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DISSIPATIVE SOLUTIONS TO THE COMPRESSIBLE ISENTROPIC
NAVIER-STOKES EQUATIONS∗

LIANG GUO† , FUCAI LI‡ , AND CHENG YU§

Abstract. The dissipative solutions to the compressible isentropic Navier-Stokes equations are
introduced in this paper. This notion was inspired by the concept of dissipative solutions to the in-
compressible Euler equations of Lions ([P.-L. Lions, Oxford Science Publication, Oxford, 1996], Section
4.4). We establish the existence of the dissipative solutions for the compressible Navier-Stokes equa-
tions, which is carried out by an approximate scheme for a modified Brenner model with artificial
diffusion and artificial pressure at the same level. Moreover, we prove that the weak solution of the
compressible isentropic Navier-Stokes equations is a dissipative solution.
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1. Introduction
This paper aims to study the existence of dissipation solutions to the compressible

Navier-Stokes equations, which was inspired by the work of Lions [15]. In particular,
Lions introduced the concept of dissipation solutions to the incompressible Euler equa-
tions and proved its existence. This can imply the property of weak-strong uniqueness
of the Euler equations. In this paper, we are particularly interested in extending these
results to the compressible Navier-Stokes equations.

Thus, we consider the following compressible isentropic Navier-Stokes equations
over R+×Ω (Ω⊂R3):{

∂tρ+div(ρu)=0,
∂t(ρu)+div(ρu⊗u)+∇p(ρ)=divS(∇u),

(1.1)

where ρ denotes the density, u∈R3 the velocity and p(ρ)=Aργ the pressure with the
constant A>0 and the adiabatic exponent γ>1, respectively. The viscous stress tensor
S satisfies the Newton’s rheological law:

S(∇u)=µ(∇u+∇⊤u)+λ(divu)I3,

where the constants µ and λ are the Lamé viscosity coefficients of the flow satisfying
µ>0 and 2µ+3λ≥0, and I3 is the 3×3 identity matrix. The equations (1.1) are
supplemented with the initial data

(ρ,ρu)|t=0=(ρ0,m0), (1.2)

and one of the following boundary conditions:
(1) the periodic case

Ω=T3=R3/2πZ3; (1.3)
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(2) the Dirichlet boundary condition

u|∂Ω=0, (1.4)

where Ω is a bounded domain in R3.
For the weak solutions of the compressible Navier-Stokes equations, Lions [16] in-

troduced the concept of renormalized solutions. This allows him to establish the global
existence of weak solutions with large data for any γ≥ 9

5 . Later, his result was improved
in [10] by extending the value of the adiabatic exponent to γ> 3

2 . Improving the range
of γ is an interesting and fundamental problem, which certainly is from a physical view-
point. It is also a challenging problem in mathematics, since the restriction on γ> 3

2 is
absolutely essential to the analysis in [10]. This current paper aims to build up solutions
in a weaker sense than in the renormalized sense, which was inspired by the concept of
dissipation solutions introduced in Lions [15].

DiPerna and Majda [5] proposed a measure-valued solution, by a generalized Young
measure and proved the global existence of such solution to the incompressible Euler
equations with any initial data. However, they have not investigated the weak-strong
uniqueness structure. The concept of dissipation solutions to the incompressible Euler
equations was introduced and its existence was given in [15]. This solution can imply
the weak-strong uniqueness property. Meanwhile, Bellout et al. [1] also proposed a very
weak L2 solution. Later, Brenier et al. [2] established the weak-strong uniqueness of the
admissible measure-valued solutions to the incompressible Euler equations, and showed
that the admissible measure-valued solution is also a dissipative solution in the sense of
Lions.

The admissible assumption is to say that the kinetic energy is always less than
or equal to the initial energy, which plays a key role in [2]. Under the admissible
assumption, De Lellis and Székelyhidi ([4], Proposition 1) proved that the weak solution
of incompressible Euler equations is a dissipative solution in the sense of Lions. Gwiazda
et al. [12] extended the measure-valued solutions to some compressible fluid models and
proved the weak-strong uniqueness of the admissible measure-valued solutions to the
isentropic Euler equations in any space dimension. And afterwards, Feireisl et al. [7]
introduced a dissipative measure-valued solution to the compressible barotropic Navier-
Stokes system, and proved the existence for the adiabatic exponent γ>1 and the weak-
strong uniqueness property of the dissipative measure-valued solutions. Recently, Kwon
and Novotný [14] studied the dissipative weak solutions to compressible Navier-Stokes
equations with general inflow-outflow data, and verified the existence, stability and
weak-strong uniqueness for γ> 3

2 in the framework of weak solutions.
The main contribution of this paper is to extend the notion of dissipative solutions

to the incompressible Euler equations introduced in [15] to the equations of the com-
pressible fluids. Compared to the incompressible case, we have to consider the density
effect and the mass equation. To this end, we define the following two smooth functions

E1(r,v)=∂tr+div(rv), E2(r,v)= r∂tv+rv ·∇v+∇p(r)−divS(∇v), (1.5)

where r (has a positive lower bound r1) and v be two smooth functions on [0,∞)×Ω.
This allows us to derive a priori relative entropy (2.17), which is crucial to give the
definition of dissipative solutions to the compressible Navier-Stokes equations, and to
obtain the weak-strong uniqueness property.

The main idea is to build up the solutions of the modified Brenner model (4.1), and
to show that this approximated solution is also a dissipative solution to (4.1). Then we
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can recover our solution by passing to the limits from this dissipative solution, thanks
to the compactness argument.

This paper is organized as follows. In Section 2, we derive some a priori esti-
mates, introduce the definition of dissipative solutions to the compressible isentropic
Navier-Stokes equations and state our main results: the existence of dissipative solu-
tions (Theorem 2.1) and the weak solution is also a dissipative solution (Theorem 2.3).
In Section 3, we show that the smooth functions r and v can be replaced by a class
of functions with lower regularities. This can be done through the regularization pro-
cedure. In Section 4, we give the proof of Theorem 2.1 by using compactness analysis
on the approximated solutions. Section 5 is devoted to the proof of Theorem 2.2. Note
that Corollary 2.1 and Corollary 2.2 are direct conclusions of Theorem 2.1 and Theorem
2.2, respectively, thus we omit their proofs. Finally, we collect some auxiliary lemmas
in an appendix.

2. Definition of dissipative solutions and the main results
The main goal of this section is to define our dissipative solutions to the compress-

ible Navier-Stokes equations and address our main results. To this end, we start with
deriving some a priori estimates which are crucial to our definition. Thus, we assume
that the solutions are smooth here.

Multiplying the continuity Equation (1.1)1 by 1
2 |v|

2−P′(r) (P′(r)= Aγ
γ−1r

γ−1), in-

tegrating the result over Ω, taking the inner product of the momentum Equation (1.1)2
with u−v, and adding them up gives

d

dt

ˆ
1

2
ρ|u−v|2+P(ρ)−P′(r)ρ dx+

ˆ
S(∇u) :∇u dx

=−
ˆ

ρ(u−v) ·∇v ·(u−v) dx+

ˆ
ρ(∂tv+v ·∇v) ·(v−u) dx

−
ˆ

ρ∂tP
′(r) dx−

ˆ
ρu ·∇P′(r) dx−

ˆ
p(ρ)divv dx+

ˆ
S(∇u) :∇v dx, (2.1)

where P(s)= A
γ−1s

γ . Note that P′(r)r−P(r)=p(r)=Arγ and P′′(r)r=p′(r), this gives

d

dt

ˆ
P′(r)r−P(r) dx=

ˆ
∂tp(r)+div(p(r)v) dx

=

ˆ
p′(r)∂tr+v ·∇p(r)+p(r)divv dx

=

ˆ
r∂tP

′(r) dx+

ˆ
rv ·∇P′(r)+p(r)divv dx. (2.2)

Using (1.5), (2.1) and (2.2), one obtains that

d

dt

ˆ
1

2
ρ|u−v|2+P(ρ)−P′(r)(ρ−r)−P(r) dx+

ˆ
S(∇u−∇v) :∇(u−v) dx

=−
ˆ

ρ(u−v) ·D(v) ·(u−v) dx−
ˆ
(p(ρ)−p′(r)(ρ−r)−p(r))divv dx

+
´
(r−ρ)P′′(r)E1(r,v) dx+

´
ρ
rE2(r,v) ·(v−u) dx+

´
ρ−r
r divS(∇v) ·(v−u) dx,

(2.3)

where D(v)= 1
2 (∇v+∇⊤v), and we have used the identity

(b ·∇)a ·b=
1

2
b ·(∇a+∇⊤a) ·b,
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for the vectors a and b.
Next we look at the last term on the left-hand side of (2.3) for the two boundary

cases (1.3) and (1.4), respectively.
For the periodic case Ω=T3, using Lemma A.2 in the Appendix gives

∥u−v∥H1 ≤ c1
(
∥∇(u−v)∥L2 +∥√ρ(u−v)∥L2

)
, (2.4)

where c1>0 is a constant dependent on γ, and γ≥ 6
5 for n=3 from Lemma A.2.

For the bounded domain Ω with Dirichlet boundary condition, it needs the extra
restriction v|∂Ω=0. The Poincaré’s inequality yields

∥u−v∥H1 ≤ c2∥∇(u−v)∥L2 , (2.5)

where c2>0 is a constant. Thus, we only need γ>1 in this situation.
By integration by parts, one has

ˆ
S(∇u−∇v) :∇(u−v) dx=µ∥∇(u−v)∥2L2 +(µ+λ)∥div(u−v)∥2L2 . (2.6)

Using Sobolev embedding H1 ↪→L6 with the generic constant ĉ, and the estimates
(2.4), (2.5) and (2.6), we have

∥v−u∥2L6 ≤ĉ∥v−u∥2H1 ≤2ĉc2γ∥∇(u−v)∥2L2 +2ĉc2γ∥
√
ρ(u−v)∥2L2

≤
2ĉc2γ
µ

ˆ
S(∇u−∇v) :∇(u−v) dx+2ĉc2γ∥

√
ρ(u−v)∥2L2 (2.7)

for the periodic case (1.3), and

∥v−u∥2L6 ≤ĉ∥v−u∥2H1 ≤
2ĉc2γ
µ

ˆ
S(∇u−∇v) :∇(u−v) dx (2.8)

for the Dirichlet boundary case (1.4). Here, cγ =max{c1,c2}.
In view of the convexity of P(ρ) with γ>1 and r≥ r1>0, it holds that

P(ρ)−P′(r)(ρ−r)−P(r)≥
{
C|ρ−r|2, 1

2r≤ρ≤ 3
2r,

C(1+ |ρ−r|γ), 0≤ρ< 1
2r, ρ>

3
2r.

(2.9)

For the convenience of notations, letting f be a given function and the bold 1 be
characteristic function, we denote

Ωess=
{
x∈Ω: |ρ−r|≤ 1

2
r
}
, Ωres=

{
x∈Ω:0≤ρ<

1

2
r, ρ>

3

2
r
}
,

f =[f ]ess+[f ]res, [f ]ess=f1Ωess
, [f ]res=f1Ωres

.

Utilizing the above notations, and by Hölder’s inequality, one deduces that

ˆ
ρ−r

r
divS(∇v) ·(v−u) dx

=

ˆ
1

r
(
√
ρ−

√
r)(

√
ρ+

√
r)divS(∇v) ·(v−u) dx

=

ˆ
Ωess∪Ωres

√
ρ−

√
r

√
r

divS(∇v) ·(v−u) dx
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+

ˆ
Ωess∪Ωres

√
ρ−

√
r

r
divS(∇v) ·√ρ(v−u) dx

≤
ˆ
Ωess∪Ωres

1√
r
|ρ−r| 12 |divS(∇v)||v−u| dx

+

ˆ
Ωess∪Ωres

1

r
|ρ−r| 12 |divS(∇v)||√ρ(v−u)| dx

≤
√
2

2
∥divS(∇v)∥

L
6
5
∥v−u∥L6 +

∥∥∥ 1√
r

∥∥∥
L∞

∥[ρ−r]res∥
1
2

Lγ∥divS(∇v)∥
L

6γ
5γ−3

∥v−u∥L6

+
∥∥∥ 1√

2r

∥∥∥
L∞

∥divS(∇v)∥L2∥√ρ(v−u)∥L2

+
∥∥∥1
r

∥∥∥
L∞

∥[ρ−r]res∥
1
2

Lγ∥divS(∇v)∥
L

2γ
γ−1

∥√ρ(v−u)∥L2 , (2.10)

where we have also employed the elementary inequality

|ρθ−rθ|≤ |ρ−r|θ, 0≤θ≤1,

with the special one θ= 1
2 . Noticing that r≥ r1>0, with the help of (2.7), (2.8), (2.9)

and Young’s inequality, we have

ˆ
ρ−r

r
divS(∇v) ·(v−u) dx

≤ µ

8ĉc2γ
∥v−u∥2L6 +

ĉc2γ
µ

∥divS(∇v)∥2
L

6
5

+
µ

8ĉc2γ
∥v−u∥2L6 +

2ĉc2γ
µr1

∥divS(∇v)∥2
L

6γ
5γ−3

∥[ρ−r]res∥Lγ

+
1

2
√
2r1

∥divS(∇v)∥L2(1+∥√ρ(v−u)∥2L2)

+
1

r1
∥divS(∇v)∥

L
2γ

γ−1
(∥√ρ(v−u)∥2L2 +∥[ρ−r]res∥Lγ )

≤1

2

ˆ
S(∇u−∇v) :∇(u−v) dx+

µ

2

ˆ
ρ|u−v|2 dx

+C
ĉc2γ
µr1

∥divS(∇v)∥2
L

6γ
5γ−3

ˆ
P(ρ)−P′(r)(ρ−r)−P(r) dx

+C
1+

√
r1

r1
∥divS(∇v)∥

L
2γ

γ−1

ˆ
1

2
ρ|u−v|2+P(ρ)−P′(r)(ρ−r)−P(r) dx (2.11)

under the case (1.3), and

ˆ
ρ−r

r
divS(∇v) ·(v−u) dx

≤1

2

ˆ
S(∇u−∇v) :∇(u−v) dx

+C
ĉc2γ
µr1

∥divS(∇v)∥2
L

6γ
5γ−3

ˆ
P(ρ)−P′(r)(ρ−r)−P(r) dx

+C
1+

√
r1

r1
∥divS(∇v)∥

L
2γ

γ−1

ˆ
1

2
ρ|u−v|2+P(ρ)−P′(r)(ρ−r)−P(r) dx (2.12)
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under the case (1.4).
Putting (2.11) and (2.12) into (2.3), respectively, and integrating over (0,t), it

follows that

E(ρ,u;r,v)+ 1

2

ˆ t

0

ˆ
S(∇u−∇v) :∇(u−v) dx ds

≤E0(ρ0,m0;r0,v0)+

ˆ t

0

C0Λ(v)E(ρ,u;r,v) ds

+

ˆ t

0

ˆ ∣∣(r−ρ)P′′(r)E1(r,v)
∣∣+ ∣∣∣ρ

r
E2(r,v) ·(v−u)

∣∣∣ dx ds, (2.13)

where C0>0 is a generic constant, (r0,v0)=(r,v)
∣∣
t=0

,

E(ρ,u;r,v)=
ˆ

1

2
ρ|u−v|2+P(ρ)−P′(r)(ρ−r)−P(r) dx, (2.14)

E0(ρ0,m0;r0,v0)=

ˆ
1

2
ρ0

∣∣∣m0

ρ0
−v0

∣∣∣2+P(ρ0)−P′(r0)(ρ0−r0)−P(r0) dx, (2.15)

and

Λ(v)=

{(
µ+Λ0(v)

)
, for the case (1.3),(

Λ0(v)
)
, for the case (1.4),

(2.16)

with

Λ0(v)=∥D(v)∥L∞ +
ĉc2γ
µr1

∥divS(∇v)∥2
L

6γ
5γ−3

+
1+

√
r1

r1
∥divS(∇v)∥

L
2γ

γ−1
.

Applying Grönwall’s inequality (integral form) to (2.13), we obtain that, for all
t≥0,

LS(ρ,u;r,v) :=E(ρ,u;r,v)+ 1

2

ˆ t

0

ˆ
S(∇u−∇v) :∇(u−v) dx ds

≤
(ˆ t

0

C0Λ(v)exp
(ˆ t

s

C0Λ(v) ds
)
ds+1

){
E0(ρ0,m0;r0,v0)

+

ˆ t

0

ˆ ∣∣(r−ρ)P′′(r)E1(r,v)
∣∣+ ∣∣∣ρ

r
E2(r,v) ·(v−u)

∣∣∣ dx ds

}
=:RS(ρ,u;r,v). (2.17)

With the above a priori estimates at hand, we are ready to define the dissipative
solutions to the compressible isentropic Navier-Stokes (1.1) in the following sense.

Definition 2.1. Let ρ∈L∞(0,T ;Lγ)∩C([0,T ];Lγ−w),
√
ρu∈L∞(0,T ;L2) and u∈

L2(0,T ;H1) for any fixed T >0. We call (ρ,u) a dissipative solution of the problem
(1.1)-(1.3) or (1.1), (1.2) and (1.4), if (2.17) holds for (r,v) satisfying

r∈C([0,T ];Lγ), r≥ r1>0, v∈C([0,T ];L
2γ

γ−1 ), D(v)∈L1(0,T ;L∞),

∇v∈L2(0,T ;L2), divS(∇v)∈L2(0,T ;L
6γ

5γ−3 )∩L1(0,T ;L
2γ

γ−1 ),

P′′(r)E1(r,v)∈L1(0,T ;L
γ

γ−1 ), 1
rE2(r,v)∈L1(0,T ;L

2γ
γ−1 ),

(2.18)
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where r1 is a positive constant. Note that it needs the extra condition v|∂Ω=0 for the
bounded domain case (1.4).

Remark 2.1. If (r,v) satisfies (2.18), then (2.17) is well-defined. We observe that
v∈L1(0,T ;W 1,p) for any 1<p<∞ from (2.18). Indeed, in view of Korn’s inequality
([9], Theorem 11.21)

∥v∥W 1,p ≤C
(
∥D(v)∥Lp +

ˆ
|v| dx

)
, 1<p<∞,

it follows that

∥v∥L1(0,T ;W 1,p)≤C
(
∥D(v)∥L1(0,T ;L∞)+∥v∥

C([0,T ];L
2γ

γ−1 )

)
, 1<p<∞. (2.19)

Here we address our first main result on the existence of dissipative solution in the
sense of Definition 2.1.

Theorem 2.1. Suppose that the assumptions of Definition 2.1 hold. In addition, we
assume that{

r≤ r2 if γ>2, ∇r∈L∞(0,T ;L
2γ

γ−1 ), ∇v∈L∞(0,T ;Lq) for q>1,

∂tr∈L1(0,T ;L
γ

γ−1 ), ∂tv∈L1(0,T ;L
2γ

γ−1 ),
(2.20)

where r2 is a positive constant.

(1) For the periodic case (1.3): Let γ≥ 6
5 . Assume that the initial data (1.2) satisfy

ρ0∈Lγ , ρ0≥0,

ˆ
ρ0 dx≥Cρ0

, m0=0 a.e. in {x∈Ω:ρ0=0}, m2
0

ρ0
∈L1, (2.21)

for some positive constant Cρ0 . Then, there exists a dissipative solution of the
compressible isentropic Navier-Stokes system (1.1) with (1.2) and (1.3).

(2) For the Dirichlet boundary case (1.4): Assume the boundary ∂Ω is C2. Let γ>1.
Assume the initial data (1.2) satisfy

ρ0∈Lγ , ρ0≥0, m0=0 a.e. in {x∈Ω:ρ0=0}, m2
0

ρ0
∈L1. (2.22)

Then, there exists a dissipative solution of the compressible isentropic Navier-Stokes
system (1.1) with (1.2) and (1.4).

Remark 2.2. Since ∇v∈L∞(0,T ;Lq) for q>1, by (2.19), it follows from Lemma A.5

that ∇v∈L1(0,T ;L∞). Furthermore, it infers that v ·∇v∈L1(0,T ;L
2γ

γ−1 ).

Remark 2.3. Feireisl, Novotný and Sun [11] introduced a class of suitable weak
solutions to the compressible barotropic Navier-Stokes equations and proved that the
solution satisfies the relative entropy inequality for γ> 3

2 . Compared with [11], we
define the dissipative solution satisfying the inequality (2.17). We give the process of
the density arguments in Section 3. In addition, the adiabatic exponent can reduce to
γ≥ 6

5 for the periodic case and γ>1 for the Dirichlet boundary case.

Applying Theorem 2.1 directly, we have the following result on the relationship of
the strong solution and dissipative solution.
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Corollary 2.1. Assume that (r,v) is a strong solution of (1.1) and the initial data
(r,v)|t=0=(r0,v0) together with (1.3) or (1.4), satisfying the regularities

r∈C([0,T ];Lγ), r1≤ r≤ r2, v∈C([0,T ];L
2γ

γ−1 ), D(v)∈L1(0,T ;L∞)

∂tr∈L1(0,T ;L
γ

γ−1 ), ∂tv∈L1(0,T ;L
2γ

γ−1 ), ∇r∈L∞(0,T ;L
2γ

γ−1 ),

divS(∇v)∈L2(0,T ;L
6γ

5γ−3 )∩L1(0,T ;L
2γ

γ−1 ), ∇v∈L∞(0,T ;Lq) for q>1,

(2.23)

for some positive constants r1 and r2, and any T ∈ (0,Tmax), where Tmax is the maximal
existence time. Let (ρ,u) be a dissipative solution of the system (1.1)-(1.2) together with
(1.3) or (1.4), and the initial data satisfy

ˆ
1

2
ρ0

∣∣∣m0

ρ0
−v0

∣∣∣2+P(ρ0)−P′(r0)(ρ0−r0)−P(r0) dx=0.

Then, the dissipative solution (ρ,u) is equal to (r,v) on a.e. (t,x)∈ [0,T ]×Ω.

Remark 2.4. We point out that the condition D(v)∈L1(0,T ;L∞) corresponds to
the blow up criteria of the Navier-Stokes equations given by Huang et al. [13]. Under
the condition D(v)∈L1(0,T ;L∞), the regularities (2.23) can be replaced by placing a
restriction on the initial data and γ in some situations. For example, endowing the
initial data

0<r≤ r0≤ r, r0∈W 1,p for p>6, v0∈H2, (2.24)

for some positive constants r and r, and making use of the condition D(v)∈L1(0,T ;L∞),
a direct conclusion from [13] shows that there exists a global strong solution (r,v) with{

r1≤ r≤ r2, r∈C([0,T ];W 1,6), ∂tr∈C([0,T ];L6),

v∈C([0,T ];H2)∩L2(0,T ;W 2,6), ∂tv∈L∞(0,T ;L2)∩L2(0,T ;H1),
(2.25)

for any T >0. We see that (r,v) with (2.25) meets the requirement of (2.23) for γ≥ 3
2 .

It says that (2.23) can be substituted by (2.24) for γ≥ 3
2 .

Our next goal is to show the weak solution of the compressible isentropic Navier-
Stokes equations is also a dissipative solution. We first recall the definition of weak
solution as follows.

Definition 2.2. A pair (ρ,u) is a weak solution of the problem (1.1)-(1.3) or (1.1),
(1.2) and (1.4) provided that, for any fixed T >0,

ρ∈L∞(0,T ;Lγ),
√
ρu∈L∞(0,T ;L2), u∈L2(0,T ;H1), (2.26)

and the continuity Equation (1.1)1 and the momentum Equation (1.1)2 are satisfied in
D′([0,T ]×Ω), that is, for Ψ∈C∞

c ([0,T ]×Ω), Φ∈C∞
c ([0,T ]×Ω),

ˆ
ρ(T,x)Ψ(T,x) dx−

ˆ
ρ0Ψ(0,x) dx=

ˆ T

0

ˆ
ρ∂tΨ+ρu ·∇Ψ dx dt, (2.27)

ˆ
ρ(T,x)u(T,x) ·Φ(T,x) dx−

ˆ
m0 ·Φ(0,x) dx

=

ˆ T

0

ˆ
ρu ·∂tΦ+ρu⊗u :∇Φ+AργdivΦ−S(∇u) :∇Φ dx dt, (2.28)
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and the energy inequality holds

ˆ
1

2
ρ|u|2+ A

γ−1
ργ dx+

ˆ t

0

ˆ
S(∇u) :∇u dx dt≤

ˆ
1

2

|m0|2

ρ0
+

A

γ−1
ργ0 dx, (2.29)

for almost every (a.e.) t∈ [0,T ].

Then, we write our next result in the following.

Theorem 2.2. Suppose that the assumptions of Theorem 2.1 hold. If (ρ,u) is a weak
solution of the problem (1.1)-(1.3) or (1.1), (1.2) and (1.4), then, the weak solution is
a dissipative solution in the sense of Definition 2.1.

The weak solution of the compressible isentropic Navier-Stokes equations also has
the weak-strong uniqueness property, see [8]. By means of Theorem 2.2 and Corollary
2.1, it can directly give another version of the proof of the weak-strong uniqueness
property for the weak solution of the compressible isentropic Navier-Stokes equations.
We state the conclusion by a corollary as follows.

Corollary 2.2. Under the same assumptions of Corollary 2.1, if we assume that
(ρ,u) is a weak solution of the problem (1.1)-(1.3) or (1.1), (1.2) and (1.4), then (ρ,u)=
(r,v) on a.e. (t,x)∈ [0,T ]×Ω.

3. Regularization of r and v
This section is devoted to showing that the smooth function r and v can be replaced

by the functions with regularities given in (2.18) and (2.20). Thus, the following is the
main result of this section.

Proposition 3.1. If (2.17) holds for smooth functions r and v, then it also holds
for the functions satisfying (2.18) and (2.20).

Proof. By the extension theorem (Theorem 1 in Section 5.4 of [6]), we can

extend r and v on [−δ0,T +δ0]× Ω̃ with small δ0>0 and Ω⊂⊂ Ω̃, which still satisfy
the regularities (2.18) and (2.20). Here, it requires that the boundary ∂Ω is C2 for the
bounded domain case. Let

η(x)∈C∞
c (R3), supp η={x∈R3 : |x|≤1},

ˆ
R3

η(x) dx=1, ηδ(x)=
1

δ3
η
(x
δ

)
, (3.1)

η̃(t)∈C∞
c (R), supp η̃={t∈R : |t|≤1},

ˆ
R
η̃(t) dt=1, η̃δ(t)=

1

δ
η̃
( t
δ

)
, (3.2)

where 0<δ≤1. We mollify r and v with respect to space and time in the following
way:

rδt,x(t,x)=(r∗ηδ)∗ η̃δ(t,x)=
ˆ
R

ˆ
Rn

r(t−s,x−y)ηδ(y) dyη̃δ(s) ds,

vδ
t,x(t,x)=(v∗ηδ)∗ η̃δ(t,x)=

ˆ
R

ˆ
Rn

v(t−s,x−y)ηδ(y) dyη̃δ(s) ds.

Since

∇r∈L1(−δ0,T +δ0;L
2γ

γ−1 (Ω̃)), ∂tr∈L1(−δ0,T +δ0;L
γ

γ−1 (Ω̃)),

∇v∈L2(−δ0,T +δ0;L
2(Ω̃)), divv∈L2(−δ0,T +δ0;L

2(Ω̃)),
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by Lemmas A.6 and A.7, then, as δ→0,

∥∇rδt,x−∇r∥
L1(0,T ;L

2γ
γ−1 )

=∥(∇r)δt,x−∇r∥
L1(0,T ;L

2γ
γ−1 )

→0, (3.3)

∥∂trδt,x−∂tr∥
L1(0,T ;L

γ
γ−1 )

=∥(∂tr)δt,x−∂tr∥
L1(0,T ;L

γ
γ−1 )

→0, (3.4)

∥∇vδ
t,x−∇v∥L2(0,T ;L2)=∥(∇v)δt,x−∇v∥L2(0,T ;L2)→0, (3.5)

∥divvδ
t,x−divv∥L2(0,T ;L2)=∥(divv)δt,x−divv∥L2(0,T ;L2)→0. (3.6)

For v∈C([−δ0,T +δ0];L
2γ

γ−1 (Ω̃)), ∂tv∈L1(−δ0,T +δ0;L
2γ

γ−1 (Ω̃)), by Lemma A.8,
then, as δ→0,

∥vδ
t,x−v∥

L∞(0,T ;L
2γ

γ−1 )
→0. (3.7)

For ∂tr∈L1(−δ0,T +δ0;L
γ

γ−1 (Ω̃)) and ∇r∈L∞(−δ0,T +δ0;L
2γ

γ−1 (Ω̃)), by Lemma
A.8, we know that, as δ→0,

∥rδt,x−r∥L∞(0,T ;L∞)→0. (3.8)

In addition, since r≥ r1 if 1<γ≤2 and r1≤ r≤ r2 if γ>2, and noticing that´
R3 η

δ(y) dy=1 and
´
R η̃

δ(s) ds=1, then we have

rδt,x≥ r1 if 1<γ≤2, r1≤ rδt,x(t,x)≤ r2 if γ >2. (3.9)

By Lagrange mean value theorem, there exists a θ1∈ (0,1) such that

P′′(rδt,x)−P′′(r)=P′′′(θ1r
δ
t,x+(1−θ1)r)(r

δ
t,x−r)

=Aγ(γ−2)(γ−3)[θ1r
δ
t,x+(1−θ1)r]

γ−3(rδt,x−r).

Combining (3.8) and (3.9), then the above equality gives, as δ→0,

∥P′′(rδt,x)−P′′(r)∥L∞(0,T ;L∞)→0. (3.10)

By the same argument, we have, as δ→0,

∥p′(rδt,x)−p′(r)∥
L∞(0,T ;L

γ
γ−1 )

→0. (3.11)

Since

∇P′(rδt,x)−∇P′(r)=P′′(rδt,x)(∇rδt,x−∇r)+[P′′(rδt,x)−P′′(r)]∇r,

along with (3.3), (3.9) and (3.10), then it holds, as δ→0,

∥∇P′(rδt,x)−∇P′(r)∥
L1(0,T ;L

2γ
γ−1 )

→0. (3.12)

Next, we will show that P′′(r)E1(r,v) can be approximated by P′′(rδt,x)E1(r
δ
t,x,v

δ
t,x).

Recall the definition E1(r,v) in (1.5) and the relation rP′′(r)=p′(r), then,

P′′(rδt,x)E1(r
δ
t,x,v

δ
t,x)=∂tP

′(rδt,x)+vδ
t,x ·∇P′(rδt,x)+p′(rδt,x)divv

δ
t,x

=(P′′(r)E1(r,v))
δ
t,x+∂tP

′(rδt,x)−(∂tP
′(r))δt,x+vδ

t,x ·∇P′(rδt,x)

−(v ·∇P′(r))δt,x+p′(rδt,x)divv
δ
t,x−(p′(r)divv)δt,x. (3.13)
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By Lemma A.7, we have, as δ→0,

(P′′(r)E1(r,v))
δ
t,x→P′′(r)E1(r,v) strongly in L1(0,T ;L

γ
γ−1 ). (3.14)

For the term ∂tP
′(rδt,x)−(∂tP

′(r))δt,x, it can be rewritten as

∂tP
′(rδt,x)−(∂tP

′(r))δt,x=P′′(r)(∂tr
δ
t,x−∂tr)+[P′′(rδt,x)−P′′(r)]∂tr

δ
t,x

+∂tP
′(r)−(∂tP

′(r))δt,x. (3.15)

By (3.4), (3.10) and Lemma A.7, we have, as δ→0,

∂tP
′(rδt,x)−(∂tP

′(r))δt,x→0 strongly in L1(0,T ;L
γ

γ−1 ). (3.16)

Similarly, we have

vδ
t,x ·∇P′(rδt,x)−(v ·∇P′(r))δt,x→0 strongly in L1(0,T ;L

γ
γ−1 ). (3.17)

Now, we turn to deal with the term p′(rδt,x)divv
δ
t,x−(p′(r)divv)δt,x, which can be

written as

p′(rδt,x)divv
δ
t,x−(p′(r)divv)δt,x

=
(
p′(rδt,x)− [p′(r)]δt,x

)
divvδ

t,x+[p′(r)]δt,xdivv
δ
t,x−(p′(r)divv)δt,x

=
(
p′(rδt,x)− [p′(r)]δt,x

)
divvδ

t,x+
(
[p′(r)]δt,x−p′(r)

)
(divvδ

t,x−divv)

−
ˆ
R

ˆ
Rn

(
[p′(r)](t,x)− [p′(r)](t−s,x−y)

)
div(v(t,x)

−v(t−s,x−y))ηδ(y) dyη̃δ(s) ds

=
(
p′(rδt,x)−p′(r)

)
divvδ

t,x−
(
[p′(r)]δt,x−p′(r)

)
divv

−
ˆ
R

ˆ
Rn

(
[p′(r)](t,x)− [p′(r)](t−δs,x−δy)

)
div(v(t,x)

−v(t−δs,x−δy))η(y) dyη̃(s) ds

=:I1+I2+I3.

For the term I1, by (3.11), we get, as δ→0,

∥I1∥
L1(0,T ;L

γ
γ−1 )

≤C∥divv∥L1(0,T ;L∞)∥p′(rδt,x)−p′(r)∥
L∞(0,T ;L

γ
γ−1 )

→0.

For the term I2, notice that p
′(r)=Aγrγ−1∈C([−δ0,T +δ0];L

γ
γ−1 (Ω̃)), by Lemma A.7,

we get, as δ→0,

∥I2∥
L1(0,T ;L

γ
γ−1 )

≤C∥divv∥L1(0,T ;L∞)∥[p′(r)]δt,x−p′(r)∥
L∞(0,T ;L

γ
γ−1 )

→0.

For the term I3, it can be rewritten as

I3=−
ˆ
R

ˆ
Rn

(
[p′(r)](t,x)− [p′(r)](t−δs,x)

)
div(v(t,x)

−v(t−δs,x−δy))η(y) dyη̃(s) ds
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−
ˆ
R

ˆ
Rn

(
[p′(r)](t−δs,x)− [p′(r)](t−δs,x−δy)

)
div(v(t,x)

−v(t−δs,x−δy))η(y) dyη̃(s) ds.

Thanks to p′(r)∈C([−δ0,T +δ0];L
γ

γ−1 (Ω̃)) and divv∈L1(−δ0,T +δ0;L
∞(Ω̃)), and by

Minkowski’s integral inequality and Lemma A.3, it follows that, as δ→0,

∥I3∥
L1(0,T ;L

γ
γ−1 )

→0.

Therefore, we have, as δ→0,

p′(rδt,x)divv
δ
t,x−(p′(r)divv)δt,x→0 strongly in L1(0,T ;L

γ
γ−1 ). (3.18)

Putting (3.13), (3.14), and (3.16)-(3.18) together, it confirms that

P′′(rδt,x)E1(r
δ
t,x,v

δ
t,x)→P′′(r)E1(r,v) strongly in L1(0,T ;L

γ
γ−1 ), as δ→0. (3.19)

Using the definition of E2(r,v) in (1.5), by Lemma A.6, we express 1
rδt,x

E2(r
δ
t,x,v

δ
t,x)

as

1

rδt,x
E2(r

δ
t,x,v

δ
t,x)=∂tv

δ
t,x+vδ

t,x ·∇vδ
t,x+

1

rδt,x
∇p(rδt,x)−

1

rδt,x
divS(∇vδ

t,x)

=
(1
r
E2(r,v)

)δ

t,x
+P ′′(rδt,x)∇rδt,x−(P ′′(r)∇r)δt,x

+vδ
t,x ·∇vδ

t,x−(v ·∇v)δt,x−
1

rδt,x
divS(∇vδ

t,x)+
(1
r
divS(∇v)

)δ

t,x
.

Taking a similar argument to (3.19), we have, as δ→0,

1

rδt,x
E2(r

δ
t,x,v

δ
t,x)→

1

r
E2(r,v) strongly in L1(0,T ;L

2γ
γ−1 ). (3.20)

Recalling the expression Λ(·) in (2.16), noticing that ∥ηδ∥L1(R3)=1 and ∥η̃δ∥L1(R)=
1, and by Lemmas A.4 and A.6, it yields, as δ→0,

Λ(vδ
t,x)≤Λ(v). (3.21)

By (3.5)-(3.8), and noting the definition of LS(ρ,u; ·, ·) in (2.17), we have

LS(ρ,u;rδt,x,v
δ
t,x)→LS(ρ,u;r,v) as δ→0.

In view of (3.7), (3.8), (3.19)-(3.21), and RS(ρ,u; ·, ·) defined in (2.17), we have

RS(ρ,u;rδt,x,v
δ
t,x)≤RS(ρ,u;r,v) as δ→0.

Thus, we complete the proof.

4. Proof of Theorem 2.1
This section aims to present the proof of Theorem 2.1 with focus on the periodic

case. We will point out the difference between the Dirichlet boundary case and the
periodic case.
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Our proof is starting with the following modified Brenner model:{
∂tρ

ϵ+div(ρϵuϵ)= ϵ∆ρϵ,

∂t(ρ
ϵuϵ)+div(ρϵuϵ⊗uϵ)+∇p(ρϵ)+ϵa∇(ρϵ)β =divS(∇uϵ)+ϵdiv(uϵ⊗∇ρϵ),

(4.1)

where ϵ∈ (0,1] is a small parameter, β>max{4,γ}, and a is any positive constant. Here,
we put the artificial pressure term ϵa∇(ρϵ)β and the artificial diffusion term ϵ∆ρϵ at the
same level, which differs from the approximation model introduced in [10]. We consider
the approximate initial data

(ρϵ,uϵ)|t=0=(ρϵ0,u
ϵ
0), (4.2)

satisfying

ρϵ0∈C3(Ω),

ˆ
ρϵ0 dx≥C1>0, 0<ϵ≤ρϵ0≤ ϵ−

a
2β , uϵ

0∈C3(Ω),

ρϵ0→ρ0 strongly in Lγ ,
√

ρϵ0u
ϵ
0→

m0√
ρ0

strongly in L2, as ϵ→0, (4.3)

where the positive constant C1≤Cρ0
is independent of ϵ, and (ρ0,m0) satisfies (2.21).

When we consider the Dirichlet boundary case, the condition
´
ρϵ0 dx≥C1>0 in (4.3)

can be removed and (ρ0,m0) satisfies (2.22). In addition, we need to add the boundary
conditions ∇ρϵ ·n|∂Ω=0 and uϵ|∂Ω=0.

For any fixed ϵ>0 and any T ∈ (0,∞), by the Faedo-Galerkin approximation
adopted by Feireisl et al. ([10], Proposition 2.1), the system (4.1)-(4.2) has a global
weak solution (ρϵ,uϵ), which satisfies the energy inequality
ˆ

1

2
ρϵ|uϵ|2+P(ρϵ)+ϵaQ(ρϵ) dx+

ˆ t

0

ˆ
S(∇uϵ) :∇uϵ dx dt+

ˆ t

0

ˆ
ϵP′′(ρϵ)|∇ρϵ|2

+ϵ1+aQ′′(ρϵ)|∇ρϵ|2 dx dt≤
ˆ

1

2
ρϵ0|uϵ

0|2+P(ρϵ0)+ϵaQ(ρϵ0) dx, (4.4)

for any t∈ [0,T ], where P(ρϵ)= A
γ−1 (ρ

ϵ)γ and Q(ρϵ)= 1
β−1 (ρ

ϵ)β .

By (4.3) and Lemma A.2, it follows from (4.4) that

sup
t∈[0,T ]

∥
√
ρϵuϵ∥L2 ≤C, (4.5)

sup
t∈[0,T ]

∥ρϵ∥Lγ ≤C, (4.6)

ˆ T

0

∥uϵ∥H1 dt≤C, (4.7)

ϵ

ˆ T

0

ˆ
|ρϵ|γ−2|∇ρϵ|2 dx dt≤C. (4.8)

Here, the estimate (4.7) requires γ≥ 6
5 from Lemma A.2. (For the Dirichlet boundary

case, the estimate (4.7) holds for γ>1 by Poincaré’s inequality.)
The conclusion ([10], Proposition 2.1) tells us that

∂tρ
ϵ+div(ρϵuϵ)= ϵ∆ρϵ a.e. in (0,T )×Ω.

Multiplying B′(ρϵ) on the both sides of above equation, we arrive at

∂tB(ρϵ)+div(B(ρϵ)uϵ)+(B′(ρϵ)ρϵ−B(ρϵ))divuϵ= ϵdiv(B′(ρϵ)∇ρϵ)−ϵB′′(ρϵ)|∇ρϵ|2,
(4.9)
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where B∈C([0,∞))∩C2((0,∞)) with B′(z)=0 for large z∈R+.
On the one hand, taking B(z)=z lnz for z∈ [0,1] in (4.9), and integrating the result

over (0,T )×{x∈Ω:0<ρϵ≤1}, it follows from (4.6) and (4.7) that

ϵ

ˆ T

0

ˆ
{x:0<ρϵ≤1}

(ρϵ)−1|∇ρϵ|2 dx dt

=−
ˆ
{x:ρϵ≤1}

ρϵ lnρϵ dx
∣∣T
0
−
ˆ T

0

ˆ
{x:ρϵ≤1}

ρϵdivuϵ dx dt≤C.

On the other hand, by (4.8), it infers that

ϵ

ˆ T

0

ˆ
{x:ρϵ≥1}

(ρϵ)−1|∇ρϵ|2 dx dt≤ ϵ

ˆ T

0

ˆ
(ρϵ)γ−1

∣∣∣ ∇ρϵ

(ρϵ)
1
2

∣∣∣2 dx dt≤C.

Then, it implies that

ϵ
1
2 (ρϵ)−

1
2∇ρϵ∈L2(0,T ;L2). (4.10)

Similar to (4.10), if we take B(z)=−4
√
z for z∈ [0,1], then we have

ϵ
1
2 (ρϵ)−

3
4∇ρϵ∈L2(0,T ;L2). (4.11)

By the estimates (4.6) and (4.10), and Hölder’s inequality, one has

ϵ
1
2∇ρϵ∈L2(0,T ;L

2γ
γ+1 ). (4.12)

Using the energy estimates (4.6) and (4.7), up to a subsequence (ρϵ,uϵ) without
relabeling, there exists a weak limit (ρ,u) such that

ρϵ⇀ρ weakly-∗ in L∞(0,T ;Lγ), (4.13)

uϵ⇀u weakly in L2(0,T ;H1). (4.14)

Notice that
√
ρϵ∈L∞(0,T ;L2γ) from (4.6), there exists a function ρ̃ such that

√
ρϵ⇀

√
ρ̃ weakly-∗ in L∞(0,T ;L2γ). (4.15)

Taking B(ρϵ)=
√
ρϵ in (4.9), and by the estimates (4.5)-(4.7), (4.10) and (4.11), then

we have

∂t(
√
ρϵ)=−div(

√
ρϵuϵ)+

1

2

√
ρϵdivuϵ+ϵdiv

( 1

2
√
ρϵ

∇ρϵ
)
+

1

4
ϵ(ρϵ)−

3
2 |∇ρϵ|2

∈L∞(0,T ;W−1,2)+L2(0,T ;L
2γ

γ+1 )+L2(0,T ;W−1,2)+L1(0,T ;L1)

⊂L2(0,T ;W−1, 2γ
γ+1 )∩L1(0,T ;L1)⊂L1(0,T ;W−1,1). (4.16)

With the help of Lemma A.10, we have

ρϵ=
√
ρϵ
√
ρϵ→ ρ̃ in D′((0,T )×Ω). (4.17)

Combining (4.13) and (4.17), and the uniqueness of limit implies, for a.e. (t,x)∈ (0,T )×
Ω,

ρ= ρ̃. (4.18)
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By (4.15), (4.16) and (4.18), and Lemma A.9 gives

√
ρϵ→√

ρ in C([0,T ];L2γ−w).

Since 2γ>2> 6
5 , by the interpolation relation L2γ ↪→↪→H−1, Aubin-Lions lemma gives

√
ρϵ→√

ρ in C([0,T ];H−1). (4.19)

It follows from (4.14) and (4.19) that

√
ρϵuϵ→√

ρu in D′((0,T )×Ω).

Since
√
ρϵuϵ∈L∞(0,T ;L2) (recall (4.5)), one has

√
ρϵuϵ⇀

√
ρu weakly-∗ in L∞(0,T ;L2). (4.20)

By (4.13), (4.16) and (4.20), in view of Lemma A.10, we have

ρϵuϵ=
√
ρϵ
√
ρϵuϵ→ρu in D′((0,T )×Ω).

Since ρϵuϵ∈L∞(0,T ;L
2γ

γ+1 ) (recall (4.5) and (4.6)), it implies

ρϵuϵ⇀ρu weakly-∗ in L∞(0,T ;L
2γ

γ+1 ). (4.21)

From the discussion in Section 3, we can choose smooth functions 0<r∈C∞([0,T ]×
Ω) and v∈C∞([0,T ]×Ω). Taking the inner product with (4.1)2 by −v, multiplying
(4.1)1 by 1

2 |v|
2−P′(r), and integrating the result over (0,t)×Ω, it deduces that

ˆ t

0

d

dt

ˆ
−ρϵuϵ ·v+ 1

2
ρϵ|v|2−P′(r)ρϵ dx dt

=

ˆ t

0

ˆ
ρϵ∂tv ·(v−uϵ)+ρϵ(uϵ ·∇)v ·(v−uϵ)+S(∇uϵ) :∇v dx dt

+

ˆ t

0

ˆ
−p(ρϵ)divv dx−ϵa(ρϵ)βdivv+ϵ(∇ρϵ ·∇)v ·(uϵ−v) dx dt

+

ˆ t

0

ˆ
−ρϵ∂tP

′(r)−ρϵuϵ ·∇P′(r)+ϵ∇ρϵ ·∇P′(r) dx dt. (4.22)

Since both r>0 and v are smooth functions, we integrate (2.2) over (0,t) to give

ˆ t

0

d

dt

ˆ
P′(r)r−P(r) dx dt=

ˆ t

0

ˆ
r∂tP

′(r)+rv ·∇P′(r)+p(r)divv dx dt. (4.23)

Adding up (4.4), (4.22) and (4.23), and by means of the definitions of E1(r,v) and
E2(r,v) in (1.5), we arrive at

ˆ
1

2
ρϵ|uϵ−v|2+P(ρϵ)−P′(r)(ρϵ−r)−P(r)+ϵaQ(ρϵ) dx

+

ˆ t

0

ˆ
S(∇uϵ−∇v) :∇(uϵ−v) dx dt

≤
ˆ

1

2
ρϵ0|uϵ

0−v0|2+P(ρϵ0)−P′(r0)(ρ
ϵ
0−r0)−P(r0)+ϵaQ(ρϵ0) dx
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+

ˆ t

0

ˆ
−ρ(uϵ−v) ·D(v) ·(uϵ−v) dx dt+

ˆ t

0

ˆ
ρϵ−r

r
divS(∇v) ·(v−uϵ) dx dt

−
ˆ t

0

ˆ (
p(ρϵ)−p′(r)(ρϵ−r)−p(r)

)
divv dx dt−

ˆ t

0

ˆ
ϵa(ρϵ)βdivv dx dt

+

ˆ t

0

ˆ
(r−ρϵ)P′′(r)E1(r,v)+

ρϵ

r
E2(r,v) ·(v−uϵ) dx dt

+ϵ

ˆ t

0

ˆ
(∇ρϵ ·∇)v ·(uϵ−v)+∇ρϵ ·∇P′(r) dx dt.

Using the same way as (2.11) to deal with the third term on the right-hand side
of the above equality, then applying Grönwall’s inequality (integral form) to the result
gives ˆ

1

2
ρϵ|uϵ−v|2+P(ρϵ)−P′(r)(ρϵ−r)−P(r)+ϵaQ(ρϵ) dx

+
1

2

ˆ t

0

ˆ
S(∇uϵ−∇v) :∇(uϵ−v) dx ds

≤
(ˆ t

0

C0Λ(v)exp
(ˆ t

s

C0Λ(v) ds
)
ds+1

)(
R0+

3∑
i=1

Ri

)
, (4.24)

where

R0=

ˆ
1

2
ρϵ0|uϵ

0−v0|2+P(ρϵ0)−P′(r0)(ρ
ϵ
0−r0)−P(r0)+ϵaQ(ρϵ0) dx,

R1=

ˆ t

0

ˆ
(r−ρϵ)P′′(r)E1(r,v)+

ρϵ

r
E2(r,v) ·(v−uϵ) dx ds,

R2= ϵ

ˆ t

0

ˆ
(∇ρϵ ·∇)v ·(uϵ−v) dx ds,

R3= ϵ

ˆ t

0

ˆ
∇ρϵ ·∇P′(r) dx ds.

The next step is to recover a dissipative solution by passing to the limits in (4.24)
as ε tends to zero.

We first deal with the left-hand side of (4.24). By the weak convergences (4.13),
(4.14), (4.20) and (4.21), and in view of the low semi-continuous of L2-norm and the
convexity of P(·), we get, as ϵ→0,ˆ

1

2
ρϵ|uϵ−v|2+P(ρϵ)−P′(r)(ρϵ−r)−P(r)+ϵaQ(ρϵ) dx

+
1

2

ˆ t

0

ˆ
S(∇uϵ−∇v) :∇(uϵ−v) dx ds

≥
ˆ

1

2
ρ|u−v|2+P(ρ)−P′(r)(ρ−r)−P(r) dx

+
1

2

ˆ t

0

ˆ
S(∇u−∇v) :∇(u−v) dx ds. (4.25)

Next, we tackle with the reminder terms Ri (i=0,1,2,3) on the right-hand side of
(4.24). For the term R0, by the initial conditions (4.3), we have, as ϵ→0,

R0→
ˆ

1

2
ρ0

∣∣∣m0

ρ0
−v0

∣∣∣2+P(ρ0)−P′(r0)(ρ0−r0)−P(r0) dx. (4.26)
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For the term R1, it follows from (4.13) and (4.21) that, as ϵ→0,

R1→
ˆ t

0

ˆ
(r−ρ)P′′(r)E1(r,v)+

ρ

r
E2(r,v) ·(v−u) dx ds. (4.27)

We turn to the term R2. By (4.10), (4.12) and (4.20), it implies that

ϵ(
√
ρϵ)−1∇ρϵ ·(

√
ρϵuϵ)→0 in L2(0,T ;L1), (4.28)

ϵ∇ρϵ→0 in L2(0,T ;L
2γ

γ+1 ). (4.29)

In view of (4.28) and (4.29), we have, as ϵ→0,

R2=ϵ

ˆ t

0

ˆ
(
√
ρϵ)−1∇ρϵ ·∇v ·

√
ρϵuϵ dx ds−ϵ

ˆ t

0

ˆ
(∇ρϵ ·∇)v ·v dx ds→0. (4.30)

Finally, for the term R3, by Hölder’s inequality, it follows from (4.29) that, as ϵ→0,

R3≤C∥ϵ∇ρϵ∥
L2(0,T ;L

2γ
γ+1 )

∥∇r∥
L2(0,T ;L

2γ
γ−1 )

→0. (4.31)

Making use of Proposition 3.1, we conclude that (2.17) holds for the functions r
and v satisfying (2.18) and (2.20). Thus, we complete the proof of Theorem 2.1.

5. Proof of Theorem 2.2
The goal of this section is to show that the weak solution of the compressible

isentropic Navier-Stokes equations is also a dissipative solution in the sense of Definition
2.1.

Let (ρ,u) be the weak solution of the problem (1.1)-(1.3) or (1.1), (1.2) and (1.4).
Let χn∈C∞

c ((0,T )) and ϕm∈C∞
c (Ω). We can also let (r,v) be the smooth functions by

the arguments in Section 3. Taking the test function Φ=χnϕmv in (2.28) of Definition
2.2 gives

0=

ˆ T

0

ˆ
ρu ·∂t(χnϕmv) dx dt+

ˆ T

0

ˆ
ρu⊗u :∇(χnϕmv) dx dt

+

ˆ T

0

ˆ
p(ρ)div(χnϕmv) dx dt−

ˆ T

0

ˆ
S(∇u) :∇(χnϕmv) dx dt

=

ˆ T

0

∂tχn

ˆ
ϕmρu ·v dx dt+

ˆ T

0

χn

ˆ
ϕmρu ·∂tv dx dt

+

ˆ T

0

χn

ˆ
ϕmρu ·∇v ·u dx dt+

ˆ T

0

χn

ˆ
ϕmp(ρ)divv dx dt

−
ˆ T

0

χn

ˆ
ϕmS(∇u) :∇v dx dt+

ˆ T

0

χn

ˆ
ρu⊗u : (∇ϕm⊗v) dx dt

+

ˆ T

0

χn

ˆ
p(ρ)∇ϕm ·v dx dt−

ˆ T

0

χn

ˆ
S(∇u) : (∇ϕm⊗v) dx dt. (5.1)

Choosing Ψ= 1
2 |v|

2χnϕm and Ψ=P′(r)χnϕm in (2.27) of Definition 2.2, respec-
tively, one sees that

0=

ˆ T

0

ˆ
ρ∂t

(1
2
|v|2χnϕm

)
dx dt+

ˆ T

0

ˆ
ρu ·∇

(1
2
|v|2χnϕm

)
dx dt
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=

ˆ T

0

∂tχn

ˆ
ϕmρ

(1
2
|v|2

)
dx dt+

ˆ T

0

χn

ˆ
ϕmρv ·∂tv dx dt

+

ˆ T

0

χn

ˆ
ϕmρu ·∇v ·v dx dt+

ˆ T

0

χn

ˆ
1

2
|v|2ρu ·∇ϕm dx dt, (5.2)

and

0=

ˆ T

0

ˆ
ρ∂t(P

′(r)χnϕm) dx dt+

ˆ T

0

ˆ
ρu ·∇(P′(r)χnϕm) dx dt

=

ˆ T

0

∂tχn

ˆ
ϕmρP′(r) dx dt+

ˆ T

0

χn

ˆ
ϕmρ∂tP

′(r) dx dt

+

ˆ T

0

χn

ˆ
ϕmρu ·∇P′(r) dx dt+

ˆ T

0

χn

ˆ
ρP′(r)u ·∇ϕm dx dt. (5.3)

Noticing that the relations P′(r)r−P(r)=p(r) and P′′(r)r=p′(r), we have

0=

ˆ T

0

d

dt

ˆ
[P′(r)r−P(r)]χnϕm dx dt

=

ˆ T

0

d

dt

ˆ
p(r)χnϕm dx dt+

ˆ T

0

ˆ
div(p(r)vχnϕm) dx dt

=

ˆ T

0

∂tχn

ˆ
ϕm[P′(r)r−P(r)] dx dt+

ˆ T

0

χn

ˆ
ϕmr∂tP

′(r) dx dt

+

ˆ T

0

χn

ˆ
ϕmrv ·∇P′(r) dx dt+

ˆ T

0

χn

ˆ
ϕmp(r)divv dx dt

+

ˆ T

0

χn

ˆ
p(r)v ·∇ϕm dx dt. (5.4)

Collecting (5.1)-(5.4) together, we obtain that

−
ˆ T

0

∂tχn

ˆ
ϕm

[
−ρu ·v+ 1

2
ρ|v|2−P′(r)ρ+P′(r)r−P(r)

]
dx dt

=−
ˆ T

0

χn

ˆ
ϕmρ(u−v) ·∇v ·(u−v) dx dt+

ˆ T

0

χn

ˆ
ϕmρ(∂tv+v ·∇v) ·(v−u) dx dt

+

ˆ T

0

χn

ˆ
ϕm(r−ρ)∂tP

′(r) dx dt+

ˆ T

0

χn

ˆ
ϕm(rv−ρu) ·∇P′(r) dx dt

−
ˆ T

0

χn

ˆ
ϕm(p(ρ)−p(r))divv dx dt+

ˆ T

0

χn

ˆ
ϕmS(∇u) :∇v dx dt+Rχnϕm

,

(5.5)

where

Rχnϕm
=−
ˆ T

0

∂tχn

ˆ
(1−ϕm)

[1
2
ρ|u|2+P(ρ)

]
dx dt︸ ︷︷ ︸

X1

−
ˆ T

0

χn

ˆ
ρu⊗u : (∇ϕm⊗v) dx dt−

ˆ T

0

χn

ˆ
p(ρ)v ·∇ϕm dx dt︸ ︷︷ ︸

X2
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+

ˆ T

0

χn

ˆ
S(∇u) : (∇ϕm⊗v) dx dt︸ ︷︷ ︸

X3

+

ˆ T

0

χn

ˆ
1

2
|v|2ρu ·∇ϕm dx dt︸ ︷︷ ︸

X4

−
ˆ T

0

χn

ˆ
ρP′(r)u ·∇ϕm dx dt︸ ︷︷ ︸

X5

+

ˆ T

0

χn

ˆ
p(r)v ·∇ϕm dx dt︸ ︷︷ ︸

X6

.

We endow a sequence ϕm∈C∞
c (Ω) with

0≤ϕm≤1, ϕm=1 for x∈Ω, dist(x,∂Ω)≥ 1

m
,

ϕm→1, |∇ϕm|≤2m for x∈Ω.

We first tackle with the term Rχnϕm
. For the term X1 in Rχnϕm

, in view of (2.26),
and using the Lebesgue’s dominated convergence theorem, one has, as m→∞,

X1→0. (5.6)

For the term X2, by Hölder’s inequality and (2.26), we get, as m→∞,

X2≤
ˆ T

0

χn

ˆ
(ρ|u|2+p(ρ))|∇ϕmdist(x,∂Ω)||v[dist(x,∂Ω)]−1| dx dt

≤C(n)

ˆ T

0

∥v[dist(x,∂Ω)]−1∥L∞

ˆ
{x:dist(x,∂Ω)≤ 1

m}
ρ|u|2+p(ρ) dx dt

≤C(n) sup
0≤t≤T

ˆ
{x:dist(x,∂Ω)≤ 1

m}
ρ|u|2+p(ρ) dx×∥v[dist(x,∂Ω)]−1∥L1(0,T ;L∞)

→0. (5.7)

Here, we have employed the fact that v[dist(x,∂Ω)]−1∈L1(0,T ;L∞). Indeed, by
Hardy’s inequality, we have

∥v[dist(x,∂Ω)]−1∥Lp ≤C∥∇v∥Lp ≤C∥∇v∥L∞ , for 1<p<∞.

Since ∇v∈L∞(0,T ;Lq) for q>1 and ∇v∈L1(0,T ;L∞) (see Remark 2.2), by Lemma
A.5, the conclusion holds.

With a similar argument to the term X2, by Hölder’s inequality and Hardy’s in-
equality, along with (2.26) and the regularities of r and v in Theorem 2.2, it infers that,
as m→∞,

Xi→0, for i=3,4,5,6. (5.8)

Then, we have, as m→∞,

Rχnϕm
→0.

Taking

χ(t)=


0, t< s̃, t≥ t̃
1
h (t− s̃), s̃≤ t< s̃+h,
1, s̃+h≤ t< t̃−h,
− 1

h (t− t̃), t̃−h≤ t< t̃,
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for any 0<s̃< t̃<T and 0<h< t̃−s̃
2 , and χn(t)= [χ∗ 1

n η̃(
·
n )](t)∈C∞

c ((0,T )) for large n,
where η̃(t) is the mollifier in (3.2), it follows from Lemmas A.6 and A.7 that, as n→∞,

χn→χ, ∂tχn→χ′
w,

for a.e. t∈ (0,T ), where

χ′
w(t)=


0, t< s̃, t≥ t̃
1
h , s̃≤ t< s̃+h,
0, s̃+h≤ t< t̃−h,
− 1

h , t̃−h≤ t< t̃,

which is the weak derivative of χ(t) with respect to time.
Now, letting m→∞ and then n→∞ in (5.5), by the Lebesgue’s dominated con-

vergence theorem, we have

1

h

ˆ t̃

t̃−h

ˆ [
−ρu ·v+ 1

2
ρ|v|2−P′(r)ρ+P′(r)r−P(r)

]
dx dt

− 1

h

ˆ s̃+h

s̃

ˆ [
−ρu ·v+ 1

2
ρ|v|2−P′(r)ρ+P′(r)r−P(r)

]
dx dt

=−
ˆ t̃

s̃

χ

ˆ
ρ(u−v) ·∇v ·(u−v) dx dt+

ˆ t̃

s̃

χ

ˆ
ρ(∂tv+v ·∇v) ·(v−u) dx dt

+

ˆ t̃

s̃

χ

ˆ
(r−ρ)∂tP

′(r) dx dt+

ˆ t̃

s̃

χ

ˆ
(rv−ρu) ·∇P′(r) dx dt

−
ˆ t̃

s̃

χ

ˆ
(p(ρ)−p(r))divv dx dt+

ˆ t̃

s̃

χ

ˆ
S(∇u) :∇v dx dt.

Letting h→0 above, by the Lebesgue’s differentiation theorem and Lebesgue’s dom-
inated convergence theorem, it deduces that

G(ρ,u;r,v)
∣∣
t=t̃

−G(ρ,u;r,v)
∣∣
t=s̃

=−
ˆ t̃

s̃

ˆ
ρ(u−v) ·∇v ·(u−v) dx+

ˆ t̃

s̃

ˆ
ρ(∂tv+v ·∇v) ·(v−u) dx

+

ˆ t̃

s̃

ˆ
(r−ρ)∂tP

′(r) dx dt+

ˆ t̃

s̃

ˆ
(rv−ρu) ·∇P′(r) dx dt

−
ˆ t̃

s̃

ˆ
(p(ρ)−p(r))divv dx+

ˆ t̃

s̃

ˆ
S(∇u) :∇v dx dt, (5.9)

where

G(ρ,u;r,v)=
ˆ [

−ρu ·v+ 1

2
ρ|v|2−P′(r)ρ+P′(r)r−P(r)

]
dx.

Adding
´

1
2ρ|u|

2+P(ρ) dx
∣∣
t=t̃

+
´ t
s̃

´
S(∇u) :∇u dx dt to both sides of (5.9), using

the energy inequality (2.29) in Definition 2.2, and by means of the definitions E1(r,v)
and E2(r,v) in (1.5), we have, for a.e. t̃∈ (0,T ),

E(ρ,u;r,v)
∣∣
t=t̃

+

ˆ t̃

s̃

ˆ
S(∇u−∇v) :∇(u−v) dx
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≤
ˆ

1

2

|m0|2

ρ0
+P(ρ0) dx+G(ρ,u;r,v)|t=s̃

+

ˆ t̃

s̃

ˆ
−ρ(u−v) ·D(v) ·(u−v)−

(
p(ρ)−p′(r)(ρ−r)−p(r)

)
divv dx dt

+

ˆ t̃

s̃

ˆ
(r−ρ)P′′(r)E1(r,v)+

ρ

r
E2(r,v) ·(v−u) dx dt

+

ˆ t̃

s̃

ˆ
ρ−r

r
divS(∇v) ·(v−u) dx dt. (5.10)

With the same way as (2.11) to deal with the last term on the right-hand side of
(5.10), applying Grönwall’s inequality (integral form), it yields, for any 0<s̃< t̃<T ,
that

E(ρ,u;r,v)
∣∣
t=t̃

+
1

2

ˆ t̃

s̃

ˆ
S(∇u−∇v) :∇(u−v) dx ds

≤
(ˆ t̃

0

C0Λ(v)exp
(ˆ t̃

s

C0Λ(v) ds
)
ds+1

){ˆ 1

2

|m0|2

ρ0
+P(ρ0) dx+G(ρ,u;r,v)|t=s̃

+

ˆ t̃

0

ˆ ∣∣(r−ρ)P′′(r)E1(r,v)
∣∣+ ∣∣∣ρ

r
E2(r,v) ·(v−u)

∣∣∣ dx ds

}
.

Using (2.26), (2.27) and (2.28) in Definition 2.2, and making the density arguments,
the weak solution (ρ,u) belongs to the regularity class

ρ∈C([0,T ];Lγ−w), ρu∈C([0,T ];L
2γ

γ+1 −w). (5.11)

Choosing s̃ :=sn with sn→0 (n→∞), and taking advantage of (5.11), it implies
that

ˆ
1

2

|m0|2

ρ0
+P(ρ0) dx+G(ρ,u;r,v)|t=s̃

=

ˆ
1

2

|m0|2

ρ0
+P(ρ0) dx−

ˆ
ρu ·v dx

∣∣∣
t=sn

+

ˆ
1

2
ρ|v|2 dx

∣∣∣
t=sn

−
ˆ

ρP′(r) dx
∣∣∣
t=sn

+

ˆ
P′(r)r−P(r) dx

∣∣∣
t=sn

→
ˆ

1

2
ρ0

∣∣∣m0

ρ0
−v0

∣∣∣2+P(ρ0)−P′(r0)(ρ0−r0)−P(r0) dx

=:E0(ρ0,m0;r0,v0) as n→∞.

Thus, we complete the proof of Theorem 2.2.
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Appendix. In this appendix, we first collect a few classical inequalities, some prop-
erties of Lp space, and two weak convergence results. Then, we add two supplementary
lemmas (Lemmas A.2 and A.8) and give their proofs. These facts are frequently used in
the proof of our main results. We point out that the Lemma A.8 subjects to the density
arguments to deduce (3.7), (3.8) and (3.18) in Section 3.

First, we list the Poincaré inequalities.

Lemma A.1 ([3], Chapter 9, Poincaré-Wirtinger’s inequality). Let Ω⊂Rn be a bounded
domain with a C1 boundary ∂Ω. Then,∥∥∥f− 1

|Ω|

ˆ
Ω

f dx
∥∥∥
Lq(Ω)

≤C∥∇f∥Lp(Ω), ∀f ∈W 1,p,

where 1≤ q≤ pn
n−p for n>p.

Lemma A.2. Let Ω⊂Rn be a bounded domain with a C1 boundary ∂Ω, and a non-
negative function r̃ satisfies

0<M0≤
ˆ
Ω

r̃ dx,

ˆ
Ω

r̃γ dx≤M1,

for some positive constants M0 and M1, where it assumes γ≥ 2n
n+2 for n≥3. Then,

there exists a constant c̃γ :=C(n,γ,Ω,M0,M1) such that

∥f∥H1(Ω)≤ c̃γ
(
∥∇f∥L2(Ω)+∥

√
r̃f∥L2(Ω)

)
.

Remark A.1. Lemmas A.1 and A.2 still hold when Ω=Tn. Lemma A.2 can be
directly deduced by Theorem 11.23 called generalized Korn-Poincaré inequality in [9].
For reader’s convenience, we give a brief proof by means of Lemma A.1 as follows.

Proof. By Minkowski’s inequality and Poincaré’s inequality in Lemma A.1, it
follows that

∥f∥L2(Ω)≤
∥∥∥f− 1

|Ω|

ˆ
Ω

f dx
∥∥∥
L2(Ω)

+
∥∥∥ 1

|Ω|

ˆ
Ω

f dx
∥∥∥
L2(Ω)

≤C∥∇f∥L2(Ω)+ |Ω|− 1
2 ∥f∥L1(Ω).

Then, we know

∥f∥H1(Ω)≤C∥∇f∥L2(Ω)+C

ˆ
Ω

|f | dx.

Using Hölder’s inequality, one has

ˆ
Ω

r dx
1

|Ω|

ˆ
Ω

|f | dx≤
ˆ
Ω

r
∣∣∣f− 1

|Ω|

ˆ
f dx

∣∣∣ dx+ˆ
Ω

r|f | dx

≤∥r∥
L

p
p−1 (Ω)

∥∥∥f− 1

|Ω|

ˆ
Ω

f dx
∥∥∥
Lp(Ω)

+∥
√
r∥L2(Ω)∥

√
rf∥L2(Ω).

Taking p= 2n
n−2 , it sees that p

p−1 =
2n
n+2 . By the Poincaré-Wirtinger’s inequality stated

in Lemma A.1 and the restrictions on γ, the conclusion follows.

Next, we recall some basic properties of Lp space.
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Lemma A.3 ([3], Lemma 4.3 in Chapter 4). Let Ω⊂Rn be an open set, K⊂⊂Ω, K=Ω
if Ω=Tn or Rn. Then, for f ∈Lp(Ω), 1≤p<∞, as ξ→0,

∥f(x+ξ)−f(x)∥Lp(K)→0.

Lemma A.4 ( [3], Theorem 4.15 in Chapter 4). Let f ∈L1(Rn) and g∈Lp(Rn) with
1≤p≤∞. Define

(f ∗g)(x)=
ˆ
Rn

f(x−y)g(y) dy.

Then,

∥f ∗g∥Lp(Rn)≤∥f∥L1(Rn)∥g∥Lp(Rn).

Lemma A.5. Let Ω⊂Rn, 0<T <∞. If f ∈L∞(0,T ;Lp1(Ω)) for some p1≥1 , and
∥f∥Lp0 (0,T ;Lp(Ω))≤M<∞ for fixed 1≤p0≤∞ and all 1≤p<∞, where the constant M
is independent of p. Then, for 1≤p0<∞, f ∈Lp0(0,T ;L∞(Ω)) ; for 1<p0≤∞, as
p→∞,

∥f∥Lp1 (0,T ;Lp(Ω))→∥f∥Lp1 (0,T ;L∞(Ω)), 1≤p1<p0.

Proof. Since f ∈L∞(0,T ;Lp1) for some p1≥1, by Rudin ([17], Exercises 4(e),
Chapter 3), it gives

∥f∥Lp(Ω)→∥f∥L∞(Ω) a.e. in t∈ (0,T ).

For 1≤p0<∞,

∥f∥p0

Lp(Ω)∈L1(0,T ),

Fatou’s lemma gives

∥f∥p0

Lp0 (0,T ;L∞)=

ˆ T

0

liminf
p→∞

∥f∥p0

Lp(Ω) dt≤ liminf
p→∞

ˆ T

0

∥f∥p0

Lp(Ω) dt≤Mp0 .

For 1<p0≤∞, Egoroff’s theorem implies

∥f∥Lp1 (0,T ;Lp(Ω))→∥f∥Lp1 (0,T ;L∞(Ω)),

as p→∞, where 1≤p1<p0.

The following three lemmas are about mollifier. Let f be a locally integrable func-
tion. Recall the definitions of mollifiers η(x) in (3.1) and η̃(t) in (3.2). We use fδ

x to
denote the mollification of f with respect to x, and fδ

t,x to denote the mollification of f
with respect to both x and t, that is,

fδ
x(t,x)=(f ∗ηδ)(t,x)=

ˆ
Rn

f(t,x−y)ηδ(y) dy,

fδ
t,x(t,x)=(fδ ∗ η̃δ)(t,x)=

ˆ
R

ˆ
Rn

f(s,x−y)ηδ(y) dyη̃δ(t−s) ds.

Lemma A.6. Let f ∈W k,p with 1≤p<∞, then, for |α|≤k,

Dαfδ
x =(Dαf)δx.
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Remark A.2. This lemma is one conclusion during the proof of Theorem 1 in
Section 5.3 of [6], which means that the αth order partial derivative of the smooth
function fδ

x is the mollification of the αth order weak partial derivative of f . Similarly,
the regularization in t has the same property. We directly write it as follows, if ∂tf ∈
Lq(0,T ;Lp), 1≤p,q<∞, then ∂tf

δ
t,x=(∂tf)

δ
t,x.

Lemma A.7 ([3], Theorem 4.22 in Chapter 4). Let Ω⊂Rn be an open set, K⊂⊂Ω,
K=Ω if Ω=Tn or Rn. Let f :Ω→R is a locally integrable function. Then, fδ

x →f on
a.e. x∈K, and for f ∈Lp(Ω), 1≤p<∞,

∥fδ
x−f∥Lp(K)→0 as δ→0.

Lemma A.8. Let Ω⊂Rn be a bounded domain, K⊂⊂Ω, K=Ω if Ω=Tn, and
(t1,t2)⊂⊂ (0,T ) with any T ∈ (0,∞). Then

(1) For ∂tf ∈L1(0,T ;L1(Ω)), ∇f ∈L∞(0,T ;L1(Ω)), we have

∥fδ
t,x−f∥L∞(t1,t2;L∞(K))→0 as δ→0.

(2) For ∂tf ∈L1(0,T ;L1(Ω)), f ∈L∞(0,T ;Lp(Ω)) with 1≤p<∞, we have

∥fδ
t,x−f∥L∞(t1,t2;Lp(K))→0 as δ→0.

Proof.
(1) By the definition of mollifiers in (3.1) and (3.2), and with some direct computations,

it has

fδ
t,x(t,x)−f(t,x)=

ˆ
R

ˆ
Rn

[f(t−s,x−y)−f(t,x)]ηδ(y) dyη̃δ(s) ds

=

ˆ
R

ˆ
Rn

[f(t−s,x−y)−f(t,x−y)]ηδ(y) dyη̃δ(s) ds

+

ˆ
Rn

[f(t,x−y)−f(t,x)]ηδ(y) dy

=

ˆ
R

ˆ
Rn

[f(t−δs,x−δy)−f(t,x−δy)]η(y) dyη̃(s) ds︸ ︷︷ ︸
y:=y′=δy, s:=s′=δs

+

ˆ
Rn

[f(t,x−δy)−f(t,x)]η(y) dy︸ ︷︷ ︸
y:=y′=δy

=

ˆ
R

ˆ
Rn

ˆ 1

0

d

dτ
f(t−τδs,x−δy) dτη(y) dyη̃(s) ds

+

ˆ
Rn

ˆ 1

0

d

dτ
f(t,x−τδy) dτη(y) dy

=

ˆ 1

0

ˆ
R

ˆ
Rn

∂tf(t−τδs,x−δy)×(−δs)η(y) dyη̃(s) ds dτ︸ ︷︷ ︸
Fubini’s theorem

+

ˆ 1

0

ˆ
Rn

∇f(t,x−τδy) ·(−δy)η(y) dy dτ︸ ︷︷ ︸
Fubini’s theorem
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=:I1+I2. (A.1)

For the first part I1, noticing that supp η(y)={y∈Rn : |y|≤1} and supp η̃(s)={s∈
R : |s|≤1}, we have

I1≤Cδ

ˆ 1

0

ˆ
{s:|s|≤1}

ˆ
{y:|y|≤1}

|∂tf(t−τδs,x−δy)| dy ds dτ.

For (t,x)∈ (t1,t2)×K⊂⊂ (0,T )×Ω, since τ ∈ [0,1], |s|≤1 and |y|≤1, it follows that

(t−τδs,x−δy)∈
(
[t1,t2]−{s′ : |s′|≤ δ}

)
×
(
K−{y′ : |y′|≤ δ}

)
,

where [t1,t2]−{s′ : |s′|≤ δ}={t−s′ : t∈ [t1,t2],s
′∈R, |s′|≤ δ} and K−{y′ : |y′|≤

δ}={x −y′ : x∈K,y′∈Rn, |y′|≤ δ}. There exists δ0>0 such that [t1,t2]−{s′ : |s′|≤
δ}⊂ (0,T ) and K−{y′ : |y′|≤ δ}⊂Ω for 0<δ<δ0. Then,

I1≤Cδ

ˆ 1

0

ˆ
[t1,t2]∪([t1,t2]−{s′:|s′|≤δ})

ˆ
K∪(K−{y′:|y′|≤δ})

|∂tf(t,x)| dx dt dτ

≤Cδ∥∂tf∥L1(0,T ;L1(Ω)). (A.2)

Similarly, for the second part I2, it holds

I2≤Cδ

ˆ 1

0

ˆ
{y:|y|≤1}

|∇f(t,x−τδy)| dy dτ

≤Cδ

ˆ 1

0

ˆ
K∪(K−{y′:|y′|≤δ})

|∇f(t,x)| dx dτ

≤Cδ∥∇f(t,·)∥L1(Ω).

Therefore,

∥fδ
t,x−f∥L∞(t1,t2;L∞(K))

≤Cδ∥∂tf∥L1(0,T ;L1(Ω))+Cδ∥∇f∥L∞(0,T ;L1(Ω))→0,

as δ→0.

(2) Taking the similar arguments to (A.1) and (A.2), we have

fδ
t,x(t,x)−f(t,x)

=

ˆ
R

ˆ
Rn

[f(t−s,x−y)−f(t,x)]ηδ(y) dyη̃δ(s) ds

=

ˆ 1

0

ˆ
R

ˆ
Rn

∂tf(t−τδs,x−δy)×(−δs)η(y) dyη̃(s) ds dτ

+

ˆ
Rn

[f(t,x−δy)−f(t,x)]η(y) dy

≤Cδ∥∂tf∥L1(0,T ;L1(Ω))+C

ˆ
{y:|y|≤1}

|f(t,x−δy)−f(t,x)| dy.

Using Minkowski’s integral inequality, then we arrive at

∥fδ
t,x(t,x)−f(t,x)∥L∞(t1,t2;Lp(K))
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≤Cδ∥∂tf∥L1(0,T ;L1(Ω))+C sup
0≤t≤T

ˆ
{y:|y|≤1}

∥f(t,x−δy)−f(t,x)∥Lp(K) dy.

By Lemma A.3, it gives

∥fδ
t,x−f∥L∞(t1,t2;Lp(K))→0,

as δ→0.

Finally, we recall two important lemmas to deal with the product of two weak
convergence sequences.

Lemma A.9 ([15], Lemma C.1). Let X be a reflexive Banach space, Y be a Banach
space, X ↪→Y , Y ′ is separable and dense in X ′. Assume a sequence {fn} satisfies
fn∈L∞(0,T ;X) and ∂tfn∈Lp(0,T ;Y ) with 1<p≤∞. Then, fn is relatively compact
in C([0,T ];X−w).

Lemma A.10 ([16], Lemma 5.1). Assume gn⇀g weakly in Lp1(0,T ;Lp2), hn⇀h
weakly in Lq1(0,T ;Lq2), 1

p1
+ 1

p2
= 1

q1
+ 1

q2
=1, 1≤p1,p2≤∞, q1>1. In addition, ∂tgn

is uniformly bounded in L1(0,T ;W−k,1) for some k≥0, and ∥hn(t,x)−hn(t,x+
ξ)∥Lq1 (0,T ;Lq2 )→0 as |ξ|→0 for any n. Then, gnhn→gh in D′((0,T )×Ω).
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