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GLOBAL-IN-TIME STABILITY OF GROUND STATES OF
A PRESSURELESS HYDRODYNAMIC MODEL OF COLLECTIVE

BEHAVIOUR∗

PIOTR B. MUCHA† AND WOJCIECH S. OŻAŃSKI‡

Abstract. We consider a pressureless hydrodynamic model of collective behaviour, which
is concerned with a density function ρ and a velocity field v on the torus, and is described by
the continuity equation for ρ, ρt+div(vρ)=0, and a compressible hydrodynamic equation for v,
ρvt+ρv ·∇v−∆v=−ρ∇Kρ with a forcing modelling collective behaviour related to the density ρ,
where K stands for the repulsive interaction potential, defined as the solution to the Poisson equation
on Td. We show global-in-time stability of the ground state (ρ,v)=(1,0) if the perturbation (ρ0−1,v0)
satisfies ∥v0∥

B
d/p−1
p,1 (Td)

+∥ρ0−1∥
B

d/p
p,1 (Td)

≤ ϵ, where p∈ (min(d/2,2),d) and ϵ>0 is sufficiently small.

Keywords. Pressureless hydrodynamic model; stability; collective behaviour; Besov spaces; re-
pulsive system.
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1. Introduction
We are concerned with a model of a pressureless gas driven by the following set of

laws:

ρt+div(vρ)=0,

ρvt+ρv ·∇v−∆v=−ρ∇Kρ in [0,∞)×Td,
(1.1)

considered, for simplicity, on the d-dimensional torus Td=Rd/(2πZ)d. The first equa-
tion is the mass conservation, prescribing the dynamics of the density ρ under the flow
v, and the second one is the momentum equation. Here K is the operator (−∆)−1

restricted to the periodic functions with zero mean; namely Ψ :=K(ρ−{ρ}) satisfies

−∆Ψ=ρ−{ρ}, where {ρ} :=
∫
ρdx and

∫
Ψ=0. (1.2)

Here and below we use the short-hand notation
∫
≡
∫
Td , and we will often omit “dx”,

for brevity. We note that, since the average {ρ} is preserved by the flow, we assume,
without loss of generality, that {ρ}=1 for all times.

Model (1.1) arises as a nonlinear repulsion model of collective behaviour [5,9,28]. For
example, (1.1) can be obtained as a simplification of the hydrodynamic system [9, (1.1)]
by neglecting some forcing terms and taking m=0, (which makes it a pressureless
system). It can also be viewed as a dissipative version of [5, (14)].

A common feature of these models is the presence of nonlocal interactions, which
is captured by the term −ρ∇K(ρ−1). In the case of a repulsive system, this term is
expected to cause the system to avoid the states with high local concentrations [5,9,24].

On the other hand, in hydrodynamic models such behaviour is often expected to
be caused by the pressure function. For example, the incompressible Euler equations,
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Dtu=−∇p (where “Dt” denotes the material derivative ∂t+u ·∇), show that the motion
of an inviscid and incompressible fluid can be described, roughly speaking, by the fluid
particles “avoiding” the regions of large pressure. As for compressible models, the
precise role of the pressure function is less clear; a natural assumption is the presence
of a pressure function of type ∇p(ρ), such as the polytropic equation of state of the
form p(ρ)=ρm for some m>0. Within such framework, the Euler-Poisson system is
one of the models related to (1.1) and it models a compressible gas with an interaction
force between particles. It can be used to describe the evolution of gaseous stars, which
include the classical nonexistence result provided by Makino and Perthame [35] in the
case of attractive forces, and Perthame [41] in the case of repulsive forces. We refer the
reader to [47] for a study on the singularity formation in the model with diffusion and
relaxation, and to [22] (and the references therein) for an excellent review of the subject.
We also note the recent developments in the study of stationary and self-similar solutions
by [27, 30–32], see also [19], as well as global-in-time existence results [25, 26, 29]. On
the other hand, the authors of [9] consider a viscous model of collective behaviour, and
prove global-in-time existence of weak solutions.

These results show the need to further understand the role of the pressure function
in models involving nonlocal interactions via repulsive or attractive kernels.

In fact, the pressureless models, which correspond to the case m=0, are closely re-
lated to models of collective behaviour. For example, they can be used as a macroscopic
description of flocking and also model finite-time blow-up phenomena, see [5,28] and the
references therein for details. Moreover, Carrillo, Choi and Zatorska [6] consider a one-
dimensional pressureless Euler-Poisson system in which, instead of dissipation, a friction
term is taken into account. What is interesting from the mathematical viewpoint is that
the friction somehow gives better stability properties than dissipation, even in the case
of a bounded domain. We also refer the reader to the extensive article [22] (see also [2])
on the one-dimensional pressureless Euler-Poisson system, which discusses the model
under various assumptions regarding background terms, relaxation, and viscosity. The
multidimensional case is more complicated and requires some modifications, see [34,45]
for details, as well as [22] for the particular case of geometrical symmetry. Here also we
shall mention about results concerning the Euler alignment system [17, 21, 44], where
equations are a hydrodynamical limit of systems describing flocking phenomena like for
the Cucker-Smale model [10]. The key difference between the Euler alignment system
and (1.1) is that the Euler alignment system involves a weighted fractional Laplacian
instead of the Laplace operator.

We also note that one of the interesting themes occurring in the pressureless models
is the existence of a critical threshold [2, 3, 34, 45], which distinguishes the supercritical
and subcritical regimes of the system.

These phenomena of pressureless systems are related to the issue of stability of
models of collective behaviour, and are one of our motivations to study (1.1). In fact
(1.1) appears to be the simplest pressureless model that involves dissipation and nonlocal
repulsive interactions, given by −ρ∇K(ρ−1). This raises the question of stability of
(1.1), which we address in this article.

In fact, from the mathematical perspective, the pressureless models, such as (1.1),
lie at the borderline of the modern PDE techniques, which makes them exciting. To be
more precise, we now describe some of the remarkable features of (1.1).

First of all, although we do obtain global-in-time existence of unique solutions of
(1.1) for small data (see Theorem 1.1 below), any exponential decay as t→∞ cannot be
expected. This is a consequence of the fact that the spectrum of an operator coming from
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the linearization of (1.1) is not separated from zero, see (3.10) below for details. This
shows that, at least in the case of the torus Td, the repulsive interactions modelled by
(1.1) can, roughly speaking, cause the particles to “spread uniformly over Td” as t→∞,
but not exponentially fast. It is a similar effect as the convergence to the equilibrium
of the three-dimensional plasma fluid modelled by the Euler-Poisson system, which was
proved in [24]. It also shows that one should not expect stability under attractive
interactions (for example in the case without the minus sign on the right-hand side of
(1.1)), as in that case the spectrum has a positive real part.

Secondly, a key difficulty of (1.1) is the lack of the effective viscous flux which relates
the divergence of the velocity v with the pressure p(ρ) in the form

divv−p(ρ).

This quantity is often used in the theory of compressible Navier-Stokes system to smooth
out the density, by proving its decay or integrability in time, which in turns gives enough
compactness to yield existence of weak solutions [23, 33]. In the case of (1.1), there is
no such simple quantity with fine properties.

In order to analyze (1.1) one can consider the viewpoint of the energy, in analogy to
the compressible Navier-Stokes equation. Indeed, we can test the momentum equation
with v to get

1

2

d

dt

∫
(ρ|v|2+ρKρ)dx+µ

∫
|∇v|2dx=0. (1.3)

To understand the meaning of the term involving K, we note that Ψ :=K(ρ−1) has
zero average, which implies that∫

ρKρdx=

∫
(ρ−1)K(ρ−1)dx=

∫
(−∆Ψ)Ψdx=

∫
|∇Ψ|2dx=∥ρ−1∥2H−1 .

This shows that the energy
∫
ρ|v|2dx+∥ρ−1∥2H−1 decreases in time, which suggests

that system (1.1) is stable, at least around static solutions. This fact can be interpreted
as the repulsive nature of the interaction force −ρ∇Kρ mentioned above. We also note
that the case K≡0 can be analyzed in a nonstandard framework of the Lorentz spaces
and time-weighted norms, see [18].

On the other hand, one can study (1.1) by considering its quasi-stationary approx-
imation, which leads to the following aggregation type equation

ρt−div(ρ(−∆)−1(ρ∇Kρ))=0. (1.4)

An analysis of (1.4) could deliver possible stationary solutions to (1.1). One of them is
the case of constant ρ, which leads to the stationary solution

(ρ,v)=(1,0) (1.5)

of (1.1). We note that (ρ,v)=(1,V ) is also a steady state of (1.1) for every constant
V ∈Rd, but using the Galilean transformation (t,x) 7→ (t,x− tV ) it can be reduced to
(1.5).

The main purpose of this paper is to establish the first stability result of the steady
state (1.5) of (1.1). We consider a particular functional setting, which we now motivate.
To retain positivity of the density ρ as well as the finiteness of the total mass for all
times, we consider the case of a bounded domain. For simplicity we consider only the
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case of the torus Td. To obtain the stability result, we will make use of some tools
from the theory of regular solutions of the compressible Navier-Stokes system. The first
approach to such a system is based on the L2 setting [37]. However we will extend
the techniques from [38–40], developed for the Lp spaces, as well as from [11], which
focuses on the Besov space setting on the whole space R3. These methods can be further
developed to yield the following.

Theorem 1.1 (Main result). Given d≥3, p∈ (min(d/2,2),d) there exists ϵ>0 with the

following property. For every ρ0−1∈Bd/p
p,1 (Td) and v0∈Bd/p−1

p,1 (Td) such that
∫
ρ0v0=0

and

∥v0∥Bd/p−1
p,1 (Td)

+∥ρ0−1∥
B

d/p
p,1 (Td)

≤ ϵ

there exists a unique global-in-time solution (ρ,v) of (1.1) such that

ρ−1∈Cb([0,∞);B
d/p
p,1 (T

d)), vt,∇2v∈L1((0,∞);B
d/p−1
p,1 (Td)),

with

∥ρ−1∥
L∞

(
(0,∞);B

d/p
p,1 (Td)

)+∥vt∥L1
(
(0,∞);B

d/p−1
p,1 (Td)

)+∥v∥
L1

(
(0,∞);B

d/p+1
p,1 (Td)

)≤Cϵ,
where C=C(d,p)>1 is a constant.

We note that the case d=2 remains an interesting open problem; it is not covered
by the above theorem, as then the range of p’s is empty. In order to consider that case,
the energy methods appear more well-suited, see [11,16] for example.

Here Cb(I;X) denotes the space of continuous and bounded functions from an in-
terval I to a Banach space X. Moreover Bs

p,1(Td) stands for the Besov space on the
torus (see Section 2 for details).

In order to motivate the functional framework considered in Theorem 1.1, we first
observe that the transport equation for ρ gives the a priori bound

∥ρ(t)∥L∞ ≤∥ρ0∥L∞ exp

(∫ t

0

∥divv(s)∥L∞ds

)
. (1.6)

This suggests that the condition

div v∈L1((0,∞);L∞) (1.7)

is necessary for any global well-posedness result. On the other hand, in order to con-
struct the solution claimed by the above theorem, one would consider a linearization
of (1.1) around the ground state. In order to effectively analyze such linearization one
would need to use maximal regularity of the heat equation ut−∆u=f in a space of
the form L1((0,∞);X) where X is some Banach space. However, it is well-known that
if X is reflexive (more precisely UMD, see [20]) then such maximal regularity holds in
Lq((0,T );X) only for 1<q<∞. Thus, in order to reach the borderline case q=1, we
need to find a non-reflexive Banach space X. This suggests that we should leave the
classical Lp framework and enter the universe of the Besov spaces. It naturally leads us
to consider the spaces of the form L1((0,∞);Bs

p,1), considered by [14,15]. In fact, max-
imal regularity of the heat equation holds in L1((0,∞);Bs

p,1) (see (2.6) below), which is
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one of the most significant properties of Besov spaces with the last index one. Moreover,
Bs

p,1⊂L∞ for s≥d/p, which, in light of (1.7), suggests that we should consider

∇v∈L1
(
(0,∞);B

d/p
p,1

)
,

which naturally leads us to the functional setting considered in Theorem 1.1. Another
advantage of this marginal functional framework is that no explicit decay of ∥∇v∥L∞ is
required.

Thanks to this choice of functional setting, the hyperbolic character of the conti-
nuity equation for ρ can be removed. Moreover, due to the smallness assumption of
Theorem 1.1, we expect that ∥∥∥∥∫ t

0

|∇v(s,x)|ds
∥∥∥∥
L∞

<
1

2

for all t>0, which suggests that the Lagrangian coordinates should be well-defined. In
fact, the problem (1.1) becomes simpler in such coordinates, which we now introduce
in order to describe the main difficulties.

Let X(t,y) be the solution of the system

dX(t,y)

dt
=v(t,X(t,y)), X|t=0=y.

That is we define the Lagrangian coordinates y by the relation

X(t,y) :=y+

∫ t

0

v(τ,X(τ,y))dτ. (1.8)

We set

η(t,y) :=ρ(t,X(t,y)), u(t,y) :=v(t,X(t,y)). (1.9)

The transformation matrix reads

A :=

(
∂X

∂y

)−1

=

(
I+

∫ t

0

∇u
)−1

. (1.10)

Since we assumed that
∫
ρdx=1, and we aim at analysis of the flow around ρ=1, we

introduce a by

η=1+a. (1.11)

The Equations (1.1) in Lagrangian coordinates become

ηt+ηdivuu=0,

ηut−∆uu=−η∇u(−∆u)
−1a in [0,∞)×Td,

(1.12)

with initial conditions η|t=0=ρ0, u|t=0=v0, where we have denoted by ∇u, divu and
∆u the gradient, the divergence and the Laplace operator, respectively, with respect to
the x variable, that is in the Eulerian setting. For example

divuu(t,y)= [divv(t,x)]x=X(t,y) and ∆uu(t,y)= [∆v(t,x)]x=X(t,y) .
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We will use the notation div, ∇ and ∆ to denote the respective differential operators
of u, a or η with respect to their spatial variable, namely y. Similarly, we denote
by (−∆)−1 the solution operator of (1.2) in variable y, and we have also denoted by
(−∆u)

−1g(y) the solution operator in the Eulerian variables. Namely, since a(t,y)=
[ρ(t,x)−1]x=X(t,y) we have

∇u(−∆u)
−1a=∇u

[
(−∆)−1(ρ−1)

]
x=X(t,y)

.

We will show (in Section 4 below) that Theorem 1.1 is equivalent to the following
restatement in the Lagrangian coordinates.

Proposition 1.1 (Main result in the Lagrangian coordinates). Given d≥3, p∈
(min(d/2,2),d) there exists ϵ>0 with the following property. For every a0∈Bd/p

p,1 (Td)

and u0∈Bd/p−1
p,1 (Td) with

∥a0∥Bd/p
p,1 (Td)

+∥u0∥Bd/p−1
p,1 (Td)

≤ ϵ,

there exists a unique Lagrangian map X and a pair (a,u) such that X(t)− id=
∫ t

0
u(τ)dτ

holds for t>0, the Equations (1.12) hold on (0,∞)×Td with initial conditions (a0,u0),
and

∥a∥
L∞

(
(0,∞);B

d/p
p,1 (Td)

)+∥at∥L1
(
(0,∞);B

d/p
p,1 (Td)

)+∥a−{a}∥
L1

(
(0,∞);B

d/p−2
p,1 (Td)

)
+∥u∥

L∞
(
(0,∞);B

d/p−1
p,1 (Td)

)+∥ut∥L1
(
(0,∞);B

d/p−1
p,1 (Td)

)
+∥u−{u}∥

L1
(
(0,∞);B

d/p+1
p,1 (Td)

)+∥∇X−I∥
L∞

(
(0,∞);B

d/p
p,1 (Td)

)≤Cϵ,
where C=C(d,p)>1 is a constant.

We note that in Proposition 1.1 we only obtain the smallness of the averages {a},{u}
of a,u that is uniform in time, while in the Eulerian coordinates (i.e. in Theorem 1.1)
we obtain L1 control, which is a consequence of the conservation of mass

∫
ρ and the

conservation of momentum
∫
ρv, see (4.9) for details.

We note that the claim of Proposition 1.1 implies in particular that

∇u∈L1((0,∞);L∞) and a∈L∞((0,∞)×Td).

To prove Proposition 1.1 we consider the linearization of the system (1.12) around
the ground state (a,u)=(0,0), see (3.1) below. We establish well-posedness of the
linearization in Lemma 3.1. To this end, we apply the explicit formula for the linear
system, and we use a multiplier theorem, which is a version of the 1939 Marcinkiewicz
theorem [36]. We find the maximal regularity estimate, which then determines the
regularity framework used in Proposition 1.1.

In order to consider the nonlinear problem (1.12), we note that the main difficulty
of Proposition 1.1 is the appearance of the inverse Laplacian (−∆u)

−1 in the Eulerian
coordinates in (1.12). This term, i.e. ∇u(−∆u)

−1a, needs to be estimated in Besov
spaces in Lagrangian coordinates, and this can be achieved by showing that elliptic
estimates are stable with respect to the Lagrangian mapping y 7→X(t,y), given small-
ness of the initial data, see (3.31) and (3.35) for example. Using this trick we prove
Proposition 1.1 by linearizing (1.12) and then applying Banach Contraction Theorem
to obtain a unique global-in-time solution for small data obtaining the existence and
uniqueness at once.
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We emphasize that the use of the Besov spaces seems irreplaceable, since, although
we are working in a bounded domain, we are not able to obtain any exponential time
decay. In fact, as mentioned above, the real spectrum of the linearized system (3.1) is
not separated from zero, see (3.10).

Finally we discuss possible directions coming from our result. Firstly, it seems
possible to extend this analysis to other operators K. Here we consider a very particular
one, but there is a zoo of other interesting and physically relevant examples, see [1,4,7,8]
for example. The next problem is to consider the case of the whole space R3, which
seems to be more natural for problems arising from collective behaviors. Such setting,
in comparison with the standard definition of Besov spaces, requires a more subtle
functional setting, which is related to a number of mathematical challenges which remain
to be addressed. One of them is a natural assumption of finite mass

∫
Rd ρdx<∞, which

implies decay of ρ at spatial infinity. It is not clear what decay of ρ should be assumed,
but assuming compact support of ρ, the system suffers an elliptic degeneration, namely
the term ρvt just disappears.

We also note that even the change of the sign of K in (1.1) results in an unstable
system (recall (1.3), see also (3.8) below). In that case it seems natural to expect the
density to converge to a single point, namely to a Dirac delta.

The structure of the note is as follows. In the next section we introduce the notion
of Besov spaces on the torus, Bs

p,q(Td). We discuss some basic properties of such spaces,
including the Nikol’skij inequality (2.3), embeddings (2.4), as well as maximal regularity
of the heat equation (2.6), multiplier properties (2.11), product laws (2.12) and diffeo-
morphism invariance (2.13). Some of the results we could not find in the literature, and
so we provide proofs for the sake of completeness. In Section 3 we first discuss a well-
posedness result (Lemma 3.1) of the linearization of the equations in the Lagrangian
form (1.12) and then prove Proposition 1.1. Section 4 is devoted to the proof of the
claimed equivalence of the Eulerian setting (Theorem 1.1) and the Lagrangian setting
(Proposition 1.1).

2. Preliminaries
We denote by A≲B the inequality A≲CB, where C>0 is a universal constant. If

C depends on some parameters, we denote those using subscripts. By “∼” we mean “≲
and ≳”. We will use the standard notation of the Sobolev space by Hβ :=Hβ(Rd)≡
W β,2(Rd). We will also write Lp≡Lp(Td), and ∥·∥p≡∥·∥Lp .

Given u : Td→R and k∈Zd we denote its k-th Fourier mode by uk :=∫
Td u(x)e

ik·xdx. In the case when u also depends on time, for the sake of brevity of
the notation, we will abuse the notation to denote its time derivative by ut; in such case
we will denote the time derivatives of the k-th Fourier mode by u′k.

Let M :=Rd→R be such that M ∈Hβ for some β>d/2. Letting Λ⊂Zd be a finite
set, and letting dΛ :=maxk,l∈Λ |k− l|, we recall a Fourier multiplier inequality∥∥∥∥∥∑

k∈Λ

M(k)uke
ik·x

∥∥∥∥∥
p

≤C∥MdΛ
∥Hβ∥u∥p, p∈ [1,∞],β >d/2, (2.1)

where C=C(d,p,β) and Mλ :=M(λ·) denotes the λ-dilation of M . We refer the reader
to Section 3.3.4 in [43] for a proof of (2.1). We recall the Nikol’skij inequality,

∥f∥q ≲p,q d
d
p−

d
q

Λ ∥f∥p (2.2)

for p,q∈ [1,∞] such that q≥p and for f ∈Lp such that fk=0 for k ̸∈Λ, see Section 3.3.2
in [43] for a proof.
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To define Besov spaces Bs
p,q(Td) we first let χ∈C∞(R;[0,1]) be such that χ(z)=1

for z≤1 and χ(z)=0 for z≥2, and we set

ϕ1(x) :=χ(|x|/2)−χ(|x|), ϕj :=ϕ1(2
−j ·) for j≥2, ϕ0(x) :=χ(|x|)

for x∈Rd. We also set

ψj :=ϕ1(2
−j ·) and ψj±k :=

j+k∑
l=j−k

ψl for j∈Z,k≥0.

For m≥0 we set

Pmu :=
∑
k∈Zd

ϕm(k)uke
ik·x.

We note that

∥Pmu∥q ≲p,q 2
md
p −md

q ∥Pmu∥p, (2.3)

by the Nikol’skij inequality (2.2). Given p,q∈ [1,∞], s∈R we let Bs
p,q denote the space

of distributions u such that

∥u∥qBs
p,q

:=
∑
m≥0

2smq ∥Pmu∥qp<∞,

recall [43, Definition 3.5.1(i)]. In this work we will only be concerned with functions
with vanishing mean, i.e.

∫
Td f =0, for which the above sum can be taken over m≥1.

Note that Bs
p,q is a Banach space by Theorem 1 in Section 3.5.1 in [43]. We recall

the embedding

B
d/p+δ
p,1 (Td)⊂Bd/p

p,1 (T
d)⊂C0(Td) (2.4)

for every δ>0, p∈ [1,∞], see [43, p. 170].
Suppose that f,g∈L1

loc((0,∞);L1) are such that
∫
Td f(t)=

∫
Td g(t)=0 for each t>0

and that

ft−∆f =g (2.5)

hold in the sense of distributions in Td×R+. Then

∥ft∥L1Bs
p,1

+∥f∥L1Bs+2
p,1

≲∥g∥L1Bs
p,1

(2.6)

for every p∈ [1,∞], s∈R. In order to verify (2.6) we first note that the solution f of
(2.5) can be characterized in terms of its Fourier coefficients,

fk(t)=

∫ t

0

e−k2(t−s)gk(s)ds (2.7)

for every k∈Zd \{0}. Secondly, for every α>0∥∥∥∥∥∥Pm

∑
k∈Zd

e−αk2

gke
ik·x

∥∥∥∥∥∥
p

≲p e
−cα22m∥Pmg∥p, (2.8)
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where c>0 is a constant.
Let m≥1. We take u :=Pmg, M(ξ) :=e−α|ξ|2ϕm±1(ξ). We take N := [d/2]+1, Λ :=

{k∈Zd : 2m−1≤|k|≤2m+1}. We have dΛ∼2m, which gives that

∥MdΛ
∥2HN =

∑
|γ|≤N

d
2|γ|
Λ

∫
|DγM(dΛξ)|2dξ≲

∑
|γ|≤N

2(2|γ|−d)m

∫
|DαM |2

≲
∑

|γ|≤N

2(2|γ|−d)m

∫
{2m−2≤|ξ|≤2m+2}

(
(2−m+ |αξ|+ .. .+ |αξ||γ|)e−α|ξ|2

)2
dξ

≲ e−α22m−4

∫ (
QN (α|ξ|2)e−

α|ξ|2
2

)2

dξ≲ e−α22m−4

, (2.9)

where QN denotes a polynomial of order N and, in the second inequality, we obtained
the term “2−m” in the case when all derivatives fall onto ϕm±1. If k derivatives fall on

“e−α|ξ|2” we obtain “|αξ|k”, and then each of the other |γ|−k derivatives give factors
of 2−m, as |ξ|∼2m and m≥1. In the third inequality above we also used our choice of
N , which implies that 2|γ|−d≤2. Applying the multiplier inequality (2.1) gives (2.8),
as required.

Multiplying (2.7) by ϕmeik·x, summing in k∈Zd and taking the Lp norm we obtain

∥Pmf(t)∥p≤
∫ t

0

∥∥∥∥∥∥Pm

∑
k∈Zd

e−(t−s)k2

gk(s)e
ik·x

∥∥∥∥∥∥
p

ds≲
∫ t

0

e−c(t−s)22m∥Pmg(s)∥pds,

where we used (2.8) with α := t−s in the last step. Integration over t∈ (0,∞) and using
Young’s inequality ∥f ∗g∥1≤∥f∥1∥g∥1 gives∫ ∞

0

∥Pmf(t)∥pdt≲2−2m

∫ ∞

0

∥Pmg(t)∥pdt

for every m. Multiplying both sides by 22m, summing in m and applying the Tonneli
theorem gives that ∥f∥L1Bs+2

p,1
≲∥g∥L1Bs

p,1
. This and (2.5) prove (2.6), as required.

As a simple corollary we note that an argument analogous to (2.9) shows that

∥Pmf∥p≲p ∥f∥p, ∥PmD
γf∥p≲p 2

|γ|m∥Pmf∥p, ∥Pm∆f∥p∼p 2
2m∥Pmf∥p

(2.10)
for every m≥1, p∈ [1,∞] (by taking taking, respectively, M(ξ)=ϕm(ξ), M(ξ)=
ξγϕm±1(ξ), M(ξ)= |ξ|2ϕm±1(ξ) and M(ξ)= |ξ|−2ϕm±1(ξ)). In particular

∥Dγf∥Bs
p,q

≲∥f∥
B

s+|γ|
p,q

, ∥∆f∥Bs
p,q

∼∥f∥Bs+2
p,q

(2.11)

for every p,q∈ [1,∞], s∈R, given
∫
f =0.

We note that

∥fg∥Bs
p,1

≲∥f∥
B

d/p
p,1

∥g∥Bs
p,1

(2.12)

for p∈ [2,d), s∈ (−d/p,d/p], see Proposition 8.1 in [13]; it can also be proved in the same
way as the analogous claim for nonhomogeneous Besov spaces on R3, see Theorem 2(i)
in Section 4.6.1 in [42].
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Finally we note that the Bs
p,1, for s∈ (0,1) norm is equivalent to the Lipschitz norm,

∥f∥Bs
p,1

∼d,s,p ∥f∥p+
∫ (∫

|f(y)−f(x)|p

|y−x|p(d+s)
dy

) 1
p

dx

for s∈ (0,1), p∈ [1,∞), see (18) on p. 169 in [43]. See also (4) on p. 110 in [46].
We can deduce from it that Bs

p,1 is invariant under diffeomorphisms for s∈ (0,1).

Namely, given a diffeomorphism Z : Td→Td we have

∥f ◦Z∥Bs
p,1

∼s,d,pC(∥∇Z∥∞,∥(∇Z)−1∥∞)∥f∥Bs
p,1
, (2.13)

for s∈ (0,1), p∈ [1,∞], by applying the change of variable y 7→Z(y), using the Mean
Value Theorem and estimating the Jacobian by the L∞ norms of ∇Z and (∇Z)−1, see
Lemma 2.1.1 in [15], or Proposition A.1 in [12], for details. In what follows we will
apply (2.13) for s :=d/p−1, which belongs to (0,1), due to our restriction on p, namely
p∈ (min(d/2,2),d).

In what follows we will use a shorthand notation

LpBs≡Lp((0,∞);Bs
p,1(Td)).

3. Proof of Theorem 1.1
In this section we prove Proposition 1.1, which is equivalent to Theorem 1.1 (see

Section 4 below). We first consider the following compressible Stokes system,

at+divu=h in R+×Td,

ut−ν∆u+∇(Ka)=g in R+×Td,

a|t=0=a0, u|t=0=u0 in Td,

(3.1)

where g,h are given. This system is a linearization of (1.12), and the following lemma
determines the types of spaces which we will use to estimate u and a.

Lemma 3.1 (Solution of the linear system). Given s∈R, p∈ [1,∞], a0∈Bs+1
p,1 , u0∈

Bs
p,1, g∈L1Bs

p,1, h∈L1Bs+1
p,1 the system (3.1) admits a unique solution (a,u) such that

∥a∥L∞Bs+1
p,1

+∥at∥L1Bs+1
p,1

+∥a−{a}∥L1Bs−1
p,1

+∥u∥L∞Bs
p,1

+∥ut∥L1Bs
p,1

+∥u−{u}∥L1Bs+2
p,1

≤cν∥a0∥Bs+1
p,1

+∥u0∥Bs
p,1

+∥h∥L1Bs+1
p,1

+∥g∥L1Bs
p,1
. (3.2)

The lemma can be proved by first taking div of the second equation to obtain an
evolution equation for d :=divu. Taking the time derivative of the resulting PDE and
substituting at from the first equation we obtain an autonomous PDE on d, which we
can solve by translating it into a family of second order ODEs for the Fourier coefficients
of d. This allows us to find a from the first equation. We can then use it to find u from
the second equation.

Proof. We first assume that g=0 and u0=0. Indeed, otherwise, we denote by ũ
the solution of the heat equation with initial data u0 and forcing g, i.e. we set

ũk(t) :=

∫ t

0

gke
−νk2(t−s)ds+e−νk2tu0k. (3.3)
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Maximal regularity (2.6) gives that

∥ũt∥L1Bs
p,1

+∥∆ũ∥L1Bs
p,1

≲∥g∥L1Bs
p,1

+∥u0∥Bs
p,1
. (3.4)

Then (a,u− ũ) satisfies (3.1) with g=0, (u− ũ)t=0=0 and the right-hand side of the
equation for a equals

h̃ :=h−div ũ. (3.5)

We note that

∥h̃∥L1Bs
p,1

≲∥h∥L1Bs
p,1

+∥∆ũ∥L1Bs−1
p,1

≲∥h∥L1Bs
p,1

+∥g∥L1Bs−1
p,1

+∥u0∥Bs−1
p,1

for all s. Thus, if the lemma is valid in the homogeneous case g=0, u0=0, then it is
also valid in the inhomogeneous case. We can thus assume that g=0 and u0=0.

Taking div of the second equation of (3.1) and setting d :=div u we obtain

dt−ν∆d−(a−{a})=0, (3.6)

where we also used the fact that ∆(Ka)=−(a−{a}). Taking the time derivative and
recalling that at=h−d we obtain

dtt−ν∆dt+d=−(h−{h})

with initial data d|t=0=0 and from (3.6) dt|t=0=a0.
In terms of Fourier coefficients we obtain a second order ODE

d′′k+νk
2d′k+dk=−hk (3.7)

for k ̸=0. (Note that d0=
∫
divu=0.) The roots of the characteristic polynomial λ2+

νk2λ+1 are

λ±k =(−νk2±
√
ν2k4−4)/2, (3.8)

where k2 :=k21+k
2
2+ .. .+k

2
d. Let us first assume that ν2k4 ̸=4 for all k∈Zd \{0}. Then

there exists Cν >0 such that

|λ+k −λ−k |≥Cνk
2 for k∈Z3 \{0}. (3.9)

Note also that Reλ+k ,Reλ
−
k <0 with

|λ+k |∼ |Reλ+k |∼Cνk
−2, |λ−k |∼ |Reλ−k |∼Cνk

2 (3.10)

for k ̸=0. We note that the above behavior of the roots λ+k ,λ
−
k determines the proprieties

of the spectrum of the operator coming from the linear system (3.1). In particular, as
mentioned in the introduction, we emphasize that, although the d-dimensional torus Td

is bounded, the spectrum is not separated from zero, which excludes the possibility of
the exponential decay of solutions.

We now write the explicit form of the solution,

dk(t)=Ake
λ+
k t+Bke

λ−
k t+

1

λ+k −λ−k

∫ t

0

hk(s)
(
eλ

+
k (t−s)−eλ

−
k (t−s)

)
ds, (3.11)
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where Ak,Bk ∈R are such that(
1 1
λ+k λ−k

)(
Ak

Bk

)
=

(
0
a0k

)
.

In particular, (3.9) gives that

|Ak|, |Bk|≤Cνk
−2|a0k|. (3.12)

If νk2=2 for some k∈Zd \{0} then

dk(t)=Ake
−t+Bkte

−t+

∫ t

0

∫ s

0

hk(τ)e
−(t−τ)dτ ds

for such k, where Ak :=0,Bk :=a0k. In particular (3.12) follows in this case as well.
Thus considering the modes k∼2m we can use (2.8) to obtain∫ ∞

0

∥Pmd(t)∥pdt≤cν2−2m∥Pma0∥p
∫ ∞

0

(
e−c2−2mt+e−c22mt

)
dt

+2−2m
∥∥∥∥Pmh∥p ∗e−c2−2mt+∥Pmh∥p ∗e−c22mt

∥∥∥
L1

t

≤c∥Pma0∥p+
∫ ∞

0

∥Pmh(t)∥pdt (3.13)

for m≥1, with ∥P0d(t)∥p∼d0(t)=0 for all t>0.

Similarly,

d′k(t)=Akλ
+
k e

λ+
k t+Bkλ

−
k e

λ−
k t+

1

λ+k −λ−k

∫ t

0

h(s)
(
λ+k e

λ+
k (t−s)−λ−k e

λ−
k (t−s)

)
ds

for every k∈Z3 \{0}, and, analogously to (3.13), (2.8) gives that (k∼2m)∫ ∞

0

∥Pmdt(t)∥pdt≲2−2m∥Pma0∥p+2−2m

∫ ∞

0

∥Pmh(t)∥pdt

for m≥1. This and (3.13) implies that

∥d∥L1Bs
p,1

≲ν ∥a0∥Bs
p,1

+∥h∥L1Bs
p,1
,

∥d∥L∞Bs
p,1

+∥dt∥L1Bs
p,1

≲ν ∥a0∥Bs−2
p,1

+∥h∥L1Bs−2
p,1

.
(3.14)

Moreover, using (3.6) we see that a−{a}=dt−∆d, which implies that

∥a−{a}∥L1Bs
p,1

≲ν ∥dt∥L1Bs
p,1

+∥d∥L1Bs+2
p,1

≲ν ∥a0∥Bs+2
p,1

+∥h∥L1Bs+2
p,1

, (3.15)

where we applied (2.4) to write ∥dt∥L1Bs
p,1

≲∥dt∥L1Bs+4
p,1

, and used (3.14). On the other

hand, at=−d+h, which gives that

∥a∥L∞Bs
p,1

+∥at∥L1Bs
p,1

≲∥a0∥Bs
p,1

+∥d∥L1Bs
p,1

+∥h∥L1Bs
p,1

≲∥a0∥Bs
p,1

+∥h∥L1Bs
p,1
.

(3.16)
Moreover, recalling that f 7→∇Kf is an operator of order −1, we can use maximal
regularity (2.6) of the second equation of (3.1),

ut−∆u=−∇Ka (3.17)
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to obtain

∥u∥L∞Bs
p,1

+∥ut∥L1Bs
p,1

+∥∆u∥L1Bs
p,1

≲ν ∥a∥L1Bs−1
p,1

≲ν ∥a0∥Bs+1
p,1

+∥h∥L1Bs+1
p,1

,

where we used (3.15) in the last inequality. This, (3.15) and (3.16) give (3.2), as required.
The estimates (3.2) prove uniqueness of solutions. As for existence, we first define

d by (3.11) and then we set a :={a0}+
∫ t

0
{h(s)}ds+dt−∆d.

We can now prove Proposition 1.1

Proof. (Proof of Proposition 1.1.) We rewrite (1.12) in the form

at+div u=−adivu+(1+a)(div−divu)u

=:h,

ut−∆u+∇(−∆)−1a=a∇(−∆)−1a−aut+(∆u−∆)u

+(1+a)
(
∇(−∆)−1−∇u(−∆u)

−1
)
a

=:g,

(3.18)

and note that Lemma 3.1 gives that

∥a∥L∞Bd/p +∥at∥L1Bd/p +∥a−{a}∥L1Bd/p−2

+∥u∥L∞Bd/p−1 +∥ut∥L1Bd/p−1 +∥u−{u}∥L1Bd/p+1

≲∥a0∥Bd/p +∥u0∥Bd/p−1 +∥h∥L1Bd/p +∥g∥L1Bd/p−1 . (3.19)

Assuming that

∥u−{u}∥L1Bd/p+1 ≤γ, (3.20)

where γ∈ (0,1) is a sufficiently small constant, we show in Step 1 below that

∥h∥L1Bd/p ≲∥a∥L∞Bd/p∥u−{u}∥L1Bd/p +(1+∥a∥L∞Bd/p)∥u−{u}∥2L1Bd/p+1 (3.21)

and in Step 2 that

∥g∥L1Bd/p−1 ≲∥a∥L∞Bd/p (∥a−{a}∥L1Bd/p−2 +∥ut∥L1Bd/p−1)+∥u−{u}∥2L1Bd/p+1

+(1+∥a∥L∞Bd/p)∥u−{u}∥L1Bd/p+1∥a−{a}∥L1Bd/p−2 . (3.22)

Thanks to these estimates we can use (3.19) to obtain the a priori bound

∥a∥L∞Bd/p +∥at∥L1Bd/p +∥a−{a}∥L1Bd/p−2

+∥u∥L∞Bd/p−1 +∥ut∥L1Bd/p−1 +∥u−{u}∥L1Bd/p+1

≲∥a0∥Bd/p +∥u0∥Bd/p−1 +∥h∥L1Bd/p +∥g∥L1Bd/p−1

≲∥a0∥Bd/p +∥u0∥Bd/p−1

+∥a∥L∞Bd/p (∥a−{a}∥L1Bd/p−2 +∥ut∥L1Bd/p−1 +∥u−{u}∥L1Bd/p+1)

+(1+∥a∥L∞Bd/p)∥u−{u}∥L1Bd/p+1 (∥a−{a}∥L1Bd/p−2 +∥u−{u}∥L1Bd/p+1) .

(3.23)

Note that the right-hand sides of (3.21), (3.22) are at least quadratic in (a,u). This
allows us to use the a priori bound to prove claim using Banach Contraction Theorem,
which we discuss in Step 3 for the sake of completeness.
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Step 1. We prove (3.21).

We note that

∥adiv u∥L1Bd/p ≲∥a∥L∞Bd/p∥u−{u}∥L1Bd/p+1 . (3.24)

As for the other ingredient of h, we first use (1.10) to expand A as the Neumann series

A−I=
∑
k≥1

(
−
∫ t

0

∇u
)k

, (3.25)

where I denotes the d×d identity matrix. Taking the L∞Bd/p norm we see that

∥A−I∥L∞Bd/p ≤
∑
k≥1

∥∥∥∥∫ t

0

∇u
∥∥∥∥k
L∞Bd/p

≤
∑
k≥1

∥u−{u}∥kL1Bd/p+1 ≤2∥u−{u}∥L1Bd/p+1 ≤2γ, (3.26)

provided γ<1/2, where we used (3.20). We note that, since ∇=
(

∂X
∂y

)T
∇u we have

∇u=A
T∇. Thus

(div−divu)u=(δij−Aji)∂jui, (3.27)

and consequently

∥(1+a)(div−divu)u∥L1Bd/p ≲ (1+∥a∥L∞Bd/p)∥(δij−Aji)∂jui∥L1Bd/p

≲ (1+∥a∥L∞Bd/p)∥I−A∥L∞Bd/p∥u−{u}∥L1Bd/p+1

≲ (1+∥a∥L∞Bd/p)∥u−{u}∥2L1Bd/p+1 , (3.28)

as required, where we used (3.26) in the last step.

Step 2. We prove (3.22).

As for the first two ingredients of g we obtain

∥a∇(−∆)−1a−aut∥L1Bd/p−1 ≲∥a∥L∞Bd/p (∥a−{a}∥L1Bd/p−2 +∥ut∥L1Bd/p−1) , (3.29)

as required.
As for the remaining two ingredients we first note that

∆u−∆=divu∇u−div∇=div(∇u−∇)+(divu−div)∇u

=∂j((Aij−δij)∂i)+(Aji−δij)∂j(∂i+(δik−Aki)∂k) (3.30)

which gives that

∥(∆u−∆)u∥Bs ≤∥(AT −I)∇u∥Bs+1 +∥A−I∥Bd/p∥∇u+(I−AT )∇u∥Bs+1

≲∥A−I∥Bd/p (1+∥A−I∥Bd/p)∥u−{u}∥Bs+2 (3.31)

for each time and s=d/p−2,d/p−1, where we used (2.12) in the first line. We note
in passing that (3.31) is the main reason for our restriction on the range of p, due to
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the order restriction in the product law (2.12). Taking s=d/p−1 we can estimate the
third ingredient of g,

∥(∆u−∆)u∥L1Bd/p−1 ≤∥A−I∥L∞Bd/p (1+∥A−I∥L∞Bd/p)∥u−{u}∥L1Bd/p+1

≲∥u−{u}∥2L1Bd/p+1 , (3.32)

where we used (3.26) and (3.20).
On the other hand, taking s=d/p−2 in (3.31) gives an elliptic estimate

∥(−∆u)
−1w∥Bd/p ≲∥w∥Bd/p−2 (3.33)

for w∈Bd/p−2 with
∫
w=0. Indeed letting f := (−∆u)

−1w we see that f satisfies the
Poisson equation

−∆f =−∆uf+(∆u−∆)f =w+(∆u−∆)f

on the torus, which, after noting that w=(−∆)(−∆)−1w, gives

−∆((−∆u)
−1−(−∆)−1)w=(∆u−∆)f.

Taking the Bd/p−2 norm gives

∥
(
(−∆u)

−1−(−∆)−1
)
w∥Bd/p

≲∥(∆u−∆)f∥Bd/p−2 ≲∥A−I∥Bd/p (1+∥A−I∥Bd/p)∥f∥Bd/p , (3.34)

where we used (3.31) with s=d/p−2 in the second inequality. In particular

∥f∥Bd/p ≲∥w∥Bd/p−2 +∥(−∆u)
−1w−(−∆)−1w∥Bd/p ≲∥w∥Bd/p−2 +γ∥f∥Bd/p ,

where we used (3.26) in the last inequality. The elliptic estimate (3.33) follows if γ is
chosen sufficiently large so that the last term can be absorbed by the left-hand side.

The last ingredient of g can now be estimated by noting the identity

∇(−∆)−1−∇u(−∆u)
−1=∇((−∆)−1−(−∆u)

−1)−(∇u−∇)(−∆u)
−1,

which gives that

∥(1+a)
(
∇(−∆)−1−∇u(−∆u)

−1
)
a∥L1Bd/p−1

≲(1+∥a∥L∞Bd/p)
(
∥
(
(−∆)−1−(−∆u)

−1
)
(a−{a})∥L1Bd/p

+∥(∇u−∇)(−∆u)
−1(a−{a})∥L1Bd/p−1

)
≲(1+∥a∥L∞Bd/p)∥I−A∥L∞Bd/p (1+∥A−I∥L∞Bd/p)∥(−∆u)

−1(a−{a})∥L1Bd/p

≲(1+∥a∥L∞Bd/p)∥u−{u}∥L1Bd/p+1∥a−{a}∥L1Bd/p−2 , (3.35)

as required, where we used (3.34), the product rule (2.12) and the fact that ∇u−∇=
(AT −I)∇ in the second inequality, as well as (3.26) in the last line.

Step 3. We prove the claim. We set

∥(u,a)∥ :=∥a∥L∞Bd/p +∥at∥L1Bd/p +∥a−{a}∥L1Bd/p−2

+∥u∥L∞Bd/p−1 +∥ut∥L1Bd/p−1 +∥u−{u}∥L1Bd/p+1
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and

V :={(u,a) : ∥(u,a)∥<∞}.

Then V equipped with the norm ∥·∥ is a Banach space. Given (v,α)∈V , we let S(v,α)
denote the solution of the linear system (3.1) with

h :=−αdivv+(1+α)(div−divv)v,

g :=α∇(−∆)−1α−αvt+(∆v−∆)v+(1+α)
(
∇(−∆)−1−∇v(−∆v)

−1
)
α.

By (3.23) we see that S : V →V . By Lemma 3.1 there exists C>0 such that
∥S(0,0)∥≤C(∥a0∥Bd/p +∥u0∥Bd/p−1)/2≤Cϵ/2. By the a priori estimate (3.23) we ob-
tain that ∥S(v,α)−S(0,0)∥≲∥(v,α)∥2≤C2ϵ2 for every (v,α)∈B :=B(0,Cϵ). Thus S
maps B into itself for sufficiently small ϵ>0, as ∥S(v,α)∥≤ Cϵ

2 +∥S(v,α)−S(0,0)∥≤Cϵ
for (v,α)∈B. We show below that S is a contraction on B, namely that

∥S(v,α)−S(w,β)∥≤ 1

2
∥(v−w,α−β)∥=:

1

2
d (3.36)

for all (v,α),(w,β)∈B, given ϵ>0 is chosen sufficiently small. Banach Contraction
Theorem then gives the claimed existence and uniqueness result.

Letting (u,a) :=S(v,α)−S(w,β) we see that (u,a) is a solution to the problem

at+divu= δh in R+×Td,

ut−ν∆u+∇(Ka)= δg in R+×Td
(3.37)

with homogeneous initial conditions a(0)=0, u(0)=0, where

δh :=−αdivv+(1+α)(div−divv)v−βdivw+(1+β)(div−divw)w

=−(α−β)divv−wdiv(v−w)+(α−β)(div−divv)v

+(1+β)((div−divv)v−(div−divw)w)

=−(α−β)divv−βdiv(v−w)+(α−β)(div−divv)v

+(1+β)((div−divw)(v−w))+(1+β)((divw−divv)v)

and

δg :=α∇(−∆)−1α−αvt+(∆v−∆)v+(1+α)
(
∇(−∆)−1−∇v(−∆v)

−1)α
−
(
β∇(−∆)−1β−βwt+(∆w−∆)w+(1+β)

(
∇(−∆)−1−∇w(−∆w)

−1)β)
=(α−β)∇(−∆)−1α+β∇(−∆)−1(α−β)︸ ︷︷ ︸

=:δg1

−(α−β)vt−β(v−w)t︸ ︷︷ ︸
=:δg2

+(∆v−∆)(v−w)︸ ︷︷ ︸
=:δg3

+(∆v−∆w)w︸ ︷︷ ︸
=:δg4

+(α−β)
(
∇(−∆)−1−∇v(−∆v)

−1)α︸ ︷︷ ︸
=:δg5

+(1+β)
(
∇(−∆)−1−∇v(−∆v)

−1)(α−β)︸ ︷︷ ︸
=:δg6

+(1+β)
(
∇w(−∆w)

−1−∇v(−∆v)
−1)β.︸ ︷︷ ︸

=:δg7

In the remainder of the proof we verify that

∥δh∥L1Bd/p +∥δg∥L1Bd/p−1 ≲ ϵd
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whenever (v,α),(w,β)∈B. This and Lemma 3.1 proves the required contraction prop-
erty (3.36) if ϵ>0 is chosen sufficiently small.

Looking at the structure of δh we see that the first four terms can be bounded in
∥·∥L1Bd/p in the same way as in Step 1 above (recall (3.24) and (3.28)), to give the
upper bound

∥α−β∥L∞Bd/p∥v−{v}∥L1Bd/p+1 +∥β∥L∞Bd/p∥v−w−{v−w}∥L1Bd/p+1

+∥α−β∥L∞Bd/p∥I−A∥L∞Bd/p∥v−{v}∥L1Bd/p+1

+(1+∥β∥L∞Bd/p)∥I−A∥L∞Bd/p∥v−w−{v−w}∥L1Bd/p+1

≲ϵ(∥α−β∥L∞Bd/p +∥v−w−{v−w}∥L1Bd/p+1)≲ ϵd,

where

A := I+
∑
k≥1

(
−
∫ t

0

∇v
)k

and A := I+
∑
k≥1

(
−
∫ t

0

∇w
)k

,

recall the Neumann expansion (3.25).
As for the last ingredient of δh we recall the Neumann series (3.25) and the algebraic

identity ak−bk=(a−b)
∑k−1

m=0a
k−mbm to write

A−A=
∑
k≥1

((
−
∫ t

0

∇w
)k

−
(
−
∫ t

0

∇v
)k
)

=

(
−
∫ t

0

∇(w−v)
)∑

k≥1

k−1∑
m=0

(
−
∫ t

0

∇w
)k−m(

−
∫ t

0

∇v
)m

.

Thus, taking the L∞Bd/p norm gives

∥A−A∥L∞Bd/p ≤∥v−w−{v−w}∥L1Bd/p+1

×
∑
k≥1

k−1∑
m=0

∥w−{w}∥k−1−m

L1Bd/p+1∥v−{v}∥mL1Bd/p+1

≲∥v−w−{v−w}∥L1Bd/p+1

∑
k≥1

k−1∑
m=0

ϵk−1−mϵm

≲∥v−w−{v−w}∥L1Bd/p+1

∑
k≥1

kϵk−1≲∥v−w−{v−w}∥L1Bd/p+1 . (3.38)

Hence, recalling (3.27), we obtain

∥(1+β)(divw−divv)v)∥L1Bd/p ≤ (1+∥β∥L∞Bd/p)∥Aw−Av∥L∞Bd/p∥v−{v}∥L1Bd/p+1

≲∥v−w−{v−w}∥L1Bd/p+1∥v−{v}∥L1Bd/p+1 ≲ ϵd,
(3.39)

as required.

As for δg we have

∥δg1+δg2∥L1Bd/p−1 ≲∥(α−β)∇(−∆)−1α∥L1Bd/p−1 +∥β∇(−∆)−1(α−β)∥L1Bd/p−1

+∥(α−β)vt∥L1Bd/p−1 +∥β(v−w)t∥L1Bd/p−1

≲∥α−β∥L∞Bd/p (∥α−{α}∥L1Bd/p−2 +∥β−{β}∥L1Bd/p−2 +∥vt∥L1Bd/p−1)

+∥β∥L∞Bd/p∥vt−wt∥L1Bd/p−1

≲ ϵ∥(v,α)−(w,β)∥
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as in (3.29). On the other hand, the first inequality in (3.32) gives

∥δg3∥L1Bd/p−1 ≲∥A−I∥L∞Bd/p

(
1+∥A−I∥L∞Bd/p

)
∥v−w−{v−w}∥L1Bd/p+1

≲ ϵ∥v−w−{v−w}∥L1Bd/p+1 .

As for δg4 we have, as in (3.30)

∆v−∆w=divv(∇v−∇w)+(divv−divw)∇w

=Aji∂j

((
Aki−Aki

)
∂k

)
+
(
Aji−Aji

)
∂j∂i, (3.40)

which implies (as in (3.31)) that

∥(∆v−∆w)w∥Bs ≤∥A∥Bd/p

∥∥∥(A−A
)
∇w
∥∥∥
Bs+1

+
∥∥∥(A−A

)
:D2w

∥∥∥
Bs

≲
(
1+∥A−I∥Bd/p

)
∥A−A∥Bd/p∥w−{w}∥Bs+2 (3.41)

for s=d/p−2,d/p−1 and each fixed time, which in turn (similarly to (3.32)) gives that

∥δg4∥L1Bd/p−1 =∥(∆v−∆w)w∥L1Bd/p−1 ≲
∥∥∥A−A

∥∥∥
L∞Bd/p

∥w−{w}∥L1Bd/p+1

≲ ϵ∥v−w−{v−w}∥L1Bd/p+1 ,

where we used (3.38) in the last inequality.
As for δg5 and δg6 (3.35) gives that

∥δg5+δg6∥L1Bd/p−1 ≲∥α−β∥L∞Bd/p∥v−{v}∥L1Bd/p+1∥α−{α}∥L1Bd/p−2

+(1+∥β∥L∞Bd/p)∥v−{v}∥L1Bd/p+1∥α−β−{α−β}∥L1Bd/p−2

≲∥v−{v}∥L1Bd/p+1 (∥α−β∥L∞Bd/p +∥α−β−{α−β}∥L1Bd/p−2).

Finally, δg7=(1+β)
(
∇w(−∆w)

−1−∇v(−∆v)
−1
)
β is the most challenging term,

where, as in (3.39) above, we need to extract v−w from the difference of differen-
tial operators ∇w(−∆w)

−1−∇v(−∆v)
−1. To this end we need to explore the steps

leading to (3.35) a bit further. Namely, setting

f := (−∆w)
−1(β−{β}), g := (−∆v)

−1(β−{β}),

we see that

δg7=(1+β)(∇w(f−g)+(∇w−∇v)g) ,

recalling (1.10) that ∇w=A
T
∇ we obtain

∥δg7∥Bd/p−1 ≲ (1+∥β∥Bd/p)︸ ︷︷ ︸
≲1

∥∇w(f−g)+(∇w−∇v)g∥Bd/p−1

≲∥A∥Bd/p︸ ︷︷ ︸
≲1

∥f−g∥Bd/p +∥A−A∥Bd/p∥g∥Bd/p .
(3.42)

In order to estimate the first term on the right-hand side we note that

−∆(f−g)=(∆w−∆)f−(∆v−∆)g=(∆w−∆v)f+(∆v−∆)(f−g).
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This lets us use (3.40) with s=−1 (and (∆v−∆w)w replaced by (∆w−∆v)f) and (3.31)
with s=−1 (and (∆u−∆)u replaced by (∆v−∆)(f−g)) to obtain

∥f−g∥Bd/p ≲∥(∆w−∆v)f∥Bd/p−2 +∥(∆v−∆)(f−g)∥Bd/p−2

≲
(
1+∥A−I∥Bd/p

)
︸ ︷︷ ︸

≲1

∥A−A∥Bd/p∥f∥Bd/p

+∥A−I∥Bd/p︸ ︷︷ ︸
≲ϵ

(
1+∥A−I∥Bd/p

)︸ ︷︷ ︸
≲1

∥f−g∥Bd/p .

Thus, for sufficiently small ϵ>0 we can absorb the last term on the left-hand side to
obtain that

∥f−g∥Bd/p ≲∥A−A∥Bd/p∥f∥Bd/p

at each time. Applying this in (3.42) and integrating in time we obtain

∥δg7∥L1Bd/p−1 ≲∥A−A∥L∞Bd/p (∥f∥L1Bd/p +∥g∥L1Bd/p)

≲∥v−w−{v−w}∥L1Bd/p+1∥β−{β}∥L1Bd/p−2 ≲ ϵ∥v−w−{v−w}∥L1Bd/p+1 ,

as required, where we used (3.38) and (3.33) in the second inequality.

4. Equivalence of the Eulerian and Lagrangian formulations
In this section we show the equivalence of Theorem 1.1 and Proposition 1.1.

We first show that Theorem 1.1 ⇒ Proposition 1.1.

To this end, given a solution (ρ,v) in the Eulerian coordinates, we need to construct
a Lagrangian map X=X(t,y), so that a(t,y) :=ρ(t,X(t,y))−1, u(t,y) :=v(t,X(t,y)) is
a solution in the Lagrangian coordinates (that is a solution of (1.12)).

In order to construct the Lagrangian map, we first prove the following a priori
estimate: given X(t) exists for all t≥0, and ∥∇X−I∥L∞Bd/p is sufficiently small (see
(4.5) below) then

∥∇X− I∥L∞Bd/p+1 ≤C(∥X∥L∞Bd/p+1)∥v∥L1Bd/p+1 ≲ ϵ. (4.1)

Given (4.1), one can use a Picard iteration to construct X. In particular an appropriate
choice of small ϵ>0 guarantees the assumed smallness of ∥∇X−I∥L∞Bd/p .

In order to prove (4.1), we first note that, since X(t) : Td→Td is a diffeomorphism,
we have ∫

(∇X(t)−I)dy=0

for each t≥0. Thus, in light of (2.11), in order to show (4.1) it suffices to verify that

∆X(t,y)=

∫ t

0

∆yv(s,X(s,y))ds (4.2)

remains small in Bd/p−1 for all times, where ∆y =∇y ·∇y and we denoted by ∇y the
derivative with respect to the y variable. Since

∆yv(t,X(t,y))=∂yi
(∂jv◦X∂iXj)=∂k∂jv◦X∂iXk∂iXj+∂jv◦X∆Xj ,
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we have

∥∆y(v◦X)∥Bd/p−1 ≤∥D2v◦X∥Bd/p−1∥∇X∥2Bd/p +∥∂jv◦X∥Bd/p∥∆Xj∥Bd/p−1 . (4.3)

At this point we would like to estimate ∥∂jv◦X∥Bd/p by ∥∇y(∂jv◦X)∥Bd/p−1 , so that
we could estimate it by ∥D2v◦X∥Bd/p−1∥∇X∥Bd/p , that is the same as the first term
on the right-hand side above.

However, this is not immediate as the average of ∂jv◦X does not necessarily vanish
(recall (2.11)). Instead by adding and subtracting the average we obtain

∥∂jv◦X∥Bd/p ≲∥D2v◦X∥Bd/p−1∥∇X∥Bd/p +{∂jv◦X},

and by recalling the fact that ∇=AT∇y (see (3.27), for example) we can estimate the
average, ∫

∂jv(t,X(t,y))dy=

∫
Akj∂yk

v(t,X(t,y))dy

=

∫
(Akj−δkj)∂yk

v(t,X(t,y))dy

≤∥A−I∥∞∥∇y(v◦X)∥∞,

where A := (∇X)−1. This gives

∥∇v◦X∥Bd/p ≲∥D2v◦X∥Bd/p−1∥∇X∥Bd/p +∥A−I∥Bd/p∥∇v◦X∥Bd/p∥∇X∥Bd/p .
(4.4)

Thus if we suppose that

∥∇X−I∥Bd/p ≤1/8C∥I∥Bd/p , (4.5)

where C>1 is the implicit constant in (4.4) then ∥∇X∥Bd/p ≤2∥I∥Bd/p and the Neu-
mann expansion gives (as in (3.25))

∥A−I∥Bd/p ≤
∑
k≥1

∥∇X−I∥kBd/p ≤
1

∥I∥Bd/pC

∑
k≥1

8−k≤ 1

4∥I∥Bd/pC
. (4.6)

Thus the last term in (4.4) could be absorbed by the left-hand side to give

∥∇v◦X∥Bd/p ≲∥D2v◦X∥Bd/p−1∥∇X∥Bd/p .

Applying this in (4.3) and taking the ∥·∥L∞((0,∞);Bd/p−1) norm of (4.2) gives

∥∆X∥L∞((0,∞);Bd/p−1)≤∥∆y(v◦X)∥L1Bd/p−1

≤C(∥X∥L∞Bd/p+1)

∫ ∞

0

∥D2v◦X∥Bd/p−1

≤C(∥X∥L∞Bd/p+1)

∫ ∞

0

∥D2v∥Bd/p−1 , (4.7)

proving the a priori estimate (4.1).

We note that, given X, we also obtain (as in (4.6)) that

∥A−I∥L∞Bd/p ≲ ϵ.
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Setting u(t,y) :=v(t,X(t,y)), a :=ρ(t,X(t,y))−1 we can use (2.13) to obtain that

∥u∥L1Bd/p+1 ≲∥v∥L1Bd/p+1 ≲ ϵ,

by the last two lines of (4.7), as well as

∥∇a∥L∞Bd/p−1 =∥∇(ρ◦X)∥L∞Bd/p−1 ≲∥∇ρ◦X∥L∞Bd/p−1∥∇X∥L∞Bd/p ≲ ϵ,

by (4.1) and the assumption ∥ρ−1∥L∞Bd/p ≲ ϵ. (Recall that the diffeomorphism
property (2.13) is only valid for s∈ (0,1).) This and the fact that ∥{a}∥L∞(0,∞)≲
∥ρ−1∥L∞L∞ ≲ ϵ imply that

∥a∥L∞Bd/p ≲ ϵ.

Another application of (2.13) and the chain rule gives that

∥ut∥L1Bd/p−1 ≤∥vt∥L1Bd/p−1 +∥∇v∥L1Bd/p∥∇X∥L∞Bd/p ≲ ϵ.

As for at we use the apriori estimates (3.19), (3.21), (3.22) to obtain that

∥at∥L1Bd/p ≲ ϵ,

as required. This completes the proof of Proposition 1.1.

We now prove that Proposition 1.1 ⇒ Theorem 1.1.

To this end, one defines v(t,x) :=u(t,X−1(x)), ρ(t,x) :=1+a(t,X−1(t,x)), and notes
that the Lagrangian trajectory X satisfying ∥∇X−I∥L∞Bd/p ≲ ϵ is already given by
Proposition 1.1. Moreover, in the Eulerian coordinates the structure of the Equations
(1.1) allows us to control the L1 norm in time of {v}.

To be more precise we first note that ∥A−I∥L∞Bd/p ≲ ϵ, by (3.26), and so in par-
ticular ∥∇X−1−I∥L∞L∞ ≲ ϵ. Thus (2.13) implies that

∥ρ−1∥L∞Bd/p−1 =∥a◦X−1∥L∞Bd/p−1 ≲∥a∥L∞Bd/p−1 ≲ ϵ,

while continuity of ρ−1 in time with values in Bd/p−1 follows from the continuity of a,
a consequence of ∥at∥L1Bd/p−1 ≲ ϵ.

Similarly (2.13) implies that

∥∆v∥L1Bd/p−1 =∥(∆uu)◦X−1∥L1Bd/p−1 ≲∥∆uu∥L1Bd/p−1

≲∥∆u∥L1Bd/p−1 +∥A−I∥Bd/p (1+∥A−I∥Bd/p)∥∆u∥Bd/p−1 ≲ ϵ,
(4.8)

where we also used (3.31) in the second inequality.
We now note that

{v}=
∫
{v}ρ=

∫
({v}−v)ρ,

where we used the mass conservation
∫
ρ=
∫
ρ0=1 in the first equality and, in the

second equality, we used the assumption
∫
ρ0v0=0 and the momentum conservation,

d

dt

∫
ρv=−

∫
ρ∇Ψ=−1

2

∫
∇|∇Ψ|2=0,

which follows from (1.1), where Ψ :=Kρ. Thus

|{v}|≲∥ρ∥L∞∥v−{v}∥Lp ≲∥ρ∥L∞∥∆v∥Bd/p−1 , (4.9)
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due to (2.11). This and (4.8) implies that ∥v∥L1Bd/p+1 ≲ ϵ, as required.
It remains to show the estimate for vt in L1Bd/p−1. To this end we note that

ut=vt ◦X+(v◦X) ·(∇v◦X), which implies that

vt=ut ◦X−1−(u ·∇uu)◦X−1.

Thus (2.13) gives

∥vt∥L1Bd/p−1 ≤∥ut ◦X−1∥L1Bd/p−1 +∥(u ·∇uu)◦X−1∥L1Bd/p−1

≲∥ut∥L1Bd/p−1 +∥u ·∇uu∥L1Bd/p−1

≲ ϵ+∥u∥L∞Bd/p−1∥∇uu∥L1Bd/p ≲ ϵ(1+∥A−I∥L∞Bd/p∥∆u∥L1Bd/p−1)≲ ϵ,

where we used (2.12) twice in the third line.
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