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EXISTENCE OF POSITIVE SOLUTIONS FOR A CLASS OF
QUASILINEAR ELLIPTIC EQUATIONS WITH PARAMETERS∗

YINBIN DENG† AND YOUJUN WANG‡

Abstract. This paper is devoted to investigating the existence of positive solutions for a class of
parameter-dependent quasilinear elliptic equations

−∆u+V (x)u−
γu

2
√
1+u2

∆
√

1+u2=λ|u|p−2u, u∈H1(RN ), (0.1)

where γ,λ are positive parameters, N ≥3. For a trapping potential V (x) and p∈ (2,2∗), by con-
trolling the range of γ and λ, we establish the existence of positive solutions uγ,λ for the above

problem, where 2∗= 2N
N−2

is critical exponent. For super-critical case, we find a constant p∗∈

[2∗,min{ 9+2γ
8+2γ

, 2γ+4−2
√

4+2γ
γ

}2∗) such that Equation (0.1) has no positive solution for all γ,λ>0 if

p≥p∗ and ∇V (x) ·x≥0 in RN . Furthermore, for fixed λ>0, the asymptotic behavior of positive
solutions uγ,λ is also obtained when V (x) is a positive constant as γ→0.

Keywords. Quasilinear elliptic equations; positive solutions; asymptotic behavior.

AMS subject classifications. 35J20; 35J60.

1. Introduction
In this paper, we study the parameter-dependent quasilinear elliptic equations of

the form

−∆u+V (x)u− γu

2
√
1+u2

∆
√
1+u2=f(u), x∈RN , (1.1)

where V (x) is a given potential, N ≥3, γ is a parameter, f(s) is a real function. Equa-
tions of this type are related to the solitary wave solutions for the quasilinear Schrödinger
equations

iψt=−∆ψ+W (x)ψ−ρ(|ψ|2)ψ−γ∆l(|ψ|2)l′(|ψ|2)ψ, x∈RN , (1.2)

where ψ(t,x) :R×RN →C, W (x) is a given potential, γ is a parameter, ρ(s) and l(s)
are real functions. If l(s)=

√
1+s and ρ(s)=1− 1√

1+s
, Equation (1.2) is known to

describe propagation of high-power ultrashort laser pulse in a medium, see e.g. [5–9].
If l(s)=

√
1−s, Equation (1.2) is the fundamental equation of motion for nonlinear

excitations in a classical planar Heisenberg ferromagnetic spin chain in an external field
[23,28]. In the case when l(s)=s, Equation (1.2) appears in various problems in plasma
physics and nonlinear optics, see e.g. [15, 22]. We refer the readers to [12, 13, 16, 17, 19]
and the references therein for more results on the physical background.

In the last decade, a considerable attention has been devoted to the study of so-
lutions to (1.2) when l(s)=s, see for example [1, 20, 24, 32] and the references therein.
Here, we focus on the case l(s)=

√
1+s. A solution of the form ψ(t,x)=exp(−iEt)u(x)

∗Received: June 19, 2022; Accepted (in revised form): January 27, 2023. Communicated by Feimin
Huang.
The research was supported by the Natural Science Foundation of China (No.12271196) and the Natural
Science Foundation of Guangdong (No.2023A1515012812).

†School of Mathematics and Statistics, Central China Normal University, Wuhan, 430079, China
(ybdeng@mail.ccnu.edu.cn).

‡School of Mathematics, South China University of Technology, Guangzhou 510640, China
(scyjwang@scut.edu.cn).

1989

mailto:ybdeng@mail.ccnu.edu.cn
mailto:scyjwang@scut.edu.cn


1990 QUASILINEAR ELLIPTIC EQUATIONS WITH PARAMETERS

is called a solitary wave solution, where E∈R and u(x) is a real function. Then,
we observe that ψ satisfies (1.2) if and only if the function u(x) satisfies (1.1) with
V (x)=W (x)−E, f(s)=ρ(|s|2)s and l(s)=

√
1+s.

Setting g̃γ(u)=
√
1+ γu2

2(1+u2) , then (1.1) can be reduced to quasilinear elliptic equa-

tions

−div(g̃2γ(u)∇u)+ g̃γ(u)g̃′γ(u)|∇u|2+V (x)u=f(u), x∈RN . (1.3)

In the sequel, we always assume that V (x)∈C(RN ,R) is a trapping potential, that
is,

(V ) 0<V0≤V (x)≤ lim|x|→+∞V (x)=V∞<+∞.

In [24], Shen and Wang proved the existence of nontrivial solutions for problem
(1.1) when γ=1 and the nonlinear term f(s) satisfies the generalized global Ambrosetti–
Rabinowitz superlinear condition

∃µ>2,such that 0<µg̃(s)F (s)≤ G̃(s)f(s), ∀s>0, (1.4)

where g̃(s) := g̃1(s), G̃(s)=
∫ s

0
g̃(t)dt and F (s)=

∫ s

0
f(t)dt. In view of the definition of

g̃(s), we get that sg̃(s)

G̃(s)
≤6−2

√
6 for all s>0. So, (1.4) is a consequence of the condition

∃µ>2,such that 0<µ(6−2
√
6)F (s)≤sf(s), ∀s>0. (1.5)

From (1.5), we deduce that there exist constants C,C1>0 such that F (s)≥C|s|µ(6−2
√
6)

for s>C1>0. Stated in the particular case of (1.5), for f(s)= |s|p−2s with p∈
(12−4

√
6,2∗), the existence of a nontrivial solution for (1.1) was proved in [32]. Unfortu-

nately, (1.5) is invalid for f(s)= |s|p−2s if p≤12−4
√
6 and thus the method used in [32]

can not be applied to study this case. Recently, in [10], Deng and Huang proved the exis-
tence of positive ground state solutions for (1.1) with γ=1 and f(s)= |s|p−2s+ |s|2∗−2s,
where 2∗= 2N

N−2 , p∈ (2,12−4
√
6] for N ≥4 or p∈ (2,4) for N =3. In their paper, the Po-

hozaev type identity has been used to find a bounded (PS) sequence and thus conditions
on ∇V (x) were needed. Precisely, they assumed that

(∇V ) there exists C0∈ (0, (N−2)2

2 ) such that |∇V (x) ·x|≤ C0

|x|2 , ∀x∈RN \{0}.
Thus, it is interesting to discuss the existence of positive solutions for (1.1) with

general γ>0 and f(s)=λ|s|p−2s when p∈ (2,2∗) if the condition (∇V ) is abandoned.
The present paper is to consider the existence of positive solutions for problem (1.1)
for general γ>0 without assumption (∇V ). Precisely, for the following parameter-
dependent equation

−∆u+V (x)u− γu

2
√
1+u2

∆
√
1+u2=λ|u|p−2u, x∈RN , (1.6)

where γ and λ are positive parameters, the existence and non-existence of positive
solutions are given by the following theorem.

Theorem 1.1. Assume that (V ) and p>2, N ≥3. Then, the following statements
hold:

(1) for all λ>0 and p∈ (2,2∗), Equation (1.6) has a positive classical solution if
γ∈ (0,γ∗), where

γ∗=

{
16(p−2)
(p−4)2 , if p<4,

+∞, if p≥4
;
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(2) for all γ>0 and p∈ (2,2∗), Equation (1.6) has a positive classical solution if
λ∈ (λ∗,+∞), where

λ∗=(p−2)
2−p
2

(
2∗−p+2

2

) 2(2∗−p+2)(p−2)

(2∗−p)2

2
7·2∗−2−6p
2(2∗−p) S− (2∗−2)(p−2)

2(2∗−p)

·(2+γ)
p(2∗−2)
2(2∗−p) γ

p−2
2

and S is the best Sobolev constant of inequality S∥u∥22∗ ≤∥∇u∥22, u∈D1,2(RN ).

(3) for all γ,λ>0, there exists a constant p∗∈ [2∗,min{ 9+2γ
8+2γ ,

2γ+4−2
√
4+2γ

γ }2∗) such
that Equation (1.6) has no positive solution if p∈ [p∗,+∞) and ∇V (x) ·x≥0 in
RN .

From the part (1) of Theorem 1.1, for all λ>0 and p∈ (2,2∗), Equation (1.6) has
a positive classical solution if γ∈ (0,γ∗). For the case when V (x) is a positive constant
and λ is fixed, we have the following delicate result:

Theorem 1.2. Suppose V (x)=µ= constant>0, p∈ (2,2∗), then the corresponding
solution uγ,λ of Equation (1.6) obtained in Theorem 1.1 is spherically symmetric and
monotone decreasing with respect to r= |x|. Passing to a subsequence if necessary, we
have

uγ,λ→uλ in H2(RN )∩C2(RN ) as γ→0+,

where uλ is the ground state of semilinear problem

−∆u+µu=λ|u|p−2u, u∈H1(RN ). (1.7)

We observe that the natural energy functional corresponding to the Euler-Lagrange
Equation (1.6) is:

Ĩγ,λ(u)=
1

2

∫
RN

g̃2γ(u)|∇u|2dx+
1

2

∫
RN

V (x)u2dx− λ

p

∫
RN

|u|pdx. (1.8)

Notice that although Ĩγ,λ is well defined in H1(RN ), it is not smooth. It is difficult to

find the critical point of Ĩγ,λ(u) in H1(RN ) by standard variational method. In [24],

the authors overcome this difficulty by introducing a change of variables s= G̃−1
γ (t) for

t∈ [0,+∞), where

G̃γ(s)=

∫ s

0

g̃γ(t)dt. (1.9)

Then Ĩγ,λ was converted to the following C1 functional:

J̃γ,λ(v)=
1

2

∫
RN

|∇v|2dx+ 1

2

∫
RN

V (x)|G̃−1
γ (v)|2dx− λ

p

∫
RN

|G̃−1
γ (v)|pdx. (1.10)

For γ=1 and p∈ (12−4
√
6,2∗), the existence of positive critical point of J̃γ,λ can be

proved via mountain pass theorem, which will lead to the existence of positive criti-
cal point of Ĩγ,λ. It should be pointed out that the condition p>12−4

√
6 plays an

important role to prove the boundedness of (PS)c sequence, see also [32].
The underling idea for proving Thereom 1.1-(1) can be processed by a standard way,

see [10,25]. The proof of Thereom 1.1–(2) is inspired by the recent work [1,29,30], where
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some other type of quasilinear elliptic equations were studied. In order to adopt the
variational method, we will first modify our problem. Namely, we establish an auxiliary
function gγ(t) such that gγ(t)= g̃γ(t) for t∈ (0,t1), where t1>0 is a proper cut-off point.
Then, we consider the modified quasilinear elliptic equation

−div(g2γ(u)∇u)+gγ(u)g′γ(u)|∇u|2+V (x)u=λ|u|p−2u, x∈RN . (1.11)

Direct calculations show that if gγ(t)= g̃γ(t), then Equation (1.11) becomes Equation
(1.6). Solutions of (1.11) correspond to critical points of the functional

Iγ,λ(u)=
1

2

∫
RN

g2γ(u)|∇u|2dx+
1

2

∫
RN

V (x)u2dx− λ

p

∫
RN

|u|pdx, (1.12)

where Iγ,λ(u) is well defined in H1(RN ). However, it is nonsmooth. As in [24], we
introduce the change of variables u=G−1

γ (v) to reformulate functional Iγ,λ(u) by a
smooth functional Jγ,λ(v):

Jγ,λ(v)=
1

2

∫
RN

|∇v|2dx+ 1

2

∫
RN

V (x)|G−1
γ (v)|2dx− λ

p

∫
RN

|G−1
γ (v)|pdx, (1.13)

where Gγ(t)=
∫ t

0
gγ(τ)dτ. Then, we prove that Jγ,λ(v) has a positive critical point and so

(1.11) has a positive solution uγ,λ=G
−1
γ (vγ,λ). Finally, using elliptic regularity estimate,

by choosing proper λ, we show that |uγ,λ(x)|≤ t1 for all x∈RN . Thus it is indeed a
positive solution of (1.6).

The outline of the article is as follows: In Section 2, by establishing an auxiliary
function, we modify (1.6). In Section 3, we prove the existence and nonexistence of a
positive solution for problem (1.6) by employing the variational technique and a general
Pohozaev identity. Finally, we study the asymptotic behavior of solution of (1.6) as
γ→0+ in Section 4.

In this paper, we always make use of the following notations: C will denote various
positive constants whose exact value may change from line to line but are not essential to
the analysis of the problem; The symbol ||u||p is used for the norm of the space Lp(RN ),
1≤p≤∞; By (V ), we denote byH1(RN ) :={u∈L2(RN ) : |∇u|∈L2(RN )} endowed with

the norm ||u|| :=
√∫

RN (|∇u|2+V (x)u2)dx.

2. The modification of Equation (1.6)
To prove our main result, we first introduce an auxiliary function gγ(t) as follows:

gγ(t)=

√√√√1

2

(
1+

γt2

1+ t2

)
η(t)+

1

2
,

where η(t) is a spatial function satisfying either the following (η1) or (η2):
(η1) η(t)≡1, for all t∈R;
(η2) η(t)∈C∞

0 (R, [0,1]) is a cut-off function satisfying

η(t)



=η(−t), if t≤0,

=1, if 0≤ t≤ δγ := 1
4

√
p−2
γ ,

∈ (0,1), if 1
4

√
p−2
γ <t< 1

2

√
p−2
γ ,

=0, if t≥ 1
2

√
p−2
γ ,

(2.1)
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where p∈ (2,2∗). Moreover, it also satisfies

−σ
√
η(t)≤η′(t)t≤0, for all t∈R, (2.2)

where σ is a positive constant independent of γ.

For the proper establishment of this kind of spatial function η(t), people can refer
[30].

Set

Gγ(t)=

∫ t

0

gγ(s)ds.

Clearly, Gγ(t) is an odd C∞ function and increases in R. Thus, the inverse function
G−1

γ (t) exists and it is also an odd C∞ function.
Now we first collect some properties of gγ and G−1

γ (t), which will play important
roles in the proof of our main results. By direct calculations, we get the following lemma:

Lemma 2.1. The following properties hold:

(1) lim
t→0

G−1
γ (t)

t
=1;

(2) lim
t→∞

G−1
γ (t)

t
=

{√
2

2+γ , if (η1) holds,
√
2, if (η2) holds,

;

(3) |G−1
γ (t)|∈


[√

2
2+γ |t|, |t|

]
, if (η1) holds,[√

2
2+γ |t|,

√
2|t|
]
, if (η2) holds,

for all t∈R;

(4)
g′
γ(t)t

gγ(t)
∈


[
0, 1+ 4−2

√
4+2γ
γ

]
, if (η1) holds,[

−C̃, p−2
4

]
, if (η2) holds,

for some constant C̃ >0 and

all t∈R.

Proof. We consider the case (η2) and the case (η1) can be treated in exactly the
same manner. Since gγ(t) is even and G−1

γ (t) is odd, we only consider the case t≥0. It
follows from Hospital’s principle that

lim
t→0

G−1
γ (t)

t
= lim

t→0

1

gγ(G
−1
γ (t))

=1

and

lim
t→∞

G−1
γ (t)

t
= lim

t→∞

1

gγ(G
−1
γ (t))

=
√
2.

Thus, the items (1) and (2) are proved.

From the definition of gγ(t), we get
√

1
2 ≤gγ(t)<

√
2+γ
2 for t∈R. Thus for all t≥0,

we deduce that √
1

2
t≤Gγ(t)=

∫ t

0

gγ(s)ds≤
√

2+γ

2
t,

which yields that
√

2
2+γ t≤G

−1
γ (t)≤

√
2t for all t≥0.
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Lastly, we prove (4). By (2.2), we get

g′γ(t)t

gγ(t)
=

2γt2η(t)+(1+ t2)[1+(1+γ)t2]η′(t)t

2(1+ t2)[1+(1+γ)t2]η(t)+2(1+ t2)2≥−σ[1+(1+γ)t2]
√

η(t)

2(1+t2) ≥− 1+γt2

2 σ= p+2
8 σ=:−C̃, if 0≤ t< 1

2

√
p−2
γ ,

=0, if t≥ 1
2

√
p−2
γ .

(2.3)

To prove the second inequality, by (2.3), it suffices to consider the case 0≤ t< 1
2

√
p−2
γ .

In fact, we get

g′γ(t)t

gγ(t)
≤ 2γt2η(t)

2(1+ t2)[1+(1+γ)t2]η(t)+2(1+ t2)2

≤γt2η(t)

≤ p−2

4
, 0≤ t< 1

2

√
p−2

γ
,

which yields the result.

Remark 2.1. We remark that the cut-off point δγ in assumption (η2) is not unique. In

fact, as long as the inequality
g′
γ(t)t

gγ(t)
< p−2

2 is guaranteed, any t∈ (0,
√

p−2
2γ ) is allowed.

We now consider the modified quasilinear Schrödinger equation of the form:

−div(g2γ(u)∇u)+gγ(u)g′γ(u)|∇u|2+V (x)u=λ|u|p−2u, x∈RN . (2.4)

It follows from assumption (η2) that u must be a positive solution of (1.6), if we can

prove the existence of a positive solution u of (2.4) satisfying 0≤u(x)< 1
4

√
p−2
γ for all

x∈RN .
The associate variational functional for problem (2.4) is

Iγ,λ(u)=
1

2

∫
RN

g2γ(u)|∇u|2dx+
1

2

∫
RN

V (x)u2dx− λ

p

∫
RN

|u|pdx. (2.5)

Since gγ(t) is bounded, we can deduce that Iγ,λ(u) is well defined in H1(RN ). By
introducing the change of variables u=G−1

γ (v), we observe that functional Iγ,λ can be
written in the following form

Jγ,λ(v)=
1

2

∫
RN

|∇v|2dx+ 1

2

∫
RN

V (x)|G−1
γ (v)|2dx− λ

p

∫
RN

|G−1
γ (v)|pdx. (2.6)

From Lemma 2.1, Jγ,λ is well defined in H1(RN ), Jγ,λ∈C1(H1(RN ),R) and

⟨J ′
γ,λ(v),ψ⟩=

∫
RN

[
∇v∇ψ+V (x)

G−1
γ (v)

gγ(G
−1
γ (v))

ψ−λ
|G−1

γ (v)|p−2G−1
γ (v)

gγ(G
−1
γ (v))

ψ

]
dx, (2.7)

for all v,ψ∈H1(RN ).
Note that any critical points of Jγ,λ correspond to the solutions of the equation

−∆v+V (x)
G−1

γ (v)

gγ(G
−1
γ (v))

=λ
|G−1

γ (v)|p−2G−1
γ (v)

gγ(G
−1
γ (v))

, x∈RN . (2.8)
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In order to find positive solutions of (2.4), it suffices to study the existence of positive
solutions of Equation (2.8).

Remark 2.2. It is easy to verify that u=G−1
γ (v)∈C2(RN )∩H1(RN ) must be a

classical solution for (2.4) if v∈C2(RN )∩H1(RN ) is a critical point of Jγ,λ.

Remark 2.3. Because we look for positive solutions, we can rewrite the functional
Jγ,λ in the following

Jγ,λ(v)=
1

2

∫
RN

|∇v|2dx+ 1

2

∫
RN

V (x)|G−1
γ (v)|2dx− λ

p

∫
RN

|G−1
γ (v+)|pdx,

where v+=max{v,0}. Standard regularity arguments show that any critical points v
belong to C2 and v(x)>0 from the strong maximum principle if v is nontrival.

3. Proof of Theorem 1.1

Thanks to Lemma 2.1−(3), it is easy to prove that the functional Jγ,λ exhibits the
mountain pass geometry.

Lemma 3.1. (i) Jγ,λ(v)≥C||v||2+o(||v||2) as v→0 in H1(RN );

(ii) there exists a e∈H1(RN ), e ̸=0 satisfying Jγ,λ(e)≤0.

In view of Lemma 3.1, applying the mountain pass theorem [31], it follows that there
exists a (PS)cγ,λ

sequence {vn}⊂H1(RN ), i.e., a sequence such that Jγ,λ(vn)→ cγ,λ and
J ′
γ,λ(vn)→0, where cγ,λ is the mountain pass level of Jγ,λ characterized by

cγ,λ= inf
ξ∈Γγ,λ

sup
t∈[0,1]

Jγ,λ(ξ(t)) (3.1)

and Γγ,λ={ξ(t)∈C([0,1],H1(RN )) : ξ(0)=0,ξ(1) ̸=0,Jγ,λ(ξ(1))<0}. Moreover, from
Lemma 3.1, we get cγ,λ>0.

We next claim that the (PS)cγ,λ
sequence for Jγ,λ is bounded. To this end, we

assert that the item (4) in Lemma 2.1 plays an important role. Indeed, let {vn} be a
(PS)cγ,λ

sequence for Jγ,λ, namely,

Jγ,λ(vn)= cγ,λ+on(1), ⟨J ′
γ,λ(vn),ψ⟩=on(1)||ψ||, ∀ψ∈H1(RN ), (3.2)

where on(1)→0 as n→∞. Let ψn=G
−1
γ (vn)gγ(G

−1
γ (vn)). From Lemma 2.1−(3) and

(4),

|∇ψn|=

∣∣∣∣∣
(
1+

G−1
γ (vn)g

′
γ(G

−1
γ (vn))

gγ(G
−1
γ (vn))

)
∇vn

∣∣∣∣∣≤C|∇vn|, |ψn|≤C|vn|.

Thus ψn∈H1(RN ). By choosing ψ=ψn as a test function and from Lemma 2.1–(3),
(4), we get

pcγ,λ+on(1)+on(1)||vn||=pJγ,λ(vn)−⟨Jγ,λ(vn),ψn⟩

=

∫
RN

(
p−2

2
−
G−1

γ (vn)g
′
γ(G

−1
γ (vn))

gγ(G
−1
γ (vn))

)
|∇vn|2dx

+
p−2

2

∫
RN

V (x)|G−1
γ (vn)|2dx.
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By Lemma 2.1–(4), if (η1) occurs, we get p−2
2 − G−1

γ (t)g′
γ(G

−1
γ (t))

gγ(G
−1
γ (t))

> p−2
2 − 4+γ−2

√
4+2γ

γ >

0 if p∈ (2,2∗) and γ∈ (0,γ∗). On the other hand, if (η2) occurs, we get p−2
2 −

G−1
γ (t)g′

γ(G
−1
γ (t))

gγ(G
−1
γ (t))

> p−2
4 . This together with Lemma 2.1–(3) imply that ∥vn∥ is bounded.

Thus, up to subsequence, we may assume that there is vγ,λ∈H1(RN ) such that

vn⇀vγ,λ in H1(RN ),

vn→vγ,λ in Lq
loc(R

N ), q∈ [1,2∗),

vn→vγ,λ a.e. in O :=suppψ

and there exists wq(x)∈Lq(O), such that for any n, |vn(x)|≤ |wq(x)| a.e. in O. Now we
are going to prove that vγ,λ is a positive solution of (2.8).

Lemma 3.2. Suppose gγ(t) satisfy either (η1) or (η2), then vγ,λ obtained above is a
positive solution for modified problem (2.8).

Proof. We first show that ⟨J ′
γ,λ(vγ,λ),ψ⟩=0 for any ψ∈C∞

0 (RN ), i.e., vγ,λ is a
critical point of Jγ,λ. Note that as n→∞, we get

G−1
γ (vn)

gγ(G
−1
γ (vn))

→
G−1

γ (vγ,λ)

gγ(G
−1
γ (vγ,λ))

, a.e. in O, (3.3)

|G−1
γ (vn)|p−2G−1

γ (vn)

gγ(G
−1
γ (vn))

→
|G−1

γ (vγ,λ)|p−2G−1
γ (vγ,λ)

gγ(G
−1
γ (vγ,λ))

, a.e. in O. (3.4)

Furthermore, by Lemma 2.1−(3), we have∣∣∣∣∣ G−1
γ (vn)

gγ(G
−1
γ (vn))

ψ

∣∣∣∣∣≤C1|vn||ψ|≤C1|w2||ψ|, a.e. in O, (3.5)

∣∣∣∣∣ |G−1
γ (vn)|p−2G−1

γ (vn)

gγ(G
−1
γ (vn))

ψ

∣∣∣∣∣≤C2|vn|p−1|ψ|≤C2|wp|p−1|ψ|, a.e. in O. (3.6)

Now, combining (3.3)–(3.6), the Lebesgue dominated convergence theorem and the weak
convergence vn⇀vγ,λ in H1(RN ), we have ⟨J ′

γ,λ(vn),ψ⟩→⟨J ′
γ,λ(vγ,λ),ψ⟩ as n→∞. Be-

cause J ′
γ,λ(vn)→0 as n→∞, we conclude that J ′

γ,λ(vγ,λ)=0. By Remark 2.3, we may
assume vγ,λ≥0. If vγ,λ ̸≡0, by the strong maximum principle, we get vγ,λ>0. Oth-
erwise, assuming vγ,λ≡0, then, as in [24], {vn} is also a (PS)cγ,λ

for the function
J∞
γ,λ :H

1(RN )→R :

J∞
γ,λ(v)=

1

2

∫
RN

|∇v|2dx+ V∞
2

∫
RN

|G−1
γ (v)|2dx− λ

p

∫
RN

|G−1
γ (v)|pdx. (3.7)

Next, we claim that there exist α, R>0 and {yn}⊂RN such that

lim
n→∞

∫
BR(yn)

v2ndx≥α>0. (3.8)

Suppose by contradiction that for all R>0,

lim
n→∞

sup
y∈RN

∫
BR(y)

v2ndx=0. (3.9)
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Then, by Lions compactness lemma [18], we deduce that vn→0 in Lq(RN ) for any
q∈ (2,2∗). So by Lemma 2.1–(1) and (2), we have

lim
n→∞

∫
RN

|G−1
γ (vn)|pdx=0 (3.10)

and

lim
n→∞

∫
RN

|G−1
γ (vn)|p−2G−1

γ (vn)

gγ(G
−1
γ (vn))

vndx=0. (3.11)

Thanks to Lemma 2.1−(1) , for any ε>0, there exists δ>0 such that for |vn(x)|<δ,
we have∫

{x∈RN :|vn(x)|≤δ}
V (x)

∣∣∣∣ vn

gγ(G
−1
γ (vn))G

−1
γ (vn)

−1

∣∣∣∣∣∣G−1
γ (vn)

∣∣2dx≤V∞ε∫
RN

v2ndx≤Cε.

(3.12)

On the other hand, by Lemma 2.1−(2) and (3), we get

lim
n→∞

∫
{x∈RN :|vn(x)|≥δ}

V (x)

∣∣∣∣ vn

gγ(G
−1
γ (vn))G

−1
γ (vn)

−1

∣∣∣∣∣∣G−1
γ (vn)

∣∣2dx
≤CV∞δ2−p lim

n→∞

∫
RN

|vn|pdx=0. (3.13)

From (3.12) and (3.13), since ε is arbitrary, we have

lim
n→∞

∫
RN

V (x)
∣∣G−1

γ (vn)
∣∣2dx= lim

n→∞

∫
RN

V (x)
G−1

γ (vn)

gγ(G
−1
γ (vn))

vndx. (3.14)

Thus, by (3.11) and (3.14), we deduce that

0= lim
n→∞

⟨J ′
γ,λ(vn),vn⟩

= lim
n→∞

∫
RN

(
|∇vn|2+V (x)

G−1
γ (vn)

gγ(G
−1
γ (vn))

vn−λ
|G−1

γ (vn)|p−2G−1
γ (vn)

gγ(G
−1
γ (vn))

vn

)
dx

= lim
n→∞

∫
RN

(
|∇vn|2+V (x)|G−1

γ (vn)|2
)
dx. (3.15)

Then combining (3.10) and (3.15), we get Jγ,λ(vn)→0 as n→∞, which is a contradic-
tion since Jγ,λ(vn)→ cγ,λ>0 as n→∞. The claim is proved, i.e., (3.8) holds.

Define ṽn(x)=vn(x+yn). Since {vn} is a (PS)cγ,λ
sequence for J∞

γ,λ, {ṽn} is also a
(PS)cγ,λ

sequence for J∞
γ,λ. Arguing as in the case of {vn}, we get {ṽn} is bounded. So,

we may assume that ṽn⇀ṽγ in H1(RN ) with (J∞
γ,λ)

′(ṽγ)=0. By (3.8), we have ṽγ ̸=0.

Let

E(v)=

∫
RN

(
p−2

2
−
g′γ(G

−1
γ (v))G−1

γ (v)

gγ(G
−1
γ (v))

)
|∇v|2dx.

By Theorem 1.6 in [27], E(v) is weakly lower semi-continuous. Then according to
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Fatou’s lemma, we have

pcγ,λ= lim
n→∞

(pJ∞
γ,λ(ṽn)−⟨(J∞

γ,λ)
′(ṽn),G

−1
γ (ṽn)gγ(G

−1
γ (ṽn))⟩)

= lim
n→∞

∫
RN

(
p−2

2
−
g′γ(G

−1
γ (ṽn))G

−1
γ (ṽn)

gγ(G
−1
γ (ṽn))

)
|∇ṽn|2dx

+
p−2

2
V∞ lim

n→∞

∫
RN

|G−1
γ (ṽn)|2dx

≥
∫
RN

(
p−2

2
−
g′γ(G

−1
γ (ṽγ))G

−1
γ (ṽγ)

gγ(G
−1
γ (ṽγ))

)
|∇ṽγ |2dx+

p−2

2
V∞

∫
RN

|G−1
γ (ṽγ)|2dx

=pJ∞
γ,λ(ṽγ)−⟨(J∞

γ,λ)
′(ṽγ),G

−1
γ (ṽγ)gγ(G

−1
γ (ṽγ))⟩

=pJ∞
γ,λ(ṽγ),

(3.16)
which yields that J∞

γ,λ(ṽγ)≤ cγ,λ.
Analogous to the arguments used in [14], we can get a path χ(t) : [0,L]→H1(RN )

such that 
χ(0)=0,J∞

γ,λ(χ(L))<0, ṽγ ∈χ([0,L]),
χ(t)(x)>0,∀x∈RN ,t∈ [0,L],

max
t∈[0,L]

J∞
γ,λ(χ(t))=J

∞
γ,λ(ṽγ).

(3.17)

Define the set

Γ∞
γ,λ={χ∈C([0,1],H1(RN )) :χ(0)=0,χ(1) ̸=0,J∞

γ,λ(χ(1))<0}.

After a suitable scale change in t, we can assume χ(t)∈Γ∞
γ,λ. Particularly,

max
t∈[0,1]

J∞
γ,λ(χ(t))=J

∞
γ,λ(ṽγ)≤ cγ,λ.

With restriction we can assume that V (x)≤V∞ but V (x) ̸≡V∞ (otherwise there is
nothing to prove). Thus, χ(t)∈Γ∞

γ,λ⊂Γγ , and hence

cγ,λ≤ max
t∈[0,1]

Jγ,λ(χ(t)) :=Jγ,λ(χ(t))<J
∞
γ (χ(t))≤ max

t∈[0,1]
J∞
γ,λ(χ(t))=J

∞
γ,λ(ṽγ)≤ cγ,λ

which is a contradiction. It follows from Remark 2.2 that vγ,λ>0 is a critical point of
Jγ,λ and hence vγ,λ is a positive solution of (2.8).

For all γ>0, if p∈ (2,2∗) and γ∈ (0,γ∗), we take η(t) satisfying (η1). In this case,
g̃γ(t)=gγ(t) in (2.4) and hence (2.4) turns into (1.6). According to the above arguments,
we get uγ,λ=G

−1
γ (vγ,λ)>0 is a solution of (1.6).

However, if (η2) occurs, (2.4) can not be transformed into (1.6) unless vγ,λ obtained

above satisfies 0≤uγ,λ(x)=G−1
γ (vγ,λ(x))<

1
4

√
p−2
γ for all x∈RN . To this end, we next

establish the L∞ estimate for vγ,λ. First we give the boundedness of its gradient.

Lemma 3.3. The solution vγ,λ of (2.8) satisfies ||∇vγ,λ||2≤
√
2( 1

2+γ )
p

2(2−p)λ
1

2−p .

Proof. Since vγ,λ is a critical point of Jγ,λ, then

pcγ,λ=pJγ,λ(vγ,λ)−⟨J ′
γ,λ(vγ,λ),G

−1
γ (vγ,λ)gγ(G

−1
γ (vγ,λ))⟩

≥ p−2

4

∫
RN

|∇vγ,λ|2dx+
p−2

2

∫
RN

V (x)|G−1
γ (vγ,λ)|2dx.
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It follows that,

||∇vγ,λ||22≤
4p

p−2
cγ,λ. (3.18)

On the other hand, by Lemma 2.1−(3), we conclude that

Jγ,λ(v)≤Pγ,λ(v) :=
1

2

∫
RN

|∇v|2dx+2V∞

∫
RN

|v|2dx− λ

p

(
2

2+γ

) p
2
∫
RN

|v|pdx.

Denote

Σγ,λ={ξ∈C([0,1],H1(RN )) : ξ(0)=0,ξ(1) ̸=0,Pγ,λ(ξ(1))<0}

and note that Σγ,λ⊂Γγ,λ, we have

cγ,λ= inf
ξ∈Γγ,λ

sup
t∈[0,1]

Jγ,λ(ξ(t))≤ inf
ξ∈Σγ,λ

sup
t∈[0,1]

Jγ,λ(ξ(t))≤ inf
ξ∈Σγ,λ

sup
t∈[0,1]

Pγ,λ(ξ(t)). (3.19)

Let us set

Sp=inf

{∫
RN

(|∇v|2+4V∞|v|2)dx :v∈H1(RN ),

∫
RN

|v|pdx=1

}
.

It is well known that Sp>0 and it is achieved at some v∗, see e.g. [2].
Now, we take

ϕ(x)=

{
v∗(x), if Sp≤1,

v∗(S
p

(N−2)p−2N
p x), if Sp>1.

Then, we have

max
t∈R

Pγ,λ(tϕ)=Pγ,λ(tmaxϕ)

=
p−2

2p

(
2

2+γ

) p
2−p

λ
2

2−p

(∫
RN

(|∇ϕ|2+4V∞|ϕ|2)dx
) p

p−2
(∫

RN

|ϕ|pdx
) 2

2−p

≤ p−2

2p

(
2

2+γ

) p
2−p

λ
2

2−p . (3.20)

Note that we can choose large T >tmax such that Pγ,λ(Tϕ)<0. Thus for t∈ [0,1],

we get ξ(t) := tTϕ∈Σγ,λ such that Pγ,λ(ξ(t))≤ p−2
2p ( 1

2+γ )
p

2−pλ
2

2−p . It follows from (3.19)
that

cγ,λ≤
p−2

2p

(
1

2+γ

) p
2−p

λ
2

2−p ,

which yields the result.

Remark 3.1. Note that equation

−∆v+4V∞v=λ

(
2

2+γ

) p
2

|v|p−2v, x∈RN (3.21)



2000 QUASILINEAR ELLIPTIC EQUATIONS WITH PARAMETERS

is the Euler–Lagrange equation associated to the energy functional P (v). In [21], Po-
hozaev showed that (3.21) possesses a solution if and only if p∈ (2,2∗), N ≥3 (see
also [3]).

Remark 3.2. From Lemma 3.3 and Sobolev inequality, we have

∥vγ,λ∥2∗ ≤S− 1
2 ∥∇vγ,λ∥2≤

√
2

(
1

2+γ

) p
2(2−p)

S− 1
2λ

1
2−p ,

where S is the best Sobolev constant.

Proposition 3.1. The solution vγ,λ of (2.8) satisfies

||vγ,λ||∞≤
(
2∗−p+2

2

) 2(2∗−p+2)

(2∗−p)2

2
2·2∗−2−p
2(2∗−p) S− 2∗−2

2(2∗−p)

(
1

2+γ

) p(2∗−2)
2(2−p)(2∗−p)

λ
1

2−p .

Proof. The result can be proved in a similar way as Proposition 3.1 in [1], we give
the outline of the proof here. In what follows, for convenience, we denote vγ,λ by v. For
each m∈N and β>1, let Am={x∈RN : |v|β−1≤m} and Bm=RN \Am. Define

vm=

{
v|v|2(β−1), in Am,

m2v, in Bm.

Note that vm∈H1(RN ). Using vm as a test function in (2.7), we deduce that∫
RN

[
∇v∇vm+V (x)

G−1
γ (v)

gγ(G
−1
γ (v))

vm

]
dx=λ

∫
RN

|G−1
γ (v)|p−2G−1

γ (v)

gγ(G
−1
γ (v))

vmdx. (3.22)

Besides, we have∫
RN

∇v∇vmdx=(2β−1)

∫
Am

|v|2(β−1)|∇v|2dx+m2

∫
Bm

|∇v|2dx. (3.23)

Let

wm=

{
v|v|β−1, in Am,

mv, in Bm.

Then ∫
RN

|∇wm|2dx=β2

∫
Am

|v|2(β−1)|∇v|2dx+m2

∫
Bm

|∇v|2dx. (3.24)

Thus from (3.23) and (3.24), we get∫
RN

(|∇wm|2−∇v∇vm)dx=(β−1)2
∫
Am

|v|2(β−1)|∇v|2dx. (3.25)

Combining Lemma 2.1−(3), (3.22), (3.23) and (3.25), since β>1, we have∫
RN

|∇wn|2dx≤
[
(β−1)2

2β−1
+1

]∫
RN

∇v∇vmdx

≤β2

∫
RN

[
∇v∇vm+V (x)

G−1
γ (v)

gγ(G
−1
γ (v))

vm

]
dx

=β2λ

∫
RN

|G−1
γ (v)|p−2G−1

γ (v)

gγ(G
−1
γ (v))

vmdx

≤
√
2β2λ

∫
RN

|v|p−2w2
mdx.
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By Hölder inequality, and since |wm|≤ |v|β in RN and |wm|= |v|β in Am, we get(∫
Am

|v|β2
∗
dx

)N−2
N

≤
√
2λβ2||v||p−2

2∗

(∫
RN

|v|2βq1dx

) 1
q1

,

where q1=
2∗

2∗−p+2 . By Monotone Convergence Theorem, letting m→∞, we have

||v||β2∗ ≤β
1
β (
√
2λ||v||p−2

2∗ )
1
2β ||v||2βq1 . (3.26)

Setting σ= 2∗

2q1
= 2∗−p+2

2 and β=σ in (3.26), we obtain 2q1β=2∗ and

||v||σ2∗ ≤σ
1
σ (
√
2λ||v||p−2

2∗ )
1
2σ ||v||2∗ . (3.27)

Taking β=σ2 in (3.26), we have

||v||σ22∗ ≤σ
2
σ2 (

√
2λ||v||p−2

2∗ )
1
2σ ||v||σ2∗ . (3.28)

From (3.27) and (3.28),

||v||σ22∗ ≤σ
1
σ+ 2

σ2 (
√
2λ||v||p−2

2∗ )
1
2σ+ 1

2σ2 ||v||2∗ .

Taking β=σi (i=1,2,·· ·) and iterating (3.26), we get

||v||σj2∗ ≤σ
∑j

i=1
i

σi (
√
2λ||v||p−2

2∗ )
1
2

∑j
i=1

1

σi ||v||2∗ .

Therefore, by (3.20), using Sobolev inequality, taking the limit of j→+∞, we get

||v||∞≤σ
σ

(σ−1)2 2
1

4(σ−1)λ
1

2(σ−1) ||v||
2∗−2
2∗−p

2∗

=

(
2∗−p+2

2

) 2(2∗−p+2)

(2∗−p)2

2
2·2∗−2−p
2(2∗−p) S− 2∗−2

2(2∗−p)

(
1

2+γ

) p(2∗−2)
2(2−p)(2∗−p)

λ
1

2−p .

This ends the proof.

Proof of Theorem 1.1–(1). For all γ>0, if p∈ (2,2∗) and γ∈ (0,γ∗), we take
η(t) satisfying (η1). In this case, g̃γ(t)=gγ(t) in (2.4) and hence (2.4) turns into (1.6).
It follows from Lemma 3.2 and Remark 2.2 that uγ,λ=G

−1
γ (vγ,λ)>0 is a solution of

(1.6).

Proof of Theorem 1.1–(2). From Proposition 3.1, for any γ>0, we set K=(
2∗−p+2

2

) 2(2∗−p+2)

(2∗−p)2

2
2·2∗−2−p
2(2∗−p) S− 2∗−2

2(2∗−p)

(
1

2+γ

) p(2∗−2)
2(2−p)(2∗−p)

and choose λ∗=dγ
p−2
2 with d=

(
√
p−2

4
√
2K

)2−p such that

||uγ,λ||∞= ||G−1
γ (vγ,λ)||∞

≤
√
2||vγ,λ||∞≤

√
2Kλ

1
2−p ≤ 1

4

√
p−2

γ
, ∀λ∈ (λ∗,+∞).

In this case, we take η(t) satisfying (η2). It follows from above estimate that g̃γ(t)=gγ(t)
in (2.4) and hence (2.4) turns into (1.6) if λ∈ (λ∗, +∞). Again using Lemma 3.2 and
Remark 2.2 we obtain that uγ,λ=G

−1
γ (vγ,λ)>0 is a solution of (1.6).
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Proof of Theorem 1.1–(3). We are going to find a constant

p∗∈
[
2∗,min

{
9+2γ

8+2γ
,

2γ+4−2
√
4+2γ

γ

}
2∗
)

such that problem (1.6) has no positive solution u∈H1(RN ) for p≥p∗ if x ·∇V (x)≥0
in RN . It suffices to prove that problem (2.8) has no positive solution.

Suppose by contradiction that v∈H1(RN ) is a positive solution of (2.8), it follows
from the Pohozaev identity that

−1

2

∫
RN

(x ·∇V (x))|G−1
γ (v)|2dx=

∫
RN

K(G−1
γ (v))dx

=:

∫
{x∈RN :0≤u< 1

λ
1

p−2

}
K(u)dx+

∫
{x∈RN :u≥ 1

λ
1

p−2

}
K(u)dx,

(3.29)

where u=G−1
γ (v) and

K(u)=
(N−2)λ

2

Gγ(u)u
p−1

gγ(u)
−Nλ

p
up+

N

2
u2−N−2

2

Gγ(u)u

gγ(u)
.

The assumption x ·∇V (x)≥0 implies that

−1

2

∫
RN

(x ·∇V (x))|G−1
γ (v)|2dx<0.

Therefore, to complete the proof of our Theorem 1.1–(3), it suffices to verify that the
right-hand side of (3.29) is nonnegative.

Using Lemma 2.1–(4), we get K(u)>0 if p≥ 2γ+4−2
√
4+2γ

γ 2∗>2∗. Noting

that 2γ+4−2
√
4+2γ

γ →1 as γ→0. Hence, we only need to consider the case p∈
[2∗, 2γ+4−2

√
4+2γ

γ 2∗).
Noting that

K(u)≥ (N−2)λ

2

Gγ(u)u
p−1

gγ(u)
−Nλ

2∗
up+

N

2
u2−N−2

2

Gγ(u)u

gγ(u)

=
N−2

2

u

gγ(u)

(
ugγ(u)−Gγ(u)

)(
1−λup−2

)
+u2, (3.30)

we see ∫
{x∈RN :0≤u< 1

λ
1

p−2

}
K(u)dx>0. (3.31)

Observing (3.30), we can choose t̄> 1

λ
1

p−2
(which can be independent of p) such that

K(t)≥0, ∀t∈ [ 1

λ
1

p−2
, t̄]. Now, by direct calculation, we see

tg′γ(t)

gγ(t)
=

1

2t−2+(4+γ)+(2+γ)t2

≤ 1

2t̄−2+(4+γ)+(2+γ)t̄2
=:η(t̄)≤ 1

8+2γ
, ∀t≥ t̄.
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Hence, if we choose p≥ (1+η(t̄))2∗=:p∗, we find

K(u)=
Nλup−1

pgγ(u)

( p
2∗
Gγ(u)−ugγ(u)

)
+
N−2

2

(
ugγ(u)−Gγ(u)

)
+u2

>
Nλup−1

pgγ(u)

[
(1+η(t̄))Gγ(u)−ugγ(u)

]
≥0,

which combined with (3.31) implies that the right-hand side of (3.29) is positive.
As a result, we complete the proof of Theorem 1.1–(3).

Remark 3.3. Since we can not find the explicit form of Gγ(t), it is difficult for us to
give the exact value of t̄, below which K(u) in (3.30) is nonnegative. However, we guess
that t̄ there should be +∞, which implies that p∗ is exactly 2∗, the critical exponent.

4. Asymptotic behavior of positive solution uγ,λ
In what follows, we assume that V (x)=µ>0. For fixed λ>0, we study the asymp-

totic behavior of uγ,λ as γ→0+.
Define

mγ,λ=inf{Jγ,λ(v);v∈H1(RN )\{0} is a solution of (2.8)}.

Following the arguments of Berestycki and Lions in [3], we can prove that mγ,λ>0 and
mγ,λ is attained by vγ,λ satisfying

(1) vγ,λ>0 is spherically symmetric and vγ,λ decreases with respect to |x|;
(2) vγ,λ∈C2(RN );

(3) vγ,λ together with its derivatives up to order 2 have exponential decay at infinity:

|Dαvγ,λ|≤Ce−δ|x|, x∈RN ,

for some C, δ>0 and |α|≤2.

In [14], Jeanjean and Tanaka proved that mγ,λ= cγ,λ, where cγ,λ is defined in (3.1)
with V (x) being replaced by µ. Moreover, we choose γ1∈ (0, γ∗) such that uγ,λ=
G−1

γ (vγ,λ) is indeed of a solution of (1.6) with V (x)=µ for γ∈ (0,γ1]. Similar to the
proof of Proposition 3.1, we can prove vγ,λ is uniformly bounded with respect to γ.

We introduce the set P̃ of non-trivial solutions of (2.8) satisfying Pohozaev identity
as follows:

P̃=

{
v∈H1(RN )\{0} : P̃ (v) :=N−2

2N

∫
RN

|∇v|2dx

− µ

2

∫
RN

|G−1
γ (v)|2dx− λ

p

∫
RN

|G−1
γ (v)|pdx=0

}
.

Then, similar to the proof of Lemma 3.1 in [14], we deduce that

mγ,λ= inf
v∈P̃

Jγ,λ(v)

From Lemma 2.1−(3), Lemma 3.3 and the definition of gγ(t), we get

||uγ,λ||≤C||vγ,λ||≤C, (4.1)
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which implies that uγ,λ is uniformly bounded with respect to γ in H1(RN ). Passing to
a subsequence, we may assume that as γ→0+,

uγ,λ⇀uλ in H1(RN ),

uγ,λ→uλ in Lq
loc(R

N ), q∈ [1,2∗),

uγ,λ→uλ a.e. in K :=suppφ, φ(x)∈C∞
0 (RN ).

(4.2)

Moreover, there exists a function ϕ(x)∈Lq(K) such that |uγ,λ|≤ϕ(x) a.e. in K for all
γ.

We claim that uλ is a solution of problem (1.7), namely, ⟨I ′λ(uλ),φ⟩=0, ∀φ∈
C∞

0 (RN ), where Iλ(u) is defined by

Iλ(u)=
1

2

∫
RN

(|∇u|2+µu2)dx− λ

p

∫
RN

|u|pdx.

In fact, by (4.2), we have

0=⟨I ′γ(uγ,λ),φ⟩

=

∫
RN

(∇uγ,λ∇φ+µuγ,λφ)dx

−γ
∫
RN

[
uγ,λ

2(1+u2γ,λ)
2
|∇uγ,λ|2φ+

u2γ,λ
2(1+u2γ,λ)

∇uγ,λ∇φ

]
dx−λ

∫
RN

|uγ,λ|p−2uγ,λφdx

=

∫
RN

(∇uγ,λ∇φ+µuγ,λφ)dx−λ
∫
RN

|uγ,λ|p−2uγ,λφdx+o(1)

=

∫
RN

(∇u∇φ+µuφ)dx−λ
∫
RN

|u|p−2uφdx+o(1). (4.3)

Thus, we obtain ∫
RN

(∇uλ+µuλ−λ|uλ|p−2uλ)φdx=0, (4.4)

which yields uλ is a solution of problem (1.7). Since uγ,λ(x)>0 and uγ,λ(x)∈C2, we
have uλ(x)≥0.

Note that at this stage, we do not know whether uλ(x) ̸≡0 or not. Next we prove
uλ(x) ̸≡0 and thus uλ(x)>0.

To this end, set

m̃γ,λ=inf{Iγ,λ(u);u∈H1(RN )\{0} is a solution of (2.4)}.

By Lemma 2.1, for v∈H1(RN ), u=G−1
γ (v)∈H1(RN ), while for u∈H1(RN ), v=

Gγ(u)∈H1(RN ). Moreover, since

Iγ,λ(u)=Jγ,λ(v),

⟨I ′γ,λ(u),φ⟩= ⟨J ′
γ,λ(v),gγ(G

−1
γ (v))φ⟩, ∀φ∈C∞

0 (RN ),

we have m̃γ,λ=mγ,λ.
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Next, we set

P=

{
u∈H1(RN )\{0} :P (u) :=N−2

2N

∫
RN

[
1+

γu2

2(1+u2)

]
|∇u|2dx+ µ

2

∫
RN

|u|2dx

− λ

p

∫
RN

|u|pdx=0

}
.

Then, since P (u)= P̃ (v) for u=G−1
γ (v), we get that

mγ,λ= inf
v∈P̃

Jγ,λ(v)= inf
u∈P

Iγ,λ(u).

Lemma 4.1.

limsup
γ→0+

mγ,λ≤mλ.

where mλ is the ground state level of (1.7) defined by

mλ=inf{Iλ(u) :u∈H1(RN )\{0},I ′λ(u)=0}.

Proof. Let u be a ground state of (1.7) such that Iλ(u)=mλ. By [3], u∈L∞.
Moreover, u statisfies the Pohozaev identity:

N−2

2N

∫
RN

|∇u|2dx+ µ

2

∫
RN

u2dx− λ

p

∫
RN

|u|pdx=0. (4.5)

For τ >0, we let

P
(
u
(x
τ

))
:=
N−2

2N
τN−2

∫
RN

[
1+

γu2

2(1+u2)

]
|∇u|2dx

+
µ

2
τN
∫
RN

u2dx− λ

p
τN
∫
RN

|u|pdx. (4.6)

It follows from (4.6) and (4.5) that

P
(
u
(x
τ

))
:=

N−2

2N
τN−2

[
(1−τ2)

∫
RN

|∇u|2dx+γ
∫
RN

u2

2(1+u2)
|∇u|2dx

]
.

Let

τγ,λ=

√√√√∫RN

[
1+ γu2

2(1+u2)

]
|∇u|2dx∫

RN |∇u|2dx
,

we get P (u(xτ ))=0 and τγ,λ→1 as γ→0+. Clearly, u( x
τγ,λ

)∈P.

Therefore, we have

mγ,λ≤ Iγ,λ
(
u
( x

τγ,λ

))
=

1

2
τN−2
γ

∫
RN

[
1+

γu2

2(1+u2)

]
|∇u|2dx+ 1

2
µτNγ

∫
RN

u2dx− λ

p
τNγ

∫
RN

|u|pdx,
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which yields

limsup
γ→0+

mγ,λ≤
1

2

∫
RN

(|∇u|2+µu2)dx− λ

p

∫
RN

|u|pdx

= Iλ(u)=mλ.

Lemma 4.2. For any given γ̃ >0, there exists some positive constant cγ̃,λ such that
mγ,λ>cγ̃,λ for all γ∈ (0, γ̃).

Proof. For γ̃ >0, we define the functional

Qγ̃,λ(v)=
1

2

∫
RN

|∇v|2dx+ µ

2+ γ̃

∫
RN

v2dx− λ

p

∫
RN

|v|pdx

and the set

Σγ̃,λ={ξ∈C([0,1],H1(RN )) : ξ(0)=0,ξ(1) ̸=0,Qγ̃,λ(v)(ξ(1))<0}.

By Lemma 2.1–(3), we have

Qγ̃,λ(v)≤Jγ,λ(v)

and thus Γγ,λ⊂Σγ̃,λ. So, we obtain

0<cγ̃,λ= inf
ξ∈Σγ̃,λ

sup
t∈[0,1]

Qγ̃,λ(ξ(t))

≤ inf
ξ∈Γγ,λ

sup
t∈[0,1]

Qγ̃,λ(ξ(t))≤ inf
ξ∈Γγ,λ

sup
t∈[0,1]

Jγ,λ(ξ(t))= cγ,λ=mγ,λ.

The proof is finished.

Lemma 4.3. Assume that uγ,λ is a solution of (2.4), then there exist ℓ∈N∪{0},
{yjγ}⊂RN , j=1,2, ·· · ,ℓ and ujλ∈H1(RN )\{0} such that as γ→0+,

(1) Iγ,λ(uγ,λ)→ Iλ(uλ)+
∑ℓ

j=1 Iλ(u
j
λ);

(2) ||uγ,λ−uλ−
∑ℓ

j=1u
j
λ(·−yjγ)||→0;

(3) I ′λ(u
j
λ)=0, |yjγ |→∞, |yiγ−yjγ |→0, i ̸= j.

Proof. We follow the arguments developed by Benci and Cerami, see [4]. Let
u1γ,λ :=uγ,λ−uλ, then u1γ,λ⇀0 in H1(RN ) and thus

||u1γ,λ||2= ||uγ,λ||2−||uλ||2+o(1), (4.7)

where o(1)→0 as γ→0+.
By Brezis-Lieb lemma [31], we get

||u1γ,λ||qq = ||uγ,λ||qq−||uλ||qq+o(1), q∈ [2,2∗). (4.8)

Since ||uγ,λ||∞≤C and ||uγ,λ||≤C, by (4.7) and (4.8), we have

mγ,λ= Iγ,λ(uγ,λ)

=
1

2

∫
RN

[
1+

γu2γ,λ
2(1+u2γ,λ)

]
|∇uγ,λ|2dx+

1

2
µ

∫
RN

u2γ,λdx−
λ

p

∫
RN

|uγ,λ|pdx



YINBIN DENG AND YOUJUN WANG 2007

= Iλ(u
1
γ,λ)+Iλ(uλ)+o(1) (4.9)

and in a similar way that

0=⟨I ′γ(uγ,λ),φ⟩

=

∫
RN

[
1+

γu2γ,λ
2(1+u2γ,λ)

]
∇(u1γ,λ+uλ)∇φdx−γ

∫
RN

uγ,λ
(1+u2γ,λ)

2
|∇(u1γ,λ+uλ)|2φdx

+µ

∫
RN

(u1γ,λ+uλ)φdx−
∫
RN

|u1γ,λ+uλ|p−2(u1γ,λ+uλ)φdx

=⟨I ′λ(u1γ,λ),φ⟩+⟨I ′λ(uλ),φ⟩+o(1)
=⟨I ′λ(u1γ,λ),φ⟩+o(1), ∀φ∈H1(RN ). (4.10)

Define

δ= lim
n→∞

sup
x∈RN

∫
B1(y)

|u1γ,λ|2dx.

If δ=0, then using Lions lemma [18], u1γ,λ→0 in Lp(RN ), p∈ (2,2∗). Since by (4.10),

⟨I ′λ(u1γ,λ),u1γ,λ⟩→0, we have u1γ,λ→0 in H1(RN ), namely, uγ,λ→uλ in H1(RN ) and the

proof is complete. If δ>0, we may assume that there exists {y1γ}⊂RN such that∫
B1(y1

γ)

|u1γ,λ|2dx>
δ

2
,

that is, ∫
B1(0)

|u1γ,λ(x+y1γ)|2dx>
δ

2
. (4.11)

We may assume that u1λ(x+y
1
γ)⇀u1λ in H1(RN ). By (4.11), u1λ ̸=0 and since u1λ⇀0 in

H1(RN ), we have |y1γ |→∞. Let u2γ,λ=u
1
γ,λ−u1λ(·−y1γ), we get

||u2γ,λ||2= ||uγ,λ||2−||uλ||2−||u1λ||2+o(1),

||u2γ,λ||pp= ||uγ,λ||pp−||uλ||pp−||u1λ||pp+o(1)

and in a similar way that

mγ,λ= Iλ(uλ)+Iλ(u
1
λ)+Iλ(u

2
γ,λ)+o(1),

⟨I ′λ(u1),φ⟩=0

and

⟨I ′λ(u2γ,λ),φ⟩=o(1), ∀φ∈H1(RN ).

Iterating the above procedure, since Iλ(u
j)>0 for every j, the iteration must terminate

at some finite index, we get the result.

We now prove uλ ̸≡0. In fact, we have the following result:
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Lemma 4.4. There exists yγ ∈RN such that uγ,λ(·−yγ)→uλ(·)>0 in H1(RN ) as
γ→0+.

Proof. In view of Lemma 4.3, if uλ ̸≡0, we have

lim
γ→0+

mγ,λ= Iλ(uλ)+

ℓ∑
j=1

Iλ(u
j
λ)≥ (ℓ+1)mλ.

However, by Lemma 4.1, we get limsupγ→0+mγ,λ≤mλ. Thus ℓ=0 and the proof is
complete provided yγ =0.

If uλ≡0, then by Lemma 4.3 again, ℓ=1. Thus we have uγ,λ→u1λ(·−y1γ) inH1(RN )
and I ′λ(u

1
λ)=0. Since the ground state of (1.7) is unique up to translation, it follows

that u1λ(x)=uλ(x+ ỹ) for some ỹ∈RN , where uλ is the ground state of (1.7). So,
uγ,λ→uλ(·−y1γ+ ỹ) in H1(RN ).

Lemma 4.5. ||∇uγ,λ||∞≤C.

Proof. Recalling that vγ,λ satisfies

−∆vγ,λ=−µ
G−1

γ (vγ,λ)

gγ(G
−1
γ (vγ,λ))

+λ
|G−1

γ (vγ,λ)|p−2G−1
γ (vγ,λ)

gγ(G
−1
γ (vγ,λ))

.

By Lemma 2.1, we get

|∆vγ,λ|≤C(|vγ,λ|+ |vγ,λ|p−1).

For any q>2∗, we have

||∆vγ,λ||q ≤C||vγ,λ||q+C||vp−1
γ ||q

≤C
[
||vγ,λ||

q−2∗
q

∞ + ||vγ,λ||
q(p−1)−2∗

q
∞

]
||vγ,λ||

2∗
q

2∗

≤C. (4.12)

By Corollary 9.10 in [11], ||D2uγ,λ||q ≤C||∆uγ,λ||q for C=C(n,p)>0. Then, by
the interpolation, we have ||vγ,λ||W 2,q(RN )≤C. Since q>2∗, by Sobolev inequalities

W 2,q(RN ) ↪→C1,β(RN ), we get ||vγ,λ||C1,β(RN )≤C, where the constant C depends only
on β and q. The result follows from the fact ||∇uγ,λ||∞≤C||∇uγ,λ||∞.

Lemma 4.6. uγ,λ→uλ in H2(RN ).

Proof. We claim that there exists C>0 independent of γ∈ (0,γ0) such that
||∆uγ,λ||2≤C. Indeed, we observe that

−

(
1+

γu2γ,λ√
1+u2γ,λ

)
∆uγ,λ=−µuγ,λ+

γuγ,λ√
(1+u2γ,λ)

3
|∇uγ,λ|2+λ|uγ,λ|p−2uγ,λ.

Thus, by Lemma 4.5 and (4.1), we have

||∆uγ,λ||2=

∥∥∥∥∥
√
1+u2γ,λ√

1+u2γ,λ+γu
2
γ,λ

[
−µuγ,λ+

γuγ,λ√
(1+u2γ)

3
|∇uγ,λ|2+λ|uγ,λ|p−2uγ,λ

]∥∥∥∥∥
2

≤C. (4.13)
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Let L=−∆+µI, then L−1 is a bounded operator from L2(RN ) to H2(RN ),

uγ,λ=L
−1

[
γu2γ,λ√
1+u2γ,λ

∆uγ,λ+
γuγ,λ√

(1+u2γ,λ)
3
|∇uγ,λ|2+λ|uγ,λ|p−2uγ,λ

]

and

uλ=L
−1(λ|uλ|p−2uλ).

Thus, we get

||uγ,λ−uλ||H2 ≤C(γ||∆uγ,λ||2+γ||uγ,λ|∇uγ,λ|2||2)+λ|||uγ,λ|p−2uγ,λ−|uλ|p−2uλ||2.
(4.14)

By Lemma 4.5 and (4.13), we get

γ||∆uγ,λ||2+γ||uγ,λ|∇uγ,λ|2||2→0. (4.15)

Since uγ,λ is radial, by the radial lemma [26], we have

|uγ,λ|≤
C

|x|
||uγ,λ||≤

C

|x|
, |x|≥1.

Thus, for any ε>0, there exists R>0 such that

|||uγ,λ|p−2uγ,λ−|u|p−2u||L2(RN\BR(0))<ε. (4.16)

Since uγ,λ⇀uλ in H1(RN ), it follows that there exists ϕ(x)∈L1(BR(0)) such that

|uγ,λ|p−1≤C|ϕ|∈L1(BR(0)).

Moreover

|uγ,λ|p−2uγ,λ→|uλ|p−2uλ, a.e. in BR(0).

Thus, by Lebesgue dominated convergence theorem, we have

|||uγ,λ|p−2uγ,λ−|uλ|p−2uλ||L2(BR(0))→0. (4.17)

Finally, combining (4.14)−(4.17), we obtain

lim
γ→0+

||uγ,λ−uλ||H2 =0.

Lemma 4.7. uγ,λ→uλ in C
2(RN ).

Proof. First, we show that vγ,λ→uλ in C2(RN ). Since

|vγ,λ|≤
C

|x|
||vγ,λ||≤

C

|x|
, |x|≥1,

for any q>2 and ε>0, there exists R>0 independent of γ such that∥∥∥∥∥−µ G−1
γ (vγ,λ)

gγ(G
−1
γ (vγ,λ))

+
|G−1

γ (vγ,λ)|p−2G−1
γ (vγ,λ)

gγ(G
−1
γ (vγ,λ))

∥∥∥∥∥
Lq(RN\BR(0))

<ε



2010 QUASILINEAR ELLIPTIC EQUATIONS WITH PARAMETERS

and

||µuλ||Lq(RN\BR(0))+ |||uλ|p−1||Lq(RN\BR(0))<ε.

On the other hand, since

||uγ,λ||∞= ||G−1
γ (vγ,λ)||∞≤C,

we have

G−1
γ (vγ,λ)→uλ, a.e. in RN ,

−µ
G−1

γ (vγ,λ)√
1+G−1

γ (vγ,λ)2
→−µuλ, a.e. in RN .

By Lebesgue dominated convergence theorem, we get∥∥∥∥∥−µ G−1
γ (vγ,λ)√

1+G−1
γ (vγ,λ)2

+µu

∥∥∥∥∥
Lq(BR(0))

+λ
∥∥∥|uγ,λ|p−2uγ,λ−|uλ|p−2uλ

∥∥∥
Lq(BR(0))

→0.

(4.18)
Thus we have limsupγ→0+ ||∆(vγ,λ−uλ)||Lq ≤2ε. Since ε>0 is arbitrary, we get vγ,λ→
uλ in W 2,q(RN ) for any q>2 as γ→0+. By Sobolev embedding, we have vγ,λ→uλ in
C1,β(RN ). By the bootstrap arguments, we have vγ,λ→uλ in C2(RN ).

Next, we prove vγ,λ−uγ,λ→0 in C2(RN ). Clearly, we have

|vγ,λ−uγ,λ|=

∣∣∣∣∣
∫ uγ,λ

0

[√
1+

γt2

2(1+ t2)
−1

]
dt

∣∣∣∣∣
≤ 1

2

√
γu2γ . (4.19)

Thus, from Proposition 3.1 that

sup
x∈RN

|vγ,λ(x)−uγ,λ(x)|≤C
√
γ→0.

From Lemma 4.5 and ∇uγ,λ=gγ(G−1
γ (vγ,λ))∇vγ,λ, we get

sup
x∈RN

|∇vγ,λ(x)−∇uγ,λ(x)|= sup
x∈RN

∣∣∣∣∣ γu2γ∇uγ,λ√
2+(2+γ)u2γ

[√
2(1+u2γ)+

√
2+(2+γ)u2γ

]∣∣∣∣∣
≤Cγ→0.

Similarly, we get

sup
x∈RN

∣∣∣∣∣−µ G−1
γ (vγ,λ)

gγ(G
−1
γ (vγ,λ))

+
|G−1

γ (vγ,λ)|p−2G−1
γ (vγ,λ)

gγ(G
−1
γ (vγ,λ))

+µuγ,λ−λ|uγ,λ|p−2uγ,λ

∣∣∣∣∣→0.

From

|∆uγ,λ|=

∣∣∣∣∣
√
1+u2γ√

1+u2γ+γu
2
γ

[
−µuγ,λ+

γuγ,λ√
(1+u2γ)

3
|∇uγ,λ|2+λ|uγ,λ|p−2uγ,λ

]∣∣∣∣∣
≤C,
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we obtain

sup
x∈RN

|∆(vγ,λ−uγ,λ)|≤γ sup
x∈RN

∣∣∣∣∣ uγ,λ√
(1+u2γ)

3
|∇uγ,λ|2

∣∣∣∣∣+γ sup
x∈RN

∣∣∣∣∣ u2γ√
1+u2γ

∆uγ,λ

∣∣∣∣∣
+ sup

x∈RN

∣∣∣∣∣−µ G−1
γ (vγ,λ)

gγ(G
−1
γ (vγ,λ))

+λ
|G−1

γ (vγ,λ)|p−2G−1
γ (vγ,λ)

gγ(G
−1
γ (vγ,λ))

+µuγ,λ−λ|uγ,λ|p−2uγ,λ

∣∣∣∣∣
→0. (4.20)

In a similar way, using (4.20), together with Sobolev interpolation inequality, we
can show

sup
x∈RN

|Dj(vγ,λ−uγ,λ)|→0, |j|≤2,

and this completes the proof of Lemma 4.7.

Proof. (Proof of Theorem 1.2.) Since uγ,λ(x)=G
−1
γ (vγ,λ(x)), G

−1
γ (t) is an

odd C∞ function and increases in R, vγ,λ(x) is spherically symmetric and monotone
decreasing with respect to r= |x|, we deduce that uγ,λ(x) is also spherically symmetric
and monotone decreasing with respect to r= |x|. Finally, the asymptotic behavior of
uγ,λ follows from Lemmas 4.6 and 4.7.
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