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DUAL QUATERNION MATRICES IN MULTI-AGENT
FORMATION CONTROL∗

LIQUN QI† , XIANGKE WANG‡ , AND ZIYAN LUO§

Abstract. Three kinds of dual quaternion matrices associated with the mutual visibility graph,
namely the relative configuration adjacency matrix, the logarithm adjacency matrix and the relative
twist adjacency matrix, play important roles in multi-agent formation control. In this paper, we study
their properties and applications. We show that the relative configuration adjacency matrix and the
logarithm adjacency matrix are both Hermitian matrices, and thus have very nice spectral properties.
We introduce dual quaternion Laplacian matrices, and prove a Gershgorin-type theorem for square
dual quaternion Hermitian matrices, for studying properties of dual quaternion Laplacian matrices.
The role of the dual quaternion Laplacian matrices in formation control is discussed.
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1. Introduction

In 1873, Clifford [6] introduced dual quaternions. Dual quaternions now have wide
applications in robotics, 3D motion modelling and control, and computer graphics [2–
5,7–10,13,17].

In 2011, Wang [16] proposed the study of dual quaternion matrices in his research on
formation control in 3D space. In [18], Wang and his co-authors studied the application
of dual quaternion matrices in the multiple rigid-bodies rendezvous problem [1], and
proposed three dual quaternion matrices: the relative configuration adjacency matrix,
the logarithm adjacency matrix and the relative twist adjacency matrix. In [15], Qi and
Luo studied the spectral properties of dual quaternion matrices. If a dual number is
a right eigenvalue of a square dual quatrernion matrix, then it is also a left eigenvalue
of that matrix. They call such a right eigenvalue an eigenvalue. They showed that an
n×n dual quaternion Hermitian matrix has exactly n eigenvalues and no other right
eigenvalues. Such a matrix is positive semi-definite or positive definite if and only if
its eigenvalues are all nonnegative or positive, respectively, in the sense of [14]. Based
upon this, a singular value decomposition theorem for general dual quaternion matrices
was established. Dual quaternion matrices were also studied in [12].

In this paper, we show that the relative configuration adjacency matrix and the
logarithm adjacency matrix are dual quaternion Hermitian matrices, propose a dual
quaternion Laplacian matrix theory for the multi-robot rendezvous problem, and study
the properties and application in formation control, of dual quaternion Laplacian ma-
trices.
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The rest of this paper is distributed as follows. Preliminary knowledge on dual
numbers, quaternions, dual quaternions and dual quaternion matrices, is given in Section
2. In Section 3, we show that the relative configuration adjacency matrix and the
logarithm adjacency matrix are dual quaternion Hermitian matrices, and the sum of the
logarithms of relative configurations over any cycle vanishes to zero. Dual quaternion
Laplacian matrices are introduced in Section 4. A Gershgorin-type theorem for dual
quaternion Hermitian matrices is given there for the discussion of properties of dual
quaternion Laplacian matrices. The role of the dual quaternion Laplacian matrices in
formation control is discussed in Section 5.

We denote scalars, vectors and matrices by small letters, bold small letters and
capital letters, respectively. Dual numbers and dual quaternions are distinguished by a
hat symbol.

2. Preliminaries

2.1. Dual numbers. Denote R and R̂ as the set of the real numbers, and the set
of the dual numbers, respectively. Following the literature such as [17], we use the hat
symbol to denote dual numbers and dual quaternions. A dual number q̂ has the form
q̂= q+qdϵ, where q and qd are real numbers, and ϵ is the infinitesimal unit, satisfying
ϵ2=0. We call q the standard part of q̂, and qd the dual part or the infinitesimal part of
q̂. The infinitesimal unit ϵ is commutative in multiplication with real numbers, complex
numbers and quaternion numbers. The dual numbers form a commutative algebra of
dimension two over the reals. If q ̸=0, we say that q̂ is appreciable, otherwise, we say
that q̂ is infinitesimal. Note that a real number is a dual number with a zero dual part.
Then the dual zero is still 0, and the dual identity is still 1.

In [14], a total order was introduced for dual numbers. Given two dual numbers

p̂, q̂∈ R̂, p̂=p+pdϵ, q̂= q+qdϵ, where p, pd, q and qd are real numbers, we say that p̂≤ q̂,
if either p<q, or p= q and pd≤ qd. In particular, we say that p̂ is positive, nonnegative,
nonpositive or negative, if p̂>0, p̂≥0, p̂≤0 or p̂<0, respectively.

2.2. Quaternions. We adopt the notation Q to denote the set of the quater-
nions. A quaternion q has the form q= q0+q1i+q2j+q3k, where q0,q1,q2 and q3 are
real numbers, i,j and k are three imaginary units of quaternions, satisfying

i2= j2=k2= ijk=−1, ij=−ji=k, jk=−kj= i, ki=−ik= j.

The real part of q is Re(q)= q0. The imaginary part of q is Im(q)= q1i+q2j+q3k. The
multiplication of quaternions satisfies the distribution law, but is noncommutative.

The conjugate of q= q0+q1i+q2j+q3k is q∗ := q0−q1i−q2j−q3k. The magnitude
of q is |q|=

√
q20+q21+q22+q23 . It follows that the inverse of a nonzero quaternion q is

given by q−1= q∗/|q|2. For any two quaternions p and q, we have (pq)∗= q∗p∗.
A quaternion is called imaginary if its real part is zero. If q is imaginary, then

q∗=−q. In the engineering literature [17], it is called a vector quaternion. Various
3D vectors, such as position vectors, displacement vectors, linear velocity vectors, and
angular velocity vectors, can be represented as imaginary quaternions. As 3D vectors
have cross product, imaginary quaternions can also have cross products. That is, the
cross product of two imaginary quaternions is an imaginary quaterion, with its imaginary
part is the cross product of the two original imaginary quaternions.

If |q|=1, then q is called a unit quaternion, or a rotation quaternion. A spatial rota-
tion around a fixed point of θ radians about a unit axis (x1,x2,x3) that denotes the Eu-
ler axis is given by the unit quaternion q=(cos(θ/2),x1 sin(θ/2),x2 sin(θ/2),x3 sin(θ/2)),
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i.e.,

q=cos(θ/2)+x1 sin(θ/2)i+x2 sin(θ/2)j+x3 sin(θ/2)k=e
θ
2x, (2.1)

where the unit axis x is an imaginary unit quaternion x=x1i+x2j+x3k. Thus, we may
also write

lnq=
θ

2
x. (2.2)

Note that a unit quaternion q is always invertible and q−1= q∗. Furthermore, since in
general it is possible that pq ̸= qp, it is also possible lnpq ̸=lnp+lnq.

Two quaternions p and q are said to be similar if there is a nonzero quaternion
u such that p=u−1qu. We denote p∼ q. It is easy to check that ∼ is an equivalence
relation on the quaternions. Denote by [q] the equivalence class containing q. Then [q]
is a singleton if and only if q is a real number.

Denote the collection of n-dimensional quaternion vectors by Qn. For
x=(x1,x2, ·· · ,xn)

⊤,y=(y1,y2,·· · ,yn)⊤∈Qn, define x∗y=
∑n

i=1x
∗
i yi, where x∗=

(x∗
1,x

∗
2,·· · ,x∗

n) is the conjugate transpose of x.

2.3. Dual quaternions. Denote the set of dual quaternions by Q̂. A dual
quaternion q̂∈ Q̂ has the form

q̂= q+qdϵ, (2.3)

where q,qd∈Q are the standard part and the dual part of q̂, respectively. If q ̸=0, then
we say that q̂ is appreciable. If q and qd are imaginary quaternions, then q̂ is called an
imaginary dual quaternion. Here, the infinitesimal unit ϵ is commutative with each of
those three imaginary units of quaternions. Thus, qdϵ= ϵqd for any qd∈Q.

The conjugate of q̂ is

q̂∗= q∗+q∗dϵ. (2.4)

By this, if q̂= q̂∗, then q̂ is a dual number. If q̂ is imaginary, then q̂∗=−q̂.
The magnitude of q̂ was defined in [14] as

|q̂| :=

|q|+ (qq∗d+qdq
∗)

2|q|
ϵ, if q ̸=0,

|qd|ϵ, otherwise,
(2.5)

which is a dual number.
Suppose that we have two dual quaternions p̂=p+pdϵ and q̂= q+qdϵ, their addition

and multiplications are defined as

p̂+ q̂=(p+q)+(pd+qd)ϵ

and

p̂q̂=pq+(pqd+pdq)ϵ.

See [9,10]. Note that under these arithmetic rules, a dual number is commutative with
a dual quaternion or a dual quaternion vector.
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A dual quaternion q̂ is called invertible if there exists a quaternion p̂ such that
p̂q̂= q̂p̂=1. We can derive that q̂ is invertible if and only if q̂ is appreciable. In this
case, we have

q̂−1= q−1−q−1qdq
−1ϵ.

If |q̂|=1, then q̂ is called a unit dual quaternion. A unit dual quaternion q̂ is always
invertible and we have q̂−1= q̂∗. The 3D motion of a rigid body can be represented by
a unit dual quaternion. We have

q̂q̂∗=(q+qdϵ)(q
∗+q∗dϵ)= qq∗+(qq∗d+qdq

∗)ϵ= q̂∗q̂.

Thus, q̂ is a unit dual quaternion if and only if q is a unit quaternion, and

qq∗d+qdq
∗= q∗qd+q∗dq=0. (2.6)

For example, q̂= i+ jϵ is a unit dual quaternion. Suppose that there is a rotation
q∈Q succeeded by a translation pb∈Q, where pb is an imaginary quaternion. Here,
following [17], we use superscripts b and s to represent the relation of the rigid body
motion with respect to the body frame attached to the rigid body and the spatial frame
which is relative to a fixed coordinate frame. Then the whole transformation can be
represented using unit dual quaternion q̂= q+qdϵ, where qd=

1
2qp

b. Note that we have

qq∗d+qdq
∗=

1

2

[
q(pb)∗q∗+qpbq∗

]
=

1

2
q
[
(pb)∗+pb

]
q∗=0.

Thus, a transformation of a rigid body can be represented by a unit dual quaternion

q̂= q+
ϵ

2
qpb, (2.7)

where q is a unit quaternion to represent the rotation, and pb is the imaginary quaternion
to represent the translation or the position. Here, unit quaternion q serves as a rotation,
taking coordinates ro of a point in the original frame to coordinates rn in the new frame
by

rn= q∗roq, (2.8)

where ro and rn are two imaginary quaternions, their superscripts o and n represent
“original” and “new” respectively. On the other hand, every attitude of a rigid body
which is free to rotate relative to a fixed frame can be identified by a unique unit
quaternion q. Thus, in (2.7), q is the attitude of the rigid body, while q̂ represents the
transformation.

The configuration change rate of a rigid body can be expressed by

˙̂q≡ dq̂

dt
=

1

2
q̂ξ̂b, (2.9)

where the unit dual quaternion q̂ is the configuration of that rigid body, expressed by
(2.7), and the imaginary dual quaternion

ξ̂b=ωb+ϵ(ṗb+ωb×pb) (2.10)

is the twist of rigid body, with angular velocity ωb and linear velocity ṗb≡ dpb

dt .
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Combining (2.7) with (2.2), we have

ln q̂=
1

2
(θx+ϵpb). (2.11)

Given an imaginary quaternion v and a unit quaternion q, the adjoint transforma-
tion is defined as

Adqv= qvq∗. (2.12)

Similarly, given an imaginary dual quaternion v̂ and a unit dual quaternion q̂, the adjoint
transformation of the unit dual quaternion q̂ is defined as

Adq̂ v̂= q̂v̂q̂∗. (2.13)

A unit dual quaternion q̂ serves as both a specification of the configuration of a
rigid body and a transformation taking the coordinates of a point from one frame to
another via rotation and translation. In (2.7), if q̂ is the configuration of the rigid body,
then q and pb are the attitude of and position of the rigid body, respectively. They have
the following property:

Property A: If the configurations of rigid bodies i and j are q̂i and q̂j , and the
transformation (relative configuration) from rigid body i to j is q̂ij , then q̂j = q̂iq̂ij .

Consider two unit dual quaternions q̂ and q̂t defined as in (2.7). The left-invariant
error from q̂ to q̂t is

q̂e= q̂∗t q̂= qe+
ϵ

2
qep

b
e, (2.14)

where qe= q∗t q and pbe=pb−Adq∗e p
b
t .

Two dual quaternions p̂ and q̂ are said to be similar if there is an appreciable
quaternion û such that p̂= û−1q̂û. We denote p̂∼ q̂. Then ∼ is an equivalence relation
on the dual quaternions. Denote by [q̂] the equivalence class containing q̂. Then [q̂] is a
singleton if and only if q̂ is a dual number.

Denote the collection of n-dimensional dual quaternion vectors by Q̂n.
For x̂=(x̂1,x̂2, ·· · ,x̂n)

⊤, ŷ=(ŷ1, ŷ2, ·· · , ŷn)⊤∈ Q̂n, define x̂∗ŷ=
∑n

i=1 x̂
∗
i ŷi, where

x̂∗=(x̂∗
1,x̂

∗
2,·· · ,x̂∗

n) is the conjugate transpose of x̂. We say x̂ is appreciable if at least
one of its component is appreciable. We also say that x̂ and ŷ are orthogonal to each
other if x̂∗ŷ=0. By [14], for any x̂∈ Q̂n, x̂∗x̂ is a nonnegative dual number, and if x̂ is
appreciable, x̂∗x̂ is a positive dual number.

2.4. Dual quaternion matrices. Denote the collections of m×n dual quater-
nion matrices by Q̂m×n. Then Â∈ Q̂m×n can be written as

Â=A+Adϵ,

where A,Ad∈Qm×n are the standard part and the infinitesimal part of Â, respectively.
The conjugate transpose of Â is

Â∗=A∗+A∗
dϵ.

A square dual quaternion matrix Â∈ Q̂n×n is called normal if Â∗Â= ÂÂ∗, Her-
mitian if Â∗= Â; unitary if Â∗Â= In, where In is the n×n identity matrix; and
invertible (nonsingular) if ÂB̂= B̂Â= In for some B̂∈ Q̂n×n. Indeed, if Â=A+Adϵ
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and B̂=B+Bdϵ satisfy ÂB̂= In, then B=A−1 and Bd=−A−1AdA
−1. This further

implies B̂Â= In. Thus, the inverse of Â is unique, denoted by Â−1, and we have
Â−1=A−1−A−1AdA

−1ϵ.

We have (ÂB̂)−1= B̂−1Â−1 if Â and B̂ are invertible, and
(
Â∗

)−1

=
(
Â−1

)∗
if Â

is invertible.
Suppose that Â∈ Q̂n×n is an Hermitian matrix. For any x̂∈ Q̂n, we have (x̂∗Âx̂)∗=

x̂∗Âx̂. Thus, x̂∗Âx̂ is a dual number. A dual quaternion Hermitian matrix Â∈ Q̂n×n is
called positive semi-definite if for any x̂∈ Q̂n, x̂∗Âx̂≥0; Â is called positive definite if
for any x̂∈ Q̂n with x̂ being appreciable, we have x̂∗Âx̂>0 and is appreciable. A square
dual quaternion matrix Â∈ Q̂n×n is unitary if and only if its column (row) vectors form

an orthonormal basis of Q̂n. Then, Â is a dual quaternion Hermitian matrix if and only
if A and Ad are two quaternion Hermitian matrices.

Suppose that Â∈ Q̂n×n. If there are λ̂∈ Q̂, x̂∈ Q̂n, where x̂ is appreciable, such
that

Âx̂= x̂λ̂, (2.15)

then we say that λ̂ is a right eigenvalue of Â, with x̂ as an associated right eigenvector.
If there are λ̂∈ Q̂, x̂∈ Q̂n, where x̂ is appreciable, such that

Âx̂= λ̂x̂,

then we say that λ̂ is a left eigenvalue of Â, with x̂ as an associated left eigenvector. If
λ̂ is a dual number and a right eigenvalue of Â, then it is also a left eigenvalue of Â, as
a dual number is commutative with a dual quaternion vector. In this case, we say that
it is an eigenvalue of Â, with x̂ as an associated eigenvector.

The following theorems are proved in [15].

Theorem 2.1. Suppose that λ̂=λ+λdϵ∈ Q̂ is a right eigenvalue of Â∈ Q̂n×n, with
associated right eigenvector x̂=x+xdϵ∈ Q̂n. Then

λ̂=
x̂∗Âx̂

x̂∗x̂
, (2.16)

λ is a right eigenvalue of the quaternion matrix A with a right eigenvector x, i.e., x ̸=0
and

Ax=xλ. (2.17)

We also have

λ=
x∗Ax

x∗x
. (2.18)

Theorem 2.2. A right eigenvalue λ̂ of an Hermitian matrix Â=A+Adϵ∈ Q̂n×n

must be a dual number, hence an eigenvalue of Â, and its standard part λ is a right
eigenvalue of the quaternion Hermitian matrix A. Furthermore, assume that λ̂=λ+λdϵ,
x̂=x+xdϵ∈ Q̂n is an eigenvector of Â, associated with the eigenvalue λ̂, where x,xd∈
Qn. Then we have

λd=
x∗Adx

x∗x
. (2.19)
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A dual quaternion Hermitian matrix has at most n dual number eigenvalues and no
other right eigenvalues.

An eigenvalue of a positive semi-definite Hermitian matrix Â∈ Q̂n×n must be a
nonnegative dual number. In that case, A must be positive semi-definite. An eigenvalue
of a positive definite Hermitian matrix Â∈ Q̂n×n must be an appreciable positive dual
number. In that case, A must be positive definite.

Theorem 2.3. Suppose that Â=A+Adϵ∈ Q̂n×n is an Hermitian matrix. Then there
is a unitary matrix Û ∈ Q̂n×n and a diagonal matrix Σ̂∈ R̂n×n such that Σ̂= Û∗ÂÛ ,
where

Σ̂ :=diag(λ1+λ1,1ϵ, ·· · ,λ1+λ1,k1
ϵ,λ2+λ2,1ϵ,·· · ,λr+λr,kr

ϵ) , (2.20)

with the diagonal entries of Σ̂ being n eigenvalues of Â,

Âûi,j = ûi,j(λi+λi,jϵ), (2.21)

for j=1, ·· · ,ki and i=1,·· · ,r, Û =(û1,1, ·· · ,û1,k1 , ·· · ,ûr,kr ), λ1>λ2> ·· ·>λr are real
numbers, λi is a ki-multiple right eigenvalue of A, λi,1≥λi,2≥···≥λi,ki

are also real

numbers,
∑r

i=1ki=n. Counting possible multiplicities λi,j, the form Σ̂ is unique.

Theorem 2.4. Suppose that Â∈ Q̂n×n is Hermitian. Then Â has exactly n eigenval-
ues, which are all dual numbers. There are also n eigenvectors, associated with these n
eigenvalues. The Hermitian matrix Â is positive semi-definite or definite if and only if
all of these eigenvalues are nonnegative, or positive and appreciable, respectively.

3. Graph model of multi-agent formation control
Following [11, 18], we model the rigid bodies in the multi-agent formation control

by an undirected graph. We assume that the rigid-bodies are omni-directional, i.e.,
rigid-body i can sense rigid body j if and only if rigid-body j can sense rigid body i.
Then multiple rigid-bodies are modelled by an undirected graph G=(V,E), called the
mutual visibility graph. Here, the vertex set V is the set of rigid bodies. Edge (i,j)∈E
if rigid-bodies i and j are mutual visual. Let n= |V |, where |V | means the cardinality of
the set V . As in spectral graph theory, we have adjacency matrix Â(G). Then we have
the following three n×n dual quaternion matrices: the relative configuration adjacency
matrix Ĉ(G), the logarithm adjacency matrix L̂n(G), and the relative twist adjacency
matrix T̂ (G). Recall the concepts of relative configuration, twist and logarithm of
dual quaternions discussed in Section 2. The (i,j) entries of Ĉ(G),L̂n(G) and T̂ (G)
are the relative configuration q̂ij , the logarithm of the relative configuration ln q̂ij =
1
2 (θijxij+ϵpbij), and the relative twist ξ̂bij , respectively, if i,j=1, ·· · ,n,i ̸= j and (i,j)∈E.

The (i,j) entries of Ĉ(G),L̂n(G) and T̂ (G) are zero otherwise.
Note that q̂ij is a unit dual quaternion, ln q̂ij is a unit imaginary dual quaternion,

and ξ̂bij is an imaginary dual quaternion.
We have the following theorem.

Theorem 3.1. The relative configuration adjacency matrix Ĉ(G) and the loga-
rithm adjacency matrix L̂n(G) are dual quaternion Hermitian matrices. For a cycle
{j1, ·· · ,jk}, with jk+1= j1, of G, we have

k∏
i=1

q̂jiji+1
=1. (3.1)
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Proof. For i,j=1, ·· · ,n, i ̸= j, by Property A, q̂j = q̂iq̂ij . Thus, we have

q̂ij =(q̂i)
−1q̂j .

Thus,

q̂ji=(q̂j)
−1q̂i=(q̂ij)

−1. (3.2)

Since q̂ij is a unit dual quaternion, this implies that

q̂ji=(q̂ij)
∗. (3.3)

This shows that Ĉ(G) is an Hermitian matrix. By (3.2), we have

ln q̂ji=−ln q̂ij .

Since ln q̂ij is an imaginary dual quaternion, this implies

ln q̂ji=(ln q̂ij)
∗
.

Thus, L̂n(G) is also an Hermitian matrix. On the cycle {j1, ·· · ,jk}, we have q̂ji+1
=

q̂ji q̂jiji+1
for i=1, ·· · ,k. This implies (3.1).

Formula (3.1) shows that if there is a cycle in the mutual visibility graph G, then
we may always delete one edge in that cycle without affecting the description of mutual
visibility. Repeating this process, eventually the mutual visibility graph contains no
cycle. If the original mutual visibility graph is connected, then we obtain a reduced
mutual visibility graph, which is a tree. Then we may apply the formation control
strategy described in [17].

4. Dual quaternion Laplacian matrices
In the last section, we show that the relative configuration adjacency matrix Ĉ(G)

and the logarithm adjacency matrix L̂n(G) are dual quaternion Hermitian matrices.
This lays the base for us to study the stability issue of the multi-agent formation control
problem. In this section, we set the dual quaternion Laplacian matrix theory such that
we have a tool to tackle this issue. Before doing this, we establish a Gershgorian-type
theorem for dual quaternion Hermitian matrices.

Theorem 4.1. Suppose that Ĥ=(ĥij)∈ Q̂n×n is an Hermitian matrix. Then the n

eigenvalues of Ĥ lie in the following n sets:

Si=

λ̂∈ D̂ : |λ− ĥii|≤
∑
j ̸=i

|ĥij |

,

for i=1, ·· · ,n.

Proof. Suppose that λ̂ is an eigenvalue of H with an eigenvector x̂. Then λ̂∈ R̂,
and x̂∈ Q̂n is appreciable. By (2.15), we have

n∑
j=1

ĥij x̂j = λ̂x̂i,

i.e., ∑
j ̸=i

ĥij x̂j =
(
λ̂− ĥii

)
x̂i,
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for i=1,·· · ,n. Assume that |x̂i|=maxj=1,···,n |x̂j |. Since x̂ is appreciable, |x̂i| must be
appreciable. Then we have

|λ− ĥii|≤
∑
j ̸=i

|ĥij |.

This proves the theorem.

Suppose that we have a mutual visibility graph G=(V,E) with |V |=n. For each
i∈V , let d(i) be the number of edges (i,j)∈E. Let D(G)=(dij) be an n×n real
diagonal matrix, with its i-th diagonal entry being d(i). Let A(G)=(aij) be an n×n
traceless matrix, with aij =1 if and only if (i,j)∈E. Here, the word “traceless” means
that the diagonal entries of A are zero. Let L(G)=D(G)−A(G). Then D(G), A(G)
and L(G) are the degree matrix, the adjacency matrix and the Laplacian matrix of G.
Spectral graph theory is based upon these three matrices.

We now extend these to dual quaternion matrices. We keep the degree matrix
without any change as the degree d(i), which is the number of rigid-bodies that can be
sensed by the rigid-body i. This is meaningful in formation control. Then we call an
n×n dual quaternion Hermitian matrix Ĥ=(ĥij) a dual quaternion adjacency matrix,

if ĥij =(ĥji)
∗ is a unit dual quaternion for any i<j satisfying that the rigid body i can

be sensed by the rigid body j, and other entries 0. Apparently, the relative configuration
adjacency matrix Ĉ(G) and the logarithm adjacency matrix L̂n(G) are of such a type.
Furthermore, we call L̂(Ĥ)=D−Ĥ the dual quaternion Laplacian matrix, associated
with Ĥ.

Theorem 4.2. A dual quaternion Laplacian matrix is a positive semi-definite dual
quaternion Hermitian matrix. Its n eigenvalues are nonnegative dual numbers.

Proof. By the definition of dual quaternion Laplacian matrices and Theorem 4.1,
all the eigenvalues of a dual quaternion Laplacian matrix are nonnegative dual numbers.
By Theorem 2.4, this matrix is positive semi-definite.

5. Formation control of multiple rigid-bodies
The objective of this study is to design a universal control scheme without requiring

decoupling rotational and translational dynamics to make all the connected rigid-bodies
rendezvous, i.e., converge into a predefined or unspecified configuration based upon error
dynamics with perfect and instantaneous measurements. Assume that there are n rigid
bodies as described in the last section. The positions of these n rigid bodies are denoted
by a dual quaternion vector ẑ=(ẑ1, ·· · , ẑn)⊤∈ Q̂n. Each rigid body i is assumed to have
an onboard sensor to measure relative positions of neighboring rigid bodies, that is
ẑij ∈ Q̂ when (i,j)∈E for the mutual visibility graph G=(V,E). Here, ẑi,j may be the
relative configuration q̂ij , the logarithm of the relative configuration ln q̂ij , the relative

twist ξ̂bij , or simply

ẑij = ẑj− ẑi.

Assume that each rigid body i has a point kinematic model given by the single
integrator

dẑi
dt

= ûi, (5.1)

where ûi∈Q represents the velocity control input. Let v̂=(v̂1, ·· · , v̂n)⊤∈ Q̂n be the
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targeted formation configuration, satisfying L̂v̂=0. Then we consider the control law

ûi=
∑

(i,j)∈E

l̂ij(ẑj− ẑi), (5.2)

where l̂ij are the entries of the Laplacian matrix L̂, for i=1,·· · ,n.
Under the control law (5.2), the overall closed-loop dynamics of the n rigid bodies

becomes

dẑ

dt
=−L̂ẑ. (5.3)

Then, as studied in [11], if L̂ is positive semi-definite, and its eigenvalues are positive
except at one zero eigenvalue, the system is stable. Hence, Theorem 4.2 paves a way
for such a study.
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