COMMUN. MATH. SCI. (©) 2023 International Press
Vol. 21, No. 7, pp. 1815-1863

HIGH FRICTION LIMITS OF EULER-NAVIER-STOKES-KORTEWEG
EQUATIONS FOR MULTICOMPONENT MODELS*

GIADA CIANFARANI CARNEVALE! AND CORRADO LATTANZIO*

Abstract. In this paper we analyze the high friction regime for the Navier—Stokes—Korteweg
equations for multicomponent systems. According to the shape of the mixing and friction terms, we
shall perform two limits: the high friction limit toward an equilibrium system for the limit densities
and the barycentric velocity, and, after an appropriate time scaling, the diffusive relaxation toward
parabolic, gradient flow equations for the limit densities. The rigorous justification of these limits
is done by means of relative entropy techniques in the framework of weak, finite energy solutions of
the relaxation models, rewritten in the enlarged formulation in terms of the drift velocity, toward
smooth solutions of the corresponding equilibrium dynamics. Finally, since our estimates are uniform
for small viscosity, the results are also valid for the Euler-Korteweg multicomponent models, and the
corresponding estimates can be obtained by sending the viscosity to zero.
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1. Introduction
In this paper we study the high friction limit for the Navier-Stokes-Korteweg mul-
ticomponent systems [19, 24, 26], that is:

Orpi+div(piu;) =0

A (pius) +div(piu; @u;) = 2vdiv(pr (pi) D(ui)) = vV (AL (pi) divu;) + Vo]

(1.1)
1 1< M;
=piV (k(Pi)Api + 2k/(Pi)|Vpi|2> - Zbi,jpipj(ui —uj)— — Pilli;
j=1
where i=1,---,n, t>0, £ €T3, the n-dimensional torus, p; are the particles’ density,

u; their velocities (and, accordingly, m; = p;u; their momenta), v >0 is the viscosity
coefficient, M; >0, and the singular coefficient 1/€ in front of the terms

n
= bijpipi(ui—uj) — Mipsu;
j=1

is responsible for the high friction regime ¢ —0. The term k(p;) >0 stands for the
capillarity coefficient and usually has the form of the power law, while D(u;) is the
symmetric part of the gradient Vu,, and the Lamé coefficients ur,(p;) and Ar(p;) satisfy,
for every particles’ density,

pe(p) >0 Zuslp) +Ac(p) >0, (1.2)
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1816 HIGH FRICTION LIMITS FOR MULTICOMPONENT MODELS

We consider, for simplicity, y-law pressure, that is p(p;) =p; with v>1 and the corre-
sponding internal energy h(p;) is given by:

.
pi

h(pi) = —"—;

(pi) po—

more general hypotheses for the monotone function p(p) can be considered. Moreover,
as usual for this kind of models, we rewrite the pressure and the Korteweg terms by
introducing the stress tensors T; in the following way:

1
=Vp] +piV <k(pi)Api + Zk/(P¢)|Vpi|2> =divT;.

The novelty of the multicomponent model presented here is the presence of many
different particles, and as a consequence, the presence of the interaction term

D bijpip;(ui—uy),
j=1

which stands for the momentum production rate due to diffusive mixing. Here, the
nonnegative matrix b; ; models the interaction of the i-th and j-th components, with
a strength weighted by e. In addition, as already proposed in [24], we also consider
a diagonal term M;p;u;, M; >0, accounting for a (classical) friction term. The term
modeling the mixing shall agree with the conservation of the total momentum, while
the latter friction term comes as a body force, in accordance with the single component
case [24]. Hence, we shall require

D bigpip;(ui—u;) =0, (1.3)
ij—=1

which is true provided the matrix {b; ;}7';_, is symmetric. Moreover, this condition and
assumptions b; ; >0 and M; >0 guarantee the dissipative structure of the model. In-
deed, introducing the vectors p=(p1,---,pn) and m=(my,---,m,,), the total mechanical
energy associated to (1.1) is given by

n n

. 1 pl 1
o, 79) =i V)= Y- (ol + L4 k0 V?) (L)

=1 =1

and it verifies the following relation:

d & 1 5 pl 1 ) 1
o Spiluil”+ ——+ Sk(pi il” ) de+
720 [ (3ot 4 G0l ) g

1n
- M pilus|? da =0,
+Z/ piluif? da

being

- 1
Z /TS 5 biipips|ui = u;|*de

4,j=1

n 1 n
> bigpips(ui—uj)-u;= 3 > bigpipilui—us|* = 0. (1.5)

i,7=1 i,5=1
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Concerning the aforementioned mixing term, we collect here below all required assump-
tions, referred to as Stefan-Mazwell Ansatz [24]. We introduce the R™ x R” matrix B
defined as

Bij=bijpip; (1.6)

and we assume

bij=bji>0forany i,j=1,-n; bii=— Y  bi;. (1.7)
=1

We observe that, thanks to (1.7), we readily obtain

n

D bigpipi(ui—u;) = Bij(ui—u;)=—Y Bijuj,
=1 j=1

j=1

because, for any j=1,...,n,

iBi’jui =0.
j=1

For later convenience, we thus introduce the matrix 7:=—B and u solution of (1.3) is
equivalent to u € Ker (7). Moreover, since (1,---,1) € Ker(r), then dimKer(7) >1. The
study of this kernel will be crucial in the forthcoming discussions and we shall consider
appropriate conditions for it in the sequel.

Following [19,24], the present investigation is confined in the analysis of the behavior
of weak, finite energy solutions of such systems in the high friction regime, and not on
their existence; for the latter, for single component cases, see [3—6] and the references
therein. Hence, in the present paper we are dealing with the rigorous justification of
relaxation limits [8,10,12,27], in particular using relative entropy approach [25]. As
we shall point out later, when the diagonal term M;p;u; is present in the model, we
shall obtain a nontrivial equilibrium dynamic after a time scaling, leading to a diffusive
relaxation limit. These kind of limits have been addressed in different frameworks and
with using many tools. In particular, we refer to [15] and the references therein for
the results concerning weak solutions and compactness arguments; in this context, see
also [2] for a recent study concerning the relaxation limit for weak, finite energy solutions
to the Quantum Navier—Stokes—Poisson system toward weak solutions of Quantum drift—
diffusion equation. Still in the context of diffusive relaxations, many other (diffusive)
limits have been addressed using relative entropy tools; among others, see [7,11,14,16].
Finally, referring in particular to multicomponent models, we shall also mention here the
relevant examples of relaxation limits for (bipolar) Euler-Poisson equations describing
electrons and positively charged ions in plasmas or semiconductors [1,20,21].

Our analysis takes advantage of relative entropy techniques in the framework of
finite energy weak solutions of the enlarged formulation of (1.1), namely we rewrite the
latter in terms of the drift velocity v; [9]:

Vu(pi)

Vi = )
Pi

where p(p;) satisfies u'(p;) =+/pik(p;). In this way it is possible to obtain the following



1818 HIGH FRICTION LIMITS FOR MULTICOMPONENT MODELS
augmented formulation of (1.1):

Orpi+div(piu;) =0

O (piwi) +div(pyu; @u;) —2vdiv(pr (pi) D(ui)) = vV (AL (pi) divu;) +Vp!

: 1 M; 1.
Zle(M(pi)Vvi)+§V()\(Pz)d1vUz _*Zb pips(u Uy)—*PzUz (1.8)
Jj=1

1
O (pivi) +div(piv; @) +div(p(p:) V) + §V()\(pi)divui) =0,

where A(p;) =2(1'(p;)pi — p(p:)). Using the relation between u(p;) and A(p;) we define:

1
diVSi = diV(/L(pi)V’Ui) + §V(>\(pz)le’U1),
1
div K; =div(u(p;) V) + §V()\(pi)divui),

and we readily obtain

1
/ divS; -u; doe=— / w(pi)V; : Vu,; dx — / Ap:)dive;divu; de
T3 T3 2 Jps

1
/ w(p:)'Vu;: Vo, doe — A(p;)divu; dive; dx
T3 2 T3

div K; -v; dz. (1.9)
T3

The above identity comes from the symmetry of Vv;, which implies ‘Vu;: Vv; = Vo, :
V’U,i.

Hence, in contrast with the one used in [19,24], as already done in [13], the strat-
egy we shall use here is to estimate the following relative entropy, expressed in terms
of the momenta m; = p;u; and the drz’ft momenta J; = p;v; =Vu(p;). To this end, us-
ing again the notation p=/(p1, --,pn), Mm=_(my, - ,My), j(x,t):(Jl,u- ,Jn), and the
relative entropy is then given by

ntot( jl/§ 7 j 277 PuuzaJ|PuUu z)

i=1
n L 877 L )
Z( pzuuh ’L n(phthZ)_T(pmuhjl)(p’b_pz)
=1 Pi

an ,_ _ = _ on _ _
“om, (P>, Ji) (my —my) — o, (/h,Uqu)(Ji—Ji)),

where we recall 1ot (p,mM,J) is defined as
n

5 J (L 1)
Mot (P, 1) = npiymi, Ji) = §T+§T+h(m) : (1.10)
i=1 i=1 ’ ’

that is, (1.4) after we have introduced the variables J;. As a consequence, the quadratic
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expression we shall estimate here becomes the integral of ;¢ in dz, namely:

- 2
5P

J; jl

_ 2
m;

pPi  Pi

Pi  Pi

Etot(A7maj‘p7”r§L7j)(t)::/3Zn(piauiin|ﬁi7aia‘fi)dx
%=1
+h(pipi)> dx.

" (1
Z/TS; <2Pi
(1.11)

The behavior of the system under investigation here in the high friction regime € —0
strongly relies on the presence or absence of the diagonal term M;p;u; > 0. Indeed, when
this term is present, the high friction regime, after an appropriate time scaling, is given
by the following parabolic equation:

1
Op; =div, (pivx (h’(pi)—i—k’(pi)Api—l—Qk’(pi)|Vpi|2>) , for any i=1,---,n, (1.12)

both for Euler-Korteweg and Navier—Stokes—Korteweg systems, as one can check by
performing the classical Hilbert expansion; see Section 2 for details. Concerning the
Lamé coefficients, besides the natural condition (1.2) needed to guarantee the dissipa-
tive nature of the viscosity terms, in this case we shall assume only appropriate uniform
integrability conditions, without a precise connection with the capillarity coefficient
k(p), as it is usually needed in the analysis of these models, as these terms will come as
higher order errors in the limit. In other words, in the case M; >0 we are dealing with
a diffusive relaxation, as the hyperbolic system converges toward parabolic equilibrium
systems (1.12) in the diffusive scaling. Starting from [22], where the authors discussed
the case of the diffusive relaxation of the Euler system with friction toward the porous
media equation in the single component case, a general framework for the relative en-
tropy calculation and the analysis of the diffusive limits have been presented in [17,23];
see also [18] for the non—monotone pressure cases. The models under investigation here,
without viscosity, mixing, and friction terms, are included in the framework of abstract
Euler flows generated by the first variation of an energy functional £(p) introduced in
these papers:

Op+div(pu)=0
o0&

poru—+ pu-Vu=—pV —.
dp

Specifically, system (1.1) is obtained for the following particular choice for £(p):

£(p) :/zj: <h(pi)—|—;k(pi)|Vpi|2) da. (1.13)

These results have been improved following the enlarged formulation of [9], and in
particular the diffusive relaxation limit for the single component case is treated in [13].
As already mentioned above, in the present work we shall then adopt the same strategy
of [13] for the multicomponent system, thus improving the results contained in [24], as
we include viscosity and capillarity effects in our model. It is worth observing that the
stability result we obtain in the Navier-Stokes—Korteweg case is uniform for 0 <v <1,
and thus we obtain in particular the corresponding estimate also for the Euler-Korteweg
model, by taking the limit v — 0% in the former inequality.
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The case M; =0, treated in [19], is significantly different, as we do not perform any
diffusive time scaling, and the equilibrium system in the case ¥=0 is not parabolic,
namely, there is no emergence of diffusive behavior in the high friction regime. Indeed,
following the argument of this paper, after the Hilbert expansion of (1.8) in Section
2, we recover the following hyperbolic system at equilibrium, where we introduce the
notation - to indicate the equilibrium dynamics for the system:

O p; +div(p;u) =0

Oh(p) +div(pa®a) + > Vp(p) — 203 div(us (5:) D(@) — v V(AL (5:) div(@))

1=1 1=1 i=1

n "y (1.14)
ZZdiV(M(ﬁi)Vﬁi) +Z 5 V(A(pi)dives)

Be(pi0:) +div(psv; ® @) +div(u(pi) 'V (@) + %V()\(ﬁi)diV(ﬂ)) =0.

We recall here that pr, (p;),Ar(pi) >0 stand for the Lamé coefficients, while u(p;), A(p;)
are the capillarity ones used in the augmented formulation. Finally, @ stands for the
barycentric velocity defined by the following relations:

p=> pi, pu=Y_pill;.
=1 i=1

As it is manifested, contrary to the previous analysis, the equilibrium dynamics is
described by the group velocity @ for each particle density p;. This is a consequence of
the absence of the diagonal term M;p;u; in the momentum equation and therefore the
interaction mixing term

n
> bigpipslui—uj|

j=1

alone plays the role of an alignment term for the velocities u;.

Another important difference with the previous case concerns the presence of the
viscosity term also in the equilibrium system (1.14), which, in this scaling, are not higher
order errors (see again Section 2 for details), and we are thus forced to manage them
differently in the relative entropy calculation. For this, as in [9], we shall make the
following particular choices for the Lamé coefficients: ur(p;) =u(p;) and AL (p;) =A(p;),
which will be crucial to estimate the viscosity terms by means of the relative entropy and
thus obtain the desired stability for the limit under investigation. Besides the presence
of these extra terms in our model, thanks to the enlarged formulation adopted here, we
are also able to consider more general capillarity coefficients, and thus slightly generalize
the results proved in [19] also under this point of view. Indeed, as already pointed out
for the previous case, our stability estimate is uniform for 0 <v <1 and it is consistent
with the one obtained in the Euler—Korteweg case in [19] in the limit v —07.

The remaining part of this paper is organized as follows. In Section 2 we present
the Hilbert expansion of system (1.8) in both cases M; =0 and M; > 0, underlining in
particular the differences due to the presence/absence of the diagonal term M;p;u;. In
Section 3 we investigate the case of (1.8) when M;>0. As already noted before, the
equilibrium is given by the parabolic equation for each particle density p;, namely the
gradient flow (1.12) written in terms of the drift velocity v;, both for Euler-Korteweg
and Navier—Stokes—Korteweg, consistent with [13] for the single component case. We
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prove a stability estimate between weak, entropic solutions of (1.1) and strong solutions
of the equilibrium system, exploiting the multicomponent version of the relative entropy
inequality. The last section is devoted to the complementary case M; =0: the structure
is the same as the one in Section 3, however this time no diffusive scaling is present
and the equilibrium is given by the system satisfied by the densities and the barycentric
velocity.

2. Hilbert expansion

In this section we shall perform a Hilbert expansion for solution of (1.8) as a first
step in the analysis of our high friction limit. To this end, we have to study the solvability
properties of the linear system depending on M; >0 given by:

n
_Zbi,jpipj(ui_uj)_MipiUi:di7 d; R, =1, ,n, (2.1)
j=1
and the associated homogeneous system
n
Zbi,jpipj(ui_uj)+MiPiui =0, i=1,--,n. (2.2)
j=1

The authors in [19] make the following hypothesis for the homogeneous system with
Ml‘ =0:

j=1

where B; ; is defined in (1.6).

(A1) Let {b;;}}';—; be a symmetric matrix such that b; ; >0 for i #j. For any p; >
0, i=1,---n, system (2.3) has the one dimensional null space span{1}, where
1=(1,---,1) eR™
Let us emphasize that, if b; ; >0 for any ¢,j, the above hypothesis is automatically
satisfied, as it manifests from (1.5).

The following result is proved in [19, Lemma 1] and it will be used in the Hilbert
expansion to provide a semi—explicit solution to system (2.1) in the case M; =0 for any
1=1,...,n. It is worth observing that such system is independent of the specific compo-
nent of the vectors u; € R? and therefore its resolution and the subsequent computations
of this section are done component-wise (when not otherwise specified).

LEMMA 2.1 (Lemma 1 in [19]). Let dy,---,d, €R? satisfy > ,d; =0, p;>0 for
i=1,---,n and assume condition (A1) above. Then the system

n

n
—ZBi’j(ui—uj):di 1=1,---n, subject to Zpiui:O
j=1 i=1
has the unique solution

n n
piti=—» <5z‘,jl)i— plppj> (M) hdis  prtin=—>_ pjt;,
=1

jk=1
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where i=1,---,n p=> 1 p; >0 and (7')1-_,j1 eR=DX(=1) s the inverse of a regular
submatriz, obtained from reordering the matriz 7; j ER™ ™ of rank n—1 with coefficients

n
Ti,j :5i,jZBi,k_Bi,ja i,j:l,---,n. (24)
k=1

It is worth observing that, in view of the assumption (1.7), the definition (2.4) of 7
in Lemma 2.1 coincides with the matrix 7=—B, for B defined in (1.6).

Now, we pass to the study of the solvability of (2.1), when the coefficients M; do
not all vanish. Therefore, let us identify the null-space of system (2.2) and, to this end,
we prove the following result concerning the matrix

™ .=7 4+ M; M =diag(Mips,...,M,py). (2.5)

ProrosITION 2.1. Let B be any positive semi-definite matriz as in (1.6) and let
T=—B. Moreover, let M be any diagonal, positive semi-definite matrix M defined as
in (2.5). Then, the following property holds:
Ker(M)NKer(t)=Ker(r™). (2.6)
Proof. (C)
Let us suppose u € Ker(M)N Ker(r), then
™. u=(r+M)u=1-u+M-u=0,

therefore ue Ker ().
(D) Let ue Ker(r™) so that 7-u+ M -u=0. Multiplying this equality by u, using
the definition of 7; ; and the property in (1.7), we can then write

> bigpips(ui—ug)-ui+ Yy Mipilui* =0.

i,j=1 i=1

Since b; j =b; ;, this is equivalent to requiring

1 n n
3 Z bijpipjlui—u;|> +ZM1‘P¢|U¢|2 =0,

ij=1 i=1

and, being in addition b; ; and M; non-negative for any 7 and j, we further deduce
n
i=1

Hence, for any index for which M;p; >0 we obtain u; =0, that is, since M is diagonal,
M -u=0. This implies u€ Ker(M) and consequently u e Ker(r), being —7-u=M -u=
0, and the proof is complete. ]

This simple observation helps us to analyze the kernel of the matrix 7™ if M #0.
However, even if the dim(Ker(M)NKer(t))=1=Ker(r™) and thus Rk(M)=n—1,
we can not follow the proof of Lemma 2.1 to find the unique solution of the non-
homogeneous system (2.1). Due to the presence of the drug force in our model, the
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total momentum is not conserved, and we do not have, in general, additional information
about its solutions. On the other side, when Ker(7)NKer(M)={0} the matrix 7™ is
invertible and system (2.1) has a unique solution given by

u=— ()14,

as in the case of our framework (A2) below. Further, general conditions which guarantee
the invertibility of 7 could be considered as well, but one needs specific information
about the matrices 7 and M. For this, we analyze here below some simple examples to
show that it is not possible, in general, to get information on the increase of the rank
of 74+ M by looking only to the rank of 7 and the rank of M, but one needs to know
information on the structure of their null spaces, and not only on their dimensions.

EXAMPLE 2.1.  Let us consider a matriz 7 € R*** defined as in (2.4) such that Rk(t)=
2 and p;=p; =1, for every i,j=1,---,4; for instance:

-10
-1
0
1

o o~
I

Lo=o
(=

Then
Ker(r)=span{(1,0,1,0),(0,1,0,1)}.
Now, for M defined as follows
m1 000
M= 5 000
0000
with m; >0, clearly we have

Ker(M)=span{(0,1,0,0),(0,0,1,0),(0,0,0,1) }.

In this case the resulting matriz 7™ is such that Rk(t™)=3> Rk(1)=2. Indeed, the
solution of the homogeneous system (T™)-u=0 is

{(0,t,0,t);t eR} = Ker(r)NKer(M) = Ker(r™).
Using the result of Proposition 2.1, we readily obtain this relation, being
{(0,t,0,t);teR}y = Ker(t)NKer(M)=Ker(t™).

Let us now consider two 4 x 4 matrices My,My with rank 2 in two possible configu-
rations, that is

my 0 00 mi 0 0 0

| 0 ma00 o000
M=o ool M= 0 0ms0 |’

0 000 0000
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such that my,mge,m3 >0. The solutions of the corresponding systems (7+ M;)u=0 are
discussed here below. In the first case,

Ker(M,)=span{(0,0,1,0),(0,0,0,1)}.

From a direct inspection of the system (1+ M;)u=0 we obtain only the trivial so-
lution, that is T+ M is invertible.

Again, we remark that Ker(t)NKer(M;)={0}, and 7™ is invertible from Propo-
sition 2.1.

In the second case,

Ker(Ms)=span{(0,1,0,0),(0,0,0,1)}
the null space of T+ My is given by span{(0,1,0,1)}, i.e., 7+ My has rank 3. As before,
{(0,t,0,t);t €eR} = Ker(r)NKer(My) = Ker(r™).

As already mentioned above, we present a possible framework for which 7 becomes
invertible. Analogous to condition (A1) above, we make the following hypothesis; how-
ever, see also Remark 2.2.

(A2) Let {b;;}};_, be such that hypothesis (A1) holds and assume there exists at

least one index i€ {1,---,n} such that M;p; > 0.
COROLLARY 2.1. If (A2) holds, then ™™ is invertible.

Proof. Ifu€ Ker(tM) then, in view of Proposition 2.1, u€ Ker(7)N Ker(M) and,
in particular, following the proof of this result, we conclude

i=1

From (A2) we know that there exists at least one index i such that M;p; >0 and,
correspondingly, from the above equality we conclude u;=0. Finally, since Ker(r)
reduces to span{1} in view of condition (Al), we conclude u=(0,---,0) is the unique
solution of (2.2) and the proof is complete. d

REMARK 2.1. In the case M; >0 for every i=1,---,n we do not need to impose any
condition for the null space of system (2.3) as in (Al). Indeed, following the previous
analysis we get the same energy equality:

1 n n
5 D bigpipslui—u*+ > Mipi|ui|* =0 (2.7)

i,j=1 i=1

and, as before,
i=1

Then, since M; >0 for every 4, then the only solution is the trivial one, namely u; =0
for i=1,---,n Summarizing, with 7; ; given as before, system (2.2) rewrites as follows:

Zﬂ;juj +Mipiu; =0,  i=1,---,n, (2.8)

Jj=1
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and therefore, under the assumption (A2), the matrix 7% is invertible and we can find

the solution u; for every i€ {l,---,n} from (2.1): u:f(T%)’ld. This is the result
corresponding to Lemma 2.1 when a diagonal friction term is present. In the sequel, we
shall then refer to the aforementioned frameworks: (A1) if M =0 and (A2) if M #£0. The
unique solution of the corresponding non-homogeneous linear system will then be used
in the forthcoming Hilbert expansion, leading to the hyperbolic equilibrium dynamics
satisfied by the barycentric velocity in the framework (A1), and leading to the (easier)
case of a parabolic equilibrium dynamics, in the framework (A2).

We are now ready to perform the Hilbert expansion of system (1.8) in the high friction
regime, namely for small € >0. For this, let us introduce the following quantities:

P =pi +epi +0();
u§ =ul +eul +0(%); (2.9)
vf =0 +ev} +O(e).
We study separately the cases M >0 and M =0.

2.1. M>0; framework (A2). Let us start by inserting the expansions (2.9)
into the Equations (1.8). Collecting the terms of the same order we get:

e O(1/e):

Zbupzpj(u —ud)+ M;plu ZT uf =05 750 =—bi ;008 + Mipl;
j=1

e O(1):
O+ () =0
e (p7uf) +div(pfuf @uf) —2vdiv(ur (p?) D(uf) — vV (AL (p}) dived) + Vp(p7)

. 1 . -
=div(u(p])Voy) + §V(A<p?>dwv? = “bijiplp)(ud —uf)
j=1

_Zb,jpzpj u _u Z MO 1
i (pgvy) +div(pfv] @ug) +div(u(p ?)tVU?)JriV()\(P?)diVU?)=0-

Under the framework (A2), we know that 7 is invertible and therefore the only solution
of the homogeneous system obtained at order 1/¢ is u? =0 for every i=1,---,n. Hence,
the momentum equation in O(1) reduces to

1
S M0l = ~Tp(p) + div(u(pd) Vi) + 5 VAP dived = a?, (2.10)

M,0

and, since 70 is invertible, we can find u} as function of p?:

n

u}:Z(TM’O)Z,id% (2.11)

k=1
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Moreover, the continuity equation and the “drift” equation reduce to the trivial relations
9yp? =0 and 9 (pYv) =0, being pfvy = Vu(p}).

At this point it remains to express each component in R? of the n-velocities wu;.
Following the argument in [24] we compute in T2 x (0,7’) the Kronecker product:

FMO _ MO 1 o R3nxX3n, (2.12)

The matrix 70 is invertible since it is defined as the Kronecker product of two invertible

matrices, and therefore we can compute the first non-trivial term in the expansion for
the momentum, namely pdu! for every i € {1,---,n}.
Now, using (2.11) in the O(e) part of the continuity equation

Bip; +div(pfui) =0, (2.13)

we readily obtain
1
Oupt -+ (2 (7)1 (W)~ div(upD)T ) - ST i) ) ) =0, (214)

Therefore, the continuity equation for p¢ and u$ in (2.9) up to order €2 is given by
summing the trivial relation 9;p? =0 to € times (2.13):

0 (P} +epi) +ediv(pfu;) =0,

that is, using instead (2.14):

0upt +ediv (1 (7)1 (Vo) ~ div(ul) 705) ~ VO aive) ) ) =0,

where

—M,e __ _M,e . M,e __ € € €
T =Ry T =—biips p5 + Mips.

Hence, in order to recover a non-trivial behaviour in the limit e — 0, as customary
in diffusive limits, one has to rescale the time variable 9, — €0, in the original model, as

done in [24]. In this paper, the authors consider the following system:
1 .
Opi+ — dlv(piui) =0

1 (2.15)
Oy (pzuz)"" dlv(pzuz®uz>+ vp pl 2 Zb ,]psz ) ?Mipiui

and show that as e —0 the hyperbolic system converges to the parabolic system:
atﬁz‘i‘le(é(ﬁ)_le(ﬁl)):O fori:17...7n’

where C(p)=C(p) ® I3 as defined in Remark 2.2 below. In the present paper we extend
the results of [24] by adding capillarity and viscosity effects in the system, thus studying
the diffusive relaxation limit of the model (3.2), obtained after the aforementioned
scaling of time in the augmented formulation (1.8); see Section 3 for details.
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Specifically, the system we shall investigate becomes
1.
Opi +—div(pu;) =0
€

1 2 1
at<mui>+gdiv<piui®ui>—wdiv(m(m)D(ui))—5v<AL<m>divui>+gW

1 . 1 M; (2.16)
== div(u(pi) Vi) + 5 V(Mpi) diver) - szljplpj uj) = 5 pitt

1
O(pivi) + - div(p;v; @u;) + Ediv(u(pi)tVUi) + Q—EV()\(pi)divui) =0,

Therefore, as noticed above, using the Hilbert expansion, from the O(1/€?) term

Zbl]pzp](u _u +Mp ZTN[O ': )
j=1

we readily obtain u? =0 for any i=1,...,n. Hence, the continuity equation starts from
order O(1), that is:

0epf) +div(pju;) =0,

and the momentum equation at order O(1/¢) gives (2.10) and, as a consequence, (2.11).
Finally, for 70 defined in (2.12), we obtain the following parabolic system at equilib-
rium:

Dup! +div (p? (F10) 1. (vmp?)—div(u(p?)w?)—;va?)dm?))) 0.

REMARK 2.2. Let us remark that the authors in [24] make the following assumption
on the friction coefficients, motivated by experimental evidence: M;>>; ;, ensuring
that the matrix C =diag(M;)—diag(p;)B, where B={b;;}';—; is in fact diagonally
dominant and positive definite, thus invertible using the Kronecker product as above.
Thanks to this condition, each component in the limiting dynamics evolves according to
its velocity, while, without the diagonal term M, one needs to introduce a barycentric
velocity as done in next section. We stress that the invertibility condition, referred to
the matrix C' associated to the non-homogeneous system (2.10) has the purpose to solve
for pu}l while, from the discussion above, we deduced the invertibility of the matrix
—7;; +diag(M;p;), which allows us to find directly u} in function of p?; see (2.11).

2.2. M =0; framework (A1l). In the case under investigation, namely for
M; =0 and v >0, we follow the approach of [19]. We introduce the barycentric velocity
u, the relative velocities w; =wu; —u, and their expansions, namely:

wi =w! +ew} +O0(e?);

2.17
u =u’ +eut +O(?). (2.17)

Moreover, we have to consider also the total density and the moments:

n n n
p:Zpi, puzZpiui, pv:Zpivi. (2.18)
i=1 i=1 i=1
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Using these extra quantities, the original system (1.8) becomes:
O pi+div(piw; + piu) =0
A (piw; + pyu) +div(pi (w; +u) @ (w; +u)) +Vp] —2vdiv(ur (pi)D(wi +u))

—vV (AL (ps)div(w; +u)) =div(p(p;) V) + %V(/\(pl Ydive;) — Z bi,jpip;(w; —w;)

1,j=1

1
0 (pivy) +div(p;v; @ (w; +u)) +div(u(ps)'V (w; +u)) + §V()\(pi) div(w; +u)) =0,
(2.19)
subject to the condition:

Zpiwi:Zpi(ui—u):Zpiui—puzo. (2.20)
i=1 i=1 i=1

Using (2.17) in (2.20) the latter becomes:

n n n
0= Zpiwi = Zpgw? + GZ(P?W% +pjwy) +0(e%),
i=1 i=1 i=1

that is, looking at order O(1) and at order O(e):

> =0y Y (plw}+plu?)=0. (2.21)
i=1 i=1
Finally, we use (2.9); to deduce the following expansion of the total mass p:

p=p"+ep' +0(e?),

where
=> o p=) ni
i=1 i=1

Plugging the above expansions in (2.19) and collecting the terms of the same order in
€ we obtain:

e O(1/e):

> bigpips(w) —w)) =0; (2.22)

up; +div(pfwf + piu’) =0;

A (pw) + pu’) +div(pf (wy +u°) @ (w) +u°)) + Vp(p)
—2vdiv(pg (pi) D(w +u’)) — vV (AL (p)) div(w) +u°))

_ 1
=div(u(p?) Vo)) + 5 V(A(p}) divey)) Zb P (wi —wj)
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n

= "bi(pip)+p)p;) (w) —wl); (2.23)

j=1
Du(pvy) +div(pfv] @ (w) +u”)) +div(u(pf) V (w] +u)
+ §V()\(pg)div(w? +u%))=0.
We note that, being all densities strictly positive, condition (2.21), implies wl=0fori=
1,---,n, simplifying (2.23) considerably. Then we sum from ¢=1,---,n the momentum

Equation (2.23), obtaining in this way the equation satisfied by the barycentric velocity.
Specifically:

o (Zp?u0> +div (Zp?u°®u°> + D0 Vp(A) -2 3 (s (4D D)

i=1

1
—UZV Az () div(u Zdlv pl)Vv?)—l—ZiV()\(p?)divv?):0, (2.24)

i=1 i=1
where we used the equality
n
> bigplp)(w) —wj)=0
i,j=1

due to symmentry. Hence, denoting pf = p;, >y pf = p, v) = 0; and u® =1, the leading
term in the Hilbert expansion of (2.19) is given by the following system:

Orpi +div(p;u) =0;
n

8t(,6ﬂ)—|—div(ﬁﬂ®a)+zv QZ/Zle wr(pi)D(u —Z/ZV (A (p;)div(a))

=1 =1 =1

1
—Zle pz vvz Z§V()‘(ﬁz)d1V51)7
i=1

1
Oy (piv;) +div(p;v; @ @) +div(u(p:) V(1)) + §V(A(ﬁi)div(ﬂ)) =0.
The latter can be rewritten in the following way:
Opi +div(p;u) =0
O (pin) +div(p;u @) — 2vdiv(pr () D(w)) — vV (AL(p;) diva) + Vp(p;)

:diV(#(ﬁi)V’l_}i)wL%V(A(ﬁi)divf)i)Jr}?i (2.25)

0u(p0) +div (i, @7) + div((72)" ¥ (8)) + 5V (A(31)div (7)) =0

The term R; is defined as:

7:|\b

Z [divS; —Vp(p;)] —divS;
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n

+Vp<ﬁ,»>+%Z[2udivuL<ﬁj>D<a>+uv<AL<ﬁj>diva>1
—2vdivpr(pi)D (’)—vV( (pi)diva)

=2 QivT — divT; + vdiv D2 — vdiv Dy, (2.26)
p

ﬁl‘b‘

where:

divT; =divS; — Vp(p;); diVT:ZdiVTJ,

divD; =2div (L, (p:) D(w) + V(AL (p;)divar);  divD=» divD;.
j=1

In Section 4 we compute the relative entropy between weak solutions of (2.19) and
strong solutions of (2.25), thus justifying in this framework the formal analysis above.

REMARK 2.3. It is worth observing that in the proposed scaling, contrarily to what
happens under the diffusive scaling used in the previous case M >0, the viscosity terms
are not higher order, and they persist in the limit (2.25), as it is also manifest looking
at Equation (2.23). For this reason, as proposed in [9], in Section 4 we shall make the
particular choice of Lamé coefficients pr,(p;) = u(p;) and Ar(p;) = A(p;), which allows us
to control the viscosity terms by means of the relative entropy. On the other hand, being
w;,diva;, D(1w;) of order € in the diffusive scaling, these terms can be treated as errors,
and therefore this particular choice for Lamé coefficients is not required; concerning
this, see also [13].

REMARK 2.4. Let us underline the relations between Equation (2.24) and the solv-
ability for w} of (2.23), when w?=0. With the notation

40 = 0y (p0) + div (p0u” @) + div S[o, 7] — 2w div (g () D(u?))
— V(AL () div(u?)),

Equation (2.23), rewrites as
—Zb PP (wi —wi) =dy, (2.27)

hence (2.24) is equivalent to the condition Y i, d?=0, which ensures there exists a
unique solution (w},...,wl) to (2.27) in view of Lemma 2.1.

3. High friction limit with diffusive scaling for M; >0

The system we are going to study in this framework generalizes the one considered
in [24], where no capillarity and viscosity effects are taken into account and, for reader’s
convenience, let us rewrite it here below:

Orpi +div(psu;) =0
O(piwi) +div(piu; ®u;) —2vdiv(pr(pi) D(ui)) — vV (AL (pi) divu) +Vp!
, 1< M;
=divS;— - Z;bi,jpipj (wi—uj)— sziui
j:
O (pivi) +div(piu; @ v;) +div K; =0,

(3.1)



G. CTANFARANI CARNEVALE AND C. LATTANZIO 1831
where
1
1

As already noticed in Section 2, in order to obtain a non-trivial limiting dynamics as
€ — 0, we rescale the time variable 0; — €0; to end up to a diffusive limit:

1
Opi + —div(p;u;) =0
€
1 2 v , 1_
5’t(ﬂiui)+gdlv(ﬂiui®ui)—nglV(ML(Pz‘)D(Ui))—ZV(AL(Pi)leUi)JrgVﬂi
n 3.2)
1 . 1 M; (
:EleSifgaLJ’pipj(ui*’U,j)f?piui

1 1
O (pivi) + zdiv(piui ®u;)+ - divK; =0.

Then, the leading terms of the Hilbert expansion are the following equilibrium relations
for each component of the mixture:

?=0

b= (FMOTHVp(p)) 4 div S (p9,0?)), the Darcy’s law in our context,
0_ Vu(py)

[ 0 )

Pi
and each p! solves the gradient flow equation
8] +div(p? (M) " (= Vp(p]) +div Si(pf,07))) = 0. (3.3)

In order to compare weak solution of (3.2) and strong solution of the parabolic
equilibrium (3.3) we rewrite the latter as Euler-Korteweg system with high friction and
an error term of order €, using the same strategy of [13,22,23]. Indeed (3.3) is equivalent
to:

1

1. 1_ M;,

Oy(pitii) + Ele(Piui®ui)+ ngX *le (piV;) — = E bi,jpips (Wi —1j) — ?;Pz'uz‘+€i
_ 1., 1. o

O (pivi) + zle(Piui ®v;)+ Ele(Pi Vi) =0, (3.4)

where we have denoted

P} = pi;
S =My—1 _ : Y
u; =e(7) " (=Vp(pi) +div Si(pi,vi));
7‘:vﬂ(51)
1 pz )

M
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1
€ =0 (pitiy) + Ediv(ﬁi'ai(@ai)
= ey (pi(FM) "1 (=Vp(pi) + div Si (i, 04)))
+ediv(pi (FM) TN (=Vp(pi) +div Si (i, 0:)) @ (FM) ~H (= Vp(pi) + div Si (4, 0:)))
=0(e).
The aim of this part is to validate the large friction limit using relative entropy tech-

niques. For this, we start by recalling the definition of the total mechanical energy of
our system 7ot (0, M, J€):

A€~ € TE S € € T€ 1|m |2 1|Jze|2

Mot (P10, T) =Y (o5, ms, J5) = 2(2 AR

i=1 i=1

+hie)).
and its space—integrated version

2itot( , M 7 /EJZ(’? ,omm JE )d

Hence, the relative entropy between solutions of (3.2) and (3.4) reads

nt0t< , 1M j /gﬁl j ZU pzauw i |pz»uzan)
Zﬂ(ﬂw vaf)_Z 0(pi iy J;) anl —Pi)
i=1 i=1
=D s (B, ) (m =) =, (s T) (5 = ) (3.5)
i=1 i=1

and
St (50 TVt DO = [ a5 I, )0
T

Let us now clarify the notion of periodic weak and dissipative weak solutions of the
relaxation system (3.2) we shall consider in the sequel.

DEFINITION 3.1 (weak and dissipative weak solutions). A triple (p€, e, J¢) (where
pe=(p%, s pn), M= (mg, - ,my), J°=(Ji,---,J5)) such that

0< pt € CO((0,00): L1 (T%)),

(pfus, pv) € CO([0,00); L1 (T%)* x LY(T®)?)

is called a periodic weak solution of (3.2) if for any i=1,-- n:
Vpsus € L((0,T); L(T%)?)

)i L
Vpivs € L((0,1): L*(T%)%)
p§ € C°([0,00); L7(T?))
pr(p§)D(uf) € L'((0,T); L1 (T?)**%)
Az (pf)divug € L1((0,7); L' (T%))
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(p§)%u§ € L=((0,T);LY(T?)%)
and (p§,us,v) satisfy for all ¢; € C5([0,00);C*(R?)) and ¢i,p; € Cj([0,00);CH(T?)%):

o'e) n 1 n
[ ] S0k oV dedi= [ Y gt 00s(a.0) da
0 JT% o € T8 =1

R 1o 1
—/ / Zpiuiat¢i+zpiui®ui:vwl+ pi " divep; + = N(Pz)vz Vdiv¢;
T3 %
+= Vu(pz) (Viv; da:dt—/ /Z ( VA(p5) vfdivqbi—i—%)\(pj)vf.Vdiqui)dwdt
'ﬂ‘S

—/ / pL(pﬁ)D(uE):D((ﬁi)d:cdt—l—f/ / AL (pi) divug dive;dedt
T3 T3
62/ / Z b, pip5 (ui —uj) - didedt + — / /TBZM piu; - ¢ dxdt

-/ 3Z<pzu:><x,o> u,0) da,
T .
/ /prﬁwﬂr —piu; @v; : Vi + (pz)vz Vdivep; + - Vu(pz) (Vpivs)) dadt
T3
/ / ( VA(p5) - Ugdivcpi—ki)\(p;)vf-Vdiwpi) dzdt
']1‘3

:/Tg Z(Pivf)(w) pi(,0) dx.

If in addition nee: (p¢, ¢, J¢) € C([0,00); L' (T3)) and the integrated energy inequality
- [ St @ 0. @) 0 e

/ /W,Z 2001 ()| D () P+ A ()| divus[2) ) 0(¢) dadt

1,7=1
1 > € €|,,€ €2 1 > = €l €12
+@/O /ﬂ‘3 Z bi jp; p5us —uj|0(t) d:cdt+6—2/0 /TJZMlpJuJ 0(t) dxdt
,j=1 i=1
<o (5°(0),(0), J(0))(0) (36)

holds for any 6 € W1H°°([0,00)) compactly supported in [0,00), then we call (ﬁe,mf,jf)
a periodic dissipative weak solution.

We say that a periodic weak (dissipative) solution (p¢, e, J¢) for (3.2) has finite total
mass and finite total energy if for any T >0 there exists a constant K >0 independent
of € such that:

sup / Zp dr < K;

te(0,T) 11‘3z 1

1 2 1 JE|? €Y
t€ o T) T3 4 2 Pz 2 p; -1
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The relative entropy inequality is stated in the following proposition; to shorten
notations, we shall omit the ¢ dependence in the remaining part of the section.

PROPOSITION 3.1.  Assume condition (A2) holds and let (p¢,1m¢,J¢) be a dissipative
weak periodic solution in the sense of Definition 3.1 with finite total mass and energy
(3.7). Let w; = (pi,ui,0;) be a smooth solution to (3.4) such that:

wi,atwi,Vu?i,Dzwi,DP’ﬁi € LOO<[O,T],LOO(T3))

for anyi=1,....,n. Then, the following inequality holds:
262// Z bi,jpips | (ui — ;) — (@ — ;) duds
3,j=1
2 t n ‘ n
+l// ZML(Pi)|D(ui—ﬂi)|2dxds+z//Z)\L(pmdiv(ui_ai)'deds
€ Jo T =1 €Jo T
+1/t/ iM i — ;]2 dxds
€2 0 T3Z-:1 iPi| Ui 7
1/t i
S*E/ Aszp(Pi|ﬁi)divﬂid$d5
_*//Z,%Vul — ;) ® (u; —@;))dzds
T3

_E/I/TSZpi(,u”(f’i)vl)i_M//(ﬁi>vﬁi>'((U—ﬁi)diVﬂi—(ui—@i)divﬁi)da:ds

Ztot(ﬁe7m€7j€|577§laj

_7/ /WZPZ (ps) — 1/ (5:)) (v —13) - Vdivii; — (us — ;) - Vdiv; )deds
_E/O ASZ(PNTL@':(U@'—%) (v; —0;)) dxds
/ /T Z bi,jpi(pj — pj) (Ui — i) - (Ui — ;) dwds

3,j=1

//TSZ&@ u; —u;)dxds
_?V/O /Ts;:“L(Pi)D(ui)ZD(Ui—ui)dxds

t n
,%/0 /TsZ/\L(pi)divﬂi(divuifdivﬂi)dxds. (3.8)
=1

Proof.
Step 1: Energy Inequalities.
As customary in these contexts, we use the following test function in (3.6):

for 0<s<t,

+1, fort<s<t+d, (3.9)
0, for s >t+96,

1
t—s
e
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and, passing to the limit as § —0 we get:

Seot (5,105, J€) // Z 201 (pi)|D(wi) P4+ (pi) | divug|?) dads
TS .

i,=1
_|_1/t/ zn:b| ,Qdd+1/t/ Xn:M il dad
222 J, m 1,5 PiPj| Wi — Uj|” ATAS )y Jrs - iPi|Ui|” axras
<ot (p(0),712(0),J(0)). (3.10)

We multiply (3.4), by @; and (3.4); by 9;, integrating in time and space we get the
energy inequality of system (3.4):

k4>|

S (A(0), (1), (1)) + 5 / / memuz 2 dads

1 t
+ */ / M;p;|u; 2 dxds
€ Jo ’H‘3Z il
<S40t (5(0),72(0), J(0) / / Ze, a; dzds. (3.11)
T3}

Step II: Equations for the difference.

Now we evaluate the linear part of the relative entropy using suitable test functions
in the weak formulation according to Definition 3.1. If we take the differences (p; —
Di, Ui —U;,v; —U;) they have to satisfy:

/ /TJZ Pi)0s0i + (pluZ pit;) - Vipdrds = Z pi(z,0) — pi(x,0)1;(z,0))dz,

szl

t n
_// Z(Piui_ﬁi@i)-as@—f—%(piui(}?ui—ﬁi@@m):qui—i—%(pz—ﬁ?)divqﬁidxds
T3 4
_7/ /TSZ w(pi)vi — p(pi) v )V div gy + (Vu(ps )vi — Vu(pi) ;) : V| deds
7276/ /TBZ[(V/\(pi)vi7V/\(ﬁi)@i)div¢i+(/\(l)i)vi*A(ﬁi)ﬁi)VdiV(ﬁi}

// ZQML pi)D(u;): D(¢i) + Arn(pi) divu; div; dads
'JI‘S

1]1

/ /ﬂ,3 Z bi i (pip;(wi—uj) — pipj(U; —1y))¢; drds

3,j=1

_612/Ot/TS;Mi(Piui—pmi).¢idxds—/0t/1rggei¢dxds
+/Ot/qrgé(<f’i“i)(xa0)—(piui)(a?,o))cbi(x,O) dz
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and
t n 1
7/ / Z(Pz‘vi*ﬁﬁi)'3s<,0i+z(mui®v¢*ﬁﬂi®l7i):Vsoidxds
0 JT% =
INVAER . .
+g/ /11‘ Z[(M(Pi)ui—M(ﬁi)ﬂi)leV%+(Vﬂ(,0i)ui—VM(Pi)Ui)ZV%‘] dxds
0 JT% =
L&
+£/ / Z[(V)\(pi)ui—V)\(ﬁi)di)divgoi—i-()\(pi)ui—)\(ﬁi)u})Vdivgoi] dxds
0 JT? =1
t n
[ [ Y )@.0)~ (o) @0 (.0) do
0 T 4=
where 1, ¢, are Lipschitz test functions (¢,¢ vector-valued) compactly supported in

[0,00) in time and periodic in space. In the above formulation we choose:

i =0(s) (h’(m)lwl"]?'z),

e L 117
- 95 | W (pi —_Z—_z) pi — pi)dxds
| Lo (w5 SR
=2

1 t o 1mi2 1 J2 o
-2 /Tsizvf (h (P =55 37 ) (psui— peim)dads=0,  (312)

i N /f/" (m) -
—\Pitli — pitli - Os | — il — Piu; )drds
/TZ o —pa)| | T; o, ) i i)
1 t n 72' 71'
[ L (e o) () 000 - iy () ) s
0 Jr3 i ; .

i Pi

2 [ L0t —stpamgwae (%)

Pi

m;

+(Vulpi)vi—Vu(p:)v;): V ( ;71 ) dxds
216/: /Tsé(V)\(pi)viV)\(ﬁi)@i)div (7;)

+(M(pi)vi — Mpi) ;) V div <m> dwds

pi

t n
—l—%/ /T? Z 2ur(pi)D(ui) : D(w;) + AL (p;) divu,; diva;deds
0 /T2, =1
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//T Zb,j pip; (wi—u;) — pip; (s — ;) ) tydads
0 3

7,7=1
1 VR
= M;(psw; — pia;) - i1; dods — 2t dxds, 3.13
52/; /'JTE'; i(piu; — py;) - u; dwvds /O /TS;@ZUz ras ( )

and

/1I3sz pivi = Piti) //TSZ‘9< )pzvz piv;) dzds
77/ /qr32<p’"1®”7 pv“@”fv)-V(ii)) dzds
2 [ [ Xt a ()

+ (Vu(p)u; — Vu(p)u;) : V <j:) dzds

zle/ot /Tsé(%(pi)ui—w(ﬁi)m)div (Z)

+(Mpi)us — Mpi)a;)V div (Z) dwds

—0. (3.14)

Recalling the definition of the relative entropy (3.5), and using (3.10),(3.11), (3.12),
(3.13), (3.14) we obtain:

Ao - = |t
ZtOt(ﬁeameaJEm,maJ) —0

Lr Ll 1T
<- o (1o -5 - 1) -
[;&g; ()52~ 50 ) (=)

+9s (p )(p7u1 pzuv)+a (Z)(ﬂﬂ)z ﬁlﬁz)d?ﬂd.s

L3 (e 3
+@@»—<>mw<m>M@

IR
— */ / Z(piui@)uj —ﬁidl‘(@ﬁi):Vﬂi—F(piui@Uj —ﬁiﬂi(@@j) :Vo;dxds
T3

—7//Zu (pi)[(v; —0;)Vdiva; — (u; — @) Vdivy,]
’]I‘S

+Vu(pi) [V (vi — 0;) — Vo (u; — ;)| dads

1 t n i o ) N
_i/o /TS;V/\(Pi)[(vi—Ui)dlvui—(ui—ui)dlvvi]
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+ A(pi)[(v; —0;)Vdiva; — (u; —a;) Vdivo|daeds

// Z w(pi) ) (@;Vdive; —o;Vdiva)
’]1‘3

+(Vulpi) = Vu(pi)) [Voia — Vi v;)deds

// Z (pi) — A(p:) [@; Vdivo; — v; Vdivag]
'H‘S

(V)\(pi)—V)\(ﬁi))(didivﬁi—ﬁidivdi)dxds
v [t - v [t -
——//ZML(pi)|D(ui)|2dxds—f//Z)\L(pi)|divui|2dxds
€ 3 < €Jo Tsi:l

// ZQ,uL 0i)D(u;): D(u;) + A (p;) divu; diva;deds
T3

i,j=1
// sz] plp] _UJ) pzp]( —u]))uld:vds
T =1
262// Zbljp’bp]|uz u]| dxds+22// Zbu/’zﬂﬂuz u]| dxds
i,j=1

M;piuidrds+ — M, p;iuidzd
//TSZ pux5+ //Z ipill; dxads
+*/ / Ml(plulfﬁlﬂz)ﬂzda:ds

Let us observe that the I+ Iy term is equal to zero thanks to the property (1.9) of the
stress tensors S;, K;. Using the relation h”(p;) =p'(p;)/p: we find that:

t n 1
_/ /ngash/(ﬁi)(m—ﬁi)+Eth’(pi)(piui_pmi)dxds

//Zp (pi)(pi — pi le’LLZ—I- “p(pi) (i — ug ) dads.
T3 pi

Then we notice that the following quantity:

P 1 1 1
/ / > <3s <|1Iz‘|2) (pi—pi)+-Va <|’Ji|2) (piu; ﬁﬂfi)> dzds
o JT3 i1 2 € 2
t n 1
+/ / Z (_asu(piui_piui)_ ngdi : (piui®ui_piui®ui)> dxds
0 T3

can be rearranged by multiplying the momentum equations of the strong solution u;,;,
by pi(@; —u;) and p;(T; —v;) respectively. We get:

//1I3Z( ( | ) pi *ﬁz‘)Jr%Vz (%WJZ) (Pz‘ui*ﬁiﬂi)*asdi(pmﬁﬁmi))d;cds
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¢ "
_/ / Z Evﬂzi H(piwi @u; — Pitly @ Us )dads
T3

//TSZ PVt (s — ) ® (s — )+ ~ 2 V() (i1 — i)

€ Pq

_Lps div S; (; —us) — @é(u —u;)dzds
€ Pi .

//TSZ( Mipi(th: — i) + b”plpj( ui)(ai*ﬂj)) dxds,

1 1
// Z( ( |3 )(pi_l)i)+V;z;(|Ui|2>(piui—piui))dxd5
T3 € 2
1
+//Z<3s17i(/7iuz'ﬁim)EVz@i:(piui@)viﬁiai@)@))dmds
0 JT8 i

t n 1

o Jrsi= \€ € ps

From the previous calculations the relative entropy becomes:

and

A~ _ _ = |t
Zt(’t(ﬁe’me7‘]6|ﬁ7mv<]) 5=0

I/t/ n ) o
S p(pilpi)divu;deds
). gﬂ 15:)
1 t n
_2// Z(Pivai:(W—ﬁi)@(%—@)—i—pivm:(ui—ai)(@( . — ;) dads
0 JT? oy
1 t n
_E/O /TsZM(Pi)[(w—ii)Vdivﬂi—(ui_ai)VdiV@i]
i=1

+ Vu(pi) [VUQ (’Ui - @i) — V@l(u, — ﬂl)]da:ds
INVENIRS e N
_i/o /1r3;V)\(pi)[(vi—vi)dlvui—(ui—ui)dlvvi]
+>\(,07;)[(’Ui71_12‘)VdiV’L_Li7(Uifﬂi)VdiV5i]d{Ed8

/ /11‘32:/)Z p(pi) div Vo + 'V (i) 'V,

i1 Pi

+ %V)\(ﬁi)div@- + ; (pl)leva)( —u;)dzds

_*/ / Zpl w(ps) diviVa,; +"V u(p;) Vi
’]1‘3

+= V)\(pl)dlvuﬂr )\(pz)levul>( —v;)dzds

262// Zb,Jp’LpJ|uz uJ| dccds—i— // Zbdplpjh% UJ| dxds
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1 t n
—7// > bij(pips(wi —u;) — pip; (W — ;) Uidads
€ Jo Jr3 0
/ / S b i — ) (1 — s
T3 =1
// ZMpzu dxd5+—//ZMiﬁiﬂfdxd5
TS —
+1//ZM( pitl; ) dad
- i(Pili — Pily)u;azas
 Jy oo pitli —p
I -
_:2/0 /W;Mipiui i — U dgcds—i—/ /1F3 ; —u;)dxds
2”/t/ zn: (p3)|D(u;) |2 dads V//Z)\( )| divu; [2dzds
- i i - i)| A1V U;
€ 3 < HEAp € 3 < Lip
2
+ V/ /TSZML pi)Du;: Dadrds+ — / /TSZ/\L pi)divu,; diva;deds

where, with a slight abuse of notation, we redefine the right-hand side of the above
relation using the same symbols. Let us mention that diviVa =Vdivu while divVy; =
Vdivo; since V7, is symmetric as v; is a gradient. We define I5:

:_7/ /TZ( (o)~ ))(Vdivui(vi—vi)—Vdivvi(ui—ui))dxds

L g (wpn—g’jwm)) (Vi (03— 85) — V(s — 1)) dnds,

since v; =Vu(p;)/pi then I, reads as:

:_7/ /Tsz ( pi ;Z)>(Vd"“z(i—vi)—Vdivvi(ui—ui))dazdS
_E/O /ngpi(vi_ﬁi)'(V,Ji(vi_@i)_V1_)i(ui_di))d$d8.
We define

13***/ /WZ< pi) = 71 Pz)>((vim)Vdivm—(um)Vdiv@)d;pds
//TZ< VA( ))((U—Ui)diVUi—(ui—u)divvi)da:ds,
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since A(pi) =2(pipt’ (pi) — 1(pi)) one has:

Li=— ie /Ot /TS ipi <W - W) ((v; — 1)V divag; — (u; — ;) Vdive;) deds
i=1

2 Pi Pi
1 t n
_ E/ /T sz’(,u”(pi)vpi — 1" (p:)V i) ((v; — ;) diviz; — (u; — ;) div v, )dxds.
0 JT? 1

Therefore I5+ Iy + Is + Ig = I + I3 becomes:
S 1/t n
124’]3:*?/ / Zp,(u”(pz)vpz7,[1,"([),)V[)1)((’Uz751)d1V’lIZ+(’(Z17u1)d1V’L_)1)dl‘dS
0 JT3
L ST ) (o) — i (5 (0 — 519 div i (s — 01V div
- Zpl(,u (pi) — 1 (1)) ((v; — ;) Vdiva, + (@; —u;) Vdive; ) dzds
0 JT* o1
1
€

// Zpi[(vi_ﬁi)VEi(’Ui_@i)_(Ui_ﬁi)vqji(ui_di)] dxds.
0 T 4=

Let us manage the remaining terms, starting with the interaction terms I7+ I5.
Following the computations in [19] we get:

1t &
=2 / /T > bij(pips(wi— ;) — pips (i — 1)) hidads
0 3 .

7,7=1
1 [ .
_?2/0 /Tg > bipi (i = ) (W — i) dads
3,7=1
1 /[ "
:7?/0 /[[‘3 > bigpip (i — ;) (u; — ;) dds
ij=1

1 /t / . I -
€2 o0 Jrs iJZ:1 J J J €2 o0 Js Z J J J

ij=1
1/t " R
*:2/0 /TS > " bijpip; (: — ) (1 — ;) dwds

ij=1

I - -~
:—6—2/0 AS Z bwplp](ui—u])(uz—ul)dxds

,j=1

l L2 g |, [, 3 nomminer
+— bi jpipjlu; —uj] d;vds——/ / bi jpipjlu; — ;| dxds
2¢2 J, Tsi;I iPiPj g 2¢2 J, Tsi;I iPiPj J

1 [t - _ L
= [ LS bty )= ) (s

,j=1

1 S 2 1 S _ o _ 9
:@/0 /Tg i;:lbwpipﬂui—uﬁ dxds_@/o /T:s izlbwpiﬂﬂui—ujl dxds

1/t - _ o
—;2/0 /T% > bipi(p; — py) (wi — ;) (1 — ;) daedss

i,j=1
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S b= ) ) s

ij=1

1/t - 1/t " L
:?/0 Asijz_:lbi7jpipj|Uin|2dde262/0 /1rSiJz_:1bi7jpipj|Uin|2dde

1 [t . _ _ o
5 [ L3 bami = s i)

2,j=1

Lot o
*272/0 /T > bijpipil (ui — uy) — (a; — ;) [Pdads.

4,j=1

Therefore I7 + Ig reduces to:

IR L o
=5 [ 3 bamilo = i) s ) s

ij=1

1 [t o
’@/@ /T3 > bispips|(ui —uy) — (W —1;)|* dads.

ij=1

The friction terms and the error part Ig+ I1o+ 117 becomes:
Ig+I1o—|—I11:—1/t/ i:M-p-|u-—ﬂ-|2dxds+/t/ zn:&é(ﬁ-—u-)dxds
e Jo Jrs 0 JTsi{ Pi

Finally the viscosity parts 12+ I13 rewrite as:

2 t n t n
——V//ZML(p¢)|D(ui)\2d:rds—K// Z)\L(p,;)|divu7;|2dxds
€ Jo Jrs i €Jo Jr3 i
n

2 t t n
+ l/ / ZML(Pi)DUiiDﬂidl‘dS—i— Z/ / Z)\L(pi)divuidivaidxds
€ Jo Jrs €Jo Jrs =

i=1

2v [* - v [t ” .
:——/ / Z,UL(Pi”D(ui—ﬂ¢)|2dxds—f// ZAL(pi”le(Ui—ﬂi)deds
€ Jo Jrs i €Jo J13i5
v (1 n B )
T ZNL(Pi)D(Ui):D(uﬁui)dxds
€ Jo Jmio

t n
_%/ /T Z)\L(pi)divﬂi(divui—divﬂi)dxds
0 JT =y

and we end up with (3.8):

EtOt(ﬁ€7mEajE‘p:7mvj)

t 1 [t n o
e | 32 bl =)= (o=
+ ! /t/ Zn:M \ ﬂ|2dxd5+2y/t/ Zn: (pi)| D (u; — ;)| *dzxds
) iPi|Wi — Ug — i i~ Ui
e Jo Jrs i ’ € Jo Tr'“”z':1uLp

¢ n
—l—z//Z)\L(pi)\div(ui—ai)\Qda:ds
€Jo Jre i
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1 t n
g—f/ / Zp(p”ﬁi)divﬁidxds
€Jo Jr3i
L&
- = PV (u; — ;) @ (u; — ;) ) deds
Iy T )8 0 )
IR
- = Pi V; — U5 VfLZ V; — U4 dxds
) DICEANATES
1 [ . " "e= = = B = fo
<, TSZM(M (pi)Vpi— 1" (pi) Vi) (v =) divar; — (u; — U;) divv; ) dads
=1
IR
[ L e o) = ) (0 ) vt~ (s~ ) Vv dods
0 VT
I -
—3/ / > biipi(p — pi) (W — i) (1 — ;) dads
& Jo Jr3 50
t n
Pi_, _
+/ / —e(u; —u;)dxds
0 TSZ}M ( )
2”/t/ f:u (03)D(@;) : D(u; — ;) dzeds
- L\Pi i): i Ui
€ Jo Jrs i

t n
B %/ / Z)\L (pi)diVﬁi(diVUi *diVﬁi)dxds.
0 JT

|

3.1. Stability result and convergence of the diffusive limit. In this
part we prove the stability result using the estimate contained in Proposition 3.1. Let
us present the “distance” used to measure the difference between a weak dissipative
solution of (3.2) and a strong solution of (3.4)

vi=[ 3 <§p

The proof presented here follows the ones contained in [13,24], in particular generalizing
the results of the latter by including the capillarity and viscosity terms in the model
under investigation. In addition, we shall also take advantage the enlarged formulation
(1.8) in terms of the drift velocity [9] to be able to handle more general Korteweg tensors
with respect to the ones considered in [19]. We stress that, under the hypothesis of y-law
pressure, with v > 1, we have

2
Pi

T
2P

i D

Pi

2
+h(Pi|ﬁi)> dz. (3.15)

and therefore
p(pilpi) = (v =1)h(pi|ps),

this means that the term in (3.8) involving the pressure can be controlled in terms of
the relative entropy. To control the lines involving the Korteweg tensor in (4.6) we make
use of the results contained in [9], we state below for the sake of completeness.
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LEMMA 3.1 ([9, Lemma 35]).  Let us assume u(p):p% with v>s+2 and s> —1.
We have

Pl (p) =1 (P)* < C(p)(plp),
with C(p) uniformly bounded for p belonging to compact sets in R x T™.

Finally, to take full advantage of the diagonal relaxation term in (3.8), as already
done in [24], we strengthen assumption (A2) as follows:

(A2b) Let {b;;}';_; be such that hypothesis (A1) holds and assume that for any
index i € {1,---,n} we have M;p; >0.
In view of (A2b), in the proof of the main result below, we shall use
M = min;e(y,... ny M;>0.

THEOREM 3.1. Let T>0 be fized and let (p¢,m<,J¢) be as in Definition 3.1 and
(E,ﬁz,j) be a smooth solution of (3.4). Assume the pressure p(p;) is given by the y—law
pl such that v>1. Let u(p;) :p% with v>s+2 and s> —1, and assume

AL (P) | Lo (0,901 (1)) 118 (03) | | Low (0,011 (19y) S B

for a positive constant E independent on . Let us also assume that p§e
Le°([0,T]; L>=(T?)) and there exist two constants k,N such that:

0<k<pi<N inR*0<t<T. (3.16)
Finally, assume condition (A2b) holds. Then, for any t €[0,T], the stability estimate

U(t) < (U(0)+ Cre+Ce)exp®, (3.17)
holds true, where C>0 depends on M and C is a positive constant depending on T, K,

k, N, J\//.T, the L' bound ((3.7)) for pS, assumed to be uniform in €, p; and its derivatives.
Moreover, if ¥(0)—0 as e—0, then as e—0

sup ¥(t)—0.
te(0,T]

Proof. In the following, we shall estimate the right—-hand—side of (3.8)
8 1 t n
ZII ;:—7/ / Zp(pi|ﬁi)divﬁid$d5
=1 €Jo Jr3i
I AR
—*/ / Z(PiVﬁii(Ui—ﬂi)®(ui—ﬂi))dl‘d5
€Jo Jr i
J SRR
—— piViu;: (v, —0;) ®(v; — ;) ) dads
L e )
IR
o [ 00V @)V ) (0 0 div s (s~ ) iv ) dads
0 JTH—y

_%/0 /TS;Pi(/ﬂ(pi)—M/(pi))((v—ui).Vdivui—(ui_ui).Vdivvi)dde
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1 t n o i )
_:2/0 /11‘3 > bigpilps —pi) (W —wi) - (W — ;) dads

ij=1

t n_o
+/ / &éi-(ﬂifui)dxds
0 Jr3 ;= Pi
v (! = _ _
——/ / Z,u,;(pi)D(ui):D(ui—ui)dxds
€ Jo Jm3i4

t n
_ %/ /]Ts Z)\L (pi)diva;(divu; —diva;)dxds
0 i=1

term by term, using the strict positive terms at the left-hand-side and in terms of the
quantity (3.15). Following standard arguments [13,22,23], and using in particular that
@; and their derivatives are O(e), we readily obtain

T <~ p(pi|pi) diva; dxdsgC// h(p;i|pi)dxds;
i< [ [ Slptelpdvl [ [ neia

1/t 2 ¢ - m; m»z
I gf// PV (u; — ;) @ (u; — u; dmdsSC/ / pi| — — —| dxds;
1t & R A A
|Ig|§*// |sz1Il(vz—@l)®(vl—ﬁz)|dﬂcds§6‘// Pi J—TZ dxds.
€Jo T3; 0 ']1‘3; pi i

Then we bound Z, by means of Young’s inequality as follows:
IRV AN AR : -
i< [ [ o (0 V0= (5Tl (0= ) v — g~ ) v s
0 /T =1
t n
<C [ [ S nlu o) ="V [0~ dods
Pi=1

C t n ) ) )
Jr?/o /Tszpi|ﬂ//(Pi)VPi*NH(Pi)Vpi||ui—ui|dxd5
1=1

C t n 2 1 t n
<= Pi dxds—"i/ / Mip;
M/O /11'3 ’Lz:; 1262 o JT3 lz:;

being 1 (p;)Vp; — ' (pi)V pi = 212 (v; —v;). For I5 we use Lemma 3.1 to obtain:

m; o my

Pi Pi

= 2
Ji {Z — dxds,

pi pz

1 rt n
\Islﬁg/ / > i (pi) — ' (i)l | (vi = 0) - Vdivt; — (u; — ;) - V dive; | dads
0 T
t n
<[ [ 1 00 =4 )10 — | dads
0 JT o
C K g ’ = _
= T3Z|Pi(ﬂ (pi) =1 (pi) | [us — ;| dwds
i=1

o[ L5 (o 7]
<= hpilps) +pi|———| |dzds
°J z(< ) _

Pi Pi
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1262/ /WZMM

We estimate the interaction term Zg in (3.8) when b; ; >0 as in [24]:

Tol <~ // S Pbegon (75— ) s — ) i — 5 s

zgl

c [t B )
S?// Z‘bivjpi(pﬂ'_pj)(ui—ui)|d$ds

0 JT3; 51
C/t/ n . 2
<= p;—pil dzds+ — // M; p;|u; — ;| *dads
M Jo ngz:l'] 4 12¢2 Z | |

t n
SC/O /w;h(ﬁﬂpi)dxds—leQ/ / ZMPJUZ ;|2 dds.

In the first line we use again %; —%; =O(¢) and in the second (3.16) and Young’s in-
equality, while the last inequality follows from the strict convexity of ¥, which is again
a consequence of (3.16). Indeed, in the framework of solutions with bounded density,
|pi — pi|* can be controlled in terms of h(p;|p;), as shown also in [17,22]. For Z7, since
€; =0(e), using Young’s inequality we get:

\I7|<// Z*Iezlluz—uzmxds
<7/ / Z e|2dxds+1/t/ zn:M‘p‘|u'—ﬂ-\2dmds
S == 7o £ 42 o e iPi|Us i
4
<Ce¢ T—l—@/ / ZMPsz a;|*dxds.

Finally, as in [13], the viscosity terms in Zg can be controlled thanks to the uniform
bounds of ur(p;) and Ar(p;), and again using that ; is O(e). Indeed:

mg

i pz

da:ds

v (1 "
7 218,1+I&2;:_?/ /3ZML(pi)D(ﬁi):D(ui—ﬂi)dxds
0 JT% =1

t n
a %/0 /TB ZAL(Pi)diVﬂi(divui —divi;)dzds
i=1

and

[T <= //ZM )| D (u; — ;)| deds +vCTe;

Zs 2| < // ZAL (pi)|div(u; —@;)|* deds +vCTe.

Therefore, collecting all estimates above, we obtain:

o | [
+— M, pi|u; —u;|dxds
262 0 TS;
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1 t n
N
o [ [ bl =) - (1) Paads
€ Jo TS =1

v [ - v ! -
+f// wr(pi)| D(u; —u; deder—// Az (pi)|div(u; — ;) |Pdxds
) L mteaipt—aaPasds o[]S e ldin(es )
t
gqf(0)+ce4T+uéTe+é/ W(s)ds,
0

and, since from relation (1.2) we have

v t n 2
< — . “ ) . N2
0< 26/0 /TS; (/\L(Pz)+ n/%(m)) |div(u; — ;) |*dads

v t n v t n
<— i) | D(w; — g deds—i——// Az (p:)|div(u; —@;)|*dzds,
—e/o/mi_zl““’))' (i) Pdeds -5 [ [ 3 Shu(pldiv(as =)

see also [13], the Gronwall lemma concludes the proof. |

REMARK 3.1. In the above estimate, we keep the dependence on the viscosity constant
v explicit, showing in this way the final estimate (3.17) is indeed uniform for 0 <v < 1.
In other words, our results apply also for the Euler-Korteweg case, and the corresponding
estimate is given by taking the limit v — 07 in (3.17), that is

U(t) < (T(0) + Ce*)exp.

4. High friction limit in the case M;=0

This section is devoted to the study of the high—friction limit when no diagonal
damping is present, and without diffusive scaling. Hence, referring to the discussions of
Section 2, the system we are going to study is the following:

Opi +div(pu) =0
O (piw;) +div(pju; @u;) — 2vdiv(u(p;) D(u;)) — vV (A (pi)divu;) + V)

: 1o
:leSi— Emeprj(uZ—uj)
j=1

O (pivi) +div(pv; @u;) +div K; =0.

(4.1)

The argument we shall use is closely related to the ones in [19]; however, in the present
work, we consider viscosity effects and a more general class of capillarity coefficients, the
latter thanks to the augmented formulation already presented in the previous section.
Thus, for readers’ convenience, we recall the following relations involving in particular
the drift velocities v;:

Vu(p;
Ui,up(.p )7 mi = piti, Ji=pivi =V u(pi);

K2

1 1
divS; =p;V <k(Pi)APi + 2k/(Pi)|vPi|2> =div(u(p:) Vo) + iv(/\(pi)di‘fvi);

1
div K; = div(p(pi)' Vi) + §V(/\(pi)divui).
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As already emphasized in Section 2, in system (4.1) we made the particular choice
pr(pi)=p(pi) and AL(pi) =A(pi) =2('(pi)pi —p(pi)), as in [9]. This allows us to
rewrite the viscosity terms in the forthcoming relative entropy calculation (4.6) in terms
of the quadratic quantity already used (3.15); see subsections below. Indeed, we recall
that from the Hilbert expansion of (4.1) performed in Section 2, in the present high
friction limit without time scaling, which does not lead to a diffusive limit, the viscosity
part is not an O(e) error term, and therefore it can not be managed in the same way as
in Section 3.

Hence, let us now compare via a relative entropy inequality weak solutions of (4.1)
with strong solutions of system (2.25), that is:

Orpi +div(p;u) =0
Oy (pin) +div(piu@a) — 2vdiv(u(p:) D(w)) —vV (A(p;)diva) + Vo] =divS;+ R; (4.2)
0 (piv;) +div(p;v; @) +div K; =0

where m; = p;ui, J; = p;0; = Vu(p;), and R; is defined as in (2.26):

n

Ri="53"[divS; — Vp(p;)] — divS; + Vp(p;)

j=1
S [udiv () D@+ VT (A7) div )] — 2udiv () D) vV (A7) div )
= TdiVT_diVTi+VdiVDT —vdivD;;
p p
divT; =divS; — Vp(p;);
divl = ZdivTi;
i=1
div D; =div (u(pi) D(@)) +V (M(pi) diva);
n
divD=" "divD;.
i=1
The definition of weak solutions of system (4.1) is the following.
DEFINITION 4.1 (weak and dissipative weak solution). A triple (p¢,m°, J¢) (where
ﬁE:(pia 7/0;)7 mez(miv am%)7 JE:(Jlev ?Jfl)) such that
0<pf €C°([0,00);, L1 (T%));
(pus, pivf) € C°([0,00); L (T%RY))

is called a periodic weak solution of (4.1) if for any i=1,---,n

Vpiug € L((0,7); L(T°)?)
Vg € L((0,1); L*(T%)%)

pi € C°([0,00); L7(T?))

p(pf) D (uf) € L'((0,7); L1 (T%)**%)
A(pf)divug € L1((0,7); L (T%))
(p5)?us € L((0,7); L' (T%)?)
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and (p§,us,v§) satisfy for all ¢; € C5([0,00);C*(R?)) and ¢, ¢; € Cj([0,00);CH(T?)%):
[T [ @ a gt e dedi= [ St w0060
o Jrio 5=
—/ / Zpgugatdﬁri-p;u;@ufiV(ﬁH—PTdiVW-FM(PE)Uz‘-Vdivcﬁﬁ-vll(P;)'(V¢ivi)d$dt
0 I35

f/ /z(EV)\(pE)vvgdiwpﬂrlA(pﬁ)vg-Vdivq&i)dxdt
o Jre e \2 2

+1//OO/ Z(2u(pi)D(ui):V(Z}i—i—)\(pi)divuidivqﬁi)dmdt
0 I35

L[ NS e e e
b1 [T bsstei - i) oo
€Jo T3

ij=1

:/T3 Z(pfui)(%O%qSi(a:,O)d@

[ ] S tuidupit it @ Vo 4l Vvt Vu(ph)- (Viorws)dods
0 JT35

—/ / Z <1V)\(p§)-vfdivnpz-+1)\(pf)vf-Vdivg0i> dxdt
o Jrs2\2 2
= [ > @0) (w00

5=

If in addition nye; (p¢, ¢, J¢) € C([0,00); L' (T?)) and the integrated energy inequality
of (1.11)

> ~E ~ € Te 1 > - € €], € €
[ Sl O O T @0 Ot o [ [ 3 bisotslui s Pote) o
0 2e Jo T3, =1

+2V/0 ASEN(PEND(U;)dedt—!—V/O /TB;)\(pmdivuﬂdedt
<40t (p°(0),1m(0), J(0))6(0) (4.3)

holds for any 6 € W1H°°([0,00)) compactly supported in [0,00), then we call (ﬁe,mf,jf)
a periodic dissipative weak solution.

We say that a weak periodic (dissipative) weak solution (p¢,mc,J¢) for (4.1) has
finite total mass and finite total energy if for any T >0 there exists a constant K >0
independent of € such that:

n
sup / prdeK;
T3 =1

te(0,T)

" 1m? 1T p
SUD / ( gty T )dng. (4.4)
te(0,T) TS; 2 pf 2 pS y—1

We recall the definition of the relative entropy where the subscripts ¢ have been
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omitted for simplicity:

Wtot(f’ m j|iaﬁlﬂj):Zn(plamlajl)_Zn(ﬁumlv‘jl)_anz (ﬁzamzvjz)(pz_ﬁz)
i=1 i=1 i=1
_anL i, My, z)( my; mz)_ani(ﬁiamivji)(‘]i_ji)' (45)
i=1
PROPOSITION 4.1.  Let (p¢,m¢,J¢) be a dissipative weak periodic solution to (4.1)

as in Definition /.1 with finite total mass and energy (4.4) such that (A1) holds. Let
= (ps,m; = pit, J; = piv;) be a smooth solution to (4.2) such that:

wi,atwi,Vwi,D%i,D?’pi €L°°([0,T];L°°(T3)), foranyi=1,---.,n
then:

A = = |t
Ztat(ﬁevmi‘] ‘ﬁ 7 J)

e - 5
B +§6/() /Ta Z bijpipslui —u;|"dxds
1,j=1
+ n
+2V// Z w(pi)|D(u ﬁ)\Qdmds—i—V// Z)\(pi)|div(ui—ﬂ)|2da:ds
T 721 0 JT3 5
§2V/ / ZpiD(ﬁ):(vifﬁi)®(ui7ﬁ)dxds
0 T35
t n
v [ S p i) (o)~ (p)) (s~ @)dads
0 JT2 4=
+ n
v [ Do (0¥ (V) i~ W
0 '[[‘3.
Pip
i)dxds — i|ps) divadad.
//TSZ uua:s//pr|p ivadxds
—// Z(inﬂ:(ui—ﬁ)®(ui—ﬂ))dacds—//ZmVﬂ:(Ui—ﬂ,-)®(vi—17¢)dxds
o J135 5 o J13 5
t n
- / / Do (Vi (V) (0= ) vt (s ~B) v s
T3 T
//sz (pi) =1 (5:)) (v =) - Vdiva — (u; — @) - Vdive; )dads. (4.6)
T3

Proof. Using the definition of periodic dissipative weak solution as in Definition
4.1 and the regularity of strong solution of (4.2) we compute the first two terms of (4.5),
while the weak formulation allows us to estimate the remaining linear parts.

Step I: The Energy Inequalities.

As in Section 3, we use the following test function in (4.3):
1 for 0<s<t

O(s)=¢ —+1 for t<s<t+§ (4.7
0 for s>t+9.
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Passing to the limit as § —0 we get:

A€ A€ e 1 ! -
a5 0 0T+ 5 [ [ bisouplui = Pads
ij=1

¢ n t n
+21// / Zﬂ(ﬂi)|D(ui)|2d$d$+V/ / Z)\(pi)\divm‘?d:cds
0 JT 5oy 0 JT oy

<Siot(p(0),10°(0), J(0)). (4.8)

We compute the energy associated to the strong solution (p;,m;,J;) multiplying Equa-
tions (4.2), and (4.2), by % and v; respectively. If we sum all the contributions inte-
grating over (0,7) x T? we obtain:

<S1or (3(0).77(0), J(0)) + / / > Readeds (4.9)

Step 1I: Equations for the difference.

Now we evaluate the linear part of the relative entropy using suitable test functions
in the weak formulation according to Definition 4.1. If we take the differences (p; —
Di, Pil; — Pili, pv; — PiU;) they have to satisfy:

t n
—/ / Z(Pz‘ — pi)0si + (piw; — pit) - Vapidads
0 T 4=

= /TsZ<m—<w,0>—m(:c,om(x,o»dx,
=1

t n
—/ / > (piwi— pia) - 05 i+ (piws @ ui — i @1) : Vi + (p] — p) ) div didds
o J13 i
t n
[ [ Dot~ @) Vel o+ (Vo= Vi) Vs
i=1
—1// Z(V)\(pi)vi—V)\(ﬁi)m)divqbi—i—()\(pi)vi—)\(ﬁi)ﬁi)Vdivgbidmds
2Jo Jrsiz
t n
—|—1//0 A‘sZ(Qu(pi)D(ui)—Z,u(ﬁi)D(a)):ng,-—k()\(pi)divu,-—)\(ﬁi)divﬁ)div@dxds
i=1
1 t n ¢ n_
- bi,jpip;(wi —uj)pidzd ipidzd
+E/O /T?’i,jz_l ipip; (us —uj)psdx s+/0 /1r3;R¢ xds

= [, o) w.0) = i) (.00 .0

and

t n
—/ / Z(Pivi—ﬁi@i)'3s<,0i+([)iui®vi—ﬁiﬂ®@i) :Vidxds
0 JT iy
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t n

0 JT3 5

1 t n

+§/ / Z(V)\(Pi)ui—V)\(ﬁi)ﬂ)divcpi+()\(pi>ui_)\(ﬁi)a)Vdiv%dxds
0 JT% o
Z/TSZ((p”’i)(x’o)_(ﬁiﬁi)(@"»o))@(m,O)dx
i=1

where 1,0, are Lipschitz test functions (¢,¢ vector-valued) compactly supported in
[0,00) in time and periodic in space. In the above formulation we choose:

where 6 is defined in (4.7) and we recall that m;/p; =4 is indeed independent from .
The previous relations become as § — 0:

i—1 2 Pi 2 Pi s=0
L& 12 1J°
— O | W(p)—=———== i — p;) dad
//;(m 52— 5 ) (i) dods
¢ 2 1 1m;2 1J
—/ / ZV B (pi) — = ——— == | (piu; — p;ui) dzds =0, (4.10)
0 JT3 2 pi 2 pi

/Tszmz pii —pit) / /Ts (ﬁ ) (piwi — py)dds
_/ /Egi((piui(@ui_ﬁiﬁ@ﬂ)ZV(Z}:) +(p(pi)_p(ﬁi))diV<T;i)>dxds
/ /TJZ< pl)vl)ww(m) (VialpeJoi = Vu(ﬁi)ﬁi):v(zf:))dxds
,5/0 /TB;((V/\(M)WV)\(pi)vi)div (%)HA(M v A(pz)%)ww(z ))dxds

+I//0 /TSZ(Z,u(pi)D(ui)—2u(ﬁi)D(ﬂ)):Vﬂ—&—()\(pi)divui—)\(ﬁi)divﬂ)divﬂdxds

t n
+1/ / Z bi,jpip; (wi —u; < )dxds—F/ / ( >da:ds— (4.11)
€Jo Jr3 Ty TS} Pi

and

" J; _
Z — (pivi — pi0;)
T3 5 Pi

// ( ) (psvi — pi; )dzds
T Pi
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/"j;zz(pmm@h praon) v (£) e

[ L3 (o= stpamwaie () + Tnton =t () ) ass
= SZm(pi)ui_wﬁi)a)div (2)

//TBZ (pi)ui = A(pi)a )de(i)dxds—o (4.12)

‘We notice that

m; 1t -
bi jpip (f) dxds:f/ / biipipj(u; —uj)-udrds =0,
/Azjj w)- (% ), 32 ot )

i,j=1

thanks to the symmetry of the matrix {b; ;}; j=1,... n. Recalling the definition of the
relative entropy (4.5), and using (4.8),(4.9), (4. 1()) (4 11), (4.12) we obtain:

d"c+7/ / Z b’L ]pzp]‘uz UJ| dxds
<-— 2V/ / Z p(pi)| D (ui VPdeds —v / / Z/\(Pi)|diVui|2da:ds
i=1 T =1
t n
+21// / ZM pi)|D(w)| d:cderu/ / Z)‘(ﬁi)|divﬁ|2d:cds
0 JT8 T
+V/ /Z(QM(Pi)D(ui)_QN(ﬁi)D(ﬁ)):Vﬂ-i—()\(pi)divui—)\(ﬁi)divﬂ)divﬂdxds
o J13iZ
1m 1 j¢2 (ml)
s **f**, i —pi)+0s | — iU — Dill
//Ts; ( 2 P 2 p; (pi—pi) 2 (p pit)
Ji o
+0s (T) (pivi — ps0;)dxds
Pi
AR 1m? 1.J;
- Va h/ pi _7%_7 _1 iU — pit)dxds
/(),/TJZ < (P:) 2 pi 2p>(p piti)

//TSZ p(pi) dlv(m)d:vds

t
—//Z(piui(@uj'—ﬁﬂ]@ﬂ):V’L_L-‘r(piui@’l)j—ﬁiﬁ®1_)j):V’Uidde
0 ']1‘3. 1

//Zu pi)[(vi — ;) Vdivi— (u; — @) Vdivy]
T3

+Vu(pi)[Via(vi — ;) — VUi (u; — @)]dxds

7%/01 /Tg ;an/\(pi)[(vi — ;) diva— (ui — @) div ]

+X(pi)[(vi —05)Vdiva — (u; — @) Vdivo;|deds

EtOt(ﬁ67m67j6|57ﬁL7j

n

+ / / > (o) — () @ div s — 0,V div) + (V) — V(o) [Vt — Vaawi s
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//Z (i) N[aVdive; —9;Vdiva)
T3

+(VA(ps) —VA(p:))(udivo; — v;diva)dzds.

As in Proposition 3.1 we observe that the last two lines are equal to zero thanks to the
property (1.9) of the stress tensors S;, K;. Using the relation h"(p;) =p'(p;)/p; we find
that:

*/ /TSZash/(ﬁi)(pi7ﬁi)+vxh,(ﬁi)(piui—ﬁiﬂ)dzds

// Zp pi)(pi —pi) d1vu—|— Vp(pz)(u u;)dsdx.
TS

Then, the following quantity
t i 1, _ 1 9 o
Zas §|U| (pi—pi) +Va 5'”‘ (piu; — pyu)dxds
0 JT 5y

t n
T3 1

can be rearranged by multiplying the momentum equations of the strong solution %, v;,
by pi(@—w;) and p;(0; —v;) respectively. We get:

//WZ< <|u|2> pi)+vm(;|u|2)(piUi_piu)—asu(piui—piu)>dxds
—/O /TSZWZ(mui®ui—mui®ui)dms
/Ot/wimw:(wﬂ)@ui )+ pzvp( 7i)(@—u;)

] B o t n
_%divSi(ﬂ—ui) - %Ri(a—ui)dzds—FQV/ / Zdiv(u([n)Dﬂ))Z? (@ —u;)dzds
7 7 0 JT3° 7

t n ,
+1// / ZV()\(ﬁi)divﬂ)@(ﬂ—ui)dﬂcdS
0 JT3 .5 Pi

nd
t n 1 - . 1 o, o ) N
Z as 7‘Ui| (Pi_Pi)+Vx *|Uz’| (Piui_Piu)—asvi(piui—piu) dxzds
0 JT 5y é 2
t n
7//quji:(piui®ui7piﬂi®l_1i)d’l}d5
0o J135
t n
_‘// Z(PN%‘:(W—U) (v —05) + 2 div K (0 —Uz)>dxds.
0 VT Pi

(2

From the previous calculations the relative entropy verifies:

1/t -
- b 0: 04w — s 2ded
6/0 /1T3i,jz—1 i, Pipj i — uj|“drds

A - — = |t
Etot(ﬁevmeﬂ‘]s'ﬁamu‘])
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t n t n
S—QV//Zu(pi)|D(ui)\2dxdt—V//Z)\(pi)|divui|2dxds
o Jr3i o J13i
t n
+1/// Z(2M(pi)D(ui):D(ﬂ)—l—)\(pi)divuidivﬂ)dazds
T3 %
2 d i) D) i)dxd
+V//11‘3ZIV w(pi)Du) (u u; )dxds
t n
N 1o\ Pi -
+v V(A(p;)diva) — (u —u;)dzds
[ [0 -w)
//Zp pilpi) dlvudacals—&—//z:pZ (1 —u;)dxds
T3
—/ / Z(pZ'Vﬂ:(ui—ﬁ)@)(ui—a)—l—in@i:(ui—ﬂ)®(vi—1§i))dmds
T3 %

/ /WZM pi) (v — 1)V divi— (u; — @)V div ]
+Vu(p:)[Vi(v; —0;) — VU (u; — @)]dzds
—;/Ot/TBi_ilV)\(pi)[(vi—vi)divu—(ui—u)divvi]
A p)[(vs— ) Vdiva— (u; — @)V divay]deds

// Z'Dl< (i) div Vo, + Y u(pi) V1,
TB

1= 1‘0Z

1 1
+ §V/\(,6i)div17i + 2/\(pi)Vdivvi) (@ —u;)dzds

/ /T ZPZ< w(ps)divtVa+'Vu(p) Vi

3z 1pz

9
i=1

Concerning the viscous terms I + s+ I3, as already said above, here we should
take advantage of the particular choice for Lamé constants to rearrange them properly
and then control them using the relative entropy. To this end we compute

t n t n
11+IQ+I3:—21// / Zu(pi)\D(ui—ﬁ)Pd:ﬁds—l/// Z)\(pi)|div(ui—ﬂ)|2dxds
0 T 0 T 4=
t n
72y/ / > 1(pi)D(w): D(u; — u)dzxds
0 JT iy
t n
—V/ / Z/\(pi)divﬂ(divui—divﬂ)dxds
0 JT% =
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t n ,
+2y//Zdiv(ﬂ(ﬁi)l)ﬂ))&(a—Ui)dzds
0 TSi:l Pi
t n ‘
+”//ZV(A(ﬁi)diva)@(a—ui)dxds
0 JT% oy i
::f1+j2+j3.

Applying the divergence theorem in I we get

o R ay. VE) ooy P e N o (s — i dads
i,=2 /O/jp;pp(). L @ (=) + P div(D (@) pi(us — 1)

t n , ,
+u/ / Zvi)mdivupi(ui—u)—i—)\;pl)V(divu) pi(u; —u)dxds,
0o Jri P i

while I3 is equal to:

s , t n ‘ aw v — i Lﬁz) iv m (w: —u)dxds
f= Q/O/T%lelm). SE% 6 (=) + S div(D (@) (s~ 0)dd

Pi
t n - .
—V//ZV)\(pz)divﬂpi(ui—ﬁ)—&-)\(_pl)
0 JT 5y '

— Vdiva p; (u; —@)dzds.
Pi Pi

Using the definition of v;, A(p;) =2(p' (pi)pi — (p;:)) and the property divD(a)=Vdiva
being a symmetric matrix, we have:

I+ 13 :21//0 /Egiz_;piD(u) (v —0;) @ (u; — w)dxds
" / 3oV i) () = (5) s = ) dads

t n
+2’// / ZPi(N”(Pi)VM —u"(pi)V p;)divi(u; —u)dzds.
0 JT
Hence, we conclude that the viscous part I1 + I3+ I3 rewrites as follows:
t n
Il+12+[3:—21// / Z/‘L(Pi)‘D(Ui—ﬂ)FdIds
0 JT =
t n
_V/ / Z/\L(Pi)|di"(ui —)|*dzds
0 JT? =1
t n
+2v / / S piD(a): (vi—5) @ (us — ) dads
0 JT =
t n
”V/ / > piV(diva) (i (pi) — ' (pi)) (i —)dads
0 JT 5=y

t n
+2V/ / Zpi(ﬂﬂ(l)i)vm—M”(ﬁi)vﬁi)di‘fﬂ(ui —u)dxds.
0 JT% =y
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Let us recall that divtVﬂ:~Vdivﬂ and Vdivy; =divVy; since Vo, is symmetric,
being v; a gradient. We define I3 as follows:

t n A
_/ / Z (M(pl)—pzlu,(pl)> (VdiV’li('Ui—@i)—VdiV’Di(ui—ﬂ))dde
0 JT3 ;=7 Pi
t n _
*/ / Z (Vu(pz)pru(ﬁz)> '(Vﬂ(vi*’l_)i)7V1_)Z‘(ui7ﬂ))d1'd5.
0 JT3 5 Pi
Since v; =V u(p;)/pi then I3 reads as:

/Aaz ( - )>(Vd1"u( i —U;) — Vdivo; (u; —a))dzds

pi

//Tazf’z i — i) (Va(v —0;) — Vi (u; — @) )dads.

Moreover, we define

Iy=— ;/t/Ti ()\(pi) ”jx(ﬁi)) ((v; — )V diva— (u—1a)V dive)deds
_7/ /TSZ<V>\ 2:) vx( )) (v —0)div i — (s — @) div ;) dwds.

Since A(pi) =2(pipt’ (pi) — p(pi)) one has:
:_7/ /TSZ < ppii)>((vi—m)Vdivﬂ—(u—ﬂ)VdivT))dmds

*/0 /TSZm(#”(m)vpi*ﬂ/'(ﬁvz)vﬁvz)((v v;)diva — (u; — ) divo;)dzds.

Therefore:

Is+Ir+Ig+Ig=1I3+1,

__A Aszpi(u/(pi)vpi_uu(ﬁi)Vﬁi)((v—ﬁi)divﬂ—(ui—ﬂ)divfzi)dg;ds
//ngpz (pi) — 1 (5:)) (v —1;)Vdiva — (u; — 1)V dive;)deds

—/ / Zpi[(vi—@-)Vﬂ(vi—T)i)—(vi—ﬁi)V@i(ui—ﬂ)]dxds.
0 JT3 i=1

Finally, the relative entropy verifies (4.6) and the proof is complete. |

4.1. Stability result and convergence of the limit. As in the previous
limit, with the relative entropy estimate (4.6) of Proposition 4.1 at hand, we are able
to control the relaxation limit using the quadratic quantity (3.15):

+1 2
5P

Ji _ i

pPi  Di

i P

+h(Pi|Pi)> da
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n 1 ~ 1 ~ ~
Z/TBZ <20i Jus — ) + P Ui_'UiQ"'h(pipi)) dz.
=1

The proof of our convergence follows the blueprint of [19], again generalizing the results
of the latter by including viscosity terms and considering a more general class of cap-
illarity coefficients. As already mentioned above, this last generalization can be done
thanks to the enlarged formulation (4.1) in terms of the drift velocity; see [9] and Lemma
3.1 in Section 3. The crucial estimate in the proof done in [19] under the framework
(A1) is the following control of the kinetic energy in terms of the interaction energy;
see [19, Theorem 9 and Remark 12],

1 n n
3 D bijpipilui—u*> 6 pFlus —ulf? (4.13)
i,j=1 i=1

for a constant § > 0.

THEOREM 4.1. Let T>0 be fized and let (p¢,7m¢,J¢) be as in Definition j.1
and (p,m,J) be a smooth solution of (4.2). Assume the pressure p(p;) is given by
3

s
the y-law p}, v>1. Let p(p;)=p;> with v>s+2 and s>—1, and assume that
ps € L>([0,T); L>=(T?)), namely there exist 0<k,N such that

0<k<pi<N inR3 0<t<T. (4.14)
Finally, assume condition (A1) holds. Then, for any t€[0,T), the stability estimate
U(t) < (V(0)+eC(8) (12 + 1)) expC @ 11 (4.15)

holds true, where C is a positive constant depending on T, K the L* bound (4.4) for
ps, assumed to be uniform in €, p;, and its derivatives. Moreover, if ¥(0) —0 as e —0,
then as e —0

sup ¥(t)—0.
t€[0,T]

Proof. Starting from the relative entropy calculation (4.6) of Proposition 4.1, and
the definition of ¥(t) we have

1 t n t n B
v+g | [ 2 begpipfus—u P+ I/ S oup)| Dl — )P
i,j=1 =1
t n
—l—u//Z)\(pi)|div(ui—ﬁ)|2dxds
0 JT? =1
9

<T0)+) T,
i=1
where

9 + n
Zjl ::2u/ / ZpiD(a) (v —0;) ® (u; — w)dxds
=1 0 /T35

+ 21//0 /TS ;in(divﬂ)(u’(m) L (p0)) (s — @)
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t n
v [ > oo (0 V=4 (V) v — s
T3 “
Pi g
i)dxds — i|pi) divadad
//TSZ uuxs//pr\p ivadzds
—/ / Zinﬂ:(ui—ﬂ)®(ui—ﬂ)d1‘ds—/ / Zinﬂ:(v,——ﬁi)®(vi—17i)dxds
0 T3 o o J13 i=1
t n
- / / Do (V= (V- (0= ) v (ws = @) v s
T3 4

//TSZPZ (pi) = 1 (pi))((vi = 0:) - Vdiva — (u; — u) - Vdive; ) dwds.

Similarly to what we did for Theorem 3.1, we shall estimate this remainder term
by term; the main difference is related with the different scaling we are using here,
which in particular forces us to rewrite the first three terms as shown above, and treat
them as quadratic terms controlled by ¥, thanks to the particular choice py,(p;) = u(p;)
and Ar(p;) =A(p;i). Specifically, applying Young’s inequality and using Lemma 3.1, and
1 (pi)Vpi=(s+1)/vi, we get:

t n t n
|J1|§CV/ / Zpi|ui—a|2da:ds—|—01// / Zpi|vi—ﬁi|2da§ds,
0 JT% 0 JT
t T t n
|J2|§CV/ / Zh(Pi|ﬁi)d$d8+CV/ / Zpi|ui—ﬂ|2d$d87
T3 '[[‘3 :
| T3] < C(s) // Zpl|vz—vl| dwds—i—Cl// / Zpl\uz—uﬁdxds

that is
t
|31|+|Jz\+\J3|§Cu/ U (s)ds.
0

We then split J4 in four terms as follows:

~74—//z:pZ (@ —w;) dzds
T3

// (t—u; +u—u)dxds
TS
leT divT;
//sz z_u ( )
T3
—//Zpi(lb—7 (leT d1VT>d s
T3}
divD leDi
-V (U — = dxds
//’H‘dzp ( pz )
leD div D;
—v pi(u—1a)- dxds
//TSZ ( P Pi )
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=Ta1+Tao+Taz+Taa.

Thanks to Young’s inequality and using (2.18) we obtain

¢ - divT;
Ja, z// pi(u; —u)——dzds
o 0 TSZ ( ) Pi

//sz|ul—u| da:ds—l-f/ /ng

and therefore (4.13) implies

L
*/ / Zbijpipﬂ’u,i—Uj|2d5€d8+€CT.
¢Jo Jraim

For what concerns J42 we have:

¢ - divT divT;
jvz—// plu—ﬂ~< — — Z)d:cds
2 0 TBZ i( ) P Pi
Pi
u—1) leT divT; | dads
/ /TS ( =1 zzlpz )

//]1‘3Z</) lh) —a)-divT; deds
//TBPIU u\deds+c/ /TS Z

=1

divT
al dds

_ Pi
P pip

dxds.

Then we use the uniform bounds (4.14) for p; to conclude

1| & ’ N w— nN <
plu—al?=—\> pi(ui—u)| <=3 pilui—ul? <==3 pilui—al*,
Pliz P i=1

and

n

Z 1 pi
P

—|\p pip

P pi—pi

pip

5

i=1

<CZI,01 pll2<02h pilpi),

i=1 i=1

PP Pzl
pp

where the last inequality follows again from the uniform bound (4.14); see also [17,22].
Therefore, there exists C':=C(n,k,N) such that:

t n t
‘7472§C/ / Z(pi|“i*ﬁ|2+|mf,5¢|2) dxdsgC'/ U(s)ds
o Jr3i 0

The terms J4,3 and J4,4 can be controlled similarly. Indeed, for J, 3 we obtain
V\/ 8¢ divD;
Ja3= / / dzds
? T3} Z 7 v8 \/S Pi

//Zpl|ul—u| dxds—i——y//TBZ

D;
div d ds
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IR
Sg/o /11‘3ijz_:1bi’jpipj|Ui_Uj|2 dzds+Cev*T,

thanks to (2.18), (4.13), and Young’s inequality. Concerning Js 4 we get

t - divD divD;
T, :V// Piuﬂ'< — — — l>da7ds
o 0 ng ( ) P Pi
t n 1 p B
=v —— — ) p(u—a)divD;dxzds
L LxG5)
t + n 1 pi 2
gC/ / p2|u—ﬁ|2dacds—|—CV2/ / Z(_— _Z> dxds
0 JT3 0 J13; 5 \P Pip
t n t n
SC/ / Zpi|uifﬂ|2da:ds+01/2/ / Zh(pi|ﬁi)dacds
0 JT 5oy 0 JT% =

<C(1/2+1)/t\II(s)ds.
0

Summarizing, the term 7, satisfies
1 [t n t
|,_74|§E/ / Z bi,jpipj|ui—uj|2dxds+C(1/2+1)/ Y(s)ds+Ce(v?* +1)T.
o J13 0
i,5=1
The quadratic terms J5 Js, and J7 are treated in a standard way, as in Theorem 3.1:
t n t n
Tl < / / S " Ip(pils) diva deds < C / / " h(pilpi)dads;
o Jr3 i 0 JT2 i
t n t n
|._76|§/ / Z|inﬂ:(ui—ﬂ)®(ui—ﬁ)|dxds§0/ / Zpi|ui—ﬁ\2dxds;
0 J13 0 J13 5
t n + n
| T| g/ / Z|inﬁ:(vi—@i)®(vi—@i)|dxds§6’/ / > pilvi =] dwds.
0 J18 5 0 J13 5

Moreover, concerning Jg, recalling the relation p” (p;)Vp; — ' (p:)Vpi = %(vl —7;), we
have

t n
1< [ S ()T G (0= )i = ) i) s
=1

t n t n
§C’/ / Zpi\vi—ﬁi\zda:ds—%C/ / Zpi|ui—ﬂ|2dxds,
o Jr3 i o Jr3i

using again Young’s inequality. Finally, for Jy, we use Lemma 3.1 as in Section 3 to
conclude

<[ ] I )= ) (0= ) Velivdods

+/O /ES;pi(ul(pi)+ul(pi))(Ui—u)'VdiVUi|d$ds
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t n
SC// Z h(pilpi) + pi
0 JT o

Ji g

pPi  Pi

_ 2
ms; My
—_——— i dxds.

Pi Pi

Collecting all estimates above, the relative entropy inequality becomes:

1 t n t n
\I/(t)Jr—/ / bi,lpipl|ui—ul|2dxds+21// / w(p:)| D (u; —@)|*dxds
de Jo Jrs ”2:21 e ’ 0 T?’;

t n
+y/ / > Api)|div(u; — @) [*dads
0 JT% 5=y

t
<U(0)+eC8) +1)+ O +v+1) [ W(s)ds,
0
where C:=C(s,k,d,n,N,T), and the Gronwall lemma concludes the proof. ]
REMARK 4.1. As already pointed out in Section 3, see in particular Remark 3.1,

it is worth observing that that the stability estimate (4.15) is consistent with the one
obtained in [19] for the inviscid case. Indeed as v — 01 we obtain:

T(t) < (T(0) +eC(6)) expC?

which is exactly the one obtained by the authors in [19] for the Euler-Korteweg case.
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