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EMERGENCE OF PHASE-LOCKED STATES FOR A DETERMINISTIC
AND STOCHASTIC WINFREE MODEL WITH INERTIA∗

MYEONGJU KANG† AND MARCO REHMEIER‡

Abstract. We study the emergence of phase-locking for Winfree oscillators under the effect of
inertia. It is known that in a large coupling regime, oscillators governed by the deterministic second-
order Winfree model with inertia converge to a unique equilibrium. In contrast, in this paper we
show the asymptotic emergence of non-trivial synchronization in a suitably small coupling regime.
Moreover, we study the effect of a new stochastically perturbed Winfree system with multiplicative
noise and obtain lower estimates in probability for the pathwise emergence of such a synchronizing
pattern, provided the noise is sufficiently small. We also provide numerical simulations which hint at
the possibility of more general and stronger analytical results.
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1. Introduction

Collective behavior of self-propelled particles is ubiquitously observed in natural
and man-made complex systems. One particular type of such coherent dynamics which
has received growing interest in the recent past is the phenomenon of synchronization,
i.e. the emergence of rhythms in interacting systems of oscillating particles, for exam-
ple synchronized flashing of fireflies and firing of neurons [1, 5, 7, 26, 28, 30, 31]. Two
mathematical models used to describe such oscillatory systems are the Kuramoto and
Winfree model ([24,25] and [30,31] respectively). In this paper, we focus on a particular
Winfree-type model, namely the second-order Winfree model with inertia introduced
in [15], and our analysis includes the case of a perturbation by an external noise as well.

First, let us briefly recall the classical Winfree model as a model for systems of
N interacting oscillating particles, which can be visualized as rotors on the unit circle
S1 [3, 4, 12, 22, 27]. Each particle of the system has its own natural frequency νi. In
the absence of interactions, the dynamics of the system are described by decoupled
uniform motions of the particles 1,. ..,N with frequencies ν1,. ..,νN , respectively. In
this case, denoting the phase of particle i at time t≥0 by θit (i.e. its total angular
displacement from the origin as a rotor on S1), we have θ̇it=νi. Now each particle i fires
a signal Ĩ=1 whenever it passes through the origin, i.e. Ĩ= δ0. This signal function
is usually approximated by a suitable smooth, periodic function I. The response S
from particle j is a function of its current distance from the origin on S1. Hence the
instantaneous interaction effect on particle i is S(θi) 1

N

∑N
j=1 I(θ

j). Common choices for
signal and response functions are I(·)=1+cos(·) and S(·)=−sin(·). If κ≥0 describes
the common coupling strength within the system, one arrives at the classical first-order
Winfree model:

θ̇it=νi− κ

N
sinθit

N∑
j=1

(
1+cosθjt

)
, i∈{1,. ..,N}, t≥0. (1.1)
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In contrast to the Kuramoto model, the Winfree model is not conservative. As a
consequence, the mathematical analysis of (1.1) is harder, but also offers interesting

asymptotic features. For example, depending on the size of κ/νc (νc := 1
N

∑N
i=1ν

i),
the motions of particles in systems governed by (1.1) can vanish (oscillator death) or
can asymptotically tend to a synchronized motion (phase-locked state). In this paper,
we focus on the latter case, but we mention the interesting results from [13, 15, 18,
21], where the emergence of oscillator death (more precisely, even the existence of a
unique equilibrium for Θ=(θ1,. ..,θN )) is proved for suitably confined initial data Θ0

and sufficiently large coupling coefficient κ>νi. We also refer to [12] for coupling
strength and natural frequency phase transition diagrams of the Winfree model.

In order to describe the emergence of nontrivial synchronization, one considers the
rotation numbers ρi,1≤ i≤N , i.e.

ρi := lim
t→∞

θit
t
,

provided the limit exists. If all ρi exist and coincide, the particles asymptotically syn-
chronize their oscillatory dynamics into an ordered motion. More precisely, we call
the case ρi=0 for all i oscillator death state and the case ρi=ρ1 ̸=0 for all i phase-
locked state. While there has been intensive work on the emergence of oscillator death
states [13,15,17,18,20,21], there is considerably less literature on the emergence of non-
trivial phase-locked state [19, 22]. Note that the emergence of nontrivial phase-locked
state is implied by

sup
t≥0

max
1≤i≤N

|θit−θjt |<∞, (1.2)

provided one nonzero rotation number, say ρ1 ̸=0, exists. In [19, 22], it is proven that
(1.2) emerges for (1.1) for sufficiently small κ<νc and under suitable restrictions on
the spread νi−νj and θi0−θj0, 1≤ i,j≤N . However, conditions for the existence of
nontrivial rotation numbers and relations among rotation numbers, system parameters,
and initial data have not been presented, except for the following partial results: In [19],
numerical examples on the convergence of rotation numbers are suggested, and in [22],

it is proven that there exists at least one initial data Θ∗
0=(θ∗,10 ,·· · ,θ∗,N0 )∈RN such that

nontrivial rotation numbers of (1.1) subject to the initial data Θ∗
0 exist. Beyond these

very special results, to the best of our knowledge the existence of rotation numbers has
not been considered in the available literature, and it has become a standard term in
the community to already refer to the emergence of (1.2) as emergence of phase-locked
state. We follow this convention in the remainder of the paper. Moreover, in Section 4 we
present parameter configurations for which numerical simulations suggest that rotation
numbers are well defined. Further works on Winfree-type models include results on
continuum limits [14], adaptive couplings [17], and models with time-delay [16] and
frustration [13].

Recently, in [15] a new Winfree-type model, additionally taking into account the
effect of inertia, has been proposed. More precisely, for a finite homogeneous inertia
term m and a friction coefficient γ>0, the model reads

θ̇it=ωi
t,

mω̇i
t=−γωi

t+νi− κ

N

N∑
j=1

sinθit(1+cosθjt ),
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where Ωt=(ωi
t)1≤i≤N denotes the frequencies of particles 1,. ..,N at time t. Assuming

m=1 (otherwise consider the above system with γ̃, ν̃i and κ̃ instead of γ,νi and κ,
where γ̃ :=γm−1, ν̃i :=νim−1 and κ̃ :=κm−1), together with a phase-frequency initial
condition (Θ0,Ω0), we arrive at the Cauchy problem for the second-order Winfree model
with inertia


dθit=ωi

tdt,

dωi
t=

[
−γωi

t+νi− κ

N
sinθit

N∑
j=1

(1+cosθjt )
]
dt,(

θit,ω
i
t

) ∣∣
t=0

=
(
θi0,ω

i
0

)
.

(1.3)

Naturally, the emergence of asymptotic ordered behavior such as oscillator death and
phase-locking are intriguing questions also for (1.3). However, the second-order nature
of (1.3) renders these questions more challenging compared with the classical case. A
first result in this direction was obtained in [15]: For sufficiently large (in terms of
νi) coupling coefficient κ and suitable initial data, the solution (Θt,Ωt) converges to a
unique equilibrium (which particularly yields the emergence of oscillator death). This is
coherent with the results for the first-order model: If the particle interaction dominates
the self-propelled individual dynamics of the particles, i.e. if κ/νc is above a threshold,
then the system asymptotically tends towards oscillator death state. To the best of our
knowledge, results on the emergence of phase-locked states for (1.3) have not yet been
obtained.

The first main result of this paper is such a phase-locking result for (1.3), and can
roughly be stated as follows (see Theorem 2.1 in Section 2 for the precise statement):

Theorem 1.1 (Phase locking for (1.3)). For any γ>0, (νi)1≤i≤N and sufficiently
small D>0, if κ<νc is sufficiently small, then for all initial data (Θ0,Ω0) which are
sufficiently narrowly spread such that in particular {θi0}i≤N is contained in a ball with
radius less or equal to D, then phase-locking (1.2) emerges for the solution (Θt,Ωt) to
(1.3).

A further natural question in conjunction with complex systems of interacting par-
ticles observed in nature is the effect of external noises and its influence on the system
in competition with the interaction between particles. Not only do noise-perturbed sys-
tems often offer a more adequate description of dynamics observed in our environment,
but it is also widely known that the effect of, for example, white noise can regularize an
ill-posed deterministic system and thus lead to a more satisfactory mathematical anal-
ysis [8–11,29]. It is hence not surprising that stochastically perturbed versions of (1.1)
have been studied in the literature, both with additive [23] and multiplicative Brownian
noises [20], though exclusively for the emergence of oscillator death. In brief, if κ>σ is
suitably large, where σ is the noise strength, the emergence of oscillator death is also
observed in the stochastic case. However, for ν ̸=0, the convergence is not known path-
wise, but in probability [20], and in [23] only estimates in probability for local-in-time
boundedness of Θt are provided.

As far as we know, a result on the emergence of phase-locked states for noisy
versions of (1.1) is not known, and stochastic perturbations of the second-order model
(1.3) have not been considered at all in the literature. Our second main result addresses
this point: We prove a phase-locking result for the following stochastic version of (1.3),
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where ωc := 1
N

∑N
i=1ω

i:
dθit=ωi

tdt,

dωi
t=

[
−γωi

t+νi− κ

N
sinθit

N∑
j=1

(
1+cosθjt

)]
dt+σt(ω

i
t−ωc

t )dBt,

(θit,ω
i
t)
∣∣
t=0

=(θi0,ω
i
0),

(1.4)

where B is a 1D-Brownian motion and σ :R→R+ is a time-inhomogeneous noise co-
efficient. The interpretation of our proposed noise is the following: Each particle i
is subject to a common external noise, the strength of which varies with time and is
proportional to the current deviation of its frequency ωi

t from the average frequency
ωc
t of the system. A similar type of multiplicative noise was considered in [2] for the

Cucker-Smale flocking model. Our main result in the stochastic case can roughly be
stated as follows (see Theorem 3.1 in Section 3 for a precise formulation):

Theorem 1.2 (Theorem (Phase locking for (1.4))). Let maxi,j |νi−νj | and κ<νc be
sufficiently small, γ sufficiently large and δ>0 a sufficiently small number. Assume σ is
smaller in L∞∩L2 than some absolute constant. Then, for sufficiently narrowly spread
initial data (Θ0,Ω0), phase-locking for the solution (Θt,Ωt) to (1.4) occurs pathwise with

probability at least 1−2exp
(
− δ2

2||σ||2
)
.

Similarly as for the phase-locking results for (1.1), we need to assume that the nat-
ural frequencies νi dominate the coupling strength κ. Also, for given δ, the lower bound
for the probability in the assertion can be made arbitrarily large in (0,1), if σ becomes
sufficiently small. We remark that we did not identify a noise-induced regularizing effect
on the system, but rather have to tame the noise in order to obtain phase-locking with
large probability.

This paper is organized as follows. In Section 2, we study the second-order Winfree
model (1.3). The main result on the emergence of phase-locking is Theorem 2.1. We also
present an example of admissible choices of system parameters and initial conditions
for which the result applies. In Section 3, we introduce the stochastic model (1.4),
formulate and prove the main result in the stochastic case (Theorem 3.1). Again, we
present an example of admissible parameter choices. In Section 4, we present numerical
simulations for both cases and we further provide numerical results motivating future
works. Finally, Section 5 contains a brief summary of our results.

2. Second-order deterministic Winfree model with inertia
The following notation is used throughout the paper.

Θt :=
(
θ1t ,·· · ,θNt

)
, Ωt :=

(
ω1
t ,·· · ,ωN

t

)
, ν :=

(
ν1,·· · ,νN

)
,

Ic(Θt) :=
1

N

N∑
i=1

(
1+cosθit

)
, θct :=

1

N

N∑
i=1

θit, ωc
t :=

1

N

N∑
i=1

ωi
t,

νc :=
1

N

N∑
i=1

νi, θijt :=θit−θjt , ωij
t :=ωi

t−ωj
t ,

and for x=(x1,·· · ,xN )∈RN , we write D(x) :=max1≤i,j≤N |xi−xj |. We write ∥f∥2 for
the L2-norm (with respect to Lebesgue measure) of a measurable function f :R→R.

The aim of this section is to prove the emergence of phase-locking for the determinis-
tic second-order N -particle Winfree model with inertia (1.3) under suitable assumptions
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on the system parameters and the initial data, see Theorem 2.1. We start with the fol-
lowing lemma, which we shall use within the proof of Theorem 2.1. For a real-valued
function f , we write f+ :=max(f,0) and f− :=−min(f,0).

Lemma 2.1 ([22, Lemma 2.1]). Let x(t) be a solution of the differential equation

d

dt
x(t)=α−β(t)x(t), t∈R, (2.1)

where α>0 is a constant and β :R→R is continuously differentiable and 2π-periodic
with ∫ 2π

0

β(s)ds>0.

Then, there exists a unique positive 2π-periodic solution

x(t)=

α

∫ 2π

0

exp

(
−
∫ 2π

τ

β(s+ t)ds

)
dτ

1−exp

(
−
∫ 2π

0

β(s)ds

) , t∈R,

which obeys the following bounds:

2απexp

(
−
∫ 2π

0

β+(s)ds

)
1−exp

(
−
∫ 2π

0

β(s)ds

) ≤x(t)≤
2απexp

(∫ 2π

0

β−(s)ds

)
1−exp

(
−
∫ 2π

0

β(s)ds

) , t∈R.

Our subsequent strategy is to find coefficients α and β and a change of variables
τ =µ(t) satisfying

d

dτ
x(τ)≤α−β(τ)x(τ) for x(τ)=θiµ−1(τ)−θjµ−1(τ)+γ

(
ωi
µ−1(τ)−ωj

µ−1(τ)

)
,

which by Lemma 2.1 then implies boundedness of x. We start with an auxiliary result
concerning the change of variables stated in (2.3).

Lemma 2.2. Suppose the initial data and system parameters satisfy

ωc
0>0 and κ<

νc

2
,

and let (Θt,Ωt) be a global smooth solution of (1.3). Then, ωc
t is uniformly bounded:

0<min

{
ωc
0,

νc−2κ

γ

}
≤ωc

t ≤max

{
ωc
0,

νc+2κ

γ

}
, t≥0.

In particular, t 7→θct is strictly increasing and unbounded.

Proof. Integrating the identity

d

dt

(
eγtωi

t

)
=eγt

(
d

dt
ωi
t+γωi

t

)
=eγt

[
νi−κIc(Θt)sinθ

i
t

]
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gives

ωi
t=ωi

0e
−γt+e−γt

∫ t

0

eγs
[
νi−κIc(Θs)sinθ

i
s

]
ds.

By summation over i∈{1,. ..,N} and division by N , we obtain

ωc
t =ωc

0e
−γt+e−γt

∫ t

0

eγs
[
νc− κIc(Θs)

N

N∑
i=1

sinθis

]
ds

≥ωc
0e

−γt+e−γt

∫ t

0

eγs(νc−2κ)ds

=ωc
0e

−γt+
νc−2κ

γ
(1−e−γt)≥min

{
ωc
0,

νc−2κ

γ

}
.

Similarly, it follows

ωc
t =ωc

0e
−γt+e−γt

∫ t

0

eγs
[
νc− κIc(Θs)

N

N∑
i=1

sinθis

]
ds

≤ωc
0e

−γt+e−γt

∫ t

0

eγs(νc+2κ)ds

=ωc
0e

−γt+
νc+2κ

γ
(1−e−γt)≤max

{
ωc
0,

νc+2κ

γ

}
.

Lemma 2.3. Let (Θt,Ωt) be a global smooth solution of (1.3). Suppose there exist
T,D>0 such that

sup
t∈[0,T ]

D(Θt)≤D.

Then, we have

sup
t∈[0,T ]

D(Ωt)≤max

{
D(Ω0),

D(ν)+2κD

γ

}
=:m0=m0(Ω0,ν,κ,D,γ). (2.2)

Proof. It is

d

dt

(
eγtωij

t

)
=eγt

(
d

dt
ωij
t +γωij

t

)
=eγt

[
νij−κIc(Θt)

(
sinθit−sinθjt

)]
≤eγt(D(ν)+2κD), t∈ (0,T ),

and integrating yields

ωij
t ≤e−γtD(Ω0)+

D(ν)+2κD

γ
(1−e−γt)≤max

{
D(Ω0),

D(ν)+2κD

γ

}
, t∈ (0,T ).

Using the previous lemma, we obtain the following estimates. By a change of
variables introduced after the proof, these estimates allow us to utilize Lemma 2.1 to de-
duce suitable bounds for ωij

t +γθijt , which we will use in the proof of Theorem 2.1 below.
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Lemma 2.4. Let (Θt,Ωt) be a global smooth solution of (1.3). Suppose there exist
T,D>0 such that

sup
t∈[0,T ]

D(Θt)≤D.

Then, for all i,j∈{1,·· · ,N} and t∈ (0,T ), we have

d

dt

(
ωij
t +γθijt

)
≤D(ν)+

2κ

γ
m0+3κD2− κ

γ
cosθct

(
1+cosθct

)(
ωij
t +γθijt

)
,∣∣∣∣ ddt(ωij

t +γθijt
)∣∣∣∣≤D(ν)+

4κ

γ
m0+3κD2+2κD,

where m0 is defined in (2.2).

Proof. We differentiate ωij
t +γθijt to obtain

d

dt

(
ωij
t +γθijt

)
=νij−κIc(Θt)

(
sinθit−sinθjt

)
=νij−κcosθct

(
1+cosθct

)(ωij
t

γ
+θijt

)
+

κ

γ
ωij
t cosθct

(
1+cosθct

)
+κθijt cosθct

(
1+cosθct

)
−κI(Θt)

(
sinθit−sinθjt

)
.

It follows from

κθijt cosθct
(
1+cosθct

)
−κI(Θt)

(
sinθit−sinθjt

)
≤κθijt cosθct

(
1+cosθct −I(Θt)

)
−κI(Θt)

(
sinθit−sinθjt −θijt cosθct

)
≤κD

N

N∑
k=1

∣∣cosθct −cosθkt
∣∣+2κD2≤3κD2, t∈ (0,T ),

and Lemma 2.3 that

d

dt

(
ωij
t +γθijt

)
≤D(ν)−κcosθct

(
1+cosθct

)(ωij
t

γ
+θijt

)
+

2κ

γ
m0+3κD2, t∈ (0,T ).

Then, the second estimate follows directly from Lemma 2.3.

By Lemma 2.2 and smoothness of θct , (θ
c
t )

−1 is differentiable. We set

Rij
t :=ωij

t +γθijt , µ(t) :=θct , R̃ij(r) :=Rij ◦µ−1(r), (2.3)

i.e. in particular R̃ij(θct )=Rij
t . Then, one can rephrase the previous lemma in terms of

R̃ij in order to obtain a differential equation as in (2.1) (with an inequality instead of
equality).

Lemma 2.5. Suppose the initial data and system parameters satisfy

0<νc−2κ≤γωc
0≤νc+2κ (2.4)

and let (Θt,Ωt) be a global smooth solution of (1.3). Suppose there exist T,D>0 such
that

sup
t∈[0,T ]

D(Θt)≤D.
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Then, for all i,j∈{1,·· · ,N} and r∈
(
µ(0),µ(T )

)
, we have

dR̃ij

dr
(r)≤αD−β(r)R̃ij(r), where

β(r) :=
κ

νc
cosr

(
1+cosr

)
,

αD :=
γD(ν)+2κm0+3γκD2

νc
+

2γ2κD(ν)+8γκ2m0+6γ2κ2D2+4γ2κ2D

νc(νc−2κ)
,

(2.5)

where m0 is defined in (2.2).

Proof. By Lemma 2.2 and (2.4), we have∣∣∣∣ωc
t −

νc

γ

∣∣∣∣≤ 2κ

γ
, t≥0.

Together with Lemma 2.4, this yields

dR̃ij

dr
(µ(t))=

dRij
t

dt

(
dµ

dt
(t)

)−1

≤ γD(ν)+4κm0+3γκD2+2γκD

νc−2κ
, t∈

(
0,T

)
.

Thus, in combination with Lemma 2.4, we conclude

νc

γ

dR̃ij

dr
(µ(t))=

dRij
t

dt
+

dR̃ij

dr
(µ(t))

(
νc

γ
− dµ

dt
(t)

)
≤D(ν)+

2κ

γ
m0+3κD2− κ

γ
cosµ(t)

(
1+cosµ(t)

)
R̃ij(µ(t))

+
2γκD(ν)+8κ2m0+6γκ2D2+4γκ2D

γ(νc−2κ)
, t∈

(
0,T

)
,

which implies our desired result, since {µ(t) : t∈ (0,T )}=(µ(0),µ(T )).

For the formulation of our first main result, we define the following constants.

L :=
exp

(
−
∫ 2π

0
β+(s)ds

)
1−exp

(
−
∫ 2π

0
β(s)ds

) = exp
(
− (4+π)κ

2νc

)
1−exp

(
− κπ

νc

) , (2.6)

R :=
exp

(∫ 2π

0
β−(s)ds

)
1−exp

(
−
∫ 2π

0
β(s)ds

) = exp
(

(4−π)κ
2νc

)
1−exp

(
− κπ

νc

) . (2.7)

Theorem 2.1. Suppose there exists a constant D>0 such that the initial data and
system parameters satisfy

0<νc−2κ≤γωc
0≤νc+2κ, 2πRαD<γD, D(Θ0)<D, D(Ω0+γΘ0)≤2πLαD,

(2.8)

where αD is defined in (2.5), and let (Θt,Ωt) be a global smooth solution of (1.3). Then,
D(Θt) is uniformly bounded:

sup
t≥0

D(Θt)≤D.
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Proof. We define the following temporal set to use a contradiction argument:

T :=
{
s≥0 :D(Θs)<D

}
.

Since
∣∣θijt ∣∣ is continuous, by (2.8) T is nonempty. Suppose that

T := supT <∞.

Then, for arbitrary i,j∈{1,·· · ,N}, Lemma 2.5 implies

dR̃ij

dr
(r)≤αD−β(r)R̃ij(r), r∈ (µ(0),µ(T )),

and since

R̃ij(µ(0))=Rij
0 ≤D(Ω0+γΘ0)≤2πLαD,

comparing with Lemma 2.1 gives

ωij
t +γθijt =Rij

t ≤2πRαD, t∈ (0,T ).

Then, since ωij
t = d

dtθ
ij
t , direct calculus yields

θijt ≤e−γtθij0 +(1−e−γt)
2πRαD

γ
≤max

{
D(Θ0),

2πRαD

γ

}
<D,

and this implies, via continuity of θij , D(ΘT )<D, which contradicts the assumed finite-
ness of T .

Remark 2.1. Suppose the rotation number ρ of one oscillator, say θ1, exists. Then,
for any j∈{1,. ..,N}, Theorem 2.1 implies

limsup
t→∞

∣∣∣∣ρ− θjt
t

∣∣∣∣≤ limsup
t→∞

|θ1t −θjt |
t

=0,

i.e. the rotation number of each oscillator exists and coincides with ρ. Lemma 2.2
further implies

ρ= lim
t→∞

θct
t
= lim

t→∞

1

t

∫ t

0

ωc
sds≥

νc−2κ

γ
>0.

Therefore, in the situation of Theorem 2.1, under the additional assumption that one
rotation number exists, Θt converges towards a complete phase-locked state.

We conclude this section with an example of admissible initial data and system
parameters satisfying (2.8). To this end, fix γ,νc>0 and D∈ (0,0.1), and suppose

D(ν)=D(Ω0)=0, ωc
0=

νc

γ
.

Note

lim
κ→0+

κR= lim
κ→0+

κ

exp
(

(π−4)κ
2νc

)
−exp

(
(−π−4)κ

2νc

)
= lim

κ→0+

1
(π−4)
2νc exp

(
(π−4)κ
2νc

)
+ (π+4)

2νc exp
(

(−π−4)κ
2νc

) =
νc

π
. (2.9)
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Hence, there is κ∈ (0,νc/2) sufficiently small such that

κR<
5νc

3π
, κ

(
20D

3γ2
+

160κD

3γ(νc−2κ)
+

20γD2

νc−2κ
+

40γD

3(νc−2κ)

)
≤D−10D2.

Therefore, we obtain

2πRαD

γ
=

2πκRαD

γκ

<
10νc

3γ

(
2κD

γνc
+

3γD2

νc
+

16κ2D

νc(νc−2κ)
+

6γ2κD2

νc(νc−2κ)
+

4γ2κD

νc(νc−2κ)

)
=10D2+κ

(
20D

3γ2
+

160κD

3γ(νc−2κ)
+

20γD2

νc−2κ
+

40γD

3(νc−2κ)

)
≤D.

It is easy to see that at the same time the remaining estimates of (2.8) can be satisfied
as well. Indeed, it is sufficient to choose D(Ω0) sufficiently small in terms of D,L,αD

and γ.

We did not aim to optimize the constraints and choices of the initial data and
system parameters in the above example. In particular, choices D(ν) ̸=0 ̸=D(Ω0) are
also possible within admissible choices in Theorem 2.1.

3. Second-order stochastic Winfree model with inertia
In this section, we consider the stochastically perturbed second-order Winfree model

(1.4), in which all particles are affected by a time-dependent common noise, and its
strength for particle i is proportional to the deviation ωi

t−ωc
t of its frequency from the

instantaneous average frequency of the system.
Let us explain the underlying probabilistic setting. B=(Bt)t≥0 is a standard

real Brownian motion on a filtered probability space (Ω,F ,(F t)t≥0,P ), where (F t)t≥0

denotes the right-continuous and completed version of the Brownian filtration F̃ t :=
σ(Bs,0≤s≤ t) (i.e. (Ft)t≥0 is the smallest filtration Ft⊇F̃ t such that all P−zero sets
belong to F0 and Ft=∩ε>0Ft+ε). Moreover, σ :R→R is nonnegative and continuous.
We do not assume σ to be strictly positive or bounded away from 0. The system pa-
rameters γ,νi,κ are deterministic, while the initial data (Θ0,Ω0) can be random. By
the well-posedness theory for stochastic differential equations, it follows that (1.4) has
a pathwise unique global solution on the filtered probability space fixed above (for ex-

ample, writing θit=
∫ t

0
ωi
sds+θi0, (1.4) can be considered a stochastic delay differential

equation, which is well-posed in probabilistic strong sense).
Note that the system of equations for (θc,ωc) becomes

dθct =ωc
tdt,

dωc
t =

[
−γωc

t +νc−κIc(Θt)
1

N

N∑
i=1

sinθit

]
dt,

(θct ,ω
c
t )
∣∣
t=0

=(θc0,ω
c
0),

i.e. the system of equations governing (θc,ωc) remains deterministic. In particular,
t 7→θct is pathwise differentiable. The following auxiliary result is obtained analogously

to Lemma 2.2, since
∑N

i=1(ω
c
t −ωi

t)=0.

Lemma 3.1. Suppose the initial data and system parameters satisfy

ωc
0>0 and κ<

νc

2
,
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and let (Θt,Ωt) be a global solution of (1.4). Then, ωc
t is uniformly bounded:

0<min

{
ωc
0,

νc−2κ

γ

}
≤ωc

t ≤max

{
ωc
0,

νc+2κ

γ

}
, t≥0.

In particular, t 7→θct is strictly increasing and unbounded.

We prove the emergence of phase-locking for particles θ1,. ..,θN governed by (1.4)
under suitable assumptions on σ and the system parameters γ,ν,κ. Suppose

||σ||2<∞ and ∥σ∥∞≤
√

4κ

γ
. (3.1)

We need the following notation (compare with the corresponding constants from Section
2). For D,δ>0, set

c0 := c0(γ,κ,ν,Ω0,D,δ) :=
1

coshδ
max

{
D(Ω0),

(
D(ν)+2κD

)
exp

(
∥σ∥2

2

2 +δ
)

γ

}
(3.2)

and

αD :=
γ

νc

(
γc0e

δ sinhδ+
eδD(ν)

coshδ
+3κD2+2κDtanhδ+

9κ

4γ
c0

)
+

2γκ

νc(νc−2κ)

(
γc0e

δ sinhδ+
eδD(ν)

coshδ
+3κD2+

2κDeδ

coshδ
+

17κ

4γ
c0

)
. (3.3)

Also, we use β, L and R as defined in (2.5)-(2.7). Our main result is the following:

Theorem 3.1. For D>0, let (Θ,Ω) be a global solution of (2.2) with D(Θ0)<D and
0<νc−2κ≤γωc

0≤νc+2κ. Further assume (3.1), and let δ>0 such that

ωij
0

coshδ
+γθij0 ≤2πLαD, (3.4)

and

1

γ

(
2πRαD+c0e

δ sinhδ
)
<D, (3.5)

where c0,αD are defined in (3.2)-(3.3), and β,L and R are defined in (2.5)-(2.7). Then,
there is a measurable set Aδ with

P (Aδ)≥1−2exp

(
− δ2

2∥σ∥22

)
, (3.6)

on which supt≥0D(Θt)<D holds pathwise.

Remark 3.1. It is clear that all assumptions of Theorem 3.1 remain valid, if ||σ||2 be-
comes smaller while δ>0 is fixed. Hence, for any ε>0, one can choose ||σ||2 sufficiently
small in order to obtain P (Aδ)>1−ε.

For the proof, we shall use the process Yt=Y0 exp

(
−
∫ t

0
σsdBs

)
, Y0>0, which is a

martingale (with respect to the natural Brownian filtration). It turns out to be helpful to
choose the (deterministic) initial condition Y0=

1
coshδ , where δ>0 is as in the assertion

of Theorem 3.1.
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Lemma 3.2.
(1) The process Y solves the stochastic differential equation

dYt=
σ2
t

2
Ytdt−σtYtdBt, t≥0 (3.7)

(in strong probabilistic sense, i.e. on the specified underlying probability space
(Ω,F ,(Ft)t≥0,P )).

(2) (Bernstein-type inequality, see [6, B.1.3.].) For δ>0, we have

P

{
sup
t≥0

∣∣∣∣∫ t

0

σsdBs

∣∣∣∣<δ

}
≥1−2exp

(
− δ2

2∥σ∥22

)
.

Consequently, for Aδ :=
{
supt≥0

∣∣∫ t

0
σsdBs

∣∣<δ
}
we have

P (Aδ)↗1 as δ↗∞.

(3) Setting Y0 :=
1

coshδ , on Aδ we have the estimates

e−δ

coshδ
=e−δY0≤Yt≤eδY0=

eδ

coshδ
, t≥0 (3.8)

and

|Yt−1|< tanhδ, t≥0. (3.9)

Proof.

(1) This follows immediately by a standard application of Itô’s formula.

(2) By [6, Lemma B.1.3.], for every N ∈N we have

P

(
sup

0≤t≤N

∣∣∣∣∫ t

0

σsdBs

∣∣∣∣<δ

)
≥1−2exp

(
− δ2

2
∫ N

0
σ2
sds

)
≥1−2exp

(
− δ2

2||σ||22

)
.

Since
{
sup0≤t≤N

∣∣∫ t

0
σsdBs

∣∣<δ
}
⊇
{
sup0≤t≤N+1

∣∣∫ t

0
σsdBs

∣∣<δ
}
, the continuity of

P from below implies the claim.

(3) The claims follow from elementary calculations.

We proceed to the proof of Theorem 3.1.

Proof. (Proof of Theorem 3.1.) Note that (1.4) gives

dωij
t =

[
−γωij

t +νij−κIc(Θt)
(
sinθit−sinθjt

)]
dt+σtω

ij
t dBt, t≥0.

Hence, Itô’s product rule implies

d
(
Ytω

ij
t

)
=Yt

[
−γωij

t +νij−κIc(Θt)
(
sinθit−sinθjt

)]
dt− σ2

t

2
Ytω

ij
t dt, t≥0. (3.10)

In particular, t 7→Ytω
ij
t is pathwise differentiable. For D>0, we denote by T the map

T := inf{t>0 :D(Θt)>D},
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and note that due to the continuity of t 7→θit, D(Θ0)<D implies T >0 and D(ΘT )=D,
if T <∞. In order to prove Theorem 3.1, we show

T =∞ on Aδ, (3.11)

which gives supt≥0D(Θt)≤D on Aδ and hence the assertion.
First note the following estimate on Aδ for 0<t<T , which follows from |Ic(Θt)|≤2

and |sinx−siny|≤ |x−y|:

d

dt

[
Ytω

ij
t exp

(
γt+

∫ t

0

σ2
s

2
ds

)]
=Yt

[
νij−κIc(Θt)

(
sinθit−sinθjt

)]
exp

(
γt+

∫ t

0

σ2
s

2
ds

)
≤D(ν)+2κD

coshδ
exp

(
γt+

∥σ∥22
2

+δ

)
,

and thus we also have

Ytω
ij
t eγt≤Ytω

ij
t exp

(
γt+

∫ t

0

σ2
s

2
ds

)
≤ ωij

0

coshδ
+

D(ν)+2κD

coshδ

e
∥σ∥22

2 +δ

γ
(eγt−1),

from which we infer

Ytω
ij
t ≤ D(Ω0)

coshδ
e−γt+

D(ν)+2κD

coshδ

e
∥σ∥22

2 +δ

γ
(1−e−γt)

≤ 1

coshδ
max

{
D(Ω0),

D(ν)+2κD

γ exp
(
− ∥σ∥2

2

2 −δ
)}= c0. (3.12)

Combining with (3.8), we have

ωij
t ≤ c0e

δ coshδ (3.13)

on Aδ and for t<T . From (3.9),(3.10), (3.12) and (3.13), we infer on Aδ for t<T

d

dt

(
Ytω

ij
t +γθijt

)
=γ(1−Yt)ω

ij
t +Ytν

ij− κ

γ
(1+cosθct )cosθ

c
t

(
Ytω

ij
t +γθijt

)
+κ(1+cosθct )cosθ

c
tθ

ij
t −κIc(Θt)

(
sinθit−sinθjt

)
−κ(Yt−1)Ic(Θt)

(
sinθit−sinθjt

)
+

(
κ

γ
(1+cosθct )cosθ

c
t −

σ2
t

2

)
Ytω

ij
t

≤γc0e
δ sinhδ+

eδD(ν)

coshδ
− κ

γ
(1+cosθct )cosθ

c
t

(
Ytω

ij
t +γθijt

)
+3κD2+2κDtanhδ+

9κ

4γ
c0, (3.14)

and consequently∣∣∣∣ ddt(Ytω
ij
t +γθijt

)∣∣∣∣≤γc0e
δ sinhδ+

eδD(ν)

coshδ
+3κD2+

2κDeδ

coshδ
+

17κ

4γ
c0. (3.15)
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For abbreviation, we set

Qij
t :=Ytω

ij
t +γθijt , µ(t) :=θct , Q̃

ij(r) :=Qij ◦µ−1(r),

i.e. in particular Q̃ij(θct )=Qij
t . Since dµ

dt (t)=
dθc

dt (t)=ωc
t , by Lemma 3.1 and (3.15) we

obtain

dQ̃ij

dr
(µ(t))=

dQij
t

dt

(dµ
dt

(t)
)−1≤ γ

νc−2κ

(
γc0e

δ sinhδ+
eδD(ν)

coshδ
+3κD2+

2κDeδ

coshδ
+

17κ

4γ
c0

)
.

Since this estimate holds for all 1≤ i,j≤N , combined with (3.14) and Lemma 3.1, it
implies

νc

γ

dQ̃ij

dr
(µ(t))=

dQij
t

dt
+

dQ̃ij

dr
(µ(t))

(
νc

γ
− dµ

dt
(t)

)
≤−κ

γ
(1+cosθct )cosθ

c
t

(
Ytω

ij
t +γθijt

)
+γc0e

δ sinhδ+
eδD(ν)

coshδ
+3κD2+2κDtanhδ+

9κ

4γ
c0

+
2κ

νc−2κ

(
γc0e

δ sinhδ+
eδD(ν)

coshδ
+3κD2+

2κDeδ

coshδ
+

17κ

4γ
c0

)
,

and therefore we obtain

dQ̃ij

dr
(r)≤αD−β(r)Q̃ij(r), r∈ (θc0,θ

c
T ).

Comparing with Lemma 2.1 and since

Q̃ij(θc0)=Qij(0)=
ωij
0

coshδ
+γθij0 ≤2πLαD,

we have Q̃ij(r)≤2πRαD for all r∈ (θc0,θ
c
T ), so for t∈ (0,T ), we have Qij

t = Q̃ij(θct )≤
2πRαD. From the definition of Qij , together with (3.9) and (3.13), this implies the
following: Under the assumptions of the assertions, on Aδ we have

ωij
t +γθijt =Qij

t +(1−Yt)ω
ij
t ≤2πRαD+c0e

δ sinhδ, t∈ (0,T ).

To conclude the proof (i.e. in order to prove (3.11)), we claim for each 1≤ i,j≤N

θijt ≤max

{
D(Θ0),

1

γ

(
2πRα(D)+c0e

δ sinhδ
)}

<D, t∈ (0,T ), (3.16)

on Aδ. For any path t 7→θijt with (3.16), assuming T <∞ leads to a contradiction, since
in this case θijt −→D would hold as t→T . Finally, (3.16) can be obtained as follows:
Since d

dt (e
γtθijt )=eγt(ωij

t +γθijt ), we have

θijt ≤θij0 e−γt+
1

γ
(2πRαD+c0e

δ sinhδ)(1−e−γt)

≤max

{
D(Θ0),

1

γ

(
2πRαD+c0e

δ sinhδ
)}

.

Since the final strict inequality in (3.16) holds by assumption, the proof is complete.
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Remark 3.2. The theorem remains valid in the case where (Θ0,Ω0) is random such
that for this initial data (1.4) has a unique probabilistic strong solution, if one replaces
Aδ in the assertion by Aδ :=Aδ∩{νc+2κ≥γωc

0≥νc−2κ}∩{D(Θ0)<D}. However, if
the latter two sets are not of full P -measure, then the lower bound (3.6) does not
necessarily hold with Aδ in place of Aδ.

We conclude this section with an example of system parameters and initial data
which satisfy all assumptions of Theorem 3.1. Suppose

D(ν)=0, D∈ (0,0.05), νc>0. (3.17)

It follows from limκ→0+κR= νc

π that we can choose κ∈ (0,νc/2) sufficiently small such
that

κR≤ 2νc

π
,

8κ(3D2+4D)

νc−2κ
<

D−20D2

2
. (3.18)

Let γ>0 be sufficiently large so that

16κD

γ
+

36κD

γ2
+

32κ2D

γ(νc−2κ)
+

136κ2D

γ2(νc−2κ)
+

4κ2D

γ3
<

D−20D2

2
, (3.19)

and choose δ>0 sufficiently small such that

γeδ sinhδ≤κ, tanhδ≤D,
eδ

coshδ
<
√
2. (3.20)

If D(Ω0) is sufficiently small so that γD(Ω0)≤2κD, then, independently from the choice
of σ, we have

c0=
2κDexp

(
∥σ∥2

2

2 +δ
)

γ coshδ
≤

2
√
2κDexp

(
∥σ∥2

2

2

)
γ

.

Hence, also choosing σ such that e∥σ∥
2
2/2≤

√
2, we have

c0≤4κD/γ. (3.21)

Combining (3.18)-(3.21), we obtain

2πRαD+eδ sinhδc0
γ

≤ 4νcαD

γκ
+

4κ2D

γ3

≤ 4

κ

(
κc0+5κD2+

9κ

4γ
c0

)
+

8

νc−2κ

(
κc0+3κD2+4κD+

17κ

4γ
c0

)
+

4κ2D

γ3

≤20D2+
16κD

γ
+

36κD

γ2
+

32κ2D

γ(νc−2κ)
+

136κ2D

γ2(νc−2κ)
+

4κ2D

γ3
+

8κ(3D2+4D)

νc−2κ

<20D2+D−20D2=D.

Hence, for the choices made in (3.17), to obtain (3.5) one can choose κ=κ(νc) sufficiently
small, γ=γ(κ,D) sufficiently large, δ= δ(γ,D) and D(Ω0)=D(Ω0)(γ,κ,D) sufficiently
small and, finally, ||σ||2 smaller than an absolute constant. It is obvious that these
choices can be made such that also (3.4) and 0<νc−2κ≤γωc

0≤νc+2κ hold.
We point out that we did not aim to optimize the constraints on the system pa-

rameters and the initial data in this example. In particular, it is not necessary to have
D(ν)=0.
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4. Numerical simulations
Here we provide several numerical examples in order to confirm our results from

Sections 2 and 3 and to motivate possible future works. In all simulations, we set the
number of oscillators N =21, the time step size ∆t=0.01, and we used the Euler method
and the Euler-Maruyama method for the deterministic and stochastic case, respectively.

4.1. Deterministic case. We observe an example of Theorem 2.1 and present
further motivating examples. In the first simulation, we choose natural frequencies νi,
coupling strength κ, friction coefficient γ, and initial frequency Ω0 as follows:

νi=128+10−4(i−11) =⇒ νc=128, D(ν)=2×10−3,

κ=0.2, γ=4, ωc
0=

νc

γ
, D(Ω0)=0 =⇒ 0<νc−2κ≤γωc

0≤νc+2κ.

For the initial condition, we choose

θi0=4×10−3(i−11) =⇒ D(Θ0)=0.08,

so the assumptions of Theorem 2.1 hold with D=0.1:

2πRαD−γD≈−0.0117<0, D(Ω0+γΘ0)−2πLαD≈−0.0659≤0.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time
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(a) Graph of D(Θ(t)) for 0≤ t≤5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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32

32.1

32.2

32.3

32.4

32.5

(b) Graph of θi(t)/t for 0.1≤ t≤5

Fig. 4.1: Emergence of phase-locked state.

In Figure 4.1, it is seen that the phase diameter is bounded by D(Θ0) and that the
rotation number of each oscillator seems to be well-defined and to coincide with one
another, which is in accordance with the assertion of Theorem 2.1. Next, we change the
natural frequencies νi and initial phase Θ0 to

νi=128+8(i−11), θi0=
2π

3
(i−11),

and observe the corresponding dynamics for two drastically different coupling strengths,
namely κ=1 and κ=50. In these cases, not all conditions of (2.8) hold. For κ=1,
synchronous behavior does not seem to emerge, however, for large coupling strength
(κ=50), the simulations in Figure 4.2 hint at a phase-locking result in this case as well.
More precisely, Figure 4.2b shows the emergence of distinct rotation numbers for κ=1,
which explains the divergence of the phase diameter in Figure 4.2a and the absence
of phase-locking in this case. However, for κ=50, Figures 4.2c and 4.2d hint at the
emergence of phase-locking. We infer that phase-locking can occur in suitable large
coupling regimes as well.
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(a) Graph of D(Θ(t))
for 0≤ t≤5 and κ=1
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(b) Graph of θi(t)/t
for 0.1≤ t≤5 and κ=1
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(c) Graph of D(Θ(t))
for 0≤ t≤5 and κ=50
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(d) Graph of θi(t)/t
for 0.1≤ t≤5 and κ=50

Fig. 4.2: Effect of coupling strength.

4.2. Stochastic case. We proceed with simulations for the stochastic case,
i.e. for the model introduced in (1.4). First, we choose natural frequencies νi, coupling
strength κ, friction coefficient γ, and initial frequency Ω0 as

νc=12, D(ν)=0, κ=0.1, γ=5, ωc
0=

νc

γ
, D(Ω0)=0

=⇒ 0<νc−2κ≤γωc
0≤νc+2κ,

and set D, D(Θ0),δ and σt as

D=0.1, D(Θ0)=0.08, δ=

√
log9

50
, σt=

1

50(1+ t)
, θi0=4×10−3(i−11).

Then

∥σ∥2=∥σ∥∞=
1

50
<

√
4κ

γ
,

D(Ω0)

coshδ
+γD(Θ0)−2πLαD≈−0.0744≤0,

2πRαD+eδ sinhδ∥YD(Ω)∥∞−γD≈−0.0094<0.

For this parameter configuration, we observe 5000 sample paths in the time interval
[0,50].
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(a) Sample paths of D(Θ(t)) for 0≤ t≤50 (b) Sample paths of D(Θ(t)) for 0≤ t≤2.5

Fig. 4.3: Emergence of phase-locked state.

The corresponding sample paths are plotted in Figure 4.3, on small and large time
scale. One observes that all paths seem to be uniformly (in t) bounded by D(Θ0),
which follows the result of Theorem 3.1. Note that the lower bound of the probability
for uniformly bounded D(Θ) given in Theorem 3.1 is

P (Aδ)≥1−2exp

(
− δ2

2∥σ∥22

)
=

1

3
.

Figure 4.3 suggests that this bound is not optimal. We leave it as a future work.
Next, we change natural frequencies νi, initial phase Θ0, and σt to

νi=12+
i−11

10
, θi0=

2π

3
(i−11), σt=

1

2(1+ t)
,

so that D(ν)=2, D(Θ0)=4π/3, and ∥σ∥∞=∥σ∥2=0.5. We observe 5000 sample paths
for coupling strengths κ=1 and κ=5, respectively, in order to separately study the
effect of coupling strength on the emergence of phase locking.

(a) Sample paths of D(Θ(t))
for 0≤ t≤50 and κ=1

(b) Sample paths of D(Θ(t))
for 0≤ t≤50 and κ=5

Fig. 4.4: Effect of coupling strength.

Figure 4.4b suggests that also in a stochastic case, a large coupling regime does not
rule out the emergence of phase locking, provided κ and σ are suitably balanced. We
shall investigate the phase transitions in terms of the balance between σ and κ in the
stochastic case more closely in a future work.
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5. Conclusion

We provided sufficient frameworks for phase-locked state emergence for the second-
order (stochastic) Winfree model with inertia. In the deterministic case (1.3), we ob-
tained uniform-in-time boundedness of the phase diameter maxi,j(θ

i
t−θjt ). The key

observation towards this result is the following: provided the natural frequencies and
the initial data are sufficiently narrowly spread, γθij+ωij can be compared to a solution
of a differential equation with affine periodic drift. When the orbit of the periodic part
of this drift is suitably small, one can conclude boundedness of the phase diameter. Our
numerical simulations suggest that this result can be extended to more general sets of
initial data and under milder constraints on the spread of νi.

For the stochastic model (1.4), using a Bernstein-type inequality we obtained lower
bounds for the probability of pathwise phase-locking. We note that we did not observe
a regularizing effect of the noisy perturbation in terms of the emergence of synchronous
behavior, but that we rather had to constrain its effect on the particle system. Indeed,
choosing the noise sufficiently small, the lower estimate for the probability of pathwise
phase-locking can be made arbitrarily large in (0,1). In future works, it will be interest-
ing to find out whether this is an intrinsic phenomenon of the model or whether refined
techniques reveal a certain synchronization by noise effect for the Winfree model with
inertia, possibly for other types of multiplicative noise.
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