EXISTENCE OF POSITIVE SOLUTIONS FOR A CLASS OF QUASILINEAR ELLIPTIC EQUATIONS WITH PARAMETERS*

YINBIN DENG ${ }^{\dagger}$ AND YOUJUN WANG ${ }^{\ddagger}$

Abstract

This paper is devoted to investigating the existence of positive solutions for a class of parameter-dependent quasilinear elliptic equations $$
\begin{equation*} -\Delta u+V(x) u-\frac{\gamma u}{2 \sqrt{1+u^{2}}} \Delta \sqrt{1+u^{2}}=\lambda|u|^{p-2} u, \quad u \in H^{1}\left(\mathbb{R}^{N}\right) \tag{0.1} \end{equation*}
$$ where γ, λ are positive parameters, $N \geq 3$. For a trapping potential $V(x)$ and $p \in\left(2,2^{*}\right)$, by controlling the range of γ and λ, we establish the existence of positive solutions $u_{\gamma, \lambda}$ for the above problem, where $2^{*}=\frac{2 N}{N-2}$ is critical exponent. For super-critical case, we find a constant $p^{*} \in$ $\left[2^{*}, \min \left\{\frac{9+2 \gamma}{8+2 \gamma}, \frac{2 \gamma+4-2 \sqrt{4+2 \gamma}}{\gamma}\right\} 2^{*}\right.$) such that Equation (0.1) has no positive solution for all $\gamma, \lambda>0$ if $p \geq p^{*}$ and $\nabla V(x) \cdot x \geq 0$ in \mathbb{R}^{N}. Furthermore, for fixed $\lambda>0$, the asymptotic behavior of positive solutions $u_{\gamma, \lambda}$ is also obtained when $V(x)$ is a positive constant as $\gamma \rightarrow 0$.

Keywords. Quasilinear elliptic equations; positive solutions; asymptotic behavior.
AMS subject classifications. 35J20; 35J60.

1. Introduction

In this paper, we study the parameter-dependent quasilinear elliptic equations of the form

$$
\begin{equation*}
-\Delta u+V(x) u-\frac{\gamma u}{2 \sqrt{1+u^{2}}} \Delta \sqrt{1+u^{2}}=f(u), \quad x \in \mathbb{R}^{N}, \tag{1.1}
\end{equation*}
$$

where $V(x)$ is a given potential, $N \geq 3, \gamma$ is a parameter, $f(s)$ is a real function. Equations of this type are related to the solitary wave solutions for the quasilinear Schrödinger equations

$$
\begin{equation*}
i \psi_{t}=-\Delta \psi+W(x) \psi-\rho\left(|\psi|^{2}\right) \psi-\gamma \Delta l\left(|\psi|^{2}\right) l^{\prime}\left(|\psi|^{2}\right) \psi, \quad x \in \mathbb{R}^{N} \tag{1.2}
\end{equation*}
$$

where $\psi(t, x): \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{C}, W(x)$ is a given potential, γ is a parameter, $\rho(s)$ and $l(s)$ are real functions. If $l(s)=\sqrt{1+s}$ and $\rho(s)=1-\frac{1}{\sqrt{1+s}}$, Equation (1.2) is known to describe propagation of high-power ultrashort laser pulse in a medium, see e.g. [5-9]. If $l(s)=\sqrt{1-s}$, Equation (1.2) is the fundamental equation of motion for nonlinear excitations in a classical planar Heisenberg ferromagnetic spin chain in an external field [23,28]. In the case when $l(s)=s$, Equation (1.2) appears in various problems in plasma physics and nonlinear optics, see e.g. [15, 22]. We refer the readers to [12, 13, 16, 17, 19] and the references therein for more results on the physical background.

In the last decade, a considerable attention has been devoted to the study of solutions to (1.2) when $l(s)=s$, see for example $[1,20,24,32]$ and the references therein. Here, we focus on the case $l(s)=\sqrt{1+s}$. A solution of the form $\psi(t, x)=\exp (-i E t) u(x)$

[^0]is called a solitary wave solution, where $E \in \mathbb{R}$ and $u(x)$ is a real function. Then, we observe that ψ satisfies (1.2) if and only if the function $u(x)$ satisfies (1.1) with $V(x)=W(x)-E, f(s)=\rho\left(|s|^{2}\right) s$ and $l(s)=\sqrt{1+s}$.

Setting $\tilde{g}_{\gamma}(u)=\sqrt{1+\frac{\gamma u^{2}}{2\left(1+u^{2}\right)}}$, then (1.1) can be reduced to quasilinear elliptic equations

$$
\begin{equation*}
-\operatorname{div}\left(\tilde{g}_{\gamma}^{2}(u) \nabla u\right)+\tilde{g}_{\gamma}(u) \tilde{g}_{\gamma}^{\prime}(u)|\nabla u|^{2}+V(x) u=f(u), \quad x \in \mathbb{R}^{N} \tag{1.3}
\end{equation*}
$$

In the sequel, we always assume that $V(x) \in C\left(\mathbb{R}^{N}, \mathbb{R}\right)$ is a trapping potential, that is,
(V) $0<V_{0} \leq V(x) \leq \lim _{|x| \rightarrow+\infty} V(x)=V_{\infty}<+\infty$.

In [24], Shen and Wang proved the existence of nontrivial solutions for problem (1.1) when $\gamma=1$ and the nonlinear term $f(s)$ satisfies the generalized global AmbrosettiRabinowitz superlinear condition

$$
\begin{equation*}
\exists \mu>2, \text { such that } 0<\mu \tilde{g}(s) F(s) \leq \tilde{G}(s) f(s), \quad \forall s>0, \tag{1.4}
\end{equation*}
$$

where $\tilde{g}(s):=\tilde{g}_{1}(s), \tilde{G}(s)=\int_{0}^{s} \tilde{g}(t) d t$ and $F(s)=\int_{0}^{s} f(t) d t$. In view of the definition of $\tilde{g}(s)$, we get that $\frac{s \tilde{g}(s)}{\tilde{G}(s)} \leq 6-2 \sqrt{6}$ for all $s>0$. So, (1.4) is a consequence of the condition

$$
\begin{equation*}
\exists \mu>2, \text { such that } 0<\mu(6-2 \sqrt{6}) F(s) \leq s f(s), \quad \forall s>0 . \tag{1.5}
\end{equation*}
$$

From (1.5), we deduce that there exist constants $C, C_{1}>0$ such that $F(s) \geq C|s|^{\mu(6-2 \sqrt{6})}$ for $s>C_{1}>0$. Stated in the particular case of (1.5), for $f(s)=|s|^{p-2} s$ with $p \in$ $\left(12-4 \sqrt{6}, 2^{*}\right)$, the existence of a nontrivial solution for (1.1) was proved in [32]. Unfortunately, (1.5) is invalid for $f(s)=|s|^{p-2} s$ if $p \leq 12-4 \sqrt{6}$ and thus the method used in [32] can not be applied to study this case. Recently, in [10], Deng and Huang proved the existence of positive ground state solutions for (1.1) with $\gamma=1$ and $f(s)=|s|^{p-2} s+|s|^{2^{*}-2} s$, where $2^{*}=\frac{2 N}{N-2}, p \in(2,12-4 \sqrt{6}]$ for $N \geq 4$ or $p \in(2,4)$ for $N=3$. In their paper, the Pohozaev type identity has been used to find a bounded (PS) sequence and thus conditions on $\nabla V(x)$ were needed. Precisely, they assumed that
$(\nabla V) \quad$ there exists $C_{0} \in\left(0, \frac{(N-2)^{2}}{2}\right)$ such that $|\nabla V(x) \cdot x| \leq \frac{C_{0}}{|x|^{2}}, \quad \forall x \in \mathbb{R}^{N} \backslash\{0\}$.
Thus, it is interesting to discuss the existence of positive solutions for (1.1) with general $\gamma>0$ and $f(s)=\lambda|s|^{p-2} s$ when $p \in\left(2,2^{*}\right)$ if the condition (∇V) is abandoned. The present paper is to consider the existence of positive solutions for problem (1.1) for general $\gamma>0$ without assumption (∇V). Precisely, for the following parameterdependent equation

$$
\begin{equation*}
-\Delta u+V(x) u-\frac{\gamma u}{2 \sqrt{1+u^{2}}} \Delta \sqrt{1+u^{2}}=\lambda|u|^{p-2} u, \quad x \in \mathbb{R}^{N} \tag{1.6}
\end{equation*}
$$

where γ and λ are positive parameters, the existence and non-existence of positive solutions are given by the following theorem.

Theorem 1.1. Assume that (V) and $p>2, N \geq 3$. Then, the following statements hold:
(1) for all $\lambda>0$ and $p \in\left(2,2^{*}\right)$, Equation (1.6) has a positive classical solution if $\gamma \in\left(0, \gamma^{*}\right)$, where

$$
\gamma^{*}= \begin{cases}\frac{16(p-2)}{(p-4)^{2}}, & \text { if } p<4, \\ +\infty, & \text { if } p \geq 4\end{cases}
$$

(2) for all $\gamma>0$ and $p \in\left(2,2^{*}\right)$, Equation (1.6) has a positive classical solution if $\lambda \in\left(\lambda^{*},+\infty\right)$, where

$$
\begin{aligned}
\lambda^{*}= & (p-2)^{\frac{2-p}{2}}\left(\frac{2^{*}-p+2}{2}\right)^{\frac{2\left(2^{*}-p+2\right)(p-2)}{\left(2^{*}-p\right)^{2}}} 2^{\frac{7 \cdot 2^{*}-2-6 p}{2\left(2^{*}-p\right)}} S^{-\frac{\left(2^{*}-2\right)(p-2)}{2\left(2^{*}-p\right)}} \\
& \cdot(2+\gamma)^{\frac{p\left(2^{*}-2\right)}{\left.2^{*}-p\right)}} \gamma^{\frac{p-2}{2}}
\end{aligned}
$$

and S is the best Sobolev constant of inequality $S\|u\|_{2^{*}}^{2} \leq\|\nabla u\|_{2}^{2}, u \in D^{1,2}\left(\mathbb{R}^{N}\right)$.
(3) for all $\gamma, \lambda>0$, there exists a constant $p^{*} \in\left[2^{*}, \min \left\{\frac{9+2 \gamma}{8+2 \gamma}, \frac{2 \gamma+4-2 \sqrt{4+2 \gamma}}{\gamma}\right\} 2^{*}\right)$ such that Equation (1.6) has no positive solution if $p \in\left[p^{*},+\infty\right)$ and $\nabla V(x) \cdot x \geq 0$ in \mathbb{R}^{N}.

From the part (1) of Theorem 1.1, for all $\lambda>0$ and $p \in\left(2,2^{*}\right)$, Equation (1.6) has a positive classical solution if $\gamma \in\left(0, \gamma^{*}\right)$. For the case when $V(x)$ is a positive constant and λ is fixed, we have the following delicate result:

Theorem 1.2. Suppose $V(x)=\mu=$ constant $>0, p \in\left(2,2^{*}\right)$, then the corresponding solution $u_{\gamma, \lambda}$ of Equation (1.6) obtained in Theorem 1.1 is spherically symmetric and monotone decreasing with respect to $r=|x|$. Passing to a subsequence if necessary, we have

$$
u_{\gamma, \lambda} \rightarrow u_{\lambda} \text { in } H^{2}\left(\mathbb{R}^{N}\right) \cap C^{2}\left(\mathbb{R}^{N}\right) \text { as } \gamma \rightarrow 0^{+},
$$

where u_{λ} is the ground state of semilinear problem

$$
\begin{equation*}
-\Delta u+\mu u=\lambda|u|^{p-2} u, \quad u \in H^{1}\left(\mathbb{R}^{N}\right) \tag{1.7}
\end{equation*}
$$

We observe that the natural energy functional corresponding to the Euler-Lagrange Equation (1.6) is:

$$
\begin{equation*}
\widetilde{I}_{\gamma, \lambda}(u)=\frac{1}{2} \int_{\mathbb{R}^{N}} \tilde{g}_{\gamma}^{2}(u)|\nabla u|^{2} d x+\frac{1}{2} \int_{\mathbb{R}^{N}} V(x) u^{2} d x-\frac{\lambda}{p} \int_{\mathbb{R}^{N}}|u|^{p} d x . \tag{1.8}
\end{equation*}
$$

Notice that although $\widetilde{I}_{\gamma, \lambda}$ is well defined in $H^{1}\left(\mathbb{R}^{N}\right)$, it is not smooth. It is difficult to find the critical point of $\widetilde{I}_{\gamma, \lambda}(u)$ in $H^{1}\left(\mathbb{R}^{N}\right)$ by standard variational method. In [24], the authors overcome this difficulty by introducing a change of variables $s=\widetilde{G}_{\gamma}^{-1}(t)$ for $t \in[0,+\infty)$, where

$$
\begin{equation*}
\widetilde{G}_{\gamma}(s)=\int_{0}^{s} \tilde{g}_{\gamma}(t) d t . \tag{1.9}
\end{equation*}
$$

Then $\widetilde{I}_{\gamma, \lambda}$ was converted to the following C^{1} functional:

$$
\begin{equation*}
\widetilde{J}_{\gamma, \lambda}(v)=\frac{1}{2} \int_{\mathbb{R}^{N}}|\nabla v|^{2} d x+\frac{1}{2} \int_{\mathbb{R}^{N}} V(x)\left|\widetilde{G}_{\gamma}^{-1}(v)\right|^{2} d x-\frac{\lambda}{p} \int_{\mathbb{R}^{N}}\left|\widetilde{G}_{\gamma}^{-1}(v)\right|^{p} d x . \tag{1.10}
\end{equation*}
$$

For $\gamma=1$ and $p \in\left(12-4 \sqrt{6}, 2^{*}\right)$, the existence of positive critical point of $\widetilde{J}_{\gamma, \lambda}$ can be proved via mountain pass theorem, which will lead to the existence of positive critical point of $\widetilde{I}_{\gamma, \lambda}$. It should be pointed out that the condition $p>12-4 \sqrt{6}$ plays an important role to prove the boundedness of $(\mathrm{PS})_{c}$ sequence, see also [32].

The underling idea for proving Thereom 1.1-(1) can be processed by a standard way, see $[10,25]$. The proof of Thereom 1.1-(2) is inspired by the recent work [1,29,30], where
some other type of quasilinear elliptic equations were studied. In order to adopt the variational method, we will first modify our problem. Namely, we establish an auxiliary function $g_{\gamma}(t)$ such that $g_{\gamma}(t)=\tilde{g}_{\gamma}(t)$ for $t \in\left(0, t_{1}\right)$, where $t_{1}>0$ is a proper cut-off point. Then, we consider the modified quasilinear elliptic equation

$$
\begin{equation*}
-\operatorname{div}\left(g_{\gamma}^{2}(u) \nabla u\right)+g_{\gamma}(u) g_{\gamma}^{\prime}(u)|\nabla u|^{2}+V(x) u=\lambda|u|^{p-2} u, \quad x \in \mathbb{R}^{N} . \tag{1.11}
\end{equation*}
$$

Direct calculations show that if $g_{\gamma}(t)=\tilde{g}_{\gamma}(t)$, then Equation (1.11) becomes Equation (1.6). Solutions of (1.11) correspond to critical points of the functional

$$
\begin{equation*}
I_{\gamma, \lambda}(u)=\frac{1}{2} \int_{\mathbb{R}^{N}} g_{\gamma}^{2}(u)|\nabla u|^{2} d x+\frac{1}{2} \int_{\mathbb{R}^{N}} V(x) u^{2} d x-\frac{\lambda}{p} \int_{\mathbb{R}^{N}}|u|^{p} d x \tag{1.12}
\end{equation*}
$$

where $I_{\gamma, \lambda}(u)$ is well defined in $H^{1}\left(\mathbb{R}^{N}\right)$. However, it is nonsmooth. As in [24], we introduce the change of variables $u=G_{\gamma}^{-1}(v)$ to reformulate functional $I_{\gamma, \lambda}(u)$ by a smooth functional $J_{\gamma, \lambda}(v)$:

$$
\begin{equation*}
J_{\gamma, \lambda}(v)=\frac{1}{2} \int_{\mathbb{R}^{N}}|\nabla v|^{2} d x+\frac{1}{2} \int_{\mathbb{R}^{N}} V(x)\left|G_{\gamma}^{-1}(v)\right|^{2} d x-\frac{\lambda}{p} \int_{\mathbb{R}^{N}}\left|G_{\gamma}^{-1}(v)\right|^{p} d x \tag{1.13}
\end{equation*}
$$

where $G_{\gamma}(t)=\int_{0}^{t} g_{\gamma}(\tau) d \tau$. Then, we prove that $J_{\gamma, \lambda}(v)$ has a positive critical point and so (1.11) has a positive solution $u_{\gamma, \lambda}=G_{\gamma}^{-1}\left(v_{\gamma, \lambda}\right)$. Finally, using elliptic regularity estimate, by choosing proper λ, we show that $\left|u_{\gamma, \lambda}(x)\right| \leq t_{1}$ for all $x \in \mathbb{R}^{N}$. Thus it is indeed a positive solution of (1.6).

The outline of the article is as follows: In Section 2, by establishing an auxiliary function, we modify (1.6). In Section 3, we prove the existence and nonexistence of a positive solution for problem (1.6) by employing the variational technique and a general Pohozaev identity. Finally, we study the asymptotic behavior of solution of (1.6) as $\gamma \rightarrow 0^{+}$in Section 4.

In this paper, we always make use of the following notations: C will denote various positive constants whose exact value may change from line to line but are not essential to the analysis of the problem; The symbol $\|u\|_{p}$ is used for the norm of the space $L^{p}\left(\mathbb{R}^{N}\right)$, $1 \leq p \leq \infty$; By (V), we denote by $H^{1}\left(\mathbb{R}^{N}\right):=\left\{u \in L^{2}\left(\mathbb{R}^{N}\right):|\nabla u| \in L^{2}\left(\mathbb{R}^{N}\right)\right\}$ endowed with the norm $\|u\|:=\sqrt{\int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+V(x) u^{2}\right) d x}$.

2. The modification of Equation (1.6)

To prove our main result, we first introduce an auxiliary function $g_{\gamma}(t)$ as follows:

$$
g_{\gamma}(t)=\sqrt{\frac{1}{2}\left(1+\frac{\gamma t^{2}}{1+t^{2}}\right) \eta(t)+\frac{1}{2}}
$$

where $\eta(t)$ is a spatial function satisfying either the following $\left(\eta_{1}\right)$ or $\left(\eta_{2}\right)$:
$\left(\eta_{1}\right) \eta(t) \equiv 1$, for all $t \in \mathbb{R}$;
$\left(\eta_{2}\right) \eta(t) \in C_{0}^{\infty}(\mathbb{R},[0,1])$ is a cut-off function satisfying

$$
\eta(t) \begin{cases}=\eta(-t), & \text { if } t \leq 0, \tag{2.1}\\ =1, & \text { if } 0 \leq t \leq \delta_{\gamma}:=\frac{1}{4} \sqrt{\frac{p-2}{\gamma}}, \\ \in(0,1), & \text { if } \frac{1}{4} \sqrt{\frac{p-2}{\gamma}}<t<\frac{1}{2} \sqrt{\frac{p-2}{\gamma}}, \\ =0, & \text { if } t \geq \frac{1}{2} \sqrt{\frac{p-2}{\gamma}},\end{cases}
$$

where $p \in\left(2,2^{*}\right)$. Moreover, it also satisfies

$$
\begin{equation*}
-\sigma \sqrt{\eta(t)} \leq \eta^{\prime}(t) t \leq 0, \quad \text { for all } t \in \mathbb{R} \tag{2.2}
\end{equation*}
$$

where σ is a positive constant independent of γ.
For the proper establishment of this kind of spatial function $\eta(t)$, people can refer [30].

Set

$$
G_{\gamma}(t)=\int_{0}^{t} g_{\gamma}(s) d s
$$

Clearly, $G_{\gamma}(t)$ is an odd C^{∞} function and increases in \mathbb{R}. Thus, the inverse function $G_{\gamma}^{-1}(t)$ exists and it is also an odd C^{∞} function.

Now we first collect some properties of g_{γ} and $G_{\gamma}^{-1}(t)$, which will play important roles in the proof of our main results. By direct calculations, we get the following lemma:
Lemma 2.1. The following properties hold:
(1) $\lim _{t \rightarrow 0} \frac{G_{\gamma}^{-1}(t)}{t}=1$;
(2) $\lim _{t \rightarrow \infty} \frac{G_{\gamma}^{-1}(t)}{t}=\left\{\begin{array}{lll}\sqrt{\frac{2}{2+\gamma}}, & \text { if }\left(\eta_{1}\right) \text { holds, }, \\ \sqrt{2}, & \text { if }\left(\eta_{2}\right) & \text { holds },\end{array}\right.$;
(3) $\left|G_{\gamma}^{-1}(t)\right| \in\left\{\begin{array}{ll}{\left[\sqrt{\frac{2}{2+\gamma}}|t|,\right.} & |t|], \\ {\left[\begin{array}{ll}\frac{2}{2+\gamma} & t \mid, \\ \sqrt{2}|t|], & \text { if }\left(\eta_{1}\right) \\ \left(\eta_{2}\right) & \text { holds, }\end{array} \quad \text { holds, }\right.}\end{array} \quad\right.$ for all $t \in \mathbb{R}$;
(4) $\frac{g_{\gamma}^{\prime}(t) t}{g_{\gamma}(t)} \in\left\{\begin{array}{ll}{\left[0, \quad 1+\frac{4-2 \sqrt{4+2 \gamma}}{\gamma}\right.}\end{array}\right], \quad$ if $\left(\eta_{1}\right)$ holds, \quad for some constant $\widetilde{C}>0$ and all $t \in \mathbb{R}$.

Proof. We consider the case $\left(\eta_{2}\right)$ and the case $\left(\eta_{1}\right)$ can be treated in exactly the same manner. Since $g_{\gamma}(t)$ is even and $G_{\gamma}^{-1}(t)$ is odd, we only consider the case $t \geq 0$. It follows from Hospital's principle that

$$
\lim _{t \rightarrow 0} \frac{G_{\gamma}^{-1}(t)}{t}=\lim _{t \rightarrow 0} \frac{1}{g_{\gamma}\left(G_{\gamma}^{-1}(t)\right)}=1
$$

and

$$
\lim _{t \rightarrow \infty} \frac{G_{\gamma}^{-1}(t)}{t}=\lim _{t \rightarrow \infty} \frac{1}{g_{\gamma}\left(G_{\gamma}^{-1}(t)\right)}=\sqrt{2}
$$

Thus, the items (1) and (2) are proved.
From the definition of $g_{\gamma}(t)$, we get $\sqrt{\frac{1}{2}} \leq g_{\gamma}(t)<\sqrt{\frac{2+\gamma}{2}}$ for $t \in \mathbb{R}$. Thus for all $t \geq 0$, we deduce that

$$
\sqrt{\frac{1}{2}} t \leq G_{\gamma}(t)=\int_{0}^{t} g_{\gamma}(s) d s \leq \sqrt{\frac{2+\gamma}{2}} t
$$

which yields that $\sqrt{\frac{2}{2+\gamma}} t \leq G_{\gamma}^{-1}(t) \leq \sqrt{2} t$ for all $t \geq 0$.

Lastly, we prove (4). By (2.2), we get

$$
\begin{align*}
& \frac{g_{\gamma}^{\prime}(t) t}{g_{\gamma}(t)}=\frac{2 \gamma t^{2} \eta(t)+\left(1+t^{2}\right)\left[1+(1+\gamma) t^{2}\right] \eta^{\prime}(t) t}{2\left(1+t^{2}\right)\left[1+(1+\gamma) t^{2}\right] \eta(t)+2\left(1+t^{2}\right)^{2}} \\
& \begin{cases}\geq-\frac{\sigma\left[1+(1+\gamma) t^{2}\right] \sqrt{\eta(t)}}{2\left(1+t^{2}\right)} \geq-\frac{1+\gamma t^{2}}{2} \sigma=\frac{p+2}{8} \sigma=:-\widetilde{C}, & \text { if } 0 \leq t<\frac{1}{2} \sqrt{\frac{p-2}{\gamma}} \\
=0, & \text { if } t \geq \frac{1}{2} \sqrt{\frac{p-2}{\gamma}} .\end{cases} \tag{2.3}
\end{align*}
$$

To prove the second inequality, by (2.3), it suffices to consider the case $0 \leq t<\frac{1}{2} \sqrt{\frac{p-2}{\gamma}}$. In fact, we get

$$
\begin{aligned}
\frac{g_{\gamma}^{\prime}(t) t}{g_{\gamma}(t)} & \leq \frac{2 \gamma t^{2} \eta(t)}{2\left(1+t^{2}\right)\left[1+(1+\gamma) t^{2}\right] \eta(t)+2\left(1+t^{2}\right)^{2}} \\
& \leq \gamma t^{2} \eta(t) \\
& \leq \frac{p-2}{4}, \quad 0 \leq t<\frac{1}{2} \sqrt{\frac{p-2}{\gamma}}
\end{aligned}
$$

which yields the result.
Remark 2.1. We remark that the cut-off point δ_{γ} in assumption $\left(\eta_{2}\right)$ is not unique. In fact, as long as the inequality $\frac{g_{\gamma}^{\prime}(t) t}{g_{\gamma}(t)}<\frac{p-2}{2}$ is guaranteed, any $t \in\left(0, \sqrt{\frac{p-2}{2 \gamma}}\right)$ is allowed.

We now consider the modified quasilinear Schrödinger equation of the form:

$$
\begin{equation*}
-\operatorname{div}\left(g_{\gamma}^{2}(u) \nabla u\right)+g_{\gamma}(u) g_{\gamma}^{\prime}(u)|\nabla u|^{2}+V(x) u=\lambda|u|^{p-2} u, \quad x \in \mathbb{R}^{N} . \tag{2.4}
\end{equation*}
$$

It follows from assumption $\left(\eta_{2}\right)$ that u must be a positive solution of (1.6), if we can prove the existence of a positive solution u of (2.4) satisfying $0 \leq u(x)<\frac{1}{4} \sqrt{\frac{p-2}{\gamma}}$ for all $x \in \mathbb{R}^{N}$.

The associate variational functional for problem (2.4) is

$$
\begin{equation*}
I_{\gamma, \lambda}(u)=\frac{1}{2} \int_{\mathbb{R}^{N}} g_{\gamma}^{2}(u)|\nabla u|^{2} d x+\frac{1}{2} \int_{\mathbb{R}^{N}} V(x) u^{2} d x-\frac{\lambda}{p} \int_{\mathbb{R}^{N}}|u|^{p} d x \tag{2.5}
\end{equation*}
$$

Since $g_{\gamma}(t)$ is bounded, we can deduce that $I_{\gamma, \lambda}(u)$ is well defined in $H^{1}\left(\mathbb{R}^{N}\right)$. By introducing the change of variables $u=G_{\gamma}^{-1}(v)$, we observe that functional $I_{\gamma, \lambda}$ can be written in the following form

$$
\begin{equation*}
J_{\gamma, \lambda}(v)=\frac{1}{2} \int_{\mathbb{R}^{N}}|\nabla v|^{2} d x+\frac{1}{2} \int_{\mathbb{R}^{N}} V(x)\left|G_{\gamma}^{-1}(v)\right|^{2} d x-\frac{\lambda}{p} \int_{\mathbb{R}^{N}}\left|G_{\gamma}^{-1}(v)\right|^{p} d x \tag{2.6}
\end{equation*}
$$

From Lemma 2.1, $J_{\gamma, \lambda}$ is well defined in $H^{1}\left(\mathbb{R}^{N}\right), J_{\gamma, \lambda} \in C^{1}\left(H^{1}\left(\mathbb{R}^{N}\right), \mathbb{R}\right)$ and

$$
\begin{equation*}
\left\langle J_{\gamma, \lambda}^{\prime}(v), \psi\right\rangle=\int_{\mathbb{R}^{N}}\left[\nabla v \nabla \psi+V(x) \frac{G_{\gamma}^{-1}(v)}{g_{\gamma}\left(G_{\gamma}^{-1}(v)\right)} \psi-\lambda \frac{\left|G_{\gamma}^{-1}(v)\right|^{p-2} G_{\gamma}^{-1}(v)}{g_{\gamma}\left(G_{\gamma}^{-1}(v)\right)} \psi\right] d x \tag{2.7}
\end{equation*}
$$

for all $v, \psi \in H^{1}\left(\mathbb{R}^{N}\right)$.
Note that any critical points of $J_{\gamma, \lambda}$ correspond to the solutions of the equation

$$
\begin{equation*}
-\Delta v+V(x) \frac{G_{\gamma}^{-1}(v)}{g_{\gamma}\left(G_{\gamma}^{-1}(v)\right)}=\lambda \frac{\left|G_{\gamma}^{-1}(v)\right|^{p-2} G_{\gamma}^{-1}(v)}{g_{\gamma}\left(G_{\gamma}^{-1}(v)\right)}, x \in \mathbb{R}^{N} \tag{2.8}
\end{equation*}
$$

In order to find positive solutions of (2.4), it suffices to study the existence of positive solutions of Equation (2.8).
REmARK 2.2. It is easy to verify that $u=G_{\gamma}^{-1}(v) \in C^{2}\left(\mathbb{R}^{N}\right) \cap H^{1}\left(\mathbb{R}^{N}\right)$ must be a classical solution for (2.4) if $v \in C^{2}\left(\mathbb{R}^{N}\right) \cap H^{1}\left(\mathbb{R}^{N}\right)$ is a critical point of $J_{\gamma, \lambda}$.
Remark 2.3. Because we look for positive solutions, we can rewrite the functional $J_{\gamma, \lambda}$ in the following

$$
J_{\gamma, \lambda}(v)=\frac{1}{2} \int_{\mathbb{R}^{N}}|\nabla v|^{2} d x+\frac{1}{2} \int_{\mathbb{R}^{N}} V(x)\left|G_{\gamma}^{-1}(v)\right|^{2} d x-\frac{\lambda}{p} \int_{\mathbb{R}^{N}}\left|G_{\gamma}^{-1}\left(v^{+}\right)\right|^{p} d x
$$

where $v^{+}=\max \{v, 0\}$. Standard regularity arguments show that any critical points v belong to C^{2} and $v(x)>0$ from the strong maximum principle if v is nontrival.

3. Proof of Theorem 1.1

Thanks to Lemma 2.1-(3), it is easy to prove that the functional $J_{\gamma, \lambda}$ exhibits the mountain pass geometry.

Lemma 3.1. (i) $J_{\gamma, \lambda}(v) \geq C\|v\|^{2}+o\left(\|v\|^{2}\right)$ as $v \rightarrow 0$ in $H^{1}\left(\mathbb{R}^{N}\right)$;
(ii) there exists a $e \in H^{1}\left(\mathbb{R}^{N}\right)$, e $\neq 0$ satisfying $J_{\gamma, \lambda}(e) \leq 0$.

In view of Lemma 3.1, applying the mountain pass theorem [31], it follows that there exists a $(\mathrm{PS})_{c_{\gamma, \lambda}}$ sequence $\left\{v_{n}\right\} \subset H^{1}\left(\mathbb{R}^{N}\right)$, i.e., a sequence such that $J_{\gamma, \lambda}\left(v_{n}\right) \rightarrow c_{\gamma, \lambda}$ and $J_{\gamma, \lambda}^{\prime}\left(v_{n}\right) \rightarrow 0$, where $c_{\gamma, \lambda}$ is the mountain pass level of $J_{\gamma, \lambda}$ characterized by

$$
\begin{equation*}
c_{\gamma, \lambda}=\inf _{\xi \in \Gamma_{\gamma, \lambda}} \sup _{t \in[0,1]} J_{\gamma, \lambda}(\xi(t)) \tag{3.1}
\end{equation*}
$$

and $\Gamma_{\gamma, \lambda}=\left\{\xi(t) \in C\left([0,1], H^{1}\left(\mathbb{R}^{N}\right)\right): \xi(0)=0, \xi(1) \neq 0, J_{\gamma, \lambda}(\xi(1))<0\right\}$. Moreover, from Lemma 3.1, we get $c_{\gamma, \lambda}>0$.

We next claim that the $(\mathrm{PS})_{c_{\gamma, \lambda}}$ sequence for $J_{\gamma, \lambda}$ is bounded. To this end, we assert that the item (4) in Lemma 2.1 plays an important role. Indeed, let $\left\{v_{n}\right\}$ be a $(\mathrm{PS})_{c_{\gamma, \lambda}}$ sequence for $J_{\gamma, \lambda}$, namely,

$$
\begin{equation*}
J_{\gamma, \lambda}\left(v_{n}\right)=c_{\gamma, \lambda}+o_{n}(1), \quad\left\langle J_{\gamma, \lambda}^{\prime}\left(v_{n}\right), \psi\right\rangle=o_{n}(1)\|\psi\|, \quad \forall \psi \in H^{1}\left(\mathbb{R}^{N}\right), \tag{3.2}
\end{equation*}
$$

where $o_{n}(1) \rightarrow 0$ as $n \rightarrow \infty$. Let $\psi_{n}=G_{\gamma}^{-1}\left(v_{n}\right) g_{\gamma}\left(G_{\gamma}^{-1}\left(v_{n}\right)\right)$. From Lemma 2.1-(3) and (4),

$$
\left|\nabla \psi_{n}\right|=\left|\left(1+\frac{G_{\gamma}^{-1}\left(v_{n}\right) g_{\gamma}^{\prime}\left(G_{\gamma}^{-1}\left(v_{n}\right)\right)}{g_{\gamma}\left(G_{\gamma}^{-1}\left(v_{n}\right)\right)}\right) \nabla v_{n}\right| \leq C\left|\nabla v_{n}\right|, \quad\left|\psi_{n}\right| \leq C\left|v_{n}\right|
$$

Thus $\psi_{n} \in H^{1}\left(\mathbb{R}^{N}\right)$. By choosing $\psi=\psi_{n}$ as a test function and from Lemma 2.1-(3), (4), we get

$$
\begin{aligned}
p c_{\gamma, \lambda}+o_{n}(1)+o_{n}(1)\left\|v_{n}\right\|= & p J_{\gamma, \lambda}\left(v_{n}\right)-\left\langle J_{\gamma, \lambda}\left(v_{n}\right), \psi_{n}\right\rangle \\
= & \int_{\mathbb{R}^{N}}\left(\frac{p-2}{2}-\frac{G_{\gamma}^{-1}\left(v_{n}\right) g_{\gamma}^{\prime}\left(G_{\gamma}^{-1}\left(v_{n}\right)\right)}{g_{\gamma}\left(G_{\gamma}^{-1}\left(v_{n}\right)\right)}\right)\left|\nabla v_{n}\right|^{2} d x \\
& +\frac{p-2}{2} \int_{\mathbb{R}^{N}} V(x)\left|G_{\gamma}^{-1}\left(v_{n}\right)\right|^{2} d x .
\end{aligned}
$$

By Lemma 2.1-(4), if (η_{1}) occurs, we get $\frac{p-2}{2}-\frac{G_{\gamma}^{-1}(t) g_{\gamma}^{\prime}\left(G_{\gamma}^{-1}(t)\right)}{g_{\gamma}\left(G_{\gamma}^{-1}(t)\right)}>\frac{p-2}{2}-\frac{4+\gamma-2 \sqrt{4+2 \gamma}}{\gamma}>$ 0 if $p \in\left(2,2^{*}\right)$ and $\gamma \in\left(0, \gamma^{*}\right)$. On the other hand, if $\left(\eta_{2}\right)$ occurs, we get $\frac{p-2}{2}-$ $\frac{G_{\gamma}^{-1}(t) g_{\gamma}^{\prime}\left(G_{\gamma}^{-1}(t)\right)}{g_{\gamma}\left(G_{\gamma}^{-1}(t)\right)}>\frac{p-2}{4}$. This together with Lemma 2.1-(3) imply that $\left\|v_{n}\right\|$ is bounded.

Thus, up to subsequence, we may assume that there is $v_{\gamma, \lambda} \in H^{1}\left(\mathbb{R}^{N}\right)$ such that

$$
\begin{aligned}
& v_{n} \rightharpoonup v_{\gamma, \lambda} \text { in } H^{1}\left(\mathbb{R}^{N}\right), \\
& v_{n} \rightarrow v_{\gamma, \lambda} \text { in } L_{l o c}^{q}\left(\mathbb{R}^{N}\right), \quad q \in\left[1,2^{*}\right), \\
& v_{n} \rightarrow v_{\gamma, \lambda} \text { a.e. in } \mathcal{O}:=\text { supp } \psi
\end{aligned}
$$

and there exists $w_{q}(x) \in L^{q}(\mathcal{O})$, such that for any $n,\left|v_{n}(x)\right| \leq\left|w_{q}(x)\right|$ a.e. in \mathcal{O}. Now we are going to prove that $v_{\gamma, \lambda}$ is a positive solution of (2.8).
Lemma 3.2. Suppose $g_{\gamma}(t)$ satisfy either $\left(\eta_{1}\right)$ or $\left(\eta_{2}\right)$, then $v_{\gamma, \lambda}$ obtained above is a positive solution for modified problem (2.8).

Proof. We first show that $\left\langle J_{\gamma, \lambda}^{\prime}\left(v_{\gamma, \lambda}\right), \psi\right\rangle=0$ for any $\psi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$, i.e., $v_{\gamma, \lambda}$ is a critical point of $J_{\gamma, \lambda}$. Note that as $n \rightarrow \infty$, we get

$$
\begin{align*}
& \frac{G_{\gamma}^{-1}\left(v_{n}\right)}{g_{\gamma}\left(G_{\gamma}^{-1}\left(v_{n}\right)\right)} \rightarrow \frac{G_{\gamma}^{-1}\left(v_{\gamma, \lambda}\right)}{g_{\gamma}\left(G_{\gamma}^{-1}\left(v_{\gamma, \lambda}\right)\right)}, \text { a.e. in } \mathcal{O}, \tag{3.3}\\
& \frac{\left|G_{\gamma}^{-1}\left(v_{n}\right)\right|^{p-2} G_{\gamma}^{-1}\left(v_{n}\right)}{g_{\gamma}\left(G_{\gamma}^{-1}\left(v_{n}\right)\right)} \rightarrow \frac{\left|G_{\gamma}^{-1}\left(v_{\gamma, \lambda}\right)\right|^{p-2} G_{\gamma}^{-1}\left(v_{\gamma, \lambda}\right)}{g_{\gamma}\left(G_{\gamma}^{-1}\left(v_{\gamma, \lambda}\right)\right)}, \text { a.e. in } \mathcal{O} . \tag{3.4}
\end{align*}
$$

Furthermore, by Lemma 2.1-(3), we have

$$
\begin{align*}
& \left|\frac{G_{\gamma}^{-1}\left(v_{n}\right)}{g_{\gamma}\left(G_{\gamma}^{-1}\left(v_{n}\right)\right)} \psi\right| \leq C_{1}\left|v_{n}\right||\psi| \leq C_{1}\left|w_{2}\right||\psi| \text {, a.e. in } \mathcal{O}, \tag{3.5}\\
& \left|\frac{\left|G_{\gamma}^{-1}\left(v_{n}\right)\right|^{p-2} G_{\gamma}^{-1}\left(v_{n}\right)}{g_{\gamma}\left(G_{\gamma}^{-1}\left(v_{n}\right)\right)} \psi\right| \leq C_{2}\left|v_{n}\right|^{p-1}|\psi| \leq C_{2}\left|w_{p}\right|^{p-1}|\psi|, \quad \text { a.e. in } \mathcal{O} \text {. } \tag{3.6}
\end{align*}
$$

Now, combining (3.3)-(3.6), the Lebesgue dominated convergence theorem and the weak convergence $v_{n} \rightharpoonup v_{\gamma, \lambda}$ in $H^{1}\left(\mathbb{R}^{N}\right)$, we have $\left\langle J_{\gamma, \lambda}^{\prime}\left(v_{n}\right), \psi\right\rangle \rightarrow\left\langle J_{\gamma, \lambda}^{\prime}\left(v_{\gamma, \lambda}\right), \psi\right\rangle$ as $n \rightarrow \infty$. Because $J_{\gamma, \lambda}^{\prime}\left(v_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$, we conclude that $J_{\gamma, \lambda}^{\prime}\left(v_{\gamma, \lambda}\right)=0$. By Remark 2.3, we may assume $v_{\gamma, \lambda} \geq 0$. If $v_{\gamma, \lambda} \not \equiv 0$, by the strong maximum principle, we get $v_{\gamma, \lambda}>0$. Otherwise, assuming $v_{\gamma, \lambda} \equiv 0$, then, as in [24], $\left\{v_{n}\right\}$ is also a (PS $)_{c_{\gamma, \lambda}}$ for the function $J_{\gamma, \lambda}^{\infty}: H^{1}\left(\mathbb{R}^{N}\right) \rightarrow \mathbb{R}:$

$$
\begin{equation*}
J_{\gamma, \lambda}^{\infty}(v)=\frac{1}{2} \int_{\mathbb{R}^{N}}|\nabla v|^{2} d x+\frac{V_{\infty}}{2} \int_{\mathbb{R}^{N}}\left|G_{\gamma}^{-1}(v)\right|^{2} d x-\frac{\lambda}{p} \int_{\mathbb{R}^{N}}\left|G_{\gamma}^{-1}(v)\right|^{p} d x \tag{3.7}
\end{equation*}
$$

Next, we claim that there exist $\alpha, R>0$ and $\left\{y_{n}\right\} \subset \mathbb{R}^{N}$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{B_{R}\left(y_{n}\right)} v_{n}^{2} d x \geq \alpha>0 \tag{3.8}
\end{equation*}
$$

Suppose by contradiction that for all $R>0$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{y \in \mathbb{R}^{N}} \int_{B_{R}(y)} v_{n}^{2} d x=0 . \tag{3.9}
\end{equation*}
$$

Then, by Lions compactness lemma [18], we deduce that $v_{n} \rightarrow 0$ in $L^{q}\left(\mathbb{R}^{N}\right)$ for any $q \in\left(2,2^{*}\right)$. So by Lemma 2.1-(1) and (2), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left|G_{\gamma}^{-1}\left(v_{n}\right)\right|^{p} d x=0 \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}} \frac{\left|G_{\gamma}^{-1}\left(v_{n}\right)\right|^{p-2} G_{\gamma}^{-1}\left(v_{n}\right)}{g_{\gamma}\left(G_{\gamma}^{-1}\left(v_{n}\right)\right)} v_{n} d x=0 . \tag{3.11}
\end{equation*}
$$

Thanks to Lemma 2.1-(1), for any $\varepsilon>0$, there exists $\delta>0$ such that for $\left|v_{n}(x)\right|<\delta$, we have

$$
\begin{equation*}
\int_{\left\{x \in \mathbb{R}^{N}:\left|v_{n}(x)\right| \leq \delta\right\}} V(x)\left|\frac{v_{n}}{g_{\gamma}\left(G_{\gamma}^{-1}\left(v_{n}\right)\right) G_{\gamma}^{-1}\left(v_{n}\right)}-1\right|\left|G_{\gamma}^{-1}\left(v_{n}\right)\right|^{2} d x \leq V_{\infty} \varepsilon \int_{\mathbb{R}^{N}} v_{n}^{2} d x \leq C \varepsilon \tag{3.12}
\end{equation*}
$$

On the other hand, by Lemma 2.1-(2) and (3), we get

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \int_{\left\{x \in \mathbb{R}^{N}:\left|v_{n}(x)\right| \geq \delta\right\}} V(x)\left|\frac{v_{n}}{g_{\gamma}\left(G_{\gamma}^{-1}\left(v_{n}\right)\right) G_{\gamma}^{-1}\left(v_{n}\right)}-1\right|\left|G_{\gamma}^{-1}\left(v_{n}\right)\right|^{2} d x \\
\leq & C V_{\infty} \delta^{2-p} \lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left|v_{n}\right|^{p} d x=0 . \tag{3.13}
\end{align*}
$$

From (3.12) and (3.13), since ε is arbitrary, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}} V(x)\left|G_{\gamma}^{-1}\left(v_{n}\right)\right|^{2} d x=\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}} V(x) \frac{G_{\gamma}^{-1}\left(v_{n}\right)}{g_{\gamma}\left(G_{\gamma}^{-1}\left(v_{n}\right)\right)} v_{n} d x \tag{3.14}
\end{equation*}
$$

Thus, by (3.11) and (3.14), we deduce that

$$
\begin{align*}
0 & =\lim _{n \rightarrow \infty}\left\langle J_{\gamma, \lambda}^{\prime}\left(v_{n}\right), v_{n}\right\rangle \\
& =\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left(\left|\nabla v_{n}\right|^{2}+V(x) \frac{G_{\gamma}^{-1}\left(v_{n}\right)}{g_{\gamma}\left(G_{\gamma}^{-1}\left(v_{n}\right)\right)} v_{n}-\lambda \frac{\left|G_{\gamma}^{-1}\left(v_{n}\right)\right|^{p-2} G_{\gamma}^{-1}\left(v_{n}\right)}{g_{\gamma}\left(G_{\gamma}^{-1}\left(v_{n}\right)\right)} v_{n}\right) d x \\
& =\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left(\left|\nabla v_{n}\right|^{2}+V(x)\left|G_{\gamma}^{-1}\left(v_{n}\right)\right|^{2}\right) d x \tag{3.15}
\end{align*}
$$

Then combining (3.10) and (3.15), we get $J_{\gamma, \lambda}\left(v_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$, which is a contradiction since $J_{\gamma, \lambda}\left(v_{n}\right) \rightarrow c_{\gamma, \lambda}>0$ as $n \rightarrow \infty$. The claim is proved, i.e., (3.8) holds.

Define $\tilde{v}_{n}(x)=v_{n}\left(x+y_{n}\right)$. Since $\left\{v_{n}\right\}$ is a (PS $)_{c_{\gamma, \lambda}}$ sequence for $J_{\gamma, \lambda}^{\infty},\left\{\tilde{v}_{n}\right\}$ is also a (PS $)_{c_{\gamma, \lambda}}$ sequence for $J_{\gamma, \lambda}^{\infty}$. Arguing as in the case of $\left\{v_{n}\right\}$, we get $\left\{\tilde{v}_{n}\right\}$ is bounded. So, we may assume that $\tilde{v}_{n} \rightharpoonup \tilde{v}_{\gamma}$ in $H^{1}\left(\mathbb{R}^{N}\right)$ with $\left(J_{\gamma, \lambda}^{\infty}\right)^{\prime}\left(\tilde{v}_{\gamma}\right)=0$. By (3.8), we have $\tilde{v}_{\gamma} \neq 0$.

Let

$$
E(v)=\int_{\mathbb{R}^{N}}\left(\frac{p-2}{2}-\frac{g_{\gamma}^{\prime}\left(G_{\gamma}^{-1}(v)\right) G_{\gamma}^{-1}(v)}{g_{\gamma}\left(G_{\gamma}^{-1}(v)\right)}\right)|\nabla v|^{2} d x .
$$

By Theorem 1.6 in [27], $E(v)$ is weakly lower semi-continuous. Then according to

Fatou's lemma, we have

$$
\begin{align*}
p c_{\gamma, \lambda}= & \lim _{n \rightarrow \infty}\left(p J_{\gamma, \lambda}^{\infty}\left(\tilde{v}_{n}\right)-\left\langle\left(J_{\gamma, \lambda}^{\infty}\right)^{\prime}\left(\tilde{v}_{n}\right), G_{\gamma}^{-1}\left(\tilde{v}_{n}\right) g_{\gamma}\left(G_{\gamma}^{-1}\left(\tilde{v}_{n}\right)\right)\right\rangle\right) \\
= & \lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left(\frac{p-2}{2}-\frac{g_{\gamma}^{\prime}\left(G_{\gamma}^{-1}\left(\tilde{v}_{n}\right)\right) G_{\gamma}^{-1}\left(\tilde{v}_{n}\right)}{g_{\gamma}\left(G_{\gamma}^{-1}\left(\tilde{v}_{n}\right)\right)}\right)\left|\nabla \tilde{v}_{n}\right|^{2} d x \\
& +\frac{p-2}{2} V_{\infty} \lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left|G_{\gamma}^{-1}\left(\tilde{v}_{n}\right)\right|^{2} d x \\
\geq & \int_{\mathbb{R}^{N}}\left(\frac{p-2}{2}-\frac{g_{\gamma}^{\prime}\left(G_{\gamma}^{-1}\left(\tilde{v}_{\gamma}\right)\right) G_{\gamma}^{-1}\left(\tilde{v}_{\gamma}\right)}{g_{\gamma}\left(G_{\gamma}^{-1}\left(\tilde{v}_{\gamma}\right)\right)}\right)\left|\nabla \tilde{v}_{\gamma}\right|^{2} d x+\frac{p-2}{2} V_{\infty} \int_{\mathbb{R}^{N}}\left|G_{\gamma}^{-1}\left(\tilde{v}_{\gamma}\right)\right|^{2} d x \\
= & p J_{\gamma, \lambda}^{\infty}\left(\tilde{v}_{\gamma}\right)-\left\langle\left(J_{\gamma, \lambda}^{\infty}\right)^{\prime}\left(\tilde{v}_{\gamma}\right), G_{\gamma}^{-1}\left(\tilde{v}_{\gamma}\right) g_{\gamma}\left(G_{\gamma}^{-1}\left(\tilde{v}_{\gamma}\right)\right)\right\rangle \\
= & p J_{\gamma, \lambda}^{\infty}\left(\tilde{v}_{\gamma}\right), \tag{3.16}
\end{align*}
$$

which yields that $J_{\gamma, \lambda}^{\infty}\left(\tilde{v}_{\gamma}\right) \leq c_{\gamma, \lambda}$.
Analogous to the arguments used in [14], we can get a path $\chi(t):[0, L] \rightarrow H^{1}\left(\mathbb{R}^{N}\right)$ such that

$$
\left\{\begin{array}{l}
\chi(0)=0, J_{\gamma, \lambda}^{\infty}(\chi(L))<0, \tilde{v}_{\gamma} \in \chi([0, L]), \tag{3.17}\\
\chi(t)(x)>0, \forall x \in \mathbb{R}^{N}, t \in[0, L] \\
\max _{t \in[0, L]} J_{\gamma, \lambda}^{\infty}(\chi(t))=J_{\gamma, \lambda}^{\infty}\left(\tilde{v}_{\gamma}\right) .
\end{array}\right.
$$

Define the set

$$
\Gamma_{\gamma, \lambda}^{\infty}=\left\{\chi \in C\left([0,1], H^{1}\left(\mathbb{R}^{N}\right)\right): \chi(0)=0, \chi(1) \neq 0, J_{\gamma, \lambda}^{\infty}(\chi(1))<0\right\}
$$

After a suitable scale change in t, we can assume $\chi(t) \in \Gamma_{\gamma, \lambda}^{\infty}$. Particularly,

$$
\max _{t \in[0,1]} J_{\gamma, \lambda}^{\infty}(\chi(t))=J_{\gamma, \lambda}^{\infty}\left(\tilde{v}_{\gamma}\right) \leq c_{\gamma, \lambda}
$$

With restriction we can assume that $V(x) \leq V_{\infty}$ but $V(x) \not \equiv V_{\infty}$ (otherwise there is nothing to prove). Thus, $\chi(t) \in \Gamma_{\gamma, \lambda}^{\infty} \subset \Gamma_{\gamma}$, and hence

$$
c_{\gamma, \lambda} \leq \max _{t \in[0,1]} J_{\gamma, \lambda}(\chi(t)):=J_{\gamma, \lambda}(\chi(\bar{t}))<J_{\gamma}^{\infty}(\chi(\bar{t})) \leq \max _{t \in[0,1]} J_{\gamma, \lambda}^{\infty}(\chi(t))=J_{\gamma, \lambda}^{\infty}\left(\tilde{v}_{\gamma}\right) \leq c_{\gamma, \lambda}
$$

which is a contradiction. It follows from Remark 2.2 that $v_{\gamma, \lambda}>0$ is a critical point of $J_{\gamma, \lambda}$ and hence $v_{\gamma, \lambda}$ is a positive solution of (2.8).

For all $\gamma>0$, if $p \in\left(2,2^{*}\right)$ and $\gamma \in\left(0, \gamma^{*}\right)$, we take $\eta(t)$ satisfying $\left(\eta_{1}\right)$. In this case, $\tilde{g}_{\gamma}(t)=g_{\gamma}(t)$ in (2.4) and hence (2.4) turns into (1.6). According to the above arguments, we get $u_{\gamma, \lambda}=G_{\gamma}^{-1}\left(v_{\gamma, \lambda}\right)>0$ is a solution of (1.6).

However, if $\left(\eta_{2}\right)$ occurs, (2.4) can not be transformed into (1.6) unless $v_{\gamma, \lambda}$ obtained above satisfies $0 \leq u_{\gamma, \lambda}(x)=G_{\gamma}^{-1}\left(v_{\gamma, \lambda}(x)\right)<\frac{1}{4} \sqrt{\frac{p-2}{\gamma}}$ for all $x \in \mathbb{R}^{N}$. To this end, we next establish the L^{∞} estimate for $v_{\gamma, \lambda}$. First we give the boundedness of its gradient.
Lemma 3.3. The solution $v_{\gamma, \lambda}$ of (2.8) satisfies $\left\|\nabla v_{\gamma, \lambda}\right\|_{2} \leq \sqrt{2}\left(\frac{1}{2+\gamma}\right)^{\frac{p}{2(2-p)}} \lambda^{\frac{1}{2-p}}$.
Proof. Since $v_{\gamma, \lambda}$ is a critical point of $J_{\gamma, \lambda}$, then

$$
\begin{aligned}
p c_{\gamma, \lambda} & =p J_{\gamma, \lambda}\left(v_{\gamma, \lambda}\right)-\left\langle J_{\gamma, \lambda}^{\prime}\left(v_{\gamma, \lambda}\right), G_{\gamma}^{-1}\left(v_{\gamma, \lambda}\right) g_{\gamma}\left(G_{\gamma}^{-1}\left(v_{\gamma, \lambda}\right)\right)\right\rangle \\
& \geq \frac{p-2}{4} \int_{\mathbb{R}^{N}}\left|\nabla v_{\gamma, \lambda}\right|^{2} d x+\frac{p-2}{2} \int_{\mathbb{R}^{N}} V(x)\left|G_{\gamma}^{-1}\left(v_{\gamma, \lambda}\right)\right|^{2} d x .
\end{aligned}
$$

It follows that,

$$
\begin{equation*}
\left\|\nabla v_{\gamma, \lambda}\right\|_{2}^{2} \leq \frac{4 p}{p-2} c_{\gamma, \lambda} \tag{3.18}
\end{equation*}
$$

On the other hand, by Lemma 2.1-(3), we conclude that

$$
J_{\gamma, \lambda}(v) \leq P_{\gamma, \lambda}(v):=\frac{1}{2} \int_{\mathbb{R}^{N}}|\nabla v|^{2} d x+2 V_{\infty} \int_{\mathbb{R}^{N}}|v|^{2} d x-\frac{\lambda}{p}\left(\frac{2}{2+\gamma}\right)^{\frac{p}{2}} \int_{\mathbb{R}^{N}}|v|^{p} d x .
$$

Denote

$$
\Sigma_{\gamma, \lambda}=\left\{\xi \in C\left([0,1], H^{1}\left(\mathbb{R}^{N}\right)\right): \xi(0)=0, \xi(1) \neq 0, P_{\gamma, \lambda}(\xi(1))<0\right\}
$$

and note that $\Sigma_{\gamma, \lambda} \subset \Gamma_{\gamma, \lambda}$, we have

$$
\begin{equation*}
c_{\gamma, \lambda}=\inf _{\xi \in \Gamma_{\gamma, \lambda}} \sup _{t \in[0,1]} J_{\gamma, \lambda}(\xi(t)) \leq \inf _{\xi \in \Sigma_{\gamma, \lambda}} \sup _{t \in[0,1]} J_{\gamma, \lambda}(\xi(t)) \leq \inf _{\xi \in \Sigma_{\gamma, \lambda}} \sup _{t \in[0,1]} P_{\gamma, \lambda}(\xi(t)) . \tag{3.19}
\end{equation*}
$$

Let us set

$$
S_{p}=\inf \left\{\int_{\mathbb{R}^{N}}\left(|\nabla v|^{2}+4 V_{\infty}|v|^{2}\right) d x: v \in H^{1}\left(\mathbb{R}^{N}\right), \int_{\mathbb{R}^{N}}|v|^{p} d x=1\right\}
$$

It is well known that $S_{p}>0$ and it is achieved at some v^{*}, see e.g. [2].
Now, we take

$$
\phi(x)= \begin{cases}v^{*}(x), & \text { if } S_{p} \leq 1, \\ v^{*}\left(S_{p}^{(N-2) p-2 N} x\right), & \text { if } S_{p}>1 .\end{cases}
$$

Then, we have

$$
\begin{align*}
\max _{t \in \mathbb{R}} P_{\gamma, \lambda}(t \phi) & =P_{\gamma, \lambda}\left(t_{\max } \phi\right) \\
& =\frac{p-2}{2 p}\left(\frac{2}{2+\gamma}\right)^{\frac{p}{2-p}} \lambda^{\frac{2}{2-p}}\left(\int_{\mathbb{R}^{N}}\left(|\nabla \phi|^{2}+4 V_{\infty}|\phi|^{2}\right) d x\right)^{\frac{p}{p-2}}\left(\int_{\mathbb{R}^{N}}|\phi|^{p} d x\right)^{\frac{2}{2-p}} \\
& \leq \frac{p-2}{2 p}\left(\frac{2}{2+\gamma}\right)^{\frac{p}{2-p}} \lambda^{\frac{2}{2-p}} . \tag{3.20}
\end{align*}
$$

Note that we can choose large $T>t_{\max }$ such that $P_{\gamma, \lambda}(T \phi)<0$. Thus for $t \in[0,1]$, we get $\xi(t):=t T \phi \in \Sigma_{\gamma, \lambda}$ such that $P_{\gamma, \lambda}(\xi(t)) \leq \frac{p-2}{2 p}\left(\frac{1}{2+\gamma}\right)^{\frac{p}{2-p}} \lambda^{\frac{2}{2-p}}$. It follows from (3.19) that

$$
c_{\gamma, \lambda} \leq \frac{p-2}{2 p}\left(\frac{1}{2+\gamma}\right)^{\frac{p}{2-p}} \lambda^{\frac{2}{2-p}}
$$

which yields the result.
Remark 3.1. Note that equation

$$
\begin{equation*}
-\Delta v+4 V_{\infty} v=\lambda\left(\frac{2}{2+\gamma}\right)^{\frac{p}{2}}|v|^{p-2} v, \quad x \in \mathbb{R}^{N} \tag{3.21}
\end{equation*}
$$

is the Euler-Lagrange equation associated to the energy functional $P(v)$. In [21], Pohozaev showed that (3.21) possesses a solution if and only if $p \in\left(2,2^{*}\right), N \geq 3$ (see also [3]).
Remark 3.2. From Lemma 3.3 and Sobolev inequality, we have

$$
\left\|v_{\gamma, \lambda}\right\|_{2^{*}} \leq S^{-\frac{1}{2}}\left\|\nabla v_{\gamma, \lambda}\right\|_{2} \leq \sqrt{2}\left(\frac{1}{2+\gamma}\right)^{\frac{p}{2(2-p)}} S^{-\frac{1}{2}} \lambda^{\frac{1}{2-p}}
$$

where S is the best Sobolev constant.
Proposition 3.1. The solution $v_{\gamma, \lambda}$ of (2.8) satisfies

$$
\left\|v_{\gamma, \lambda}\right\|_{\infty} \leq\left(\frac{2^{*}-p+2}{2}\right)^{\frac{2\left(2^{*}-p+2\right)}{\left(2^{*}-p\right)^{2}}} 2^{\frac{2 \cdot 2^{*}-2-p}{2\left(2^{*}-p\right)}} S^{-\frac{2^{*}-2}{2\left(2^{*}-p\right)}}\left(\frac{1}{2+\gamma}\right)^{\frac{p\left(2^{*}-2\right)}{2(2-p)\left(2^{*}-p\right)}} \lambda^{\frac{1}{2-p}}
$$

Proof. The result can be proved in a similar way as Proposition 3.1 in [1], we give the outline of the proof here. In what follows, for convenience, we denote $v_{\gamma, \lambda}$ by v. For each $m \in N$ and $\beta>1$, let $A_{m}=\left\{x \in \mathbb{R}^{N}:|v|^{\beta-1} \leq m\right\}$ and $B_{m}=\mathbb{R}^{N} \backslash A_{m}$. Define

$$
v_{m}= \begin{cases}v|v|^{2(\beta-1)}, & \text { in } A_{m} \\ m^{2} v, & \text { in } B_{m}\end{cases}
$$

Note that $v_{m} \in H^{1}\left(\mathbb{R}^{N}\right)$. Using v_{m} as a test function in (2.7), we deduce that

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left[\nabla v \nabla v_{m}+V(x) \frac{G_{\gamma}^{-1}(v)}{g_{\gamma}\left(G_{\gamma}^{-1}(v)\right)} v_{m}\right] d x=\lambda \int_{\mathbb{R}^{N}} \frac{\left|G_{\gamma}^{-1}(v)\right|^{p-2} G_{\gamma}^{-1}(v)}{g_{\gamma}\left(G_{\gamma}^{-1}(v)\right)} v_{m} d x \tag{3.22}
\end{equation*}
$$

Besides, we have

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} \nabla v \nabla v_{m} d x=(2 \beta-1) \int_{A_{m}}|v|^{2(\beta-1)}|\nabla v|^{2} d x+m^{2} \int_{B_{m}}|\nabla v|^{2} d x . \tag{3.23}
\end{equation*}
$$

Let

$$
w_{m}= \begin{cases}v|v|^{\beta-1}, & \text { in } A_{m}, \\ m v, & \text { in } B_{m}\end{cases}
$$

Then

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left|\nabla w_{m}\right|^{2} d x=\beta^{2} \int_{A_{m}}|v|^{2(\beta-1)}|\nabla v|^{2} d x+m^{2} \int_{B_{m}}|\nabla v|^{2} d x \tag{3.24}
\end{equation*}
$$

Thus from (3.23) and (3.24), we get

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left(\left|\nabla w_{m}\right|^{2}-\nabla v \nabla v_{m}\right) d x=(\beta-1)^{2} \int_{A_{m}}|v|^{2(\beta-1)}|\nabla v|^{2} d x \text {. } \tag{3.25}
\end{equation*}
$$

Combining Lemma 2.1-(3), (3.22), (3.23) and (3.25), since $\beta>1$, we have

$$
\begin{aligned}
\int_{\mathbb{R}^{N}}\left|\nabla w_{n}\right|^{2} d x & \leq\left[\frac{(\beta-1)^{2}}{2 \beta-1}+1\right] \int_{\mathbb{R}^{N}} \nabla v \nabla v_{m} d x \\
& \leq \beta^{2} \int_{\mathbb{R}^{N}}\left[\nabla v \nabla v_{m}+V(x) \frac{G_{\gamma}^{-1}(v)}{g_{\gamma}\left(G_{\gamma}^{-1}(v)\right)} v_{m}\right] d x \\
& =\beta^{2} \lambda \int_{\mathbb{R}^{N}} \frac{\left|G_{\gamma}^{-1}(v)\right|^{p-2} G_{\gamma}^{-1}(v)}{g_{\gamma}\left(G_{\gamma}^{-1}(v)\right)} v_{m} d x \\
& \leq \sqrt{2} \beta^{2} \lambda \int_{\mathbb{R}^{N}}|v|^{p-2} w_{m}^{2} d x .
\end{aligned}
$$

By Hölder inequality, and since $\left|w_{m}\right| \leq|v|^{\beta}$ in \mathbb{R}^{N} and $\left|w_{m}\right|=|v|^{\beta}$ in A_{m}, we get

$$
\left(\int_{A_{m}}|v|^{\beta 2^{*}} d x\right)^{\frac{N-2}{N}} \leq \sqrt{2} \lambda \beta^{2}\|v\|_{2^{*}}^{p-2}\left(\int_{\mathbb{R}^{N}}|v|^{2 \beta q_{1}} d x\right)^{\frac{1}{q_{1}}}
$$

where $q_{1}=\frac{2^{*}}{2^{*}-p+2}$. By Monotone Convergence Theorem, letting $m \rightarrow \infty$, we have

$$
\begin{equation*}
\|v\|_{\beta 2^{*}} \leq \beta^{\frac{1}{\beta}}\left(\sqrt{2} \lambda\|v\|_{2^{*}}^{p-2}\right)^{\frac{1}{\beta \beta}}\|v\|_{2 \beta q_{1}} . \tag{3.26}
\end{equation*}
$$

Setting $\sigma=\frac{2^{*}}{2 q_{1}}=\frac{2^{*}-p+2}{2}$ and $\beta=\sigma$ in (3.26), we obtain $2 q_{1} \beta=2^{*}$ and

$$
\begin{equation*}
\|v\|_{\sigma 2^{*}} \leq \sigma^{\frac{1}{\sigma}}\left(\sqrt{2} \lambda\|v\|_{2^{*}}^{p-2}\right)^{\frac{1}{2 \sigma}}\|v\|_{2^{*}} . \tag{3.27}
\end{equation*}
$$

Taking $\beta=\sigma^{2}$ in (3.26), we have

$$
\begin{equation*}
\|v\|_{\sigma^{2} 2^{*}} \leq \sigma \frac{2}{\sigma^{2}}\left(\sqrt{2} \lambda\|v\|_{2^{*}}^{p-2}\right)^{\frac{1}{2 \sigma}}\|v\|_{\sigma 2^{*}} . \tag{3.28}
\end{equation*}
$$

From (3.27) and (3.28),

$$
\|v\|_{\sigma^{2} 2^{*}} \leq \sigma^{\frac{1}{\sigma}+\frac{2}{\sigma^{2}}}\left(\sqrt{2} \lambda\|v\|_{2^{*}}^{p-2}\right)^{\frac{1}{2 \sigma}+\frac{1}{2 \sigma^{2}}}\|v\|_{2^{*}}
$$

Taking $\beta=\sigma^{i}(i=1,2, \cdots)$ and iterating (3.26), we get

$$
\|v\|_{\sigma^{j 2^{*}}} \leq \sigma^{\sum_{i=1}^{j} \frac{i}{\sigma^{i}}}\left(\sqrt{2} \lambda\|v\|_{2^{*}}^{p-2}\right)^{\frac{1}{2} \sum_{i=1}^{j} \frac{1}{\sigma^{2}}}\|v\|_{2^{*}} .
$$

Therefore, by (3.20), using Sobolev inequality, taking the limit of $j \rightarrow+\infty$, we get

$$
\begin{aligned}
\|v\|_{\infty} & \leq \sigma^{\frac{\sigma}{(\sigma-1)^{2}}} 2^{\frac{1}{4(\sigma-1)}} \lambda^{\frac{1}{2(\sigma-1)}}\|v\|_{2^{*}}^{\frac{2^{*}-2}{2^{*}-p}} \\
& =\left(\frac{2^{*}-p+2}{2}\right)^{\frac{2\left(2^{*}-p+2\right)}{\left(2^{*}-p\right)^{2}}} 2^{\frac{2 \cdot 2^{*} * 2-p}{2\left(2^{*}-p\right)}} S^{-\frac{2^{*}-2}{2\left(2^{*}-p\right)}}\left(\frac{1}{2+\gamma}\right)^{\frac{p\left(2^{*}-2\right)}{2(2-p)\left(2^{*}-p\right)}} \lambda^{\frac{1}{2-p}} .
\end{aligned}
$$

This ends the proof.
Proof of Theorem 1.1-(1). For all $\gamma>0$, if $p \in\left(2,2^{*}\right)$ and $\gamma \in\left(0, \gamma^{*}\right)$, we take $\eta(t)$ satisfying $\left(\eta_{1}\right)$. In this case, $\tilde{g}_{\gamma}(t)=g_{\gamma}(t)$ in (2.4) and hence (2.4) turns into (1.6). It follows from Lemma 3.2 and Remark 2.2 that $u_{\gamma, \lambda}=G_{\gamma}^{-1}\left(v_{\gamma, \lambda}\right)>0$ is a solution of (1.6).

Proof of Theorem 1.1-(2). From Proposition 3.1, for any $\gamma>0$, we set $K=$ $\left(\frac{2^{*}-p+2}{2}\right)^{\frac{2\left(2^{*}-p+2\right)}{\left(2^{*}-p\right)^{2}}} 2^{\frac{2 \cdot 2^{*}-2-p}{2\left(2^{*}-p\right)}} S^{-\frac{2^{*}-2}{2\left(2^{*}-p\right)}}\left(\frac{1}{2+\gamma}\right)^{\frac{p\left(2^{*}-2\right)}{2(2-p)\left(2^{*}-p\right)}}$ and choose $\lambda^{*}=d \gamma^{\frac{p-2}{2}}$ with $d=$ $\left(\frac{\sqrt{p-2}}{4 \sqrt{2} K}\right)^{2-p}$ such that

$$
\begin{aligned}
\left\|u_{\gamma, \lambda}\right\|_{\infty} & =\left\|G_{\gamma}^{-1}\left(v_{\gamma, \lambda}\right)\right\|_{\infty} \\
& \leq \sqrt{2}\left\|v_{\gamma, \lambda}\right\|_{\infty} \leq \sqrt{2} K \lambda^{\frac{1}{2-p}} \leq \frac{1}{4} \sqrt{\frac{p-2}{\gamma}}, \quad \forall \lambda \in\left(\lambda^{*},+\infty\right)
\end{aligned}
$$

In this case, we take $\eta(t)$ satisfying $\left(\eta_{2}\right)$. It follows from above estimate that $\tilde{g}_{\gamma}(t)=g_{\gamma}(t)$ in (2.4) and hence (2.4) turns into (1.6) if $\lambda \in\left(\lambda^{*},+\infty\right)$. Again using Lemma 3.2 and Remark 2.2 we obtain that $u_{\gamma, \lambda}=G_{\gamma}^{-1}\left(v_{\gamma, \lambda}\right)>0$ is a solution of (1.6).

Proof of Theorem 1.1-(3). We are going to find a constant

$$
p^{*} \in\left[2^{*}, \min \left\{\frac{9+2 \gamma}{8+2 \gamma}, \frac{2 \gamma+4-2 \sqrt{4+2 \gamma}}{\gamma}\right\} 2^{*}\right)
$$

such that problem (1.6) has no positive solution $u \in H^{1}\left(\mathbb{R}^{N}\right)$ for $p \geq p^{*}$ if $x \cdot \nabla V(x) \geq 0$ in \mathbb{R}^{N}. It suffices to prove that problem (2.8) has no positive solution.

Suppose by contradiction that $v \in H^{1}\left(\mathbb{R}^{N}\right)$ is a positive solution of (2.8), it follows from the Pohozaev identity that

$$
\begin{align*}
-\frac{1}{2} \int_{\mathbb{R}^{N}}(x \cdot \nabla V(x))\left|G_{\gamma}^{-1}(v)\right|^{2} d x & =\int_{\mathbb{R}^{N}} K\left(G_{\gamma}^{-1}(v)\right) d x \\
& =: \int_{\left\{x \in \mathbb{R}^{N}: 0 \leq u<\frac{1}{\lambda^{p-2}}\right\}} K(u) d x+\int_{\left\{x \in \mathbb{R}^{N}: u \geq \frac{1}{\lambda^{\frac{1}{p-2}}}\right\}} K(u) d x, \tag{3.29}
\end{align*}
$$

where $u=G_{\gamma}^{-1}(v)$ and

$$
K(u)=\frac{(N-2) \lambda}{2} \frac{G_{\gamma}(u) u^{p-1}}{g_{\gamma}(u)}-\frac{N \lambda}{p} u^{p}+\frac{N}{2} u^{2}-\frac{N-2}{2} \frac{G_{\gamma}(u) u}{g_{\gamma}(u)} .
$$

The assumption $x \cdot \nabla V(x) \geq 0$ implies that

$$
-\frac{1}{2} \int_{\mathbb{R}^{N}}(x \cdot \nabla V(x))\left|G_{\gamma}^{-1}(v)\right|^{2} d x<0
$$

Therefore, to complete the proof of our Theorem 1.1-(3), it suffices to verify that the right-hand side of (3.29) is nonnegative.

Using Lemma 2.1-(4), we get $K(u)>0$ if $p \geq \frac{2 \gamma+4-2 \sqrt{4+2 \gamma}}{\gamma} 2^{*}>2^{*}$. Noting that $\frac{2 \gamma+4-2 \sqrt{4+2 \gamma}}{\gamma} \rightarrow 1$ as $\gamma \rightarrow 0$. Hence, we only need to consider the case $p \in$ $\left[2^{*}, \frac{2 \gamma+4-2 \sqrt{4+2 \gamma}}{\gamma} 2^{*}\right)$.

Noting that

$$
\begin{align*}
K(u) & \geq \frac{(N-2) \lambda}{2} \frac{G_{\gamma}(u) u^{p-1}}{g_{\gamma}(u)}-\frac{N \lambda}{2^{*}} u^{p}+\frac{N}{2} u^{2}-\frac{N-2}{2} \frac{G_{\gamma}(u) u}{g_{\gamma}(u)} \\
& =\frac{N-2}{2} \frac{u}{g_{\gamma}(u)}\left(u g_{\gamma}(u)-G_{\gamma}(u)\right)\left(1-\lambda u^{p-2}\right)+u^{2}, \tag{3.30}
\end{align*}
$$

we see

$$
\begin{equation*}
\int_{\left\{x \in \mathbb{R}^{N}: 0 \leq u<\frac{1}{\lambda^{\frac{1}{p-2}}}\right\}} K(u) d x>0 . \tag{3.31}
\end{equation*}
$$

Observing (3.30), we can choose $\bar{t}>\frac{1}{\lambda^{\frac{1}{p-2}}}$ (which can be independent of p) such that $K(t) \geq 0, \forall t \in\left[\frac{1}{\lambda^{\frac{1}{p-2}}}, \not\right]$. Now, by direct calculation, we see

$$
\begin{aligned}
\frac{t g_{\gamma}^{\prime}(t)}{g_{\gamma}(t)} & =\frac{1}{2 t^{-2}+(4+\gamma)+(2+\gamma) t^{2}} \\
& \leq \frac{1}{2 \bar{t}^{-2}+(4+\gamma)+(2+\gamma) \bar{t}^{2}}=: \eta(\bar{t}) \leq \frac{1}{8+2 \gamma}, \forall t \geq \bar{t}
\end{aligned}
$$

Hence, if we choose $p \geq(1+\eta(\bar{t})) 2^{*}=: p^{*}$, we find

$$
\begin{aligned}
K(u) & =\frac{N \lambda u^{p-1}}{p g_{\gamma}(u)}\left(\frac{p}{2^{*}} G_{\gamma}(u)-u g_{\gamma}(u)\right)+\frac{N-2}{2}\left(u g_{\gamma}(u)-G_{\gamma}(u)\right)+u^{2} \\
& >\frac{N \lambda u^{p-1}}{p g_{\gamma}(u)}\left[(1+\eta(\bar{t})) G_{\gamma}(u)-u g_{\gamma}(u)\right] \geq 0,
\end{aligned}
$$

which combined with (3.31) implies that the right-hand side of (3.29) is positive.
As a result, we complete the proof of Theorem 1.1-(3).
Remark 3.3. Since we can not find the explicit form of $G_{\gamma}(t)$, it is difficult for us to give the exact value of \bar{t}, below which $K(u)$ in (3.30) is nonnegative. However, we guess that \bar{t} there should be $+\infty$, which implies that p^{*} is exactly 2^{*}, the critical exponent.
4. Asymptotic behavior of positive solution $u_{\gamma, \lambda}$

In what follows, we assume that $V(x)=\mu>0$. For fixed $\lambda>0$, we study the asymptotic behavior of $u_{\gamma, \lambda}$ as $\gamma \rightarrow 0^{+}$.

Define

$$
m_{\gamma, \lambda}=\inf \left\{J_{\gamma, \lambda}(v) ; v \in H^{1}\left(\mathbb{R}^{N}\right) \backslash\{0\} \text { is a solution of }(2.8)\right\} .
$$

Following the arguments of Berestycki and Lions in [3], we can prove that $m_{\gamma, \lambda}>0$ and $m_{\gamma, \lambda}$ is attained by $v_{\gamma, \lambda}$ satisfying
(1) $v_{\gamma, \lambda}>0$ is spherically symmetric and $v_{\gamma, \lambda}$ decreases with respect to $|x|$;
(2) $v_{\gamma, \lambda} \in C^{2}\left(\mathbb{R}^{N}\right)$;
(3) $v_{\gamma, \lambda}$ together with its derivatives up to order 2 have exponential decay at infinity:

$$
\left|D^{\alpha} v_{\gamma, \lambda}\right| \leq C e^{-\delta|x|}, \quad x \in \mathbb{R}^{N},
$$

for some $C, \delta>0$ and $|\alpha| \leq 2$.
In [14], Jeanjean and Tanaka proved that $m_{\gamma, \lambda}=c_{\gamma, \lambda}$, where $c_{\gamma, \lambda}$ is defined in (3.1) with $V(x)$ being replaced by μ. Moreover, we choose $\gamma_{1} \in\left(0, \gamma^{*}\right)$ such that $u_{\gamma, \lambda}=$ $G_{\gamma}^{-1}\left(v_{\gamma, \lambda}\right)$ is indeed of a solution of (1.6) with $V(x)=\mu$ for $\gamma \in\left(0, \gamma_{1}\right]$. Similar to the proof of Proposition 3.1, we can prove $v_{\gamma, \lambda}$ is uniformly bounded with respect to γ.

We introduce the set $\widetilde{\mathcal{P}}$ of non-trivial solutions of (2.8) satisfying Pohozaev identity as follows:

$$
\begin{aligned}
\widetilde{\mathcal{P}}=\left\{v \in H^{1}\left(\mathbb{R}^{N}\right) \backslash\{0\}: \widetilde{P}(v):\right. & =\frac{N-2}{2 N} \int_{\mathbb{R}^{N}}|\nabla v|^{2} d x \\
& \left.-\frac{\mu}{2} \int_{\mathbb{R}^{N}}\left|G_{\gamma}^{-1}(v)\right|^{2} d x-\frac{\lambda}{p} \int_{\mathbb{R}^{N}}\left|G_{\gamma}^{-1}(v)\right|^{p} d x=0\right\} .
\end{aligned}
$$

Then, similar to the proof of Lemma 3.1 in [14], we deduce that

$$
m_{\gamma, \lambda}=\inf _{v \in \widetilde{\mathcal{P}}} J_{\gamma, \lambda}(v)
$$

From Lemma 2.1-(3), Lemma 3.3 and the definition of $g_{\gamma}(t)$, we get

$$
\begin{equation*}
\left\|u_{\gamma, \lambda}\right\| \leq C\left\|v_{\gamma, \lambda}\right\| \leq C \tag{4.1}
\end{equation*}
$$

which implies that $u_{\gamma, \lambda}$ is uniformly bounded with respect to γ in $H^{1}\left(\mathbb{R}^{N}\right)$. Passing to a subsequence, we may assume that as $\gamma \rightarrow 0^{+}$,

$$
\begin{align*}
& u_{\gamma, \lambda} \rightharpoonup u_{\lambda} \text { in } H^{1}\left(\mathbb{R}^{N}\right), \\
& u_{\gamma, \lambda} \rightarrow u_{\lambda} \text { in } L_{\text {loc }}^{q}\left(\mathbb{R}^{N}\right), \quad q \in\left[1,2^{*}\right), \tag{4.2}\\
& u_{\gamma, \lambda} \rightarrow u_{\lambda} \text { a.e. in } \mathcal{K}:=\operatorname{supp} \varphi, \quad \varphi(x) \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right) .
\end{align*}
$$

Moreover, there exists a function $\phi(x) \in L^{q}(\mathcal{K})$ such that $\left|u_{\gamma, \lambda}\right| \leq \phi(x)$ a.e. in \mathcal{K} for all γ.

We claim that u_{λ} is a solution of problem (1.7), namely, $\left\langle I_{\lambda}^{\prime}\left(u_{\lambda}\right), \varphi\right\rangle=0, \forall \varphi \in$ $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$, where $I_{\lambda}(u)$ is defined by

$$
I_{\lambda}(u)=\frac{1}{2} \int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+\mu u^{2}\right) d x-\frac{\lambda}{p} \int_{\mathbb{R}^{N}}|u|^{p} d x .
$$

In fact, by (4.2), we have

$$
\begin{align*}
0= & \left\langle I_{\gamma}^{\prime}\left(u_{\gamma, \lambda}\right), \varphi\right\rangle \\
= & \int_{\mathbb{R}^{N}}\left(\nabla u_{\gamma, \lambda} \nabla \varphi+\mu u_{\gamma, \lambda} \varphi\right) d x \\
& -\gamma \int_{\mathbb{R}^{N}}\left[\frac{u_{\gamma, \lambda}}{2\left(1+u_{\gamma, \lambda}^{2}\right)^{2}}\left|\nabla u_{\gamma, \lambda}\right|^{2} \varphi+\frac{u_{\gamma, \lambda}^{2}}{2\left(1+u_{\gamma, \lambda}^{2}\right)} \nabla u_{\gamma, \lambda} \nabla \varphi\right] d x-\lambda \int_{\mathbb{R}^{N}}\left|u_{\gamma, \lambda}\right|^{p-2} u_{\gamma, \lambda} \varphi d x \\
= & \int_{\mathbb{R}^{N}}\left(\nabla u_{\gamma, \lambda} \nabla \varphi+\mu u_{\gamma, \lambda} \varphi\right) d x-\lambda \int_{\mathbb{R}^{N}}\left|u_{\gamma, \lambda}\right|^{p-2} u_{\gamma, \lambda} \varphi d x+o(1) \\
= & \int_{\mathbb{R}^{N}}(\nabla u \nabla \varphi+\mu u \varphi) d x-\lambda \int_{\mathbb{R}^{N}}|u|^{p-2} u \varphi d x+o(1) \tag{4.3}
\end{align*}
$$

Thus, we obtain

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left(\nabla u_{\lambda}+\mu u_{\lambda}-\lambda\left|u_{\lambda}\right|^{p-2} u_{\lambda}\right) \varphi d x=0 \tag{4.4}
\end{equation*}
$$

which yields u_{λ} is a solution of problem (1.7). Since $u_{\gamma, \lambda}(x)>0$ and $u_{\gamma, \lambda}(x) \in C^{2}$, we have $u_{\lambda}(x) \geq 0$.

Note that at this stage, we do not know whether $u_{\lambda}(x) \not \equiv 0$ or not. Next we prove $u_{\lambda}(x) \not \equiv 0$ and thus $u_{\lambda}(x)>0$.

To this end, set

$$
\widetilde{m}_{\gamma, \lambda}=\inf \left\{I_{\gamma, \lambda}(u) ; u \in H^{1}\left(\mathbb{R}^{N}\right) \backslash\{0\} \text { is a solution of }(2.4)\right\} .
$$

By Lemma 2.1, for $v \in H^{1}\left(\mathbb{R}^{N}\right), u=G_{\gamma}^{-1}(v) \in H^{1}\left(\mathbb{R}^{N}\right)$, while for $u \in H^{1}\left(\mathbb{R}^{N}\right), v=$ $G_{\gamma}(u) \in H^{1}\left(\mathbb{R}^{N}\right)$. Moreover, since

$$
\begin{gathered}
I_{\gamma, \lambda}(u)=J_{\gamma, \lambda}(v) \\
\left\langle I_{\gamma, \lambda}^{\prime}(u), \varphi\right\rangle=\left\langle J_{\gamma, \lambda}^{\prime}(v), g_{\gamma}\left(G_{\gamma}^{-1}(v)\right) \varphi\right\rangle, \quad \forall \varphi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right),
\end{gathered}
$$

we have $\widetilde{m}_{\gamma, \lambda}=m_{\gamma, \lambda}$.

Next, we set

$$
\begin{aligned}
\mathcal{P}=\left\{u \in H^{1}\left(\mathbb{R}^{N}\right) \backslash\{0\}: P(u):\right. & \frac{N-2}{2 N} \int_{\mathbb{R}^{N}}\left[1+\frac{\gamma u^{2}}{2\left(1+u^{2}\right)}\right]|\nabla u|^{2} d x+\frac{\mu}{2} \int_{\mathbb{R}^{N}}|u|^{2} d x \\
& \left.-\frac{\lambda}{p} \int_{\mathbb{R}^{N}}|u|^{p} d x=0\right\} .
\end{aligned}
$$

Then, since $P(u)=\widetilde{P}(v)$ for $u=G_{\gamma}^{-1}(v)$, we get that

$$
m_{\gamma, \lambda}=\inf _{v \in \widetilde{\mathcal{P}}} J_{\gamma, \lambda}(v)=\inf _{u \in \mathcal{P}} I_{\gamma, \lambda}(u) .
$$

Lemma 4.1.

$$
\underset{\gamma \rightarrow 0^{+}}{\limsup } m_{\gamma, \lambda} \leq m_{\lambda} .
$$

where m_{λ} is the ground state level of (1.7) defined by

$$
m_{\lambda}=\inf \left\{I_{\lambda}(u): u \in H^{1}\left(\mathbb{R}^{N}\right) \backslash\{0\}, I_{\lambda}^{\prime}(u)=0\right\} .
$$

Proof. Let u be a ground state of (1.7) such that $I_{\lambda}(u)=m_{\lambda}$. By [3], $u \in L^{\infty}$. Moreover, u statisfies the Pohozaev identity:

$$
\begin{equation*}
\frac{N-2}{2 N} \int_{\mathbb{R}^{N}}|\nabla u|^{2} d x+\frac{\mu}{2} \int_{\mathbb{R}^{N}} u^{2} d x-\frac{\lambda}{p} \int_{\mathbb{R}^{N}}|u|^{p} d x=0 . \tag{4.5}
\end{equation*}
$$

For $\tau>0$, we let

$$
\begin{align*}
P\left(u\left(\frac{x}{\tau}\right)\right):= & \frac{N-2}{2 N} \tau^{N-2} \int_{\mathbb{R}^{N}}\left[1+\frac{\gamma u^{2}}{2\left(1+u^{2}\right)}\right]|\nabla u|^{2} d x \\
& +\frac{\mu}{2} \tau^{N} \int_{\mathbb{R}^{N}} u^{2} d x-\frac{\lambda}{p} \tau^{N} \int_{\mathbb{R}^{N}}|u|^{p} d x . \tag{4.6}
\end{align*}
$$

It follows from (4.6) and (4.5) that

$$
P\left(u\left(\frac{x}{\tau}\right)\right):=\frac{N-2}{2 N} \tau^{N-2}\left[\left(1-\tau^{2}\right) \int_{\mathbb{R}^{N}}|\nabla u|^{2} d x+\gamma \int_{\mathbb{R}^{N}} \frac{u^{2}}{2\left(1+u^{2}\right)}|\nabla u|^{2} d x\right] .
$$

Let

$$
\tau_{\gamma, \lambda}=\sqrt{\frac{\int_{\mathbb{R}^{N}}\left[1+\frac{\gamma u^{2}}{2\left(1+u^{2}\right)}\right]|\nabla u|^{2} d x}{\int_{\mathbb{R}^{N}}|\nabla u|^{2} d x}}
$$

we get $P\left(u\left(\frac{x}{\tau}\right)\right)=0$ and $\tau_{\gamma, \lambda} \rightarrow 1$ as $\gamma \rightarrow 0^{+}$. Clearly, $u\left(\frac{x}{\tau_{\gamma, \lambda}}\right) \in \mathcal{P}$.
Therefore, we have

$$
\begin{aligned}
m_{\gamma, \lambda} & \leq I_{\gamma, \lambda}\left(u\left(\frac{x}{\tau_{\gamma, \lambda}}\right)\right) \\
& =\frac{1}{2} \tau_{\gamma}^{N-2} \int_{\mathbb{R}^{N}}\left[1+\frac{\gamma u^{2}}{2\left(1+u^{2}\right)}\right]|\nabla u|^{2} d x+\frac{1}{2} \mu \tau_{\gamma}^{N} \int_{\mathbb{R}^{N}} u^{2} d x-\frac{\lambda}{p} \tau_{\gamma}^{N} \int_{\mathbb{R}^{N}}|u|^{p} d x,
\end{aligned}
$$

which yields

$$
\begin{aligned}
\limsup _{\gamma \rightarrow 0^{+}} m_{\gamma, \lambda} & \leq \frac{1}{2} \int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+\mu u^{2}\right) d x-\frac{\lambda}{p} \int_{\mathbb{R}^{N}}|u|^{p} d x \\
& =I_{\lambda}(u)=m_{\lambda}
\end{aligned}
$$

Lemma 4.2. For any given $\tilde{\gamma}>0$, there exists some positive constant $c_{\tilde{\gamma}, \lambda}$ such that $m_{\gamma, \lambda}>c_{\tilde{\gamma}, \lambda}$ for all $\gamma \in(0, \tilde{\gamma})$.

Proof. For $\tilde{\gamma}>0$, we define the functional

$$
Q_{\tilde{\gamma}, \lambda}(v)=\frac{1}{2} \int_{\mathbb{R}^{N}}|\nabla v|^{2} d x+\frac{\mu}{2+\tilde{\gamma}} \int_{\mathbb{R}^{N}} v^{2} d x-\frac{\lambda}{p} \int_{\mathbb{R}^{N}}|v|^{p} d x
$$

and the set

$$
\Sigma_{\tilde{\gamma}, \lambda}=\left\{\xi \in C\left([0,1], H^{1}\left(\mathbb{R}^{N}\right)\right): \xi(0)=0, \xi(1) \neq 0, Q_{\tilde{\gamma}, \lambda}(v)(\xi(1))<0\right\}
$$

By Lemma 2.1-(3), we have

$$
Q_{\tilde{\gamma}, \lambda}(v) \leq J_{\gamma, \lambda}(v)
$$

and thus $\Gamma_{\gamma, \lambda} \subset \Sigma_{\tilde{\gamma}, \lambda}$. So, we obtain

$$
\begin{aligned}
0<c_{\tilde{\gamma}, \lambda} & =\inf _{\xi \in \tilde{\tilde{\gamma}}_{\tilde{\gamma}, \lambda}} \sup _{t \in[0,1]} Q_{\tilde{\gamma}, \lambda}(\xi(t)) \\
& \leq \inf _{\xi \in \Gamma_{\gamma, \lambda}} \sup _{t \in[0,1]} Q_{\tilde{\gamma}, \lambda}(\xi(t)) \leq \inf _{\xi \in \Gamma_{\gamma, \lambda}} \sup _{t \in[0,1]} J_{\gamma, \lambda}(\xi(t))=c_{\gamma, \lambda}=m_{\gamma, \lambda}
\end{aligned}
$$

The proof is finished.
Lemma 4.3. Assume that $u_{\gamma, \lambda}$ is a solution of (2.4), then there exist $\ell \in \mathbb{N} \cup\{0\}$, $\left\{y_{\gamma}^{j}\right\} \subset \mathbb{R}^{N}, j=1,2, \cdots, \ell$ and $u_{\lambda}^{j} \in H^{1}\left(\mathbb{R}^{N}\right) \backslash\{0\}$ such that as $\gamma \rightarrow 0^{+}$,
(1) $I_{\gamma, \lambda}\left(u_{\gamma, \lambda}\right) \rightarrow I_{\lambda}\left(u_{\lambda}\right)+\sum_{j=1}^{\ell} I_{\lambda}\left(u_{\lambda}^{j}\right)$;
(2) $\left\|u_{\gamma, \lambda}-u_{\lambda}-\sum_{j=1}^{\ell} u_{\lambda}^{j}\left(\cdot-y_{\gamma}^{j}\right)\right\| \rightarrow 0$;
(3) $I_{\lambda}^{\prime}\left(u_{\lambda}^{j}\right)=0,\left|y_{\gamma}^{j}\right| \rightarrow \infty,\left|y_{\gamma}^{i}-y_{\gamma}^{j}\right| \rightarrow 0, \quad i \neq j$.

Proof. We follow the arguments developed by Benci and Cerami, see [4]. Let $u_{\gamma, \lambda}^{1}:=u_{\gamma, \lambda}-u_{\lambda}$, then $u_{\gamma, \lambda}^{1} \rightharpoonup 0$ in $H^{1}\left(\mathbb{R}^{N}\right)$ and thus

$$
\begin{equation*}
\left\|u_{\gamma, \lambda}^{1}\right\|^{2}=\left\|u_{\gamma, \lambda}\right\|^{2}-\left\|u_{\lambda}\right\|^{2}+o(1) \tag{4.7}
\end{equation*}
$$

where $o(1) \rightarrow 0$ as $\gamma \rightarrow 0^{+}$.
By Brezis-Lieb lemma [31], we get

$$
\begin{equation*}
\left\|u_{\gamma, \lambda}^{1}\right\|_{q}^{q}=\left\|u_{\gamma, \lambda}\right\|_{q}^{q}-\left\|u_{\lambda}\right\|_{q}^{q}+o(1), \quad q \in\left[2,2^{*}\right) \tag{4.8}
\end{equation*}
$$

Since $\left\|u_{\gamma, \lambda}\right\|_{\infty} \leq C$ and $\left\|u_{\gamma, \lambda}\right\| \leq C$, by (4.7) and (4.8), we have

$$
\begin{aligned}
m_{\gamma, \lambda} & =I_{\gamma, \lambda}\left(u_{\gamma, \lambda}\right) \\
& =\frac{1}{2} \int_{\mathbb{R}^{N}}\left[1+\frac{\gamma u_{\gamma, \lambda}^{2}}{2\left(1+u_{\gamma, \lambda}^{2}\right)}\right]\left|\nabla u_{\gamma, \lambda}\right|^{2} d x+\frac{1}{2} \mu \int_{\mathbb{R}^{N}} u_{\gamma, \lambda}^{2} d x-\frac{\lambda}{p} \int_{\mathbb{R}^{N}}\left|u_{\gamma, \lambda}\right|^{p} d x
\end{aligned}
$$

$$
\begin{equation*}
=I_{\lambda}\left(u_{\gamma, \lambda}^{1}\right)+I_{\lambda}\left(u_{\lambda}\right)+o(1) \tag{4.9}
\end{equation*}
$$

and in a similar way that

$$
\begin{align*}
0= & \left\langle I_{\gamma}^{\prime}\left(u_{\gamma, \lambda}\right), \varphi\right\rangle \\
= & \int_{\mathbb{R}^{N}}\left[1+\frac{\gamma u_{\gamma, \lambda}^{2}}{2\left(1+u_{\gamma, \lambda}^{2}\right)}\right] \nabla\left(u_{\gamma, \lambda}^{1}+u_{\lambda}\right) \nabla \varphi d x-\gamma \int_{\mathbb{R}^{N}} \frac{u_{\gamma, \lambda}}{\left(1+u_{\gamma, \lambda}^{2}\right)^{2}}\left|\nabla\left(u_{\gamma, \lambda}^{1}+u_{\lambda}\right)\right|^{2} \varphi d x \\
& +\mu \int_{\mathbb{R}^{N}}\left(u_{\gamma, \lambda}^{1}+u_{\lambda}\right) \varphi d x-\int_{\mathbb{R}^{N}}\left|u_{\gamma, \lambda}^{1}+u_{\lambda}\right|^{p-2}\left(u_{\gamma, \lambda}^{1}+u_{\lambda}\right) \varphi d x \\
= & \left\langle I_{\lambda}^{\prime}\left(u_{\gamma, \lambda}^{1}\right), \varphi\right\rangle+\left\langle I_{\lambda}^{\prime}\left(u_{\lambda}\right), \varphi\right\rangle+o(1) \\
= & \left\langle I_{\lambda}^{\prime}\left(u_{\gamma, \lambda}^{1}\right), \varphi\right\rangle+o(1), \quad \forall \varphi \in H^{1}\left(\mathbb{R}^{N}\right) . \tag{4.10}
\end{align*}
$$

Define

$$
\delta=\lim _{n \rightarrow \infty} \sup _{x \in \mathbb{R}^{N}} \int_{B_{1}(y)}\left|u_{\gamma, \lambda}^{1}\right|^{2} d x .
$$

If $\delta=0$, then using Lions lemma [18], $u_{\gamma, \lambda}^{1} \rightarrow 0$ in $L^{p}\left(\mathbb{R}^{N}\right), p \in\left(2,2^{*}\right)$. Since by (4.10), $\left\langle I_{\lambda}^{\prime}\left(u_{\gamma, \lambda}^{1}\right), u_{\gamma, \lambda}^{1}\right\rangle \rightarrow 0$, we have $u_{\gamma, \lambda}^{1} \rightarrow 0$ in $H^{1}\left(\mathbb{R}^{N}\right)$, namely, $u_{\gamma, \lambda} \rightarrow u_{\lambda}$ in $H^{1}\left(\mathbb{R}^{N}\right)$ and the proof is complete. If $\delta>0$, we may assume that there exists $\left\{y_{\gamma}^{1}\right\} \subset \mathbb{R}^{N}$ such that

$$
\int_{B_{1}\left(y_{\gamma}^{1}\right)}\left|u_{\gamma, \lambda}^{1}\right|^{2} d x>\frac{\delta}{2},
$$

that is,

$$
\begin{equation*}
\int_{B_{1}(0)}\left|u_{\gamma, \lambda}^{1}\left(x+y_{\gamma}^{1}\right)\right|^{2} d x>\frac{\delta}{2} . \tag{4.11}
\end{equation*}
$$

We may assume that $u_{\lambda}^{1}\left(x+y_{\gamma}^{1}\right) \rightharpoonup u_{\lambda}^{1}$ in $H^{1}\left(\mathbb{R}^{N}\right)$. By (4.11), $u_{\lambda}^{1} \neq 0$ and since $u_{\lambda}^{1} \rightharpoonup 0$ in $H^{1}\left(\mathbb{R}^{N}\right)$, we have $\left|y_{\gamma}^{1}\right| \rightarrow \infty$. Let $u_{\gamma, \lambda}^{2}=u_{\gamma, \lambda}^{1}-u_{\lambda}^{1}\left(\cdot-y_{\gamma}^{1}\right)$, we get

$$
\begin{aligned}
& \left\|u_{\gamma, \lambda}^{2}\right\|^{2}=\left\|u_{\gamma, \lambda}\right\|^{2}-\left\|u_{\lambda}\right\|^{2}-\left\|u_{\lambda}^{1}\right\|^{2}+o(1), \\
& \left\|u_{\gamma, \lambda}^{2}\right\|_{p}^{p}=\left\|u_{\gamma, \lambda}\right\|_{p}^{p}-\left\|u_{\lambda}\right\|_{p}^{p}-\left\|u_{\lambda}^{1}\right\|_{p}^{p}+o(1)
\end{aligned}
$$

and in a similar way that

$$
\begin{gathered}
m_{\gamma, \lambda}=I_{\lambda}\left(u_{\lambda}\right)+I_{\lambda}\left(u_{\lambda}^{1}\right)+I_{\lambda}\left(u_{\gamma, \lambda}^{2}\right)+o(1), \\
\left\langle I_{\lambda}^{\prime}\left(u^{1}\right), \varphi\right\rangle=0
\end{gathered}
$$

and

$$
\left\langle I_{\lambda}^{\prime}\left(u_{\gamma, \lambda}^{2}\right), \varphi\right\rangle=o(1), \quad \forall \varphi \in H^{1}\left(\mathbb{R}^{N}\right)
$$

Iterating the above procedure, since $I_{\lambda}\left(u^{j}\right)>0$ for every j, the iteration must terminate at some finite index, we get the result.

We now prove $u_{\lambda} \not \equiv 0$. In fact, we have the following result:

Lemma 4.4. There exists $y_{\gamma} \in \mathbb{R}^{N}$ such that $u_{\gamma, \lambda}\left(\cdot-y_{\gamma}\right) \rightarrow u_{\lambda}(\cdot)>0$ in $H^{1}\left(\mathbb{R}^{N}\right)$ as $\gamma \rightarrow 0^{+}$.

Proof. In view of Lemma 4.3, if $u_{\lambda} \not \equiv 0$, we have

$$
\lim _{\gamma \rightarrow 0^{+}} m_{\gamma, \lambda}=I_{\lambda}\left(u_{\lambda}\right)+\sum_{j=1}^{\ell} I_{\lambda}\left(u_{\lambda}^{j}\right) \geq(\ell+1) m_{\lambda} .
$$

However, by Lemma 4.1, we get $\limsup _{\gamma \rightarrow 0^{+}} m_{\gamma, \lambda} \leq m_{\lambda}$. Thus $\ell=0$ and the proof is complete provided $y_{\gamma}=0$.

If $u_{\lambda} \equiv 0$, then by Lemma 4.3 again, $\ell=1$. Thus we have $u_{\gamma, \lambda} \rightarrow u_{\lambda}^{1}\left(\cdot-y_{\gamma}^{1}\right)$ in $H^{1}\left(\mathbb{R}^{N}\right)$ and $I_{\lambda}^{\prime}\left(u_{\lambda}^{1}\right)=0$. Since the ground state of (1.7) is unique up to translation, it follows that $u_{\lambda}^{1}(x)=u_{\lambda}(x+\tilde{y})$ for some $\tilde{y} \in \mathbb{R}^{N}$, where u_{λ} is the ground state of (1.7). So, $u_{\gamma, \lambda} \rightarrow u_{\lambda}\left(\cdot-y_{\gamma}^{1}+\tilde{y}\right)$ in $H^{1}\left(\mathbb{R}^{N}\right)$.
Lemma 4.5. $\left\|\nabla u_{\gamma, \lambda}\right\|_{\infty} \leq C$.
Proof. Recalling that $v_{\gamma, \lambda}$ satisfies

$$
-\Delta v_{\gamma, \lambda}=-\mu \frac{G_{\gamma}^{-1}\left(v_{\gamma, \lambda}\right)}{g_{\gamma}\left(G_{\gamma}^{-1}\left(v_{\gamma, \lambda}\right)\right)}+\lambda \frac{\left|G_{\gamma}^{-1}\left(v_{\gamma, \lambda}\right)\right|^{p-2} G_{\gamma}^{-1}\left(v_{\gamma, \lambda}\right)}{g_{\gamma}\left(G_{\gamma}^{-1}\left(v_{\gamma, \lambda}\right)\right)}
$$

By Lemma 2.1, we get

$$
\left|\Delta v_{\gamma, \lambda}\right| \leq C\left(\left|v_{\gamma, \lambda}\right|+\left|v_{\gamma, \lambda}\right|^{p-1}\right) .
$$

For any $q>2^{*}$, we have

$$
\begin{align*}
\left\|\Delta v_{\gamma, \lambda}\right\|_{q} & \leq C\left\|v_{\gamma, \lambda}\right\|_{q}+C\left\|v_{\gamma}^{p-1}\right\|_{q} \\
& \leq C\left[\left\|v_{\gamma, \lambda}\right\|_{\infty^{\frac{q-2^{*}}{q}}}+\left\|v_{\gamma, \lambda}\right\|_{\infty}^{\frac{q(p-1)-2^{*}}{q}}\right]\left\|v_{\gamma, \lambda}\right\|_{2^{*}}^{\frac{2^{*}}{q}} \\
& \leq C . \tag{4.12}
\end{align*}
$$

By Corollary 9.10 in [11], $\left\|D^{2} u_{\gamma, \lambda}\right\|_{q} \leq C\left\|\Delta u_{\gamma, \lambda}\right\|_{q}$ for $C=C(n, p)>0$. Then, by the interpolation, we have $\left\|v_{\gamma, \lambda}\right\|_{W^{2, q}\left(\mathbb{R}^{N}\right)} \leq C$. Since $q>2^{*}$, by Sobolev inequalities $W^{2, q}\left(\mathbb{R}^{N}\right) \hookrightarrow C^{1, \beta}\left(\mathbb{R}^{N}\right)$, we get $\left\|v_{\gamma, \lambda}\right\|_{C^{1, \beta}\left(\mathbb{R}^{N}\right)} \leq C$, where the constant C depends only on β and q. The result follows from the fact $\left\|\nabla u_{\gamma, \lambda}\right\|_{\infty} \leq C\left\|\nabla u_{\gamma, \lambda}\right\|_{\infty}$.
Lemma 4.6. $u_{\gamma, \lambda} \rightarrow u_{\lambda}$ in $H^{2}\left(\mathbb{R}^{N}\right)$.
Proof. We claim that there exists $C>0$ independent of $\gamma \in\left(0, \gamma_{0}\right)$ such that $\left\|\Delta u_{\gamma, \lambda}\right\|_{2} \leq C$. Indeed, we observe that

$$
-\left(1+\frac{\gamma u_{\gamma, \lambda}^{2}}{\sqrt{1+u_{\gamma, \lambda}^{2}}}\right) \Delta u_{\gamma, \lambda}=-\mu u_{\gamma, \lambda}+\frac{\gamma u_{\gamma, \lambda}}{\sqrt{\left(1+u_{\gamma, \lambda}^{2}\right)^{3}}}\left|\nabla u_{\gamma, \lambda}\right|^{2}+\lambda\left|u_{\gamma, \lambda}\right|^{p-2} u_{\gamma, \lambda}
$$

Thus, by Lemma 4.5 and (4.1), we have

$$
\begin{align*}
\left\|\Delta u_{\gamma, \lambda}\right\|_{2} & =\left\|\frac{\sqrt{1+u_{\gamma, \lambda}^{2}}}{\sqrt{1+u_{\gamma, \lambda}^{2}}+\gamma u_{\gamma, \lambda}^{2}}\left[-\mu u_{\gamma, \lambda}+\frac{\gamma u_{\gamma, \lambda}}{\sqrt{\left(1+u_{\gamma}^{2}\right)^{3}}}\left|\nabla u_{\gamma, \lambda}\right|^{2}+\lambda\left|u_{\gamma, \lambda}\right|^{p-2} u_{\gamma, \lambda}\right]\right\|_{2} \\
& \leq C . \tag{4.13}
\end{align*}
$$

Let $L=-\Delta+\mu I$, then L^{-1} is a bounded operator from $L^{2}\left(\mathbb{R}^{N}\right)$ to $H^{2}\left(\mathbb{R}^{N}\right)$,

$$
u_{\gamma, \lambda}=L^{-1}\left[\frac{\gamma u_{\gamma, \lambda}^{2}}{\sqrt{1+u_{\gamma, \lambda}^{2}}} \Delta u_{\gamma, \lambda}+\frac{\gamma u_{\gamma, \lambda}}{\sqrt{\left(1+u_{\gamma, \lambda}^{2}\right)^{3}}}\left|\nabla u_{\gamma, \lambda}\right|^{2}+\lambda\left|u_{\gamma, \lambda}\right|^{p-2} u_{\gamma, \lambda}\right]
$$

and

$$
u_{\lambda}=L^{-1}\left(\lambda\left|u_{\lambda}\right|^{p-2} u_{\lambda}\right)
$$

Thus, we get

$$
\begin{equation*}
\left\|u_{\gamma, \lambda}-u_{\lambda}\right\|_{H^{2}} \leq C\left(\gamma\left\|\Delta u_{\gamma, \lambda}\right\|_{2}+\gamma\left\|u_{\gamma, \lambda}\left|\nabla u_{\gamma, \lambda}\right|^{2}\right\|_{2}\right)+\lambda\left|\left\|\left.u_{\gamma, \lambda}\right|^{p-2} u_{\gamma, \lambda}-\left|u_{\lambda}\right|^{p-2} u_{\lambda}\right\|_{2} .\right. \tag{4.14}
\end{equation*}
$$

By Lemma 4.5 and (4.13), we get

$$
\begin{equation*}
\gamma\left\|\Delta u_{\gamma, \lambda}\right\|_{2}+\gamma\left\|u_{\gamma, \lambda}\left|\nabla u_{\gamma, \lambda}\right|^{2}\right\|_{2} \rightarrow 0 \tag{4.15}
\end{equation*}
$$

Since $u_{\gamma, \lambda}$ is radial, by the radial lemma [26], we have

$$
\left|u_{\gamma, \lambda}\right| \leq \frac{C}{|x|}\left\|u_{\gamma, \lambda}\right\| \leq \frac{C}{|x|}, \quad|x| \geq 1 .
$$

Thus, for any $\varepsilon>0$, there exists $R>0$ such that

$$
\begin{equation*}
\left\|\left|\left\|\left.u_{\gamma, \lambda}\right|^{p-2} u_{\gamma, \lambda}-|u|^{p-2} u\right\|_{L^{2}\left(\mathbb{R}^{N} \backslash B_{R}(0)\right)}<\varepsilon .\right.\right. \tag{4.16}
\end{equation*}
$$

Since $u_{\gamma, \lambda} \rightharpoonup u_{\lambda}$ in $H^{1}\left(\mathbb{R}^{N}\right)$, it follows that there exists $\phi(x) \in L^{1}\left(B_{R}(0)\right)$ such that

$$
\left|u_{\gamma, \lambda}\right|^{p-1} \leq C|\phi| \in L^{1}\left(B_{R}(0)\right) .
$$

Moreover

$$
\left|u_{\gamma, \lambda}\right|^{p-2} u_{\gamma, \lambda} \rightarrow\left|u_{\lambda}\right|^{p-2} u_{\lambda}, \text { a.e. in } B_{R}(0) .
$$

Thus, by Lebesgue dominated convergence theorem, we have

$$
\begin{equation*}
\left\|\left|u_{\gamma, \lambda}\right|^{p-2} u_{\gamma, \lambda}-\left|u_{\lambda}\right|^{p-2} u_{\lambda}\right\|_{L^{2}\left(B_{R}(0)\right)} \rightarrow 0 \tag{4.17}
\end{equation*}
$$

Finally, combining (4.14) - (4.17), we obtain

$$
\lim _{\gamma \rightarrow 0^{+}}\left\|u_{\gamma, \lambda}-u_{\lambda}\right\|_{H^{2}}=0 .
$$

Lemma 4.7. $\quad u_{\gamma, \lambda} \rightarrow u_{\lambda}$ in $C^{2}\left(\mathbb{R}^{N}\right)$.
Proof. First, we show that $v_{\gamma, \lambda} \rightarrow u_{\lambda}$ in $C^{2}\left(\mathbb{R}^{N}\right)$. Since

$$
\left|v_{\gamma, \lambda}\right| \leq \frac{C}{|x|}| | v_{\gamma, \lambda}| | \leq \frac{C}{|x|}, \quad|x| \geq 1
$$

for any $q>2$ and $\varepsilon>0$, there exists $R>0$ independent of γ such that

$$
\left\|-\mu \frac{G_{\gamma}^{-1}\left(v_{\gamma, \lambda}\right)}{g_{\gamma}\left(G_{\gamma}^{-1}\left(v_{\gamma, \lambda}\right)\right)}+\frac{\left|G_{\gamma}^{-1}\left(v_{\gamma, \lambda}\right)\right|^{p-2} G_{\gamma}^{-1}\left(v_{\gamma, \lambda}\right)}{g_{\gamma}\left(G_{\gamma}^{-1}\left(v_{\gamma, \lambda}\right)\right)}\right\|_{L^{q}\left(\mathbb{R}^{N} \backslash B_{R}(0)\right)}<\varepsilon
$$

and

$$
\left\|\mu u_{\lambda}\right\|_{L^{q}\left(\mathbb{R}^{N} \backslash B_{R}(0)\right)}+\left\|\left|u_{\lambda}\right|^{p-1}\right\|_{L^{q}\left(\mathbb{R}^{N} \backslash B_{R}(0)\right)}<\varepsilon .
$$

On the other hand, since

$$
\left\|u_{\gamma, \lambda}\right\|_{\infty}=\left\|G_{\gamma}^{-1}\left(v_{\gamma, \lambda}\right)\right\|_{\infty} \leq C
$$

we have

$$
\begin{gathered}
G_{\gamma}^{-1}\left(v_{\gamma, \lambda}\right) \rightarrow u_{\lambda}, \quad \text { a.e. in } \mathbb{R}^{N}, \\
-\mu \frac{G_{\gamma}^{-1}\left(v_{\gamma, \lambda}\right)}{\sqrt{1+G_{\gamma}^{-1}\left(v_{\gamma, \lambda}\right)^{2}}} \rightarrow-\mu u_{\lambda}, \quad \text { a.e. in } \mathbb{R}^{N} .
\end{gathered}
$$

By Lebesgue dominated convergence theorem, we get

$$
\begin{equation*}
\left\|-\mu \frac{G_{\gamma}^{-1}\left(v_{\gamma, \lambda}\right)}{\sqrt{1+G_{\gamma}^{-1}\left(v_{\gamma, \lambda}\right)^{2}}}+\mu u\right\|_{L^{q}\left(B_{R}(0)\right)}+\lambda\left\|\left|u_{\gamma, \lambda}\right|^{p-2} u_{\gamma, \lambda}-\left|u_{\lambda}\right|^{p-2} u_{\lambda}\right\|_{L^{q}\left(B_{R}(0)\right)} \rightarrow 0 \tag{4.18}
\end{equation*}
$$

Thus we have limsup $\lim _{0^{+}}\left\|\Delta\left(v_{\gamma, \lambda}-u_{\lambda}\right)\right\|_{L^{q}} \leq 2 \varepsilon$. Since $\varepsilon>0$ is arbitrary, we get $v_{\gamma, \lambda} \rightarrow$ u_{λ} in $W^{2, q}\left(\mathbb{R}^{N}\right)$ for any $q>2$ as $\gamma \rightarrow 0^{+}$. By Sobolev embedding, we have $v_{\gamma, \lambda} \rightarrow u_{\lambda}$ in $C^{1, \beta}\left(\mathbb{R}^{N}\right)$. By the bootstrap arguments, we have $v_{\gamma, \lambda} \rightarrow u_{\lambda}$ in $C^{2}\left(\mathbb{R}^{N}\right)$.

Next, we prove $v_{\gamma, \lambda}-u_{\gamma, \lambda} \rightarrow 0$ in $C^{2}\left(\mathbb{R}^{N}\right)$. Clearly, we have

$$
\begin{align*}
\left|v_{\gamma, \lambda}-u_{\gamma, \lambda}\right| & =\left|\int_{0}^{u_{\gamma, \lambda}}\left[\sqrt{1+\frac{\gamma t^{2}}{2\left(1+t^{2}\right)}}-1\right] d t\right| \\
& \leq \frac{1}{2} \sqrt{\gamma} u_{\gamma}^{2} \tag{4.19}
\end{align*}
$$

Thus, from Proposition 3.1 that

$$
\sup _{x \in \mathbb{R}^{N}}\left|v_{\gamma, \lambda}(x)-u_{\gamma, \lambda}(x)\right| \leq C \sqrt{\gamma} \rightarrow 0 .
$$

From Lemma 4.5 and $\nabla u_{\gamma, \lambda}=g_{\gamma}\left(G_{\gamma}^{-1}\left(v_{\gamma, \lambda}\right)\right) \nabla v_{\gamma, \lambda}$, we get

$$
\begin{aligned}
\sup _{x \in \mathbb{R}^{N}}\left|\nabla v_{\gamma, \lambda}(x)-\nabla u_{\gamma, \lambda}(x)\right| & =\sup _{x \in \mathbb{R}^{N}}\left|\frac{\gamma u_{\gamma}^{2} \nabla u_{\gamma, \lambda}}{\sqrt{2+(2+\gamma) u_{\gamma}^{2}}\left[\sqrt{2\left(1+u_{\gamma}^{2}\right)}+\sqrt{2+(2+\gamma) u_{\gamma}^{2}}\right]}\right| \\
& \leq C \gamma \rightarrow 0 .
\end{aligned}
$$

Similarly, we get

$$
\left.\left.\sup _{x \in \mathbb{R}^{N}}\left|-\mu \frac{G_{\gamma}^{-1}\left(v_{\gamma, \lambda}\right)}{g_{\gamma}\left(G_{\gamma}^{-1}\left(v_{\gamma, \lambda}\right)\right)}+\frac{\left|G_{\gamma}^{-1}\left(v_{\gamma, \lambda}\right)\right|^{p-2} G_{\gamma}^{-1}\left(v_{\gamma, \lambda}\right)}{g_{\gamma}\left(G_{\gamma}^{-1}\left(v_{\gamma, \lambda}\right)\right)}+\mu u_{\gamma, \lambda}-\lambda\right| u_{\gamma, \lambda}\right|^{p-2} u_{\gamma, \lambda} \right\rvert\, \rightarrow 0 .
$$

From

$$
\begin{aligned}
\left|\Delta u_{\gamma, \lambda}\right| & =\left|\frac{\sqrt{1+u_{\gamma}^{2}}}{\sqrt{1+u_{\gamma}^{2}}+\gamma u_{\gamma}^{2}}\left[-\mu u_{\gamma, \lambda}+\frac{\gamma u_{\gamma, \lambda}}{\sqrt{\left(1+u_{\gamma}^{2}\right)^{3}}}\left|\nabla u_{\gamma, \lambda}\right|^{2}+\lambda\left|u_{\gamma, \lambda}\right|^{p-2} u_{\gamma, \lambda}\right]\right| \\
& \leq C
\end{aligned}
$$

we obtain

$$
\begin{align*}
\sup _{x \in \mathbb{R}^{N}}\left|\Delta\left(v_{\gamma, \lambda}-u_{\gamma, \lambda}\right)\right| \leq & \left.\left.\sup _{x \in \mathbb{R}^{N}}\left|\frac{u_{\gamma, \lambda}}{\sqrt{\left(1+u_{\gamma}^{2}\right)^{3}}}\right| \nabla u_{\gamma, \lambda}\right|^{2}\left|+\gamma \sup _{x \in \mathbb{R}^{N}}\right| \frac{u_{\gamma}^{2}}{\sqrt{1+u_{\gamma}^{2}}} \Delta u_{\gamma, \lambda} \right\rvert\, \\
& +\sup _{x \in \mathbb{R}^{N}} \left\lvert\,-\mu \frac{G_{\gamma}^{-1}\left(v_{\gamma, \lambda}\right)}{g_{\gamma}\left(G_{\gamma}^{-1}\left(v_{\gamma, \lambda}\right)\right)}+\lambda \frac{\left|G_{\gamma}^{-1}\left(v_{\gamma, \lambda}\right)\right|^{p-2} G_{\gamma}^{-1}\left(v_{\gamma, \lambda}\right)}{g_{\gamma}\left(G_{\gamma}^{-1}\left(v_{\gamma, \lambda}\right)\right)}\right. \\
& +\mu u_{\gamma, \lambda}-\lambda\left|u_{\gamma, \lambda}\right|^{p-2} u_{\gamma, \lambda} \mid \\
& \rightarrow 0 . \tag{4.20}
\end{align*}
$$

In a similar way, using (4.20), together with Sobolev interpolation inequality, we can show

$$
\sup _{x \in \mathbb{R}^{N}}\left|D^{j}\left(v_{\gamma, \lambda}-u_{\gamma, \lambda}\right)\right| \rightarrow 0, \quad|j| \leq 2,
$$

and this completes the proof of Lemma 4.7.
Proof. (Proof of Theorem 1.2.) Since $u_{\gamma, \lambda}(x)=G_{\gamma}^{-1}\left(v_{\gamma, \lambda}(x)\right), G_{\gamma}^{-1}(t)$ is an odd C^{∞} function and increases in $\mathbb{R}, v_{\gamma, \lambda}(x)$ is spherically symmetric and monotone decreasing with respect to $r=|x|$, we deduce that $u_{\gamma, \lambda}(x)$ is also spherically symmetric and monotone decreasing with respect to $r=|x|$. Finally, the asymptotic behavior of $u_{\gamma, \lambda}$ follows from Lemmas 4.6 and 4.7.

REFERENCES

[1] C.O. Alves, Y.J. Wang, and Y.T. Shen, Soliton solutions for a class of quasilinear Schrödinger equations with a parameter, J. Differ. Equ., 259(1):318-343, 2015. 1, 1, 3
[2] A. Ambrosetti and A. Malchiodi, Perturbation Methods and Semilinear Elliptic Problems in \mathbb{R}^{N}, Birkhauser Verlag, Boston, 2006. 3
[3] H. Berestycki and P.L. Lions, Nonlinear scalar field equation I, Arch. Ration. Mech. Anal., 82:313345, 1983. 3.1, 4, 4
[4] V. Benci and G. Cerami, Positive solutions of semilinear ellitic problems in exterior domains, Arch. Ration. Mech. Anal., 99:283-300, 1987. 4
[5] A.B. Borisov, A.V. Borovskiy, V.V. Korobkin, A.M. Prokhorov, O.B. Shiryaev, X.M. Shi, T.S. Luk, A. McPherson, J.C. Solem, K. Boyer, and C.K. Rhodes, Observation of relativistic and charge-displacement self-channeling of intense subpicosecond ultraviolet (248 nm) radiation in plasmas, Phys. Rev. Lett., 68:2309, 1992. 1
[6] A. Bouard, N. Hayashi, and J. Saut, Global existence of small solutions to a relativistic nonlinear Schrödinger equation, Commun. Math. Phys., 189:73-105, 1997. 1
[7] H. Brandi, C. Manus, G. Mainfray, T. Lehner, and G. Bonnaud, Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma, Phys. Fluids B., 5:3539-3550, 1993. 1
[8] X.L. Chen and R.N. Sudan, Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse in underdense plasma, Phys. Rev. Lett., 70:2082-2085, 1993. 1
[9] M. Colin, On the local well-posedness of quasilinear Schrödinger equations in arbitrary space dimension, Commun. Partial Differ. Equ., 27:325-354, 2002. 1
[10] Y.B. Deng and W.T. Huang, Positive ground state solutions for a quasilinear elliptic equation with critical exponent, Discrete Contin. Dyn. Syst., 37(8):4213-4230, 2017. 1, 1
[11] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 2001. 4
[12] M.V. Goldman, Strong turbulence of plasma waves, Rev. Modern. Phys., 56:709-735, 1984. 1
[13] R.W. Hasse, A general method for the solution of nonlinear solition and kink Schrödinger equation, Z. Phys., 37:83-87, 1980. 1
[14] L. Jeanjean and K. Tanaka, A remark on least energy solutions in \mathbb{R}^{N}, Proc. Amer. Math. Soc., 131:2399-2408, 2003. 3, 4
[15] W. Krolikowski and O. Bang, Solitions in nonlocal nonlinear media: Exact solution, Phys. Rev. E., 63:3016610, 2001. 1
[16] S. Kurihara, Large-amplitude quasi-solitons in superfluid films, J. Phys. Soc. Jpn., 50:3262-3267, 1981. 1
[17] E.W. Laedke, K.H. Spatchek, and L. Stenflo, Evolution theorem for a class of perturbed envelope soliton solutions, J. Math. Phys., 24:2764-2769, 1983. 1
[18] P.L. Lions, The concentration compactness principle in the calculus of variations. The locally compact case. Part I and part II, Ann. Inst. H. Poincare Anal. Non. Lineaire, 1(2):109-145, 1(4):223-283, 1984. 3, 4
[19] A.G. Litvak and A.M. Sergeev, One dimensional collapse of plasma waves, JETP Lett., 27:517520, 1978. 1
[20] J.Q. Liu, Y.Q. Wang, and Z.Q. Wang, Soliton solutions for quasilinear Schrödinger equations II, J. Differ. Equ., 187:473-493, 2003. 1
[21] S.I. Pohozaev, Eigenfunctions of the equation $\Delta u+\lambda f(u)=0$, Sov. Math. Dokl., 5:1408-1411, 1965. 3.1
[22] M. Porkolab and M.V. Goldman, Upper-hybrid solitons and oscillating-two-stream instabilities, Phys. Fluids, 19:872-881, 1978. 1
[23] G.R.W. Quispel and H.W. Capel, Equation of motion for the Heisenberg spin chain, Phys. A., 110:41-80, 1982. 1
[24] Y.T. Shen and Y.J. Wang, Soliton solutions for generalized quasilinear Schrödinger equations, Nonlinear Anal. Theory Meth. Appl., 80:194-201, 2013. 1, 1, 1, 1, 3
[25] Y.T. Shen and Y.J. Wang, Standing waves for a class of quasilinear Schrödinger equations, Complex Var. Elliptic Equ., 61(6):817-842, 2016. 1
[26] W. Strauss, Exsitence of solitary waves in higher dimensions, Commun. Math. Phys., 55:149-162, 1977. 4
[27] M. Struwe, Variational Methods, Springer, 2007. 3
[28] S. Takeno and S. Homma, Classical planar Heisenberg ferromagnet, complex scalar field and nonlinear excitations, Prog. Theor. Phys., 65(1):172-189, 1981. 1
[29] Y.J. Wang, Solitary solutions for a class of quasilinear Schrödinger equations in \mathbb{R}^{3}, Z. Angew. Math. Phys., 67:88, 2016. 1
[30] Y.J. Wang and Y.T. Shen, Existence and asymptotic behavior of a class of quasilinear Schrödinger equations, Adv. Nonlinear Stud., 18:131-150, 2018. 1, 2
[31] M. Willem, Minimax Theorems, Birkhauser, Boston, 1996. 3, 4
[32] J. Yang, Y.J. Wang, and A.A. Abdelgadir, Soliton solutions for quasilinear Schrödinger equations, J. Math. Phys., 54:071502, 2013. 1, 1, 1

[^0]: *Received: June 19, 2022; Accepted (in revised form): January 27, 2023. Communicated by Feimin Huang.
 The research was supported by the Natural Science Foundation of China (No.12271196) and the Natural Science Foundation of Guangdong (No.2023A1515012812).
 ${ }^{\dagger}$ School of Mathematics and Statistics, Central China Normal University, Wuhan, 430079, China (ybdeng@mail.ccnu.edu.cn).
 ${ }^{\ddagger}$ School of Mathematics, South China University of Technology, Guangzhou 510640, China (scyjwang@scut.edu.cn).

