.1)
by the spatial difference method and a priori estimates. On studying the solution of
the Landau-Lifshitz type systems in a difference scheme, we can refer to [2, 3, 7, 15].
In particular, Guo and Huang [7] constructed the smooth solutions of the initial value
problem with periodic boundary conditions for system (1.1). Here, we are first concerned
with the initial-boundary problem for the following diffusion system

Z⃗t=εZ⃗xx+ε|Z⃗x|2Z⃗+ Z⃗× Z⃗xx+ Z⃗×f(Z⃗),

Z⃗(0,t)= g⃗0(t),Z⃗(1,t)= g⃗1(t),

Z⃗(x,0)= φ⃗(x).

(1.7)

By the spatial difference method, we establish the existence of the local smooth solution
for (1.7). At the same time, we shall show that initial-boundary value problem (1.7)
with ε>0 is equivalent in the classical sense to the system (1.2).

Theorem 1.1. For any ε>0. Suppose g⃗0(t), g⃗1(t)∈C2m+1(R+), φ⃗(x)∈
H2m+1([0,1]), f(Z⃗)∈C2m+1(R3), m≥1. Then the initial-boundary value problem (1.2)

and (1.7) admits at least one local smooth solution Z⃗ε(x,t) satisfying

Z⃗ε(x,t)∈
( m⋂
s=0

W s
∞(0,T0;H

2(m−s)+1([0,1]))
)
∩
(m+1⋂

s=0

Hs(0,T0;H
2(m−s)+2([0,1]))

)
,

where T0>0 is independent of m,s, and m,s are non-negative integers with m−s≥0.

Next, we prove the uniform estimates for system (1.2) independent of ε and obtain
the existence of global smooth solutions for system (1.2) or (1.7).
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Theorem 1.2. For any ε>0. Suppose that g⃗0(t), g⃗1(t)∈Cm(R+), φ⃗(x)∈Hm([0,1]),

f(Z⃗)∈Cm(R3) with m≥2. Then the initial-boundary value problem (1.2) and (1.7)

admits a global smooth solution Z⃗ε(x,t) satisfying Z⃗ε(x,t)∈S2 and

Z⃗ε(x,t)∈
( [m/2]⋂

s=0

W s
∞(0,T ;Hm−2s([0,1]))

)
∩
( [m+1/2]⋂

s=0

Hs(0,T ;Hm−2s+1([0,1]))
)

for any T >0, where m,s are non-negative integers with m−2s≥0.

Finally, we achieve the existence of a unique global smooth solution for (1.1) by
passing to the limit as ε→0.

Theorem 1.3. Let g⃗0(t), g⃗1(t)∈Cm(R+), φ⃗(x)∈Hm([0,1]), f(Z⃗)∈Cm(R3) with
m≥2. Then the initial-boundary value system (1.1) admits global smooth solutions

Z⃗(x,t) satisfying Z⃗(x,t)∈S2 and

Z⃗(x,t)∈
[m/2]⋂
s=0

W s
∞(0,T ;Hm−2s([0,1])).

Especially, when m≥3, the solution Z⃗ is unique.

Notations.
(i) Setting xj = jh(j=0,1,...J), where h=1/J , J is a positive integer. Then we

define the discrete functions uj =u(xj ,t), and ∆+uj =uj+1−uj , ∆−uj =uj−uj−1. De-
note the discrete function spaces

∥δkuh∥p=
(J−k∑

j=0

|
∆k

+uj

hk
|ph

)1/p

, ∥δkuh∥∞= max
0≤j≤J−k

|
∆k

+uj

hk
|,

and

∥uh∥H̃p =
( p∑
k=0

∥δkuh∥22
)1/2

,

where uh={uj |j=0,1,...,J},1≤p<∞, 0≤k<J .

(ii) Denote the Sobolev spaceW k
p (R)={u∈Lp(R) and ∥u∥Wk

p
=
∑k

j=0∥
∂ju
∂xj

∥p≤∞},
where 1≤p≤∞. In particular, W k

2 (R)=Hk(R).
(iii) Throughout the paper, C stands for a generic positive constant, which may

be different from line to line. We will use the notation A≲B to denote the relation
A≤CB, ∥·∥p to denote ∥·∥Lp for conciseness.

This paper is organized as follows. In Section 2, we present several important
lemmas, which will be frequently used throughout the rest of this paper. In Section 3,
we construct the finite difference-differential system (3.1) and prove Theorem 1.1. In
Section 4, we give some independent estimates about corresponding parameter ε. And
the Theorem 1.3 will be proved in Section 5.

2. Preliminaries
In this preliminaries section, we present some lemmas for the discrete functions

uj =u(xj ,t) which play an important role in our proofs.
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Lemma 2.1. For the dispersed {uj} and {vj}, we have

J∑
j=1

uj∆−vj =−
J−1∑
j=0

vj∆+uj−u0v0+uJvJ ,

J−1∑
j=1

uj∆+∆−vj =−
J−1∑
j=0

(∆+uj)(∆+vj)−u0∆+v0+uJ∆−vJ .

In what follows, let’s recall the Gagliardo-Nirenberg inequalities for discrete functions
(see [19]).
Lemma 2.2. Let p be a real number and k, n be integers such that 2≤p≤∞, 0≤k<n.
Then we have

∥δkuh∥p≤C∥uh∥1−r
2 (∥δnuh∥2+∥uh∥2)r,

for r=1/n(k+1/2−1/p).

Lemma 2.3 ([11]). Let L2
h={uh|(

∑J−1
j=0 |uj |2h)1/2<∞} be the space of discrete three-

dimensional vector-valued functions. For each h>0 there is operator: Ih :L
2
h→L2 such

that if u= Ihuh, then u(xj)=uj ,j=1,2, ·· · ,J , and u is entire analytic. The mapping
Ih can commute with shift and difference operations. Moreover

C∥∂
ku

∂xk
∥2≤∥δkuh∥2≤∥∂

ku

∂xk
∥2,

where C>0 depends on k.

3. Proof of Theorem 1.1
In this section, we prove that system (1.7) admits at least one local smooth solution

by using difference in the spatial direction. For simplicity, we let ε=1 and establish the
corresponding finite difference-differential system by (i) of Notations

dZ⃗j

dt
=

∆+∆−Z⃗j

h2 + Z⃗j× ∆+∆−Z⃗j

h2 + Z⃗j×f(Z⃗j)+ |∆+Z⃗j

h |2Z⃗j , j=1,2,. ..J−1,

Z⃗(0,t)= Z⃗0= g⃗0(t),Z⃗(1,t)= Z⃗J = g⃗1(t),

Z⃗j |t=0= φ⃗(xj)= φ⃗j , j=0,1,. ..J,

(3.1)

where Z⃗j = Z⃗(xj ,t), xj = jh, j=0,1,. ..J , h=1/J , J >0.

Note that the local existence of smooth solutions of the Equation (3.1) can be proved
by the general theory of the ordinary differential equations. So we only need to derive
some a priori estimates of h independently for such solutions, which allows the local
existence of system (1.7) to be solved smoothly by sending h→0.

Lemma 3.1. Let g⃗0(t), g⃗1(t)∈C1(R+), φ⃗(x)∈H1([0,1]), f(Z⃗)∈C1(R3). Suppose Z⃗j(t)
is the smooth solution of the differential system (3.1), then there exists C>0 independent
of h such that

sup
0≤t≤T0

∥Z⃗h(·,t)∥2≤C, sup
0≤t≤T0

∥δZ⃗h(·,t)∥2≤C

for all 0≤ t≤T0.
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Proof. Taking the scalar product of (3.1)1 with Z⃗jh and
∆+∆−Z⃗j

h , respectively,
summing from j=1 to J−1, and by Hölder inequality we arrive at

1

2

d

dt
∥Z⃗h∥22+∥δZ⃗h∥22≲∥Z⃗h∥2∞∥δZ⃗h∥22+(|g⃗0|+ |g⃗1|)∥δZ⃗h∥∞, (3.2)

and

1

2

d

dt
∥δZ⃗h∥22+∥δ2Z⃗h∥22

≲∥Z⃗h∥2∥δ2Z⃗h∥2+∥Z⃗h∥∞∥δZ⃗h∥24∥δ2Z⃗h∥2+(∥g⃗0′∥∞+∥g⃗1′∥∞)∥δZ⃗h∥∞. (3.3)

Combining (3.2) and (3.3) and applying the following interpolation inequalities by
Lemma 2.2

∥Z⃗h∥∞≲∥Z⃗h∥1/22 (∥δZ⃗h∥2+∥Z⃗h∥2)1/2,

∥δZ⃗h∥∞≲∥δZ⃗h∥1/22 (∥δ2Z⃗h∥2+∥δZ⃗h∥2)1/2,

∥δZ⃗h∥4≲∥δZ⃗h∥3/42 (∥δZ⃗h∥2+∥δ2Z⃗h∥2)1/4.

It is derived that

d

dt
(∥Z⃗h∥22+∥δZ⃗h∥22)+∥δ2Z⃗h∥22≲1+(∥Z⃗h∥22+∥δZ⃗h∥22)5. (3.4)

Thus, there exists C>0 independent of h such that

∥Z⃗h(·,t)∥22+∥δZ⃗h(·,t)∥22+
∫ T0

0

∥δ2Z⃗h(·,τ)∥22dτ ≤C (3.5)

for all 0≤ t≤T0 and we complete the proof of Lemma 3.1.

Lemma 3.2. Let g⃗0(t), g⃗1(t)∈C3(R+), φ⃗(x)∈H3([0,1]), f(Z⃗)∈C3(R3), if Z⃗j(t) is the
smooth solution of the differential system (3.1), then there exist constants T0>0, C>0
independent of h such that

∥Z⃗ht(·,t)∥22+∥δZ⃗ht(·,t)∥22+
∫ T0

0

∥δ2Z⃗ht(·,τ)∥22dτ ≤C.

Proof. Differentiating (3.1)1 with respect to t and one gets

Z⃗jtt=
∆+∆−Z⃗jt

h2
+ Z⃗jt×

∆+∆−Z⃗j

h2
+ Z⃗j×

∆+∆−Z⃗jt

h2
+ Z⃗jt×f(Z⃗j)

+ Z⃗j×f ′(Z⃗j)Z⃗jt+(|∆+Z⃗j

h
|2Z⃗j)t. (3.6)

Taking the scalar product of (3.6) with Z⃗jth and summing from j=1 to J−1 we have

1

2

d

dt
∥Z⃗ht∥22+∥δZ⃗ht∥22

=

J−1∑
j=1

Z⃗j×
∆+∆−Z⃗jt

h2
· Z⃗jth+

J−1∑
j=1

Z⃗j×f ′(Z⃗j)Z⃗jt · Z⃗jth+

J−1∑
j=1

(|∆+Z⃗j

h
|2Z⃗j)t · Z⃗jth



1732 THE INITIAL-BOUNDARY VALUE PROBLEM

+(g⃗0
′ · g⃗0′′+ g⃗1′ · g⃗1′′)h+

∆+Z⃗0t

h
· Z⃗0t−

∆−Z⃗Jt

h
· Z⃗Jt. (3.7)

Using the Hölder, Young and Gagliardo-Nirenberg inequalities and the fact ∥δ2Z⃗h∥2≲
∥Z⃗ht∥2+1, the terms on the right-hand side of (3.7) can be bounded by

J−1∑
j=1

Z⃗j×
∆+∆−Z⃗jt

h2
· Z⃗jth

=−
J−1∑
j=1

(Z⃗j× Z⃗jt) ·
∆+∆−Z⃗jt

h2
h

=

J−1∑
j=0

(∆+Z⃗j× Z⃗jt) ·
∆+Z⃗jt

h
+(Z⃗0× Z⃗0t) ·

∆+Z⃗0t

h
−(Z⃗J × Z⃗Jt) ·

∆−Z⃗Jt

h

≲
1

4
∥δZ⃗ht∥22+∥Z⃗ht∥22+∥δZ⃗ht∥∞, (3.8)

J−1∑
j=1

Z⃗j×f ′(Z⃗j)Z⃗jt · Z⃗jth≤∥Z⃗h∥∞∥f ′(Z⃗)∥∞∥Z⃗ht∥22, (3.9)

J−1∑
j=1

(|∆+Z⃗j

h
|2Z⃗j)t · Z⃗jth≲∥δZ⃗h∥∞∥Z⃗h∥∞∥δZ⃗ht∥2∥Z⃗ht∥2+∥δZ⃗h∥∞∥Z⃗ht∥22

≲
1

4
∥δZ⃗ht∥22+∥Z⃗ht∥22+∥Z⃗ht∥32, (3.10)

and

(g⃗0
′ · g⃗0′′+ g⃗1′ · g⃗1′′)h+

∆+Z⃗0t

h
· Z⃗0t−

∆−Z⃗Jt

h
· Z⃗Jt≲∥δZ⃗ht∥∞. (3.11)

Inserting the estimates (3.8)-(3.11) into (3.7) gives

d

dt
∥Z⃗ht∥22+∥δZ⃗ht∥22≲∥Z⃗ht∥32+∥δZ⃗ht∥∞. (3.12)

Now, let’s estimate ∥δZ⃗ht∥2. Making scalar product of (3.6) with
∆+∆−Z⃗jt

h2 h and sum-
ming from j=1 to J−1, we have

1

2

d

dt
∥δZ⃗ht∥22+∥δ2Z⃗ht∥22

=g⃗1
′′ ·∆−Z⃗Jt

h
− g⃗0′′ ·

∆+Z⃗0t

h
+

J−1∑
j=1

∆+∆−Z⃗j

h2
× Z⃗jt ·

∆+∆−Z⃗jt

h2
h

+

J−1∑
j=1

f(Z⃗j)× Z⃗jt ·
∆+∆−Z⃗jt

h2
h+

J−1∑
j=1

f ′(Z⃗j)Z⃗jt× Z⃗j ·
∆+∆−Z⃗jt

h2
h

−
J−1∑
j=1

(|∆+Z⃗j

h
|2Z⃗j)t ·

∆+∆−Z⃗jt

h2
h. (3.13)
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Similar to the estimate of (3.7), we obtain

g⃗1
′′ ·∆−Z⃗Jt

h
− g⃗0′′ ·

∆+Z⃗0t

h
≲∥δZ⃗ht∥∞

≲
1

10
∥δ2Z⃗ht∥22+∥δZ⃗ht∥22+1, (3.14)

J−1∑
j=1

∆+∆−Z⃗j

h2
× Z⃗jt ·

∆+∆−Z⃗jt

h2
h≲∥Z⃗ht∥∞∥δ2Z⃗h∥2∥δ2Z⃗ht∥2

≲
1

10
∥δ2Z⃗ht∥22+∥Z⃗ht∥42+∥δZ⃗ht∥42, (3.15)

J−1∑
j=1

f(Z⃗j)× Z⃗jt ·
∆+∆−Z⃗jt

h2
h≲∥Z⃗ht∥2∥δ2Z⃗ht∥2

≲
1

10
∥δ2Z⃗ht∥22+∥Z⃗ht∥22, (3.16)

J−1∑
j=1

f ′(Z⃗j)Z⃗jt× Z⃗j ·
∆+∆−Z⃗jt

h2
h≲∥Z⃗ht∥2∥δ2Z⃗ht∥2

≲
1

10
∥δ2Z⃗ht∥22+∥Z⃗ht∥22, (3.17)

and

−
J−1∑
j=1

(|∆+Z⃗j

h
|2Z⃗j)t ·

∆+∆−Z⃗jt

h2
h≲∥Z⃗ht∥2∥δ2Z⃗ht∥2+∥δZ⃗ht∥2∥δ2Z⃗ht∥2

≲
1

10
∥δ2Z⃗ht∥22+∥Z⃗ht∥22+∥δZ⃗ht∥22. (3.18)

Inserting the above estimates into (3.13), it follows that

d

dt
∥δZ⃗ht∥22+∥δ2Z⃗ht∥22≲ (∥Z⃗ht∥22+∥δZ⃗ht∥22)2+1. (3.19)

Combining (3.12) and (3.19), we have

d

dt
(∥Z⃗ht∥22+∥δZ⃗ht∥22)+∥δ2Z⃗ht∥22≲(∥Z⃗ht∥22+∥δZ⃗ht∥22)2+1. (3.20)

Thus there exists C>0 independent of h such that

∥Z⃗ht(·,t)∥22+∥δZ⃗ht(·,t)∥22≤C,
∫ T0

0

∥δ2Z⃗ht(·,τ)∥22dτ ≤C (3.21)

for all 0≤ t≤T0. Then we finish the proof of Lemma 3.2.

Similar to the proof of Lemmas 3.1 and 3.2, assuming that g⃗0(t), g⃗1(t)∈C2m+1(R+),

φ⃗(x)∈H2m+1([0,1]), f(Z⃗)∈C2m+1(R3), m≥0, we obtain the following lemma by the
induction argument.

Lemma 3.3. Assume that g⃗0(t), g⃗1(t)∈C2m+1(R+), φ⃗(x)∈H2m+1([0,1]), f(Z⃗)∈
C2m+1(R3), m≥1, then there exists C>0 independent of h such that, for all 0≤ t≤T0,

∥Z⃗htm(·,t)∥2+∥δZ⃗htm(·,t)∥2+
∫ T0

0

∥δ2Z⃗htm(·,τ)∥22dτ ≤C.
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Corollary 3.1. Under the conditions in Lemma 3.3, we have, for some C>0 inde-
pendent of h,

∥Z⃗h(·,t)∥2H̃2m+1 +

∫ T0

0

∥Z⃗h(·,τ)∥2H̃2m+2dτ ≤C

for all 0≤ t≤T0.

Therefore, it follows from Corollary 3.1 that, the discrete solutions Z⃗h(t) of or-
dinary difference system (3.1) are uniformly bounded concerning the step h=1/J
in W s

∞(0,T0;H̃
2(m−s)+1([0,1])), 0≤s≤m. In addition, applying the Lemma 2.3, let

uh(x,t)∈L2([0,1]) for t>0 as the image of Z⃗h(t) under the map Ih :L
2
h→L2, namely

uh(xj ,t)= Z⃗j(t), the set {uh(x,t)} is bounded in

G(T0)=
( m⋂
s=0

W s
∞(0,T0;H

2(m−s)+1([0,1]))
)
∩
(m+1⋂

s=0

Hs(0,T0;H
2(m−s)+2([0,1]))

)
.

As demonstrated in [7], making a similar argument we obtain the existence of local
smooth solutions to (1.7) with ε=1. And for any ε>0, the proof procedure can be
obtained by the same way. Hence, we have the result as follows.

Theorem 3.1. For any ε>0, g⃗0(t), g⃗1(t)∈C2m+1(R+), φ⃗(x)∈H2m+1([0,1]), f(Z⃗)∈
C2m+1(R3), m≥1. Then the initial-boundary value problem (1.7) admits at least one

local smooth solution Z⃗(x,t) satisfying Z⃗(x,t)∈G(T0), where T0>0 is independent of
m and s, and m and s are non-negative integers with m−s≥0.

Now, we prove that the diffusion system (1.7) is equivalent to the system (1.2) with
ε>0 in the classical sense.

Theorem 3.2. Under the conditions in Theorem 3.1, we assume that

|φ⃗(x)|=1, (3.22)

for x∈ [0,1]. Then in the classical sense problem (1.7) is equivalent to the system (1.2).

Proof. Let Z⃗(x,t) be a classical solution of the system (1.2) with ε>0, we shall

prove that Z⃗(x,t) is also a solution of system (1.7). Indeed, due to Z⃗(x,t) being a

classical solution of system (1.2), it is easy to verify that |Z⃗(x,t)|=1 for (x,t)∈ [0,1]×
[0,T ]. Thus we have

−εZ⃗×(Z⃗× Z⃗xx)=α|Z⃗|2Z⃗xx−ε(Z⃗ · Z⃗xx)Z⃗=εZ⃗xx+ε|Z⃗x|2Z⃗, (3.23)

where we have used the fact that Z⃗ · Z⃗x=0, |Z⃗x|2+ Z⃗ · Z⃗xx=0, which implies that Z⃗(x,t)
is a classical solution of the problem (1.7).

On the other hand, let Z⃗(x,t) be a classical solution of the system (1.7), we need

to show that Z⃗(x,t) satisfies the identity (1.2) for any (x,t)∈ [0,1]×(0,T ). In fact, we

suppose that u(x,t) satisfies Equation (1.7). Set u(x,t)= |Z⃗(x,t)|2. By calculation, the
Equation (1.7) becomes 

ut=εuxx+2ε|Z⃗x|2(u−1),

u(x,0)=1,

u(0,t)=u(1,t)=1.

(3.24)
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It is obvious that ū=1 is the classical solution of system (3.24). Denote that w=u− ū=
|Z⃗(x,t)|2−1, we obtain that 

wt=εwxx+2ε|Z⃗x|2w,

w(x,0)=0,

w(0,t)=w(1,t)=0.

(3.25)

Taking the scalar product of (3.25) with w and integrating it with respect to x, one gets

1

2

d

dt

∫ 1

0

|w|2dx+ε
∫ 1

0

|wx|2dx=2ε

∫ 1

0

|Z⃗x|2|w|2dx

≤2εmax
x,t

|Z⃗x|2
∫ 1

0

|w|2dx. (3.26)

Thus it follows by the Grönwall inequality and w(x,0)=0 that w(x,t)=0 for any (x,t)∈
[0,1]×(0,T ), namely, |Z⃗(x,t)|2=1 and we complete the proof of Theorem 3.2.

4. Proof of Theorem 1.2
In this section, we give some a priori estimates which are independent of ε for the

solution of system (1.7). First, we give two lemmas which will be used to prove those
estimates.

Lemma 4.1. For any given positive number T , assume that f(t) is a nonnegative
function which makes the following inequality hold for any t≥0

f(t)≤A+B

∫ t

0

f(τ)dτ+α

∫ t

0

G(f(τ))dτ, (4.1)

where A,B are normal numbers, α>0 is a parameter, G(·) is a smooth function which

holds lim
y→∞

G(y)
yr =0 for some r>1. Then there is a normal number C=C(A,B,T ) such

that f(t)≤C for any t∈ [0,T ] and α∈ (0,α0], where the positive number α0<
BA1−r

eB(r−1)T−1
.

Proof. Let F (t)=e−Bt(A+B
∫ t

0
f(τ)dτ+α

∫ t

0
G(f(τ))dτ). Then one has F ′(t)≤

αeB(r−1)tF r(t), where F (0)=A, and the proof of Lemma 4.1 is thus completed.

Lemma 4.2. Under the conditions of Theorem 3.1, let Z⃗(x,t) be a smooth solution of
(1.7), and denote

Ai(t)= Z⃗xx(i,t),Bi(t)= Z⃗(i,t)× Z⃗xx(i,t), Ci(t)= Z⃗(i,t) ·(Z⃗x(i,t)× Z⃗xx(i,t)),

Di(t)= Z⃗x(i,t) · Z⃗xx(i,t), Ei(t)= Z⃗x(i,t) · Z⃗xxt(i,t),

where i=0,1. Then we have

Ai(t)=−|Z⃗x(i,t)|2g⃗i+
ε

ε2+1
g⃗i

′− 1

ε2+1
g⃗i× g⃗i′

− ε

ε2+1
g⃗i×f(g⃗i)+

1

ε2+1
g⃗i×(g⃗i×f(g⃗i)),

Ci(t)=
1

ε2+1
(g⃗i×f(g⃗i)) · Z⃗x(i,t)−

1

ε2+1
g⃗i

′ · Z⃗x(i,t)−
ε

ε2+1
(g⃗i× g⃗i′) · Z⃗x(i,t)
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− ε

ε2+1
Z⃗x(i,t) ·f(g⃗i),

Di(t)=
ε

ε2+1
g⃗i

′ · Z⃗x(i,t)−
1

ε2+1
(g⃗i× g⃗i′) · Z⃗x(i,t)−

ε

ε2+1
(g⃗i×f(g⃗i)) · Z⃗x(i,t)

− 1

ε2+1
Z⃗x(i,t) ·f(g⃗i),

Ei(t)=−|Z⃗x(i,t)|2Z⃗x(i,t) · g⃗i′+
ε

ε2+1
Z⃗x(i,t) · g⃗i′′−

1

ε2+1
Z⃗x(i,t) ·(g⃗i× g⃗i′′)

− ε

ε2+1
Z⃗x(i,t) ·(g⃗i′×f(g⃗i))+

1

ε2+1
(g⃗i ·f(g⃗i))(g⃗i′ · Z⃗x(i,t))

− ε

ε2+1
Z⃗x(i,t) · [g⃗i×f ′(g⃗i) g⃗i′].

Proof. It follows from (1.7) that

Z⃗× Z⃗t=εZ⃗× Z⃗xx−|Z⃗x|2Z⃗− Z⃗xx+(Z⃗ ·f(Z⃗))Z⃗−f(Z⃗).

Hence, we get

g⃗i
′=εAi(t)+Bi(t)+ε|Z⃗x(i,t)|2g⃗i+ g⃗i×f(g⃗i), (4.2)

g⃗i× g⃗i′=εBi(t)−|Z⃗x(i,t)|2g⃗i−Ai(t)+(g⃗i ·f(g⃗i))g⃗i−f(g⃗i). (4.3)

Combining (4.2) with (4.3), it yields that

Ai(t)=−|Z⃗x(i,t)|2g⃗i+
ε

ε2+1
g⃗i

′− 1

ε2+1
g⃗i× g⃗i′

− ε

ε2+1
g⃗i×f(g⃗i)+

1

ε2+1
g⃗i×(g⃗i×f(g⃗i)). (4.4)

The proofs of Ci(t), Di(t) and Ei(t) are similar to the proof of Ai(t), we shall omit the
details.

Now, we give the a priori uniform estimate on ε. Denote the global solution of (1.7)

with ε>0 by Z⃗ε(x,t).

Lemma 4.3. Assume that g⃗0(t), g⃗1(t)∈C2(R+), φ⃗(x)∈H2([0,1]), f(Z⃗ε)∈C2(R3).

Then the solution Z⃗ε(x,t) obeys the following bounds uniformly, for any T >0,

sup
0≤t≤T

∥Z⃗εx(·,t)∥2≤C, sup
0≤t≤T

∥Z⃗εxx(·,t)∥2≤C,

where ε∈ (0,ε0], C is dependent on T and independent of ε.

Proof. Drop the subscript ε for simplicity. First, taking the scalar product of
(1.7)1 with Z⃗xx and integrating it with respect to x, we obtain

d

dt
∥Z⃗x∥22+2ε

∫ 1

0

|Z⃗× Z⃗xx|2dx=
∫ 1

0

(f(Z⃗)× Z⃗) · Z⃗xxdx+ g⃗1
′ · Z⃗x(1,t)− g⃗0′ · Z⃗x(0,t)

≲∥Z⃗x∥∞+∥Z⃗x∥22, (4.5)
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where we have used the fact Z⃗ · Z⃗xx=−|Z⃗x|2. By the Grönwall inequality, one has

∥Z⃗x∥22≲1+

∫ t

0

∥Z⃗x∥∞dτ. (4.6)

Second, we estimate sup
0≤t≤T

∥Z⃗xx∥2. By integrating by parts, we get

1

2

d

dt
∥Z⃗xx∥22=

∫ 1

0

Z⃗xx · Z⃗xxtdx=−
∫ 1

0

Z⃗xxx · Z⃗xtdx+ Z⃗xx · Z⃗xt|1x=0, (4.7)

or

∥Z⃗xx∥22=∥φ⃗xx∥22−2

∫ t

0

∫ 1

0

Z⃗xxx · Z⃗xtdxdτ+2

∫ t

0

Z⃗xx · Z⃗xtdτ |1x=0. (4.8)

Using the Hölder and Young inequalities and Lemma 4.2, the terms on the right-hand
side of (4.8) can be bounded by

2

∫ t

0

Z⃗xx · Z⃗xτdτ |1x=0=2Z⃗xx · Z⃗x|1x=0|tτ=0−2

∫ t

0

Z⃗xxτ · Z⃗xdτ |1x=0

=2[D1(τ)−D0(τ)]|tτ=0−2

∫ t

0

E1(τ)−E0(τ)dτ

≲∥Z⃗x(·,t)∥∞+

∫ t

0

∥Z⃗x(·,τ)∥3∞dτ, (4.9)

−2

∫ t

0

∫ 1

0

Z⃗xxx · Z⃗xtdxdτ

=−2

∫ t

0

∫ 1

0

Z⃗xxx ·{εZ⃗×(Z⃗× Z⃗xx)+ Z⃗× Z⃗xx+ Z⃗×f(Z⃗)}xdxdτ

≤−ε
∫ t

0

∥Z⃗xxx∥22dτ−2

∫ t

0

∫ 1

0

Z⃗xxx ·(Z⃗x× Z⃗xx)dxdτ+2

∫ t

0

∫ 1

0

Z⃗xxx ·(f(Z⃗)× Z⃗x)dxdτ

−2

∫ t

0

∫ 1

0

Z⃗xxx ·(Z⃗×f ′(Z⃗)Z⃗x)dxdτ+2ε

∫ t

0

∥Z⃗x∥66dτ

≲−ε
∫ t

0

∥Z⃗xxx∥22dτ−2

∫ t

0

∫ 1

0

Z⃗xxx ·(Z⃗x× Z⃗xx)dxdτ

+

∫ t

0

∥Z⃗x∥3∞dτ+ε

∫ t

0

∥Z⃗x∥66dτ+1, (4.10)

where we have used the following estimates

2

∫ t

0

∫ 1

0

Z⃗xxx ·(f(Z⃗)× Z⃗x)dxdτ

=2

∫ t

0

Z⃗xx ·(f(Z⃗)× Z⃗x)|1x=0dτ−2

∫ t

0

∫ 1

0

Z⃗xx ·(f(Z⃗)× Z⃗x)xdxdτ

≲
∫ t

0

Ai(τ) · [f(g⃗i)× Z⃗x(i,τ)]|1i=0dτ+

∫ t

0

∥Z⃗xx∥2∥f ′(g⃗i)∥∞∥Z⃗x∥24dτ

≲
∫ t

0

∥Z⃗x∥3∞dτ, (4.11)
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and

−2

∫ t

0

∫ 1

0

Z⃗xxx ·(Z⃗×f ′(Z⃗)Z⃗x)dxdτ

=−2

∫ t

0

Z⃗xx ·(Z⃗×f ′(Z⃗)Z⃗x)|1x=0dτ+2

∫ t

0

∫ 1

0

Z⃗xx ·(Z⃗x×f ′(Z⃗)Z⃗x)dxdτ

+2

∫ t

0

∫ 1

0

Z⃗xx ·(Z⃗×f ′(Z⃗)Z⃗xx)dxdτ+2

∫ t

0

∫ 1

0

Z⃗xx ·(Z⃗×f ′′(Z⃗)Z⃗x Z⃗x)dxdτ

≲−
∫ t

0

Ai(τ)[g⃗i×f ′(g⃗i)Z⃗x(i,τ)]|1i=0dτ+

∫ t

0

∥Z⃗xx∥2∥Z⃗x∥24dτ+
∫ t

0

∥Z⃗xx∥22dτ

≲
∫ t

0

∥Z⃗x∥3∞dτ+1. (4.12)

Putting (4.9)-(4.10) into (4.8), we have

∥Z⃗xx∥22≲∥φ⃗xx∥22+ |Z⃗x∥∞+

∫ t

0

∥Z⃗x∥3∞dτ−ε
∫ t

0

∥Z⃗xxx∥22dτ+ε
∫ t

0

∥Z⃗x∥66dτ

−2

∫ t

0

∫ 1

0

Z⃗xxx ·(Z⃗x× Z⃗xx)dxdτ+1. (4.13)

Now, we estimate −2
∫ t

0

∫ 1

0
Z⃗xxx ·(Z⃗x× Z⃗xx)dxdτ as follows. Owing to |Z⃗|2=1, Z⃗ · Z⃗x=

0, then it is obvious that Z⃗, Z⃗x, Z⃗× Z⃗x form an orthogonal basis in R3 for |Z⃗x| ≠ 0.

Supposing Z⃗xx=αZ⃗+βZ⃗x+γZ⃗× Z⃗x, then by the direct computation, one gets

α=−|Z⃗x|2, β=
Z⃗x · Z⃗xx

|Z⃗x|2
, γ=

(Z⃗× Z⃗x) · Z⃗xx

|Z⃗x|2
. (4.14)

Therefore, by (4.14) and Lemma 4.2, it is derived that

−2

∫ t

0

∫ 1

0

Z⃗xxx ·(Z⃗x× Z⃗xx)dxdτ

=2

∫ t

0

∫ 1

0

|Z⃗x|2Z⃗xxx ·(Z⃗x× Z⃗)dxdτ+3

∫ t

0

∫ 1

0

(Z⃗× Z⃗x) · Z⃗xx(|Z⃗x|2)xdxdτ

≤5

∫ t

0

∫ 1

0

|Z⃗x|2Z⃗x ·(Z⃗t−εZ⃗xx−ε|Z⃗x|2Z⃗− Z⃗×f(Z⃗))xdxdτ+C
∫ t

0

∥Z⃗x∥3∞dτ

≲∥Z⃗x∥44+ε
∫ t

0

∥Z⃗xxx∥22dτ+ε
∫ t

0

∥Z⃗x∥66dτ+
∫ t

0

∥Z⃗x∥3∞dτ, (4.15)

where we have used the fact Z⃗ · Z⃗xxx=− 3
2 (|Z⃗x|2)x. Combining the estimates (4.8),

(4.13) and (4.15), we conclude that

∥Z⃗xx∥22+∥Z⃗x∥22≲∥Z⃗x∥44+∥Z⃗x∥∞+

∫ t

0

∥Z⃗x∥3∞dτ+ε

∫ t

0

∥Z⃗x∥66dτ+1. (4.16)

Set F (t)=∥Z⃗xx∥22+δ(∥Z⃗x∥22+∥Z⃗x∥62), where δ is an undetermined positive number. It
follows from (4.16) that

F (t)≲
1

2
∥Z⃗xx∥22+C(∥Z⃗x∥22+∥Z⃗x∥62)+

∫ t

0

F (τ)dτ+ε

∫ t

0

F
5
3 (τ)dτ+1. (4.17)
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Taking δ>2C, we have

F (t)≲1+

∫ t

0

F (τ)dτ+ε

∫ t

0

F
5
3 (τ)dτ.

Applying the Lemma 4.1, we know that ∀t∈ [0,T ],ε∈ (0,ε0], there holds

∥Z⃗x(·,t)∥22+∥Z⃗xx(·,t)∥22≤C,

where C, ε0 are associated with T,∥f(Z⃗)∥∞, ∥f ′(Z⃗)∥∞, ∥f ′′(Z⃗)∥∞, ∥φ⃗∥H2 , ∥g⃗i′∥∞,
∥g⃗i′′∥∞ and independent of ε. And the proof of Lemma 4.3 is thus finished.

Lemma 4.4. Assume that g⃗0(t), g⃗1(t)∈C3(R+), φ⃗(x)∈H3([0,1]), f(Z⃗ε)∈C3(R3).

Then the solution Z⃗ε(x,t) obeys the following bounds uniformly, for any T >0, t∈ [0,T ],
ε∈ (0,ε0],

sup
0≤t≤T

∥Z⃗εxt(·,t)∥2≤C, sup
0≤t≤T

∥Z⃗εxxx(·,t)∥2≤C,

where C and ε0 are dependent on T and independent of ε.

Proof. Drop the subscript ε for simplicity. Applying integration by parts gives

d

dt

∫ 1

0

|Z⃗xt|2dx=2

∫ 1

0

Z⃗xt · Z⃗xttdx

=2Z⃗xt · Z⃗tt|1x=0−2

∫ 1

0

Z⃗xxt · Z⃗ttdx,

and integrating it in t, we have

∥Z⃗xt(·,t)∥22=∥Z⃗xt(·,0)∥22+2

∫ t

0

.Z⃗xt · Z⃗tt|1x=0dτ−2

∫ t

0

∫ 1

0

Z⃗xxt · Z⃗ttdxdτ

≲−
∫ t

0

∫ 1

0

Z⃗xxt · Z⃗ttdxdτ+1. (4.18)

Differentiating Equation (1.7) with respect to t, and taking the scalar product of it with

Z⃗xxt, then integrating in x and t, we have

−
∫ t

0

∫ 1

0

Z⃗xxt · Z⃗ttdxdτ

≲−ε
∫ t

0

∥Z⃗xxt∥22dτ+
∫ t

0

∥Z⃗xt∥22dτ−
∫ t

0

∫ 1

0

(Z⃗t× Z⃗xx) · Z⃗xxtdxdτ+1. (4.19)

By (4.19), (4.18) can be written as

∥Z⃗xt∥22+ε
∫ t

0

∥Z⃗xxt∥22dτ ≲
∫ t

0

∥Z⃗xt∥22dτ−
∫ t

0

∫ 1

0

(Z⃗t× Z⃗xx) · Z⃗xxtdxdτ+1. (4.20)

Thanks to |Z⃗|2=1, Z⃗ · Z⃗t=0, we assume that Z⃗xxt=µZ⃗+νZ⃗t+ξZ⃗× Z⃗t, where

µ=−2Z⃗x · Z⃗xt− Z⃗xx · Z⃗t, ν=
Z⃗t · Z⃗xxt

|Z⃗t|2
, ξ=

(Z⃗× Z⃗t) · Z⃗xxt

|Z⃗t|2
.
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Then

−
∫ t

0

∫ 1

0

(Z⃗t× Z⃗xx) · Z⃗xxtdxdτ

=2

∫ t

0

∫ 1

0

(Z⃗x · Z⃗xt)(Z⃗× Z⃗t) · Z⃗xxdxdτ+

∫ t

0

∫ 1

0

(Z⃗xx · Z⃗t)(Z⃗× Z⃗t) · Z⃗xxdxdτ

+

∫ t

0

∫ 1

0

(Z⃗× Z⃗t) · Z⃗xxt

|Z⃗t|2
|Z⃗t|2Z⃗ · Z⃗xxdxdτ

≲
∫ t

0

∥Z⃗xt∥22dτ+
ε

2

∫ t

0

∥Z⃗xxt∥22dτ+1. (4.21)

Inserting (4.21) into (4.20) leads to

∥Z⃗xt∥22+
ε

2

∫ t

0

∥Z⃗xxt∥22dτ ≲
∫ t

0

∥Z⃗xt∥22dτ+1.

Combining the Grönwall inequality, we derive the desired result. In addition, using
system (1.7)1, we also have the estimate for ∥Z⃗xxx∥2 and we complete the proof of
Lemma 4.4.

By induction we can obtain that the smooth solution of the problem (1.7) or (1.2)
has the following uniform estimation.

Lemma 4.5. Suppose that g⃗0(t), g⃗1(t)∈Cm(R+), φ⃗(x)∈Hm([0,1]), f(Z⃗ε)∈Cm(R3)

with m≥2. Let Z⃗ε(x,t) is a classical solution of the problem (1.7) or (1.2), then for
T >0, ε∈ (0,ε0], there holds

∥Z⃗εxrts(·,t)∥2+
∫ T

0

∥Z⃗εxr+1ts(x,t)∥22dt≤C,

where r+2s≤m, r,s,m are nonnegative numbers, C and ε0 are dependent on T and
independent of ε.

Thanks to Lemmas 4.3-4.5, it completes the proof of Theorem 1.2.

5. Proof of Theorem 1.3
In this section, we prove the Theorem 1.3. From the global prior estimate and the

independent uniformly-bounded estimate of ε and t established in the previous section,
as well as the standard compactness argument, we can obtain the global existence of
smooth solutions for the initial-boundary value problem (1.1) by taking the limit ε→0

for the solution set {Z⃗ε(x,t)} of (1.7). Now, we only need to prove the uniqueness part
for system (1.1).

Proof. (Proof of Theorem 1.3.) Suppose that Z̃(x,t) is also a smooth solution

to the system (1.1) and let u⃗= Z⃗− Z̃, we have

u⃗t= u⃗× Z⃗xx+ Z̃× u⃗xx+ u⃗×f(Z⃗)+ Z̃× [f(Z⃗)−f(Z̃)]. (5.1)

Firstly, taking the L2 product of (5.1) with u⃗, we obtain

1

2

d

dt
∥u⃗∥22=

∫ 1

0

Z̃x× u⃗ · u⃗xdx+
∫ 1

0

u⃗ · Z̃× [f(Z⃗)−f(Z̃)]dx
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≲∥u⃗∥2∥u⃗x∥2∥Z̃x∥∞+∥u⃗∥22∥Z̃∥2
≲∥u⃗∥22(1+∥Z̃∥2)+∥u⃗x∥22∥Z̃xx∥2. (5.2)

Secondly, taking the inner product of (5.1) with u⃗xx and by integrating by parts, we
get

1

2

d

dt
∥u⃗x∥22=

∫ 1

0

(u⃗× Z⃗xxx) · u⃗xdx+
∫ 1

0

(u⃗×f ′(Z⃗)Z⃗x) · u⃗xdx

+

∫ 1

0

u⃗x ·
(
Z̃×(f(Z⃗)−f(Z̃))

)
x
dx

≲∥u⃗∥∞∥u⃗x∥2∥Z⃗xxx∥2+∥u⃗∥∞∥u⃗x∥2∥Z⃗x∥2+∥u⃗x∥2∥Z̃x∥2∥u⃗∥∞+∥u⃗x∥22∥Z̃∥∞
≲∥u⃗x∥22(∥Z⃗xxx∥2+∥Z⃗x∥2+∥Z̃x∥2). (5.3)

Combining (5.2) with (5.3), we have

d

dt
(∥u⃗∥22+∥u⃗x∥22)≤ (∥u⃗∥22+∥u⃗x∥22)(∥Z⃗xxx∥2+∥Z⃗x∥2+∥Z̃xx∥2+∥Z̃x∥2+1).

Thus, by the Grönwall inequality we obtain u⃗=0 when ∥Z⃗xxx∥2, ∥Z̃xx∥2∈L1((0,T )).
This completes the proof of Theorem 1.3.
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