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ERROR ESTIMATES OF
THE SAV METHOD FOR THE COUPLED CAHN-HILLIARD SYSTEM
IN COPOLYMER/HOMOPOLYMER MIXTURES*

JIN HUANG' AND GUANGHUA JI*

Abstract. In this paper, we consider the fully discrete scheme based on the scalar auxiliary
variable (SAV) approach in time and the Fourier spectral method in space, for solving the phase-field
model of the blend consisting of AB diblock copolymers and C homopolymers. We establish the error
estimates of the numerical scheme rigorously, and show that the fully discrete scheme converges with
order 0(7'2 +h™), where 7, h, and m are the time step, spatial step and regularity of the exact solution,
respectively. Finally, some numerical simulation results are presented to demonstrate the theoretical
results.
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1. Introduction

In recent years, there has been tremendous interest in block copolymers (BCPs)
due to their ability to produce rich nanostructures with a wide range of applications in
optics and drug transport. The simplest block copolymer is the diblock copolymer, in
which two types of polymer segments are covalently bound. The self-assembly behavior
of diblock copolymers under confinement has attracted considerable attention [1-13].
According to the interface properties of the confined space, confinement can be divided
into soft confinement and hard confinement. In a soft confined system, the interface is
flexible, while in a hard confined system, it is fixed. Compared to hard confinement,
soft confinement offers more possibilities for copolymer self-assembly to generate novel
nanostructures [14, 16-18]. To realize soft confinement in physical experiments, re-
searchers usually use self-organized precipitation (SORP) in which a mixture consisting
of copolymers, and a third immiscible is considered [9,15,16]. To achieve consistency,
researchers consider the copolymer/homopolymer or copolymer /solvent blend theoreti-
cally to simulate the self-assembly of block copolymers under soft confinement [17-19].

For multiphase incompressible fluids, popular modeling methods include the Monte
Carlo simulated annealing method [23,24], Self-Consistent Field Theory (SCFT) [25-27],
and the phase-field approach [19,28-30]. The Monte Carlo simulated annealing method
is a well known procedure that seeks to obtain the lowest energy ground states of a
disordered system. However, it requires a large amount of computational effort and
cannot obtain the energy of the system. This problem can be partially solved by SCFT,
in which the multibody interactions between polymers in the system are converted into
the force of external fields. In SCFT, there is an explicit expression for free energy,
but there are many coupling parameters in the SCFT equations, which results in many
calculations. Similar to the previous two methods, the phase-field approach, which
introduces smooth phase variables to describe the evolution of the free interface, is
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also a popular modeling framework for polymer systems. Compared with SCFT, the
phase-field approach has the advantages of fewer parameters and simpler theoretical
analysis. Although the Cahn-Hilliard equations in the phase-field model are based on
a small number of parameters, they are robust enough to provide guidance on the
dynamic behavior of confined BCPs. For various processes involving the heating of
BCP in solutions, Avalos et al. established a clear parameter correspondence between
the temperature-dependent Flory-Huggins parameter and the width of the microphase
interface [20]. Hence, we consider the phase-field approach here. The phase-field model
of the copolymer/homopolymer blend was first proposed by Avalos et al. [21], in which
novel morphologies of diblock copolymers confined in a three-dimensional sphere were
obtained. Then, they simulated the phase transition from stacked lamellae to onion-like
structures and gave a phase diagram containing various morphologies [20].

However, the above studies in [20,21] focus on the simulation and prediction of
physical phenomena, rather than on designing efficient algorithms for the model. In
fact, solving the model efficiently is necessary and challenging because the nonlocal
term in the coupled Cahn-Hilliard equations is difficult to handle properly.

For the Cahn-Hilliard equations, the common numerical methods include convex
splitting [31-33], stabilization method [34-36], invariant energy quadratization (IEQ)
approach [37,38] and scalar auxiliary variable (SAV) approach [39-43]. The convex
splitting method is introduced by Eyre et al. in [31] for time stepping the Cahn-Hilliard
equations. However, it requires solving a nonlinear equation with high computational
complexity at each time step. Moreover, it is difficult to construct the corresponding
second-order schemes. Based on the convex splitting method, the stabilization method,
which explicitly addresses nonlinear terms and adds a stability term to avoid strict time
step constraints, can be extended to second-order schemes but in general it does not
guarantee unconditional stability. Notably, the IEQ method, which is proposed in [37],
allows us to construct linear second-order unconditionally energy stable schemes for a
large class of gradient flows. However, the IEQ method often leads to variable coefficient
systems, which is hard to implement. To overcome this problem, i.e., constructing a
numerical format that is easy to implement, Shen et al. proposed the SAV approach for
a large class of gradient flows that describe energy dissipative physical systems [39,40].
The schemes for gradient flows that introduce auxiliary variables are proposed for a
fourth-order polynomial double well free energy in [40] and then generalized to other
free energies. The related numerical studies show that the SAV method is superior to
the IEQ approach [39,41,42] because it can inherit the advantages of the IEQ approach
and overcome its shortcomings. That is, it is more efficient and easier to implement.

Compared with traditional Cahn-Hilliard equations, the key to efficiently solving the
coupled Cahn-Hilliard equations lies in the treatment of nonlocal and nonlinear terms.
Therefore, it is necessary to construct a nonlinear decoupled high-precision scheme for
the model using the SAV method, which can guarantee unconditional energy stability.
To solve this problem, Li et al. proposed second-order numerical schemes combining
the SAV method with CN and BDF2, which are decoupled, noniterative, and easy to
implement [22]. Furthermore, they demonstrated the unconditional energy stability
of the SAV/CN and SAV/BDF?2 schemes and pointed out that the error estimation is
challenging but do not present it. The purpose of this paper is to present the error
analysis for the SAV/CN scheme, which is also applicable to the SAV/BDF2 scheme.

This paper is organized as follows. In Section 2, we introduce the phase-field model
of the blend consisting of AB diblock copolymers and C homopolymers. Then, we
present the second-order SAV/CN scheme and the unconditional energy stability in
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Section 3. The corresponding error estimate, which is guaranteed by the L> bound of
numerical solutions, is proved in Section 4. To verify the analysis results, we give the
results of numerical simulations in two dimensions in Section 5. Finally, we present the
conclusions in Section 6.

2. The model

Before introducing the phase-field model of the blend consisting of AB diblock
copolymers and C homopolymers, we first introduce some notations used through-
out this paper, (see, e.g., [22]). We consider a bounded domain Q€ R4, d=1,2,3
and the usual Sobolev space denoted by W*P(Q) (0<s<00,1 <p<oo). Then, we de-
note H*(Q):=W*2() equipped with the norm ||| 5. and the dual space of H*(f2) as
H~4(Q2). Furthermore, we consider the space L?(Q):= H°(Q) associated with the inner
product (-,-) and norm |[|-||. In particular, we define the space LZ(Q) = {v € L*(Q)|(v,1) =
0}. For f € LE(Q), we can define vy :=(—A)~! f, where vy € H2(Q)(L3(9) is the unique
solution of the periodic boundary value problem —Av; = f in Q. For any f,g€ L3(f),
the H~! inner product and norm can be defined as

(f,9)-1:= (v, Vvg), [fll 1=V ()1 (2.1)

We denote by f<g that there exists a general positive constant C' such that f<Cyg
holds.

Here, we consider the blended system composed of AB diblock copolymers and C
homopolymers in a bounded region Q (Q€ R?, d=1,2,3). We use two order parameters
(u and v) to describe macrophase separation between copolymers and homopolymers
and the microphase separation between monomers A and B. u defines the state of the
blend of copolymers and homopolymers, and requires values in the range of [—1,1] with
end points corresponding to homopolymer-rich (-1) and copolymer-rich domains (+1),
respectively. v characterizes the state of AB diblock copolymers and requires values
from the interval [—1,1]. When v takes -1 and 1, it corresponds to A-rich and B-rich
domains, respectively. The total free energy takes the form [20,21]

2 2
B(u,0) = /Q HVuP + Z Vo + W)+ Z|(-2) F(v-0)Pdx,  (22)

where parameters €, and €, are proportional to the thickness of the propagating fronts of
each component. W (u,v)=1(u?—1)*+1(v? —1)?+auv+ Buv? is the double-well po-

1
tential energy, where o and 3 are two constants coupled with each other. o= @ fQ’U dx

is the mass ratio between two polymers. The last term of E characterizes the long-
range interaction between molecules in the system (related to o) which determines that
(=A)~2 must be integrated over the whole region Q.

Using the gradient flow method, i.e., taking the variational derivative of E in
H=1(Q) (with respect to u and v, respectively), we obtain the conserved dynamics
as follows:

uy = My A(—€2 Au+ f(u,v)), (2.3)
vr= M, (A(=EAv+g(u,0)) o (v - 1),
where M, and M, are mobility parameters to control the speed at which order pa-

rameters u and v move. f(u,v)=u®—u+av+pv? g(u,v)=v>—v+au+2Buv. For
the Cahn-Hilliard equations, two boundary conditions can be considered: (i) periodic
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boundary conditions, i.e., all variables are periodic on 9€; (ii) no-flux type boundary
conditions, i.e.,

anu|ag:anAu|ag:anv|aQ:8nA’U|aQ:0 (2.5)

where n is the unit outward normal on 0€2. In this work, we use periodic boundary
conditions. However, our analysis is also applicable to the case of no-flux type boundary
conditions.

3. Second-order SAV scheme and its stability

In the SAV approach, we first introduce a scalar variable r =/ E; (u,v) + Cp, where
Ey(u,v) :fQ(W(u,v)fguzfgzﬁ)dx, S>0 is a stabilization parameter, and Cj is a
positive constant to ensure E(u,v)+Cp>0. Therefore, the free energy functional (2.2)

can be formulated as
2 2
E(u,m):/(iu\vu|2+§u2+&|w|2+§u2+3|(—A)*a(u—@)\2)dx+r2—co.
0 2 2" T 2" T2

We obtain the equivalent PDE system as follows:

up = My A(—€e2 Au+ Su+ H (u,v)r), (3.1)
vy =M, (A(=2Av+ Sv+G(u,v)r) — o (v —1)), '
where
Huyp)= S8 =5 g, = 90 =50
\/El(u,v)—&-Co \/El(u,v)+C0
The initial conditions are
ul—o=u", v|i=o=0", 7|(1=0) = v/ E1(u®,v°) + Co. (3.2)

Due to the periodic boundary conditions, we apply the Fourier spectral method

for spatial discretization. Taking the two-dimensional (2D) region Q2=[0,L,] X [0,L,]

as an example, we shall introduce the framework of the Fourier spectral method. In

our simulations, all spatial functions can be expanded by plane waves. Here, we use

N, x Ny plane-wave basis functions to discretize the 2D domain. Hence, the space step
is defined as hy =L, /Ny, hy=L,/N,. The Fourier approximation space is

N, N, Ny

Xy =span{e®®efry| - L << 2 1 Y <p<

Yy
-1
2 2 2 - b

where i =+/—1, oy =27l/L,, and 8,=27p/L,. Then, we can define the L?—orthogonal
projection operator Il : L?(2) — Xy, which satisfies

N,
2

(Mno—¢, W) =0, pc L*(Q), V T eXy.

The error of the orthogonalization can be estimated: for any ¢ € H,¢,.(Q2) and 0 <k <m,
there exists a constant C' such that

TN =l g SE™ N1l om (3.3)

where H™ () ={p € H™()|¢") is periodic on 92,0 <v<m}. For simplicity, we con-

per

sider the case of Ly, =L,=L, Ny,=N,=N and hy=h,=h.
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We denote the time step size as 7>0 and t"=n7 (0<n<Np=[T/7]). For any
function f, we denote the interpolation as follows:

~n_3 n_l n—
fr=spmegi,
fn+%:%<fn+fn+1)7

where f= f(t").

Then, we introduce the fully discrete scheme for the blended model proposed in [22],
which combines the SAV approach with the Crank-Nicolson scheme. The second-order
fully discrete SAV scheme is as follows. For n>1, given v ', v ! and u, vl, find
u"N+1, UJT\L,+1 such that

n+1

UN UN n+

D =Apy 2 A4
M, T By (3-4)
u}?z = fEQAUNJrQ +Sun+2 +H(1~L”N,17]T(,)7’K,+§, (3.5)

IUXerl ’U]’ri/' A n+y 2 n+3 2 ,n+%
Tﬂ_ Ev P —olvy 2 =Ty 2), (3.6)
7\',+"’ —eQAvN+2 + Svy +G(uN,vN)TN+2, (3.7)

1

it = 2 /Q(H(quf)R/)(URrH —uly) + G(ay, o) (Vi —vR))dx. (3.8)

The initial value required to apply the second-order scheme is obtained by the following
first-order scheme based on the backward Euler method.
1 0

“]jw UN — Apl, (3.9)
-
,uN:—eiAu}v—i—Su}V—i—H(u?\,,v?\,)r}V, (3.10)
”le*”?vi 1 1 -1
. A&y oy —vy), (3.11)
En = —€2Avy + Sy +G (U, o)k, (3.12)
1
== [ IRk — )+ Gladed) ok —R))dx. (313

From the scheme (3.4)-(3.8), we have the mass conservation of numerical solutions

/u?vdx:/u}VdX:---:/uR,dx,
Q Q Q
/v?\,dx:/v}vdx:---:/vﬁfdx,
Q Q Q

and the following energy stability [22].

THEOREM 3.1.  Scheme(3.4)-(3.8) has unique solutions u%, and vl and satisfies the
unconditional energy stability

1

B~ B = I k| -

1
M,T

n+1

lortt —oi]l (3.14)
where

1 2 2 2 2 — 2
Bz =5 (€IVur "+ Sllur "+ S IVOR P+ SR 7 + o ok =03 121) + ()* = Co.
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4. Error estimates for the second-order scheme

In this section, we shall give the error estimates for the fully discrete SAV/CN
scheme, as stated in Theorem 4.1. In the proof, the key idea is to obtain the L
boundedness of discrete solutions, which ensures that the derivative of the nonlinear
term F7 can be simplified. To achieve this goal, we first make some preparations.
Based on the regularity assumption of exact solutions, we derive the regularity of the
scalar auxiliary variable r(¢) and the estimates for truncation errors. Then, we utilize
mathematical induction and couple the proof of L boundedness and error estimates
in the proof. Finally, we draw the conclusion regarding the error estimates.

We denote the error functions as

en=uf —u(t™,x)=uf —[[yut™,z)+ ][ yu(t" z) —u(t",x YEEnfen,

e = vy —o(t"x) = v — [Ty o(t" )+ TTyv(t", ) — (" 2) 2 &0 + e,

nty _ n+2 +3
€

a3 2) + T 5 o) — (3 o) 26072 et s,

n+ 1 n+ n n n n+ n+
e P=Ey T TNt )+ TINE(n T2 o) (e o) 287 e,
e?:rN—r(t”).

Noting the mass conservation of the system and 1€ Sy, we have
1 -
zntl_on_ 0 _ 0o | I 0 __ =0
o T S |Q|/QUN Nu(t Jdx=Ey,
1 _
_n+1 _ 2 -0 0 0 =0
ertl=gl=...=e0 = |Q|/QUN_I |Nv(t Ydx=¢,.

In particular, taking the initial values u®, =[] yu(t?), v{ =TI yv(t?), we obtain

&)

=é"=¢80=0, et =¢e"=¢2=0.

Preparations. Before giving the error estimates, let us make some preparations.
(1) We formulate the Cahn-Hilliard system (3.4)-(3.8) in a truncation form:

WZAM“WF;)_ALT asd (4.1)
i tn+%) :_EiAﬁ(tn.,.%)_i_Sﬁ(tn-&-%)_’_?g(tn-&- ) H (a(t"),5(t"))— R n-&-%7 (4.2)
V) 0 _ ng(en )y — oo ) () - R (4.3)

M,T M,
() = — M) S ) R DG, o) ~RETE, (4.4)
Pt —r(t7) % /Q [H @a(t"), 5(") (w(t"™ ") — u(t"))

+G(@t™),5(t") (") —v(t™))] dx — R"Jr2 (4.5)

T

where
T (0 )T — () ("),
RyT2 = &A™ ) —a(t™ ) — S(u(t™ ) —a(t" 1))
FAE RV H (@), 5(") — ("2 ) H (u(t"2),0(t"2)),
RITE = (0" ) — o) 4 o(t") + Myro(u(t™ ) —o(" 7)),
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RETE =A@ —o(™t ) - St ) — o))
FAETRG@E),00M) (R G (™) vt ),
RE (=) (e
43 [ @) ) —ult) —u () r)ax
— 5 [ ()0 ) — H@E) ) (e (e
/ Gult" ), 0" 2) w(E" ) —o(t") — ("2 )r)dx

(2) Theorem 3.1 has implied the boundedness of functions u%;, v% and r%; as follows:

maz { |l | |08 s [N ]} <€ kS Tonaa /7,

where C is a constant depending on the domain and initial data.
We assume that the exact solutions w,v,r of the system (2.3)-(2.4) possess the fol-
lowing regularity conditions:

u,v € L®(0,T; H™ ),

per
wgyvr € L(0,T5 Ho ) N L (0,T; HL, ),
Uty Vit eL>® (O T,LZET)OL2(0 T; ngr) Ut GL (0 T; Hpe’r) (46)
Ugse, vt € L2(0,T5L*)NL*(0,T; Hy ).,

| Vul| Lo (0,7)x )5 [| VO [ Loe ((0,7)x ) < C-

Based on the regularity assumption of exact solutions, we can derive the regularity
of the scalar auxiliary variable r(t).

LEMMA 4.1.  Under the reqularity conditions (4.6), we have ry, 74 € L?(0,T).

Proof. Applying Holder inequality, Sobolev embedding theorem and chain rule, the
proof is straightforward. Here, we give the detailed proof of the lemma in Appendix
A. O

One can now easily establish the following estimates for truncation errors.

LEMMA 4.2.  Under the regularity conditions(4.6), the truncation errors satisfy

tn+1

tn+1

nt3 2

IAs 1575 [ el as, (47)

- t'n.

n+3 o 2 2

R e [ (ol ol ) s, (1.8
n+3 o 2 2 2

[wrs s [ (el + el + s+ ) s, (4.9)
n+l *n+1

[ VR s [ (ol oo+ ) s, (4.10)

+1
Ry 2P ST e 7+ el + e | + osee +|7“ttt|) - (411)
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Proof. Note that
FED = () = R ST,
1 tn+1

U e —senp s [ 15T s

the proof of this lemma is simple. The detailed proof of the lemma is given in
Appendix B. ]

(3) Subtracting (3.4)-(3.8) from (4.1)-(4.5), we can derive the error equations as

n+2

(€T —&" q)+ M, T(Ve, " H ,Vq)=(Ry ?,q), (4.12)

(@72, 0) =& (VET2 VO) + @2 ) 4o 2 (H (i, o), D)
AR (H ("), 5(t™), W) + (R} F W), (4.13)

(@ =&, g )+ M r(VEL 2 V) =~ M,ro(E T —E1 2 ¢7) + (RVT2 ), (4.14)

(G W) = 2 (VETE V) 4 ST ) oy 3 (G i) )

— (TR (G(a(t"),5(t")), U*) + (Rz+§7\1j*)7 (4.15)
et —er=g [ (TR — )~ H ()0 ()~ o)
G TR (R =R~ Gl ) (0™ — o)

YRR (4.16)

where ¢, ¥, ¢*, and U* € Xjy.

We now establish the error estimates for scheme (3.4)-(3.8). The main result concerning
the error estimate can be derived if we can complete the proof of the following lemma.

LEMMA 4.3.  Supposing that the exact solutions of the system satisfy the reqularity
assumption (4.6). Then there exist two positive constants 79 and hy such that, for any
T <7y and h < hg, the solutions u% and v¥, of (3.4)-(3.8) satisfy

maz{|u g il <C= maz {Ju®)llp~,[o®)]p~}+2, (4.17)

where n=0,1,2,--+  [Tinaxz/T]-

Proof. Taking the proof of the L* boundedness of v}, as an example, we apply
mathematical induction to prove this lemma. When n =0, using the Sobolev embedding
theorem, we have

ol e = [T o® oo <800 = 0% o +[]0°]
SN = g 4[]
SO H[W| s +[|0°] o <€ for d=2,
ol e ST 0® =] o [0

<O o0y 1] <€ for d=3,
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where  h<hy=min{ "=/2/(C1[v°] gm), "/2/(C1[[0°] ym) }- Supposing that
v}l ;o <C is valid for n=0,1,2,---,k, we shall prove that HkaHLm < C is also valid
in the following four steps.

1 1
Step 1. Taking q=¢,, *, U=éntl—¢n, ¢ =& 7, Ur=¢nt! — ¢ in (4.12)-(4.15)
and multiplying (4.16) by e +¢”, we derive

n+2

I 4l
(el —gn &n 3y 4 M7 :(RZ*Z,&N“), (4.18)

’ u u

2
3y on n eu 112 on S entil2  en
(et —en =2 (Ve P = ive) + e | - e
T (H (00 ), 60 = em) = (63 )(H (™), 0(87)) 64 — &)

+(RETE e e, (4.19)

’ u u

(@t —ener )+ M, THve”+2 —M,ro(E ET T (R, (4.20)

v

2
+1 . wn € wn 2 2 S . 2 en 12
(62 276v+1_€v):7 ||V6 +1H _”vevH )+§(||e7j+l|| _HevH )
N E (G T ) —Em) (" )G (@) (t))E0 ! —en)
+(RITE e ), (4.21)

(et () =& A(M%ﬁ’&)(%“ up) = H (a(t"),o(t"))(u(t" ) —u(t"))

+G(aR,0y) (o =) = G(a@(t™),5(t™) (v(t" ) —o(t")))dx
FARITE TR, (4.22)

Combining (4.18)-(4.22), we obtain

2

;HW”“H — Ve +5 H "“H |n||)—|—MTHVen+2

+(epth)?

2
+5”(HVé;L+1H2—||VéZ||2) (e P = ezl + [ wee ™| = epy?
4
=D Qi (4.23)
=1

with

1 1
Q= Ry T (R e e (R Y,

an+i  ant +3 +1 . ..
Qe=—M,ro(EF &3 &t )~ (RYTE et ),

Qs =—r"H (H (@, 5), & — &%)

— R (G, ), ent —En)

PR (H (a(e), 5(t),Ep T — e
PR (G (a(t), o)), et —én),

and Q4 being the right-hand side of (4.22).
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Step 2. Below, we shall give an analysis for each term on the right-hand side
of (4.23). First, noting the regularity assumption (4.6) and using (4.12), we have

n N3 i s n n
@=u EEET u“,;?) <Rﬁ2M7Aeﬁ2+R )
< eer|vertt| + & |mir|

+

-1

(4.24)

..n+—
+EMUTHV8£ 2

+CTHVRZ+E

Second, we give an estimate for (Q2, in which the first term is directly caused
by the nonlocal term. By using (4.15), the mass conservation of e, and given that
(éy —éy) € LE(2), we obtain

11 - 1
Q2=—§M ro(entt — "+1,é2+2)—§MUTU(éZ—é2,éZ+2)

1 1 A 1 =
— (R MyrAE = Mo () —ETE LRyt
2 g1
+Cr||vRgt

1 2 C 12
e Ll
T

-1

S| =

+or(|entt =&ty ®  + ler—ént ). (4.25)

To complete the estimation of Q2, it is necessary to estimate [|é2 —éﬁ”%l. Thus, we
take ¢* = (—A)71(enT1 — &) in (4.21) and have

.. = 2 2
Je - I -t - < -
1 1
— (M,7AE T —Myro(e) 2 =8 )+ RITE (—a) et )

<C’7'He"+1—e"|| 1—|— MTHV@”‘HH —|—fHRnJr2

—1

+Or(lertt —ar 7 —ler—éliZy)

MTHVe"+1H+ HR”“ For(et=E e a2y (4.26)

Combining (4.26) with (4.25), one can estimate Q3.
Third, the third term on the right-hand side of (4.23) can be transformed into

Qa=—& " (H a0 >e”+1 &) — ("3 (H (e, 5% ) — H(a(t™), o(t")), &0 —é7)
)

— e (G T — ) — () (G 5%) — Ga(t), 5™, et )

= ) ) GG ) 2 )
"""2 ¢ ”+§ 2 ~n_  ~n ~nN\ ~(gn 2
+ M T||VEu —|— — || Bu 1+CT||VH(UN,UN)—VH(u(t ), 0"
n C n+i an an+s 2
+ M THV@ 2 —HRU+2 +Crt|€é +2 &t
T - -1

+CT\|VG(uN,vN)—VG(ﬂ(t"),f;(t"))H . (4.27)
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The fifth and last term on the right-hand side of (4.27) can be estimated in a similar
way. Below, we take the proof of the fifth term as an example. Since we have

n . n V(ay, o) Vf(N( )@(t"))
VH(uy,vy) = VH(u(t"),o(t")) = N uN],\;NJ)V+CO B "))+ Co

_ Vi(ay,ox) = V(a("),o(t"))
Ey(agy,oy) +Co

~amy ~ n 1 1 A
=V f(a(t™),o(t"™) <\/E1 )1 Co \/El(ﬂ%,@%)+CO>A1+A2’
(4.28)

For the first term on the right-hand side of (4.28), we have the following estimate:

1AL SIV £ (R, 55) = V£ (@), o)
SV F (e, o) = V@), om)II° + |V £ (@™, o) — V£ @(t™), o)) |*
S fuliihy, o3 ) Vg — fu(@(t™),5%) Vae™)|*
+ | fo (@, T3 ) VR — fo (™), 5 ) V||
| fu(@(t™), 0%) Vai(t™) — fu(@(t™),5(") Va(")|*

+ | fola(t™), 0% ) Vil — fol@(t™),s(t")) Vo) ZB (4.29)

Using Holder inequality and Soblev embedding, the first two terms on the right-hand
side of (4.29) can be estimated by
By < || ful@R 0 VeI + 1| (fu (@R, 0%) — fu(@(t™),53) Va(t™) ||

= || fuu (€%, %) (@ = (") Va(t™) | * + || fu (@, 55 Ve ||

Sy —a@m)va™)|* +|1veg |

Sl —a(t")|zs [V a) |z + Ve

Sl —a(t™) | 1)1 + Ve’

Shenl®+Ivez®,

and
By = | fun (€, 05) (R —a(t™) Vo ||* S 1€ 5 - (4.30)
The latter two items can be handled in a similar way. Then, we obtain
1AL SHell®+IveR® +lles|* +1Ivep ), (4.31)
and
14s]|* S 11 Ba (@, 88) — Ba (a(e™),0(t™)|1* S lleql* +llex ). (4.32)

Combining (4.28), (4.31) and (4.32), we derive

IVH (@, o3) = VH @), o) I1” Slenl” +IIvenl* +1&;)° + [ vey . (4.33)
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Similarly, the last term on the right-hand side of (4.28) can be controlled by
n ~n <y =2 < ([ 2n |2 )2, 1502 ~n||2
IVG(uy,o5) = VG (@), o))" Sllegll” +IVer ™ +les " +IVer|™.  (4.34)
Using (4.27), (4.33) and (4.34), we can derive the estimate of Q3.

Finally, for the first and second terms in @4, we have
éﬁ"’/ﬂ(ﬂ%ﬁ%)(ﬂ’&“—u%)—H(ﬁ(t”)ﬂ?(t"))(U(t"“)—u(t"))dx

A"""z ~n n An+2 ~ M\ (4T n n
=er P (H(a,08),en ™ —en)+ér 2 (H(ay, 0y) — H(a(t"),o")),ut™ ) —u(t"))
e (H iy, 0t —el)

+O7 e oo o011 (e8P (e7)? + |V H gy, 03) = VH (a(t"),5(t™)) ), (4.35)

and

é?+1/(G(a%,aJ"v)(v1’b+l vR) = Ga(t"),o(t") (vt ) —v(t"))dx
Q

| /\

1
< et R(G(ay, o) et —el)

+ 0T 0ell oo 0,000 -1y ()2 (e0)? + | VG (@, 55) = VG (@(t™),5(t™)) ). (4.36)

The last term in Q4 can be controlled by:

2RI e <Or(e) ) %RT%F. (4.37)
Noting (4.33)-(4.37), and Lemma 4.2, Q4 can be estimated by
Qu< e d (H (@, o). el —el) 467 3 (Gl 7). e =)
+OT((e M)+ (e el +IVeEp|® Hlles|® +Iver).  (4.38)

Step 3. Based on the above estimates (3.3), (4.23)-(4.27), (4.33), (4.34), (4.38)
and Lemma 4.2, we have

2 loun n S m . 2 n

SvE - 17+ 5 e P - ety + e Vet |+ G- e

+§(Hés“ut\|ém|2>+Mvr vt PRE (em)? + |lentt —ent |, —len —én||”,
tn+1

1 ntl
< Mt Vé’u+2

M T||vé HH +Crt (lueeel® y + llveel” 4+ lJoeeel|” ) ds
n

+CT((€?“)2+(6?)2+H63|| HIVE+ 8N +IVE+ e =), + fles - &)7,)
tn+1

+CT4/ (lweell 7 4 el 7+ lweell 3gs + ool Frs + el [reee* + weee | + lveee]|* ) ds
tnfl

+OT(|at") [, +19E) 15, )R (4.39)

Summing up the above inequality (4.39) from n=1 to k (k>1), ignoring some non-
negative terms, we have:

2 g
ver | +5

2 2
-~k+1H €y
e + =
2

2
k1
Ve H +2

k41 k+1 k41
e g
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2
Ven+ 2 Ven+ 2

Si“I\Véi!l +§H A+ g HV s +*Héi\| +en+ e -8,
k
+OT Y () + P+ IVEr® + e +IIver|* + e —éx|” )
n=0
tk

+CT4/ (||utt||i;1 + HUttH?{l + ||Utt||i13 + HUttH?{a e l” + lveee|* 4+ 1reel® + |reee*)
0

tk

+C7'4/ (lweeel| 2y + lvee |2y + lveeel|? ) ds + CR*™. (4.40)
0

Starting from (3.9)-(3.13), the error estimates of the first step can be obtained by
using a similar procedure described above

2

2
S(Ivenl - Ivel® + v E -+ S el - lled " +llew - + Mur v
63 L1012 L0112 L1 .0y 12 S .12 L0112 % 2
+ (Ve = Ivel + Ve -l + 5 (e’ - lle] + [les—eo|*) + Mor | Ve
+(er)’ = () + [ —el” 1—H &—al7,
1 NI .1 L0((2 I m
SZMT VE; +§MUT Ves2 +CT( er +He ||H1+H€?)||H1+H611;—6711H,1)+Ch2

tl
+CT4/ (feaeeel|* + loeeell® + el + el 30+ laeeel” A+ loeeel 2, + reee (s))P)ds. (4.41)
0

Note that uQ =T yu(t?), v =T]yv(t°), we have é% =& =0. Substituting (4.41) into
(4.40), and applying Gronwall’s inequality, there exists a positive constant 7, such that

“||V B e+ ||V A R L N e R o

42 M TZHVe"+2 < phpp2m, (4.42)

+ = M TZHV@”+2

where 7 <7 and k=0,1,2,--- | [Tynaz/7] — 1.

Step 4. To prove the L*>° boundedness of 'Ujk\,“, we need to obtain the H? bound-
edness of ef*1 first. Combining the H? regularity conclusion for the elliptic equation,
(4.19), Poincaré inequality, projection error (3.3) and (4.42), we obtain

€™ 1o Sllew™ {1+ | Aei™]
Sllest |

elg+2 fi’z’Aek+Séﬁ+% +rf\,+%G(ﬁN,vf\,)fr(tk+%)G( (tk)v(tk))JrRkJr2

<Hek+1H+H skt

+

k+2

+HA€

G o)~ G0 | + | AT

k+2 k+2

<||ek+1||+||ek+1||+Hw’“*2

+||Ae

+HR

—|—HG ak ok — Ga(th), v H—|—|e7+2|
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SrE ™,
where HAeﬁH ST% +h™ is guaranteed by the projection error (3.3) and
MG < [[—8L+ Seb 4 rk Gu, o) —r(t) G u(t®),u(t®) + Y|
SIVE + e + [|rnGul, o)) = ()G (ut®),v () ||+ || Re ||
<rionm.

The L? boundedness of R§+% and G(ak;, 9% ) —G(a(t*),5(t*)) can be obtained similar
to (4.34) and (B.1) in Appendix B. In fact, we have

k+1

k1 ]| K
&3 e [ (ol Dol o+ el ) s,
tk—l

|Gk, 5%) — Ga(e®),a(t*))|| < ||e&]| + ||k || S 72 +h™.
Then, we can obtain
lon 1o <[5 o + oD e Sllew™ g + o
<Cor? + Coh™ + |lu(t* )| . <C,  for d=2,
lon ] <[5 o + 1o e S llew™ e + o]
<Cy73 +C3h™ +|Jo(t* )| L. <C, for d=3,
where 7 <1y =min{\/1/Cs,{/1/C3}, h<ha=min{ /1/Cs, %/1/C3}. Thus, we con-
clude that 7 <9 =min{r,m2} and h<hg=min{hi,ha}. d
THEOREM 4.1. Supposing that the exact solutions of system (3.2) satisfy the regqularity
assumption (4.6), then, we have
2 2
I 2 kP P2 e ek eI, + (e S 7t e, (4.43)

where k=0,1,2,--- | [Trnq2/T].
Proof. Denote

S 2 S
L= || Veb|*+ 2 [leb "+ 22 Ve[| + 5 [lebl|” +[lek — 217, + (ef)2.

2
—u

Lemma 4.3 indicates that I, <744 h2™ for 7 <79 and h<hg. For other cases, consid-
ering the energy stability Theorem 3.1, we have

I,<C< hQ%thgT“—kh%,for T <70,h>hy,
0

C
T4§T4+h2m,for T>79,h < hg,

To

C C
I,<C< ﬁru 2h2mh2m574+h2m,for T>70,h> ho.
0 0

Thus, the proof is completed. ]
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T llewll rate llewll o rate
7o | 3.0168E—4 | / | 3.8673E—5|
T0/2 | T.7624E—5 | 1.96 | 1.0044E—5 | 1.94
10/2%2 | 1.9708E—5 | 1.98 | 2.5625E—6 | 1.97
70/2% | 4.9636E —6 | 1.99 | 6.4704E —7 | 1.99
7'0/24 1.2424F —6 | 2.00 | 1.6217E—7 | 2.00
10/2° | 3.0760E —7 | 2.01 | 4.0176E -8 | 2.01

TABLE 5.1. Time errors and convergence rates of u at Tmaz =0.025 for the SAV/CN scheme with
the time step T=1x10"3/2F k=0,1,2,3,4,5.

T llew ]| rate llew] o rate
7o | 41951E—5 | ] | 4.6534E—6 |
70/2 | 1.0500E—5 | 2.00 | 1.1639E—6 | 2.00
70/2% | 2.6260E—6 | 2.00 | 2.9100E -7 | 2.00
10/2% | 6.5622E —7 | 2.00 | 7.2705E —8 | 2.00
7‘0/24 1.6360F —7 | 2.00 | 1.8124FE—8 | 2.00
10/2° | 4.0421E -8 | 2.02 | 4.4778E -9 | 2.02

TABLE 5.2. Time errors and convergence rates of v at Tmag =0.025 for the SAV/CN scheme with
the time step T=1x1073/2% k=0,1,2,3,4,5.

5. Numerical experiments

In this section, we give several numerical examples to demonstrate the effective-
ness of the SAV/CN scheme. First, we present convergence tests in time and space
through mesh refinement experiments. Then, we validate the energy dissipation and
mass conservation of the system. Finally we show some phase transition experiments.

5.1. Accuracy test. Here, we consider the two-dimensional problem with Q=
[0,L]2. In our simulations, we choose the initial values u®=0.25cos(z)sin(y), v°=
0.25sin(x)cos(y) +0.1. The parameters are fixed as follows: L=4nr, M, =1, M, =0.05,
a=0.01, f=-0.9, 0 =100, ¢,=0.05, ¢,=0.05, S =20 and Cy=5000.

For time accuracy, we fix the space step size h as 277L. We compute the numeri-
cal solutions with time steps 7=174/2% (1=1x10"%), k=0,1,2,3,4,5 at T},q, = 0.025,
and regard the numerical solution calculated with a very small time step 7=1/2%
as the “exact” solution. The second-order accuracy of the SAV/CN scheme in the
time direction is shown in Tables5.1-5.2. For space accuracy, we choose the time step
7=2x107°. Then, we compute the numerical solutions with grid numbers N =8 x 2*,
k=0,1,2,3,4 at T},4, =0.1, and regard the numerical solution calculated with the grid
number N =210 as the “exact” solution. Tables5.3-5.4 present the L? (or L) errors
of u and v, which indicates that the spatial error converges exponentially.

5.2. Energy dissipation and mass conservation. Although the SAV/CN
scheme is unconditionally energy stable, we want to select an appropriate time step to
guarantee accuracy with a smaller computational effort. We set the space step size as
h=2"" and select different 7 as 1 x 1074, 5x 107°,2x 107°, 1 x 10~° and 5 x 107¢. The
time evolution curves of the modified energy under different 7 are shown in Figure 5.1(a).
It can be observed that the modified energies all decrease with time. The curves under
time step size T=2x 107, 1 x 107° and 5 x 10~ coincide. Thus, we choose 7 <2 x 107>
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N |lew ] rate llewll o rate
8 | 7.9300FE —2 / 1.3420E —2 /
16 | 9.1807E—3 | 3.11 | 1.9858E—3 | 2.76
32 | 7.6628E—4 | 3.58 | 1.9197TE—4 | 3.37
64 | 1.3122E—6 | 9.19 | 5.0081E—7 | 8.58
128 | 2.8708E'—10 | 12.16 | 1.5039E —10 | 11.70

TABLE 5.3. Spatial errors and convergence rates of u at Tz =0.1 for the SAV/CN scheme with
the grid numbers N =8 X 2k k=0,1,2,3,4.

N lles || rate llew] o rate
8 | 3.9686E—4 | / | 5.1I84E—5 | /
16 | 7.7772E—5 2.35 1.3927FE —5 1.88
32 | 97908E—6 | 2.99 | 2.3650E—6 | 2.56
64 | 5.0039E -8 | 7.61 1.4204F —8 7.38
128 | 1.0802E —11 | 12.18 | 6.9536E£ —12 | 11.00

TABLE 5.4. Spatial errors and convergence rates of v at Tmaz =0.1 for the SAV/CN scheme with
the grid numbers N=8x 2%, £=0,1,2,3,4.

140 T T T T T T T T T 015
120 -——r=1le-4 —u
100 -—-7=5e-5 v
—r1=2-5 01
or e r=1e-5
3 = o)
B 60 T=5e-6 <
b w
2 l g 0.05
g \ <
20
or 0
20} N — — — —

40 L L L L L L L L L 005
0

Timet Time t

(a) (b)

Fic. 5.1. (a) Evolution of the modified energy with different 7; (b) Mass evolution of u and v.
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Fic. 5.2.  Ewolution of u (top) and v (bottom) with parameters €, =¢€, =0.05,M,=1,M, =
0.05,a=0.01,3=—0.9,0 =100,S=10,7=2x10"° and h=2"".
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ol 1Y &

(t=1.5) (t=2) (t=3) (t=4) (t=100)

F1G. 5.3. Bvolution of u (top) and v (bottom) with parameters e, =0.05,6, =0.02, My, =1, M, =
0.05, «=0.01, 8=—-0.9, 6=160, S=10, T=2x10"% and h=2"".

15 15 15 1
ol of | . 7
os os
o o o
: 3 5 .
’ 1 , 1 1 1
15 s 15

(t=1.5) (t=2) (t=3) (t=21) (t=22) (t=100)

F1G. 5.4. Evolution of u (top) and v (bottom) with parameters e, =0.04,¢, =0.02, M, =1, M, =
0.05, «=0.01, 3=—-0.9, 0 =160, S=10, 7=2x10"° and h=2"7.

for the later simulations. For the case of 7=2 x 107°, we present the corresponding mass
evolution of v and v in Figure 5.1(b). The lines are located on the horizontal line, which
indicates that the fully discrete scheme maintains the property of mass conservation.

5.3. Phase transition. We simulate the transformation process of typical parti-
cles, such as stacked lamellae and onion-like structures. First, we choose the initial val-
ues u’ =sin(2z(x —1)y(y—1)) and v° = cos(10(z —y))z(z — 1)y(y — 1). The parameters
are selected as follows. €, =¢,=0.05, M, =1, M, =0.05, «=0.01, 3=-0.9, 0 =100,
5 =10. The time and space steps are fixed as 7=2x 10"° and h=2"7 in simulations in
this subsection. The evolution of u (top) and v (bottom) are presented in Figure 5.2.

As shown in Figure 5.2, the macrophase separation between homopolymers and
copolymer forms in the initial state, promoting the aggregation of block copolymers.
With time evolution, microphase separation occurs due to the different chemical prop-
erties of the A- and B-blocks. Finally, stacked lamellae form at t=0.8.

Then, we apply the random initial values u"=-—0.5+0.01rand(z,y), v'=
0.01rand(x,y), for numerical simulation with parameters L=1, h=2"7, 7=0.002,
M,=1, M,=0.05, «a=0.01, 5=-0.9, 0 =160, ¢,=0.02, S=10, Cy=20. The evo-
lution of w and v under parameters €, =0.05 and ¢, =0.04 are presented in Figures 5.3
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and 5.4, respectively.

6. Summary

In this paper, we have derived the error estimates for the SAV/CN approach of the
coupled Cahn-Hilliard system in both time and space. The emphasis here is on the
mathematical treatment of the nonlocal term. To the best of our knowledge, this is
the first study to perform an error analysis on the Cahn-Hilliard system, in which two
phase variables are coupled and the nonlocal term exists. We have also conducted some
numerical experiments to demonstrate the properties of the scheme, such as the time
accuracy, spatial accuracy, and mass conservation.

Acknowledgments. G. Ji is partially supported by the National Natural Sci-
ence Foundation of China (Grant Nos. 11571045, 11671052 and 11871105), the State
Scholarship Fund of CSC (Grant No. 201406045016).

Appendix A. The proof of Lemma 4.1.
Proof.  For simplicity, we denote u, v, E1(u,v)+Cy as ¢;, i=1,2 and F; here.
Using chain rule, we have

B 1 OE, a@ 8¢, O*Ey 0¢; OBy 0°¢;
e 4r<z at X) zrz/ ( 96,06, 0t | 09; O )dx*
OE1 D¢
rm—8\/— (Z 90 ot dx)

i=1
3 OF; a¢z ) /(8@ 0’E, 0¢; OE; 62@)
- =+ dx

1B (Z 2 56,00, Ot | 0: OFF
o? q&l PE 99, 8¢>1 O’E, 0%¢;

mﬁz/ ( 8t2 96,00, Ot Z 96,00 o2 )™
Oy OPE 0¢; 0¢i  OE 8°¢;

2\ﬁ Z/Q< Z 06,0000, 0t o+ 0; ot )

For the first term, applying Holder inequality and Soblev embedding theorem, we have

. [ O 9 i o~ 0°E, ¢ 2 [ OB 9%¢s , \*
'T“'QSKZ T d") (Z Zaw;z o ) +<Z o 05, 07 dx)

2 /1o ||* 9%,
(A%
2 2 2
(1% 15 ) &

The second term
2 6
OF, 0¢;
|Tttt‘2,€< dX) (Z:Al)
2 ). 6. o

O0F1 8@51 3¢z 0’E, 0b; OE &%¢s 2 _
w(; 00 o1 ) (Z/< aqﬁja@a*f*aﬁ o2 )dx) (= Az2)
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(5 2 ) =
+C<Z % Z a?zs]eib i > =4
+C<; 0 Z aqféié@ B re) (=42
oS 55 =9

can be estimated in a similar way as (A.1) as follows
§i 2. ° 2 % i (A.2)

<z/@z><z/@@@%d+z/@z S

dei || a¢>z ;|
<
~<§ ot )( +; o2
2L (|| 9¢ O 2
< 1 1 7
(@] AL A%
= (|| 99 061 o%¢: "
< 1 K3 T
(%] L E= D )
As and A4 can be estimated by
agzs, ¢ a¢>1 ¢ | a¢,
<
As Z 8t2 o2 Z _ ) e
1,j=1 i=1
2
9% ||* | | 0¢: ||”
<
A4~;(\ H )7 =
8 i 3 8 8 i 8 8
i,j,l:l
8@-
2|5t (4.6)
=1
OB 1/28 i o i ||”
< <
46522V aa, Lm/| o | dx Z”W’J”L“ 2| o (A7)
Combining Equation (A.1)-(A.7), the proof of Lemma 4.1 is completed. d

Appendix B. The proof of Lemma 4.2.
Proof. Note that

RTE () — () (™))
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1 s 1 Mty
= 7/ (" — ) 2w (s)ds + 7/ (t" = 5)usee (s)ds,
2 1 2 tn
we have
n4 L 2 1 tn+% tn+% i
HRu 2 <= / ("t — 5)2uttt(s)d5+/ (t" — )’ usee (s)ds
—1 2 tn+1 n

= /Q </t:+% (1" —s)"ds + /;Hé ("~ 8)4d8) </tn ((—A)‘%uttt(s))2d5> dx

¢nt1

St [ luno)I ds
t’n

Similarly, we have

n+il 2 2 2
H ] L C G B U] IRl MR Tas I I
1 — _
tn+l
5 2 2
$70 [ ol + w2, s,
i
nt+i ? 3 n+1 ~oon+d 2 ntl o mtl 2
VR E | ||Vt b et )|+ et —ae )
2
+ VH(ﬁ(t"),f;(t"))—VH(u(t"+%)7v(t”+%))H FIRET ) — (T2
3 e 3 2 2 2 2 3 o 2
Sr [ U il 19wl sl o+ ol s 47 [ s
tn—1 n
tn+1
57'3/ ) (||Utt||i11+|‘vtt“ip+||utt||i13+\mt|2)ds,
tn—
n+% 2 X gn+l , ) ) . g+l , ,
VR, ST llveellgn + lveellggs +|ree| “ds +7 llweellzpn + llveell g ds
tm gn—1
t'n.+1
573/ (el 31+ veellza =+ lvee |2 + [ree|*)ds, (B.1)
gn—1

1 2 2
RIS [ ™) —u@) =@ e[ o) — o)~ e

2

n+1 n+1 ~ N\ ~ (4N
7 el oy [V H e )00 2)) V), 500
2

2 2
+ 77 vellpoo 0,7, -1y

)VG(u(t"+%),u(t”+%)) - VG(ﬁ(t"),f;(t"))H

—|—7'5/ |reet (s) | ds
t’rL
tn+1

57'5/ (e ® + lloeeel” + llwee | 3+ Nveellzgs =+ 7eee (s)|*)ds.
1

tn—
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