
COMMUN. MATH. SCI. © 2023 International Press

Vol. 21, No. 7, pp. 2013–2028

ON CONNECTION AMONG QUANTUM-INSPIRED ALGORITHMS
OF THE ISING MODEL∗

BOWEN LIU† , KAIZHI WANG‡ , DONGMEI XIAO§ , AND ZHAN YU¶

Abstract. Various combinatorial optimization problems can be reduced to find the minimizer
of an Ising model without external fields. This Ising problem is NP-hard and discrete. It is an
intellectual challenge to develop algorithms for solving the problem. Over the past decades, many
quantum and classical computations have been proposed from physical, mathematical or computational
views for finding the minimizer of the Ising model, such as quantum annealing, coherent Ising machine,
simulated annealing, adiabatic Hamiltonian systems, etc.. Especially, some of them can be described
by differential equations called quantum-inspired algorithms, which use the signum vector of a solution
of the differential equations to approach the minimizer of the Ising model. However, the mathematical
principle why the quantum-inspired algorithms can work, to the best of our knowledge, is far from
being well understood.

In this paper, using Morse’s theory we reveal the mathematical principle of these quantum-inspired
algorithms for the Ising model. It shows that the Ising problem can be designed by minimizing a smooth
function, and those quantum-inspired algorithms are to find a global minimum point of the smooth
function. In view of this mathematical principle, it can be proved that several known quantum-inspired
algorithms: coherent Ising machine, Kerr-nonlinear parametric oscillators and simulated bifurcation
algorithm, can reach the minimizers of the Ising model under suitable conditions. Moreover, we discuss
the uniqueness of minimizers for the Ising problem in some senses, and give a sufficient condition to
guarantee that the Ising model has a unique minimizer, that is, there is only a pair of minimizers with
opposite signs.
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1. Introduction
The Ising model without external fields has been extensively studied in combinato-

rial optimization since many combinatorial problems can be equivalently formulated as
finding the ground state of an Ising model [2], for example, the well-known MAX-CUT
problem [3, 13] can be described as an Ising problem [2, 7, 14]. As applications, many
problems can be equivalently formulated as an Ising problem such as the very-large-scale
integrated circuit design [2], drug design [19], traffic flow optimization [16], and financial
portfolio management [18]. It is well known that the Ising problem is NP-hard problem
for classical computers [2]. Over the past decades, many models and algorithms from
the aspects of quantum and classical computations are proposed to find the ground
state of the Ising problem such as the coherent Ising machines (CIMs) [22, 23], optical
Ising machine [17] and simulated annealing (SA) [11,12], Kerr-nonlinear parametric os-
cillators (KPO) [4, 5] and the simulated bifurcation (SB) algorithm [6, 7], etc.. These
quantum and classical computations have shown effectiveness in solving large-scale Ising
models [6, 7, 10, 14]. A natural question to be asked is why these quantum-inspired al-
gorithms are effective. To the best of our knowledge, little has been well understood or
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justified mathematically about computations.
Some of the above quantum and classical computations, such as CIMs [22, 23],

KPO [4, 5], SB [7] can be described by some kinds of differential equations. Therefore,
we also call them dynamical system algorithms. For more dynamical system algorithms
(or quantum-inspired algorithms) related optimizations, readers may refer to [20,21] and
the references therein. These algorithms use the signum vector of solutions of continuous
dynamical systems to approach the minimizers of Ising discrete problem. The aim of
the present paper is to understand rigorously why the quantum-inspired algorithms can
work in finding the ground state of an Ising model. In particular, we will provide the
underlying mathematical principle that the Ising problem can be solved by minimizing
some smooth functions.

Let us first recall the Ising problem without external fields, which is

min
v

E(v) :=−1

2
vTSv, (1.1)

where v=(v1, ·· · ,vn)T with vi∈{−1,1} denotes a spin configuration, S=(si,j) is an
n×n symmetric coupling coefficient matrix with si,i=0 for all i. E(v) is called the
Ising energy and the candidate set of the Ising problem is denoted by

C(E)={−1,1}n :=
n︷ ︸︸ ︷

{−1,1}×{−1,1}×···×{−1,1} .

In the other words, the Ising problem is to find some v∈C(E) such that E(v) takes
the minimum value.

We now define a function U on Rn by

U(x)=

n∑
i=1

1

4
x4
i +

β−α2

2
xTx− 1

2
xTSx, x∈Rn, (1.2)

where α>1 is a parameter, β is a given positive constant, and S is the symmetric matrix
in (1.1).

Denote the signum vector of x by

sgn(x) :=(sgn(x1), ·· · ,sgn(xn))
T ∈{−1,0,1}n.

Our main result is stated as follows.

Theorem 1.1. For any a given symmetric matrix S and a positive number β, there
exists α∗>1 such that for any α>α∗, if x0 is a global minimum point of U(x), then
sgn(x0) is a minimizer of the Ising problem (1.1).

This theorem reveals the relationship between minimizers of the Ising problem
minv E(v) and global minimum points of the smooth function U(x). Local minimum
points of U(x) give all the candidates of the Ising model E(v) and the global mini-
mum points of U(x) give minimizers minv E(v) of the Ising problem. Therefore, the
quantum-inspired algorithms are to look for global minimum points of some smooth func-
tions. Various known quantum-inspired algorithms involve finding the global minimum
point of various deformation functions of U(x) [4,5,7,22,23]. We leave the proof of The-
orem 1.1 in Section 2, and revisit some known quantum-inspired algorithms in Section
3.

Furthermore, we consider if the minimizer of the Ising problem (1.1) is unique in
some senses. Note that S is a symmetric matrix in (1.1). Hence, the minimizers of (1.1)
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appear in pairs with opposite signs. If there is only a pair of minimizers with opposite
signs, then we say the minimizer of the Ising problem (1.1) is unique. To study the
uniqueness of the minimizers, we consider the order of the Ising energy. From the order
relation we obtain the sufficient condition for the uniqueness of the minimizers. For
simplicity, we make the following assumption on the symmetric matrix S in (1.1)

(A)
∑

1≤i<j≤n

ei,jsi,j ̸=0,

where si,j is the entry of S, ei,j takes any value in the set {−1,0,1} and cannot be zero
simultaneously.

Now we give the ascending order of the Ising energy under assumption (A) and
obtain the sufficient condition for the uniqueness of the minimizers of the Ising problem
(1.1) as follows.

Theorem 1.2. Assume that the condition (A) holds for (1.1). Then there exists
α′
∗>1 such that for α>α′

∗, all local minimum points x1,. ..,xN of function U(x) in
(1.2) satisfy that

U(x1)≤U(x2)<U(x3)≤U(x4)< ·· ·<U(xN−1)≤U(xN ), (1.3)

where N =2n. Let vi := sgn(xi), i∈{1,. ..,N/2}. Then v2i−1=−v2i and the corre-
sponding Ising energy satisfies that

E(v1)=E(v2)<E(v3)=E(v4)< ·· ·<E(vN−1)=E(vN ).

Hence, the Ising problem (1.1) has a unique minimizer v1 or v2 with v1=−v2.

This paper is organized as follows. In Section 2, we provide necessary preliminaries
on Morse’s theory, and prove Theorem 1.1 and Theorem 1.2. Moreover, we give some
examples and a weaker condition on the uniqueness of the minimizers. In Section 3,
we apply Theorem 1.1 to revisit some known quantum-inspired algorithms (CIM, KPO
and SB algorithm) and prove that the global minimum points found by CIM, KPO and
SB algorithm are minimizers of the Ising problem.

2. Mathematical principle on the quantum-inspired algorithms
In this section, we first recall some preliminaries on Morse’s theory. We then classify

critical points of U(x) according to their Morse indices in Proposition 2.2. At last, we
transform the Ising problem into looking for global minimum points of the smooth
function U(x) and thus obtain Theorem 1.1 and Theorem 1.2.

2.1. Preliminary results. The notion of Morse index of a smooth real-valued
function f at a critical point is given as follows.

Definition 2.1. Suppose that f is a smooth real-valued function on Rn and x is a
critical point of f , i.e., ∇f(x)=0. The Morse index i(x) of f at x is defined as the
number of negative eigenvalues of the Hessian D2f(x) counted with multiplicity and the
nullity ν(x) is the dimension of kernel at x. Namely,

if (x) :=max
{
dimV | V ⊂Rn is a subspace with eTD2f(x)e<0, ∀e∈V \{0}

}
,

νf (x) :=dimkerD2f(x).

If νf (x)=0, then f is called non-degenerate at x.
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Using the Morse index, critical points of f can be classified into local maximum
points whose Morse indices are n, local minimum points whose Morse indices are 0 and
saddle points whose Morse indices are between 0 and n. The sets of all local maximum
points, all local minimum points, all saddle points, are denoted by Cn(f), C0(f) and
Cs(f), respectively. We refer readers to [1] and [15] for more details on the Morse
theory.

Let

Ū(x)=

n∑
i=1

1

4
x4
i −

α2

2
xTx, α>1.

Then U(x)= Ū(x)+ β
2x

Tx− 1
2x

TSx by (1.2). Denote by C(U) and C(Ū) the sets of all
critical points of U(x) and Ū(x) respectively. It is straightforward to obtain that

C(U)={x∈Rn| (x3
1+(β−α2)x1,. ..,x

3
n+(β−α2)xn)

T −Sx=0},

and

C(Ū)={x∈Rn| (x3
1−α2x1,. ..,x

3
n−α2xn)

T =0}.

Both C(Ū) and C(U) are non-empty since 0∈C(U)∩C(Ū). Define the set A={−α,α}
and A0={−α,0,α}. Then we define

An
0 ={−α,0,α}n, An={−α,α}n.

The critical points of Ū(x) can be classified as follows.

Lemma 2.1. C(Ū)=An
0 . Moreover, for any a x∈C(Ū), there holds

iŪ (x)=#{j | xj =0,xj is the j-th component of x},

where #{·} represents the number of all elements of set {·}. Then C(Ū) can be classified
as follows.

(i) The unique local maximum point is the origin, i.e., Cn(Ū)={0}n;
(ii) the set of local minimum points C0(Ū)=An;

(iii) the set of saddle points Cs(Ū)=C(Ū)\
(
Cn(Ū)∪C0(Ū)

)
.

Proof. Solving ∇Ū(x)=0 directly, we obtain the solutions x=(x1,. ..,xn)
T with

xi∈A0. Therefore, the number of the critical points of Ū(x) is 3n.
The Hessian of Ū is given by D2Ū(x)=diag{3x2

1−α2,. ..,3x2
n−α2}. If xi=0,

then 3x2
i −α2<0; if xi=±α, then 3x2

i −α2>0. Its Morse index is given by #{j|xj =
0,xj is the j-th component of x}. Therefore, the origin is the unique local maximum
point, and each x∈An is a local minimum point. Each x∈C(Ū)\(An∪{0}) is a saddle
point, namely at least one xi=0 and at least one xj ∈A.

Note that C0(Ū)=An where A={−α,α}. Recall the candidate set C(E)=
{−1,1}n. Via the signum map, the following result holds.

Corollary 2.1. {sgn(x)|x∈C0(Ū)}=C(E).

For critical points of U , we have an a priori estimate as follows.
When α is large enough, each critical point of U(x) can be approximated by a

unique critical point of Ū(x) as follows.
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Proposition 2.1. For every x∈C(U), there exist constants B1, large enough α1 and
one unique x̄∈C(Ū), such that for any α>α1,

|x− x̄|< B1

α
. (2.1)

Furthermore, iU (x)= iŪ (x̄).

Proof. Each x∈C(U) satisfies that
(
x3
1,. ..,x

3
n

)T
=α2x+(S−βI)x. Denote

(f1,. ..,fn)
T ≡

(
x3
1,. ..,x

3
n

)T −α2x−(S−βI)x.

Note that x∈C(U) if and only if fi(x)=0. Without loss of generality, for any given α,
assume |x1|=max{|x1| ,. .., |xn|} and denote s=max{si,j}. Then the i-th component
of (S−βI)x satisfies

|((S−βI)x)i|=

∣∣∣∣∣∣
n∑

j=1

si,jxj−βxi

∣∣∣∣∣∣≤ (ns+β)|x1|< (ns+β+1) |x1|.

Let c1=ns+β+1, and then each component of (S−βI)x belongs to (−c1 |x1|,c1 |x1|).
We have

x3
1−α2x1−c1 |x1|<f1 (x1)<x3

1−α2x1+c1 |x1| .

If x1=0, clearly x=0. If x1 ̸=0, then

x2
1−α2−c1<

f1 (x1)

x1
<x2

1−α2+c1.

Thus solutions of f1 (x1)=0 must satisfy |x1|∈
(√

α2−c1,
√
α2+c1

)
. Now considering

fi(x) for i>1, we have

x3
i −α2xi−c1

√
α2+c1<fi (xi)<x3

i −α2xi+c1
√
α2+c1.

Choosing α2>2c1 large enough such that 2α>
√
α2+c1+1 as α>α2, and

fi

(
2c1
α

)
<

(
2c1
α

)3

−α2

(
2c1
α

)
+c1

√
α2+c1

<1−2c1α+c1
√
α2+c1

<c1

(
1+

√
α2+c1−2α

)
<0.

Similarly, one can prove fi
(
− 2c1

α

)
>0, thus there is a solution of fi (xi)=0 in

(
− 2c1

α , 2c1α
)
.

By the same arguments, one can prove there are solutions of fi (xi) belonging to one of
the following three intervals(

−α− 2c1
α

,−α+
2c1
α

)
,

(
−2c1

α
,
2c1
α

) (
α− 2c1

α
,α+

2c1
α

)
.

Moreover, all solutions of fi (xi) should belong to these intervals since fi (xi) are negative
or positive as xi∈R\

((
−α− 2c1

α ,−α+ 2c1
α

)
∪
(
− 2c1

α , 2c1α
)
∪
(
α− 2c1

α ,α+ 2c1
α

))
.
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Note that each component of x, xi, satisfies one of following inequalities for all
α>α2,

|xi−α|< B1

α
, |xi−0|< B1

α
, |xi+α|< B1

α
. (2.2)

By (2.2), we know that limα→∞x/α∈{−1,0,1}n and denoted by v̄.
Let x̄ :=αv̄ with x̄∈An

0 which is uniquely determined by x. Without loss of gen-
erality, assume iŪ (x̄)=n− i0. By (2.2), we know that the number of xi satisfying
|xi−α|< B1

α or |xi+α|< B1

α is i0 and the number of xi satisfying |xi|< B1

α is n−i0 for
α>α2.

The Hessian of U(x) is given by

D2U =diag{3x2
1+β−α2,. ..,3x2

n+β−α2}−S.

Decompose D2U as the sum of diag{3x2
1−α2,. ..,3x2

n−α2} and βIn−S. Suppose that
the eigenvalues of 1

α2D
2U are σ( 1

α2D
2U)={λ1,. ..,λn}, where λ1≥···≥λn. Further-

more, suppose that

σ(
1

α2
diag{3x2

1−α2,. ..,3x2
n−α2})={λ̄1,. ..,λ̄n},

σ((βIn−S)/α2)={λ̃1,. ..,λ̃n},

where λ̄1≥···≥ λ̄n and λ̃1≥···≥ λ̃n. Since (βIn−S) is a constant matrix and iŪ (x̄)=
n− i0, there exists α1>α2 such that max{|λ̃1|, |λ̃n|}<1/3, λ̄i>5/3 for 1≤ i≤ i0 and
λ̄i<−2/3 for i0+1≤ i≤n. According to Weyl’s inequality (cf. [9, Theorem 4.3.1]), λi

satisfies that λ̄i+ λ̃n<λi<λ̄i+ λ̃1. Therefore, λi possesses the same sign as λ̄i.

λi≥1, for 1≤ i≤ i0, and λi≤−1

3
, for i0+1≤ i≤n.

Then iU (x)=n− i0 and all critical points of U(x) are non-degenerate. Then the propo-
sition follows.

As α tends to positive infinity, every critical point x of U(x) satisfies |x− x̄|→0 by
(2.1). According to Proposition 2.1, when α>α1, x can be written as x= x̄+δ where
x̄∈C(Ū) and |δ|∼O(1/α).

Corollary 2.2. Suppose x=(x1,. ..,xn)
T is one local minimum point of U(x). There

exists α3>α1 such that for all α>α3 the following statements hold.

(i) x= x̄+δ where x̄∈An and δ=(δ1,. ..,δn)
T with δi∼O(1/α) as α→∞;

(ii) xi ̸=0 for all i∈{1,. ..,n};
(iii) sgn(x)=sgn(x̄).

Proof. Since x is a local minimum point, then iU (x)=0 and iŪ (x̄)=0. By Lemma
2.1, for each i, x̄i satisfies |x̄i|=α. By (2.1), one can choose a proper α3>α2 such that
x̄i+δi ̸=0 and sgn(xi)=sgn(x̄i) when α>α3 for all i.

Proposition 2.2. For any given β and S, there exists a sufficiently large constant
α0>α3 such that for all α>α0,

(i) U(x) possesses 2n local minimum points;

(ii) {sgn(x)|x∈C(U)}=C(E).
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Proof. Denote the unit open ball with the center x by B(x,1). Suppose that
x̄∈C0(Ū) with x̄=(x̄1,. ..,x̄n). For x∈∂B(x̄,1), there exists u such that x= x̄+u where
u=(u1,. ..,un)

T with |u|=1. Note that for x∈∂B(x̄,1),

U(x)−U(x̄)

=

n∑
i=1

(x̄3
iui+

3

2
x̄2
iu

2
i + x̄iu

3
i +

1

4
u4
i )+

n∑
i=1

β−α2

2
(2x̄iui+u2

i )−uTSx̄− 1

2
uTSu

=

n∑
j=1

(α2u2
i +βuix̄i+ x̄iu

3
i +

1

4
u4
i +

β

2
u2
i )−uTSx̄− 1

2
uTSu.

Note that α2u2
i possesses the order of α2; the terms of βuix̄i, x̄iu

3
i and uTSx̄ possess

the order of α; and the remaining terms are bounded when α is sufficiently large. Then
there exists α4>α3 such that U(x)−U(x̄)>0 for α>α4. Since B(x̄,1) is compact
and U(x̄+u)>U(x̄) for any |u|=1, U possesses at least one local minimum point in
B(x̄,1). Since #C0(Ū)=2n and B(x̄i,1)∩B(x̄j ,1)=∅ for any x̄i,x̄j ∈C0(U), we have
that U possesses at least 2n local minimum points.

For any x∈B(x̄,1), there exists u=(u1,. ..,un) satisfying |u|=1 such that x= x̄+
u=(x̄1+u1,. ..,x̄n+un). The Hessian of U at x̄ is given by

D2U(x)=diag{3(x̄1+u1)
2−α2,. ..,3(x̄n+un)

2−α2}+βIn−S

=diag{2α2+3(2x̄1u1+u2
1),. ..,2α

2+3(2x̄1u1+u2
1)}+βIn−S.

It yields that there exists α0>α4 such that if α>α0, D
2U(x) is positive definite. There-

fore, U(x) is strictly convex in B(x̄,1). Hence there exists the unique local minimum x0

of U(x) in B(x̄,1).
Therefore, if α≥α0, U(x) possesses 2n local minimum points. Then the conclusion

(i) of this proposition follows.
By the conclusion (iii) of Corollary 2.2, the signum vectors of local minimum points

of U(x) are the same as the ones of local minimum of Ū(x). By Corollary 2.1, the
conclusion (ii) of this proposition holds.

Now we can establish the bridge between the Ising energy E and the function U
through function Ū and prove Theorem 1.1 and Theorem 1.2.

For any given Ising model E(v), we can write the Ising energy in ascending order.
Without loss of generality, we label the candidates according to their Ising energy as
follows.

E(v1)=E(v2)≤E(v3)=E(v4)≤···≤E(vN−1)=E(vN ),

where vi∈C(E)={−1,1}n and v2i−1=−v2i. Let

di=E(v2i)−E(v2i−2)≥0, where i∈{2,. ..,N/2}. (2.3)

We can label the local minimum points of Ū(x) by x̄i with x̄i=αvi. Since |x̄i|= |x̄j |
for any x̄i,x̄j ∈C0(Ū), we have that Ū(x̄i)= Ū(x̄j). For i∈{2,. ..,N/2}, we have that

U(x̄2i)−U(x̄2i−2)=

(
Ū(x̄2i)+

β

2
|x̄2i|2−

1

2
x̄T
2iSx̄2i

)
−
(
Ū(x̄2i−2)+

β

2
|x̄2i−2|2−

1

2
x̄T
2i−2Sx̄2i−2

)
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=
1

2

(
x̄T
2i−2Sx̄2i−2− x̄T

2iSx̄2i

)
=α2di,

where the last equality holds by x̄2i=αv2i. It follows that

U(x̄1)=U(x̄2)≤U(x̄3)=U(x̄4)≤···≤U(x̄N−1)=U(x̄N ). (2.4)

By Proposition 2.1 and the finiteness of #C(U), there exists α5>α0, such that if α>α5,
we can also label the local minimum points of U(x) by xi for 1≤ i≤N and xi satisfies

|xi− x̄i|<B/α. (2.5)

Lemma 2.2. For any xi∈C0(U), there exist M>0 and Amax>α5 such that for
α>Amax,

|U(xi)−U(x̄i)|<M.

Proof. By Corollary 2.2 and Proposition 2.2, we have that xi= x̄i+δi where
xi=(xi,1,. ..,xi,n)

T , x̄i=(x̄i,1,. ..,x̄i,n)
T ∈C0(Ū), and δi=(δi,1,. ..,δi,n)

T . It follows that

U(xi)−U(x̄i)

=

n∑
j=1

(x̄3
i,jδi,j+

3

2
x̄2
i,jδ

2
i,j+ x̄i,jδ

3
i,j+

1

4
δ4i,j)+

n∑
j=1

β−α2

2
(2x̄i,jδi,j+δ2i,j)−δTSx̄− 1

2
δTSδ

=

n∑
j=1

(α2δ2i,j+βδi,j x̄i,j+ x̄i,jδ
3
i,j+

1

4
δ4i,j+

β

2
δ2i,j)−δTSx̄− 1

2
δTSδ,

where the second equality holds by |x̄i,j |=α. For each j, the terms α2δ2i,j , βδi,j x̄i,j and

δTSx̄ are all bounded because |x̄i,j |=α and |δi,j |<B2/α. The terms x̄i,jδ
3
i,j ,

1
4δ

4
i,j ,

β
2 δ

2

and 1
2δ

TSδ tend to zero as α tends to infinity. Therefore, there exist Ai>α5 and Mi>0
such that for all α≥Ai, |U(xi)−U(x̄i)|<Mi. Note that Ai and Mi only depend on β
and S. By the finiteness of the C0(U), we define that

Amax :=max{Ai|1≤ i≤N}, M :=max{Mi|1≤ i≤N}.

The proof is complete.

2.2. Proofs of main results. Note that di in (2.3) only depend on β and S.
By the finiteness of the C0(U), we define that

dmin :=min{di|di ̸=0,2≤ i≤N/2}.

We first prove Theorem 1.1 as follows.

Proof. Suppose x0 is a global minimum point of U(x). Let v0=sgn(x0)∈C(E).
By Lemma 2.2, when α>Amax,

|U(xi)−U(x̄i)|<M, ∀1≤ i≤N. (2.6)

Let

α∗ :=max

{
Amax,

√
3M

dmin

}
.
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Note that dmin ̸=0. Assume by contradiction that there is v′∈C(E) such that E(v′)<
E(v0). Then E(v0)−E(v′)>dmin>0. Let x̄0=αv0 and x̄′=αv′. When α>α∗, we
have that U(x̄0)−U(x̄′)>α2

∗dmin≥3M. Together with (2.6), we have that |U(x0)−
U(x̄0)|<M and |U(x′)−U(x̄′)|<M . It follows that when α>α∗,

U(x0)−U(x′)>M >0,

which contradicts that x0 is a global minimum point of U(x). Then v0 is a minimizer
of E(v). The proof of Theorem 1.1 is finished.

Next we prove Theorem 1.2.

Proof. In view of assumption (A), we assert that E(v′) ̸=E(v′′) if v′ ̸=±v′′.
If not, there exist vi=(vi,1,. ..,vi,n)

T and vj =(vj,1,. ..,vj,n)
T with vi ̸=±vj such

that E(vi)−E(vj)=0. Note that there exists some e∈{−1,0,1}n,

E(vi)−E(vj)=
1

2

∑
1≤k,l≤n

(−vi,kvi,l+vj,kvj,l)skl=2

 ∑
1≤k,l≤n

ek,lskl

=0, (2.7)

where the second equality holds by (vi,kvi,l−vj,kvj,l)∈{0,±2}. Therefore, we have that
(2.7) contradicts to the Assumption (A).

It follows that the Ising energy of candidates can be arranged in ascending order.
Without loss of generality, we label all the candidates according to their Ising energy
as follows.

E(v1)=E(v2)<E(v3)=E(v4)< ·· ·<E(vN−1)=E(vN ), (2.8)

where v2i−1=−v2i for all 1≤ i≤N/2. Following a similar argument as (2.4), we obtain
that

U(x̄1)=U(x̄2)<U(x̄3)=U(x̄4)< ·· ·<U(x̄N−1)=U(x̄N ), (2.9)

where x̄i=αvi. See Figure 2.1 which is the schematic diagram of the ascending order
of Ising energy at candidates and the ascending order of U at its local minimum points.
And Figure 2.1 gives an intuitive explanation of the following proof. Also di>0 in (2.3)
for 1≤ i≤N/2. Then we label local minimum points of U(x) as x1,x2,. ..,xn satisfying
(2.5). Without loss of generality, we assume that U(x2i−1)≤U(x2i) for all 1≤ i≤N/2.
Otherwise, we can interchange the v2i−1 and v2i in (2.8) such that U(x2i−1)≤U(x2i),
(2.8) and (2.9) hold simultaneously.

Following a similar argument used in the proof of Theorem 1.1, there exists α′
∗>

α∗ such that for α>α′
∗, |U(x̄i)−U(xi)|<Mi<M , U(x̄2i)−U(x̄2i−2)=α2di>3M , and

U(x2i−1)≤U(x2i) for all 1≤ i≤N/2. Then (1.3) holds. By (3) of Corollary 2.2 and
vi=sgn(x̄i), it follows that vi=sgn(xi). Then the proof of Theorem 1.2 is completed.

For any given Ising model, there always exists an ascending order of Ising energy as

E(v1)=E(v2)≤E(v3)=E(v4)≤···≤E(vN−1)=E(vN ),

but it is unclear whether there exist only two minimizers of Ising problem and how to
label the candidates according to their Ising energy. In fact, Theorem 1.2 still holds
under a weaker assumption than (A):

E(vi) ̸=E(vj), ∀vi ̸=±vj .
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𝐸𝐸(v1) = 𝐸𝐸(v2)

𝐸𝐸(v5) = 𝐸𝐸(v6)

𝐸𝐸(v3) = 𝐸𝐸(v4)

𝐸𝐸(v𝑁𝑁−1) = 𝐸𝐸(v𝑁𝑁)

𝐸𝐸(v𝑁𝑁−3) = 𝐸𝐸(v𝑁𝑁−2)
�x𝑖𝑖 = 𝛼𝛼v𝑖𝑖

v𝑖𝑖 = sgn �x𝑖𝑖

𝑈𝑈(�x1) = 𝑈𝑈(�x2)

𝑈𝑈(�x5) = 𝑈𝑈(�x6)

𝑈𝑈(�x3) = 𝑈𝑈(�x4)

𝑈𝑈(�x𝑁𝑁−1) = 𝑈𝑈(�x𝑁𝑁)

𝑈𝑈(�x𝑁𝑁−3) = 𝑈𝑈(�x𝑁𝑁−2)

𝑈𝑈(�x𝑁𝑁−1) = 𝑈𝑈(�x𝑁𝑁)

𝑈𝑈(�x𝑁𝑁−3) = 𝑈𝑈(�x𝑁𝑁−2)

𝑈𝑈(�x5) = 𝑈𝑈(�x6)

𝑈𝑈(�x1) = 𝑈𝑈(�x2)

𝑈𝑈(�x3) = 𝑈𝑈(�x4)

𝛼𝛼 > 𝛼𝛼∗

𝑑𝑑2

𝑑𝑑3

𝑑𝑑𝑁𝑁/2

𝛼𝛼2𝑑𝑑2

𝛼𝛼2𝑑𝑑3

𝛼𝛼2𝑑𝑑𝑁𝑁/2

𝛼𝛼2𝑑𝑑2 > 𝛼𝛼∗2𝑑𝑑min

𝛼𝛼2𝑑𝑑3 > 𝛼𝛼∗2𝑑𝑑min

𝛼𝛼2𝑑𝑑𝑁𝑁/2 > 𝛼𝛼∗2𝑑𝑑min

𝑀𝑀1

𝑀𝑀3

𝑀𝑀𝑁𝑁−1

𝑀𝑀2

𝑀𝑀𝑁𝑁

𝑈𝑈(x1)

𝑈𝑈(x3)

𝑈𝑈(x6)

𝑈𝑈(x𝑁𝑁−2)

𝑈𝑈(x𝑁𝑁)

𝑈𝑈(x2)

𝑈𝑈(x4)

𝑈𝑈(x5)

𝑈𝑈(x𝑁𝑁−3)

𝑈𝑈(x𝑁𝑁−1)

Fig. 2.1. We use this picture to illustrate the proof of Theorem 1.2. For α≥α∗, the ascending
order of Ising energy at candidates is the same as the ascending order of U at its local minimum points.

One can compute and list the values of U at the local minimum points as in (1.3). Via
the signum map, one can label the candidates and obtain the global minimizers of the
Ising problem.

2.3. Examples. As an application of Theorem 1.1, we take a look at 2- and
3-spin cases.

Example 2.1. In 2-spin case, the Ising model can be reduced to E2(v)=− 1
2v

TS2v
with v∈{−1,1}2 and S2=(0 1

1 0). For the any given β>0, when α>α∗=
√
β+2,

U(x) possesses 4 local minimum points as shown in Table 2.1, where (λ1,λ1)
T and

(−λ1,−λ1)
T with λ1=

√
α2−β+1 are global minimum points. Taking β=2, we draw

the contour plots of U(x1,x2) depending on α, which shows that the number of local
minimum points varies with the parameter α, see Figure 2.2. Note that (1,1)T and

(−1,−1)T are the minimizers of E2. In 3-spin case, take for example S3=
(

0 1 −2
1 0 3
−2 3 0

)
.

The minimizers of E3(v)=− 1
2v

TS3v are (−1,1,1)T and (1,−1,−1)T . It is shown that
when α>4.6, the sigum vectors of global minimum points of U(x) are (−1,1,1)T and
(1,−1,−1)T .

Example 2.2. We provide two examples here to explain Theorem 1.2.
(i) In the n-spin case, let

Sn=(si,j)n×n=


0 − 1

2
1
22 .. . − 1

2n−1

− 1
2 0 − 1

2n .. . 1
22n−3

1
22 − 1

2n 0 .. . 1
23n−6

...
...

...
. . .

...
− 1

2n−1
1

22n−3
1

23n−6 .. . 0

 . (2.10)

Via direct computations, one can check that the assumption (A) holds for Sn.
Then the Ising problem E(v)=− 1

2v
TSnv possesses only a pair of minimiz-

ers and the ascending order of the candidates can be given by computing and
comparing the corresponding U at its local minimum points. One can further
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α Min Saddle Max

α2<β−1 (0,0)T NA NA
α2∈ (β−1,β+1) (λ1,λ1)

T , (−λ1,−λ1)
T (0,0)T NA

α2∈ (β+1,β+2) (λ1,λ1)
T , (−λ1,−λ1)

T (λ2,−λ2)
T , (−λ2,λ2)

T (0,0)T

α2>β+2
(λ1,λ1)

T , (−λ1,−λ1)
T (λ3,−λ4)

T , (−λ3,λ4)
T

(0,0)T
(λ2,−λ2)

T , (−λ2,λ2)
T (λ4,−λ3)

T , (−λ4,λ3)
T

Table 2.1. The critical points of U(x) when S=S2 are given here. If α>
√
β+2, both (λ1,λ1)T

and (−λ1,−λ1)T are the global minimum points and their signum vectors (−1,−1)T and (1,1)T

minimize the Ising energy E2. The local properties of the critical points of U(x) change with the

increasing of α where λ1=
√

α2−β+1, λ2=
√

α2−β−1, λ3=
√

(α2−β+
√

(α2−β)2−4)/2, and

λ4=
√

(α2−β−
√

(α2−β)2−4)/2.

(a) α=0 (b) α=
√
2 (c) α=

√
7/2 (d) α=5

Fig. 2.2. The contour plots of U(x)= 1
4
(x4

1+x4
2)+

2−α2

2
(x2

1+x2
2)−x1x2 depend on α where β=2.

The black dots are local minimum points; the red dots are saddles; and the green dots are local maximum
points. In (a), (0,0)T is the unique local minimum point. In (b), there are one saddle and two local
minimum points. In (c), there are only two saddles, two local minimum points, and a unique local
maximum point. In (d), there are four saddles, four local minimum points, and a unique local maximum
point. When α2>1, (λ1,λ1)T and (−λ1,−λ1)T are the global minimum points as in (b), (c) and (d).

consider Sn=(si,j)n×n, where si,j satisfy that

{s1,2,s1,3,. ..,s1,n,. ..,sn−2,n−1,sn−2,n,sn−1,n}⊂
{
±1

2
,± 1

22
,. ..,± 1

2
n(n−1)

2

}
,

and |si,j | ≠ |si′,j′ | for all (i,j) ̸=(i′,j′). Namely, if one permutes si,j, the same
results still hold.

(ii) In the 3-spin case, let S′
3=

(
0 −1 −1
−1 0 −1
−1 −1 0

)
. One can prove that the assumption (A)

does not hold. Via direct computations, (1,1,−1), (−1,−1,1), (−1,1,−1) and
(1,−1,1) are four minimizers of the Ising problem. Hence, the minimizers of
the Ising problem E(v)=− 1

2v
TS′

3v are not unique.

We extend Sn in (2.10) to more general cases as follows.

Corollary 2.3. If S=(si,j)n×n satisfies that there exists ρ∈
{
k, 1k |k∈Z\{0,±1}

}
,

such that

{s1,2,s1,3,. ..,s1,n,s2,3,. ..,s2,n,. ..,sn−2,n−1,sn−2,n,sn−1,n}⊂

{
±1

ρ
,± 1

ρ2
,. ..,± 1

ρ
n(n−1)

2

}
,
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and |si,j | ≠ |si′,j′ | for all (i,j) ̸=(i′,j′), then the Ising problem satisfies Assumption (A)
and the results of Theorem 1.2 hold.

3. Revisit some known quantum-inspired algorithms
In this section, we study some known quantum-inspired algorithms of the Ising

problem. Using the mathematical principle found in last section, we can prove that
these algorithms are valid under some conditions such as CIM proposed in [22, 23],
KPO proposed in [5] and SB algorithm proposed in [7]. In the following, we use the
original notations in cited papers.

3.1. Coherent Ising machines. The CIM was proposed [22, 23] to find mini-
mizers of Ising problem

min
v

E :=−1

2
vTΞv, (3.1)

where v∈C(E)={−1,1}n, Ξ=(ξij)n×n is symmetric and ξii=0. Via the quantum
computation, CIM uses the network of optical parametric oscillators. Each optical
parametric oscillator possesses two stable oscillating states above the threshold. In
view of this property, it is suitable to represent −1 and 1 in the Ising model. In contrast
to the decreasing in annealing, the CIMs obtain the configuration with the lowest the
ground state by increasing the gain gradually [12,22,23].

The CIM in [22] can be described as{
ċj =

(
−1+p−

(
c2j +s2j

))
cj+

∑n
l=1,l ̸=j ξjlcl,

ṡj =
(
−1−p−

(
c2j +s2j

))
sj+

∑n
l=1,l ̸=j ξjlsl,

(3.2)

where cj is the normalized in-phase component, sj is the normalized quadrature com-
ponent, p>1 is the pump rate and (ξij)n×n is as in (3.1). Let p be a constant. If
(c,s) is a classical solution of (3.2), then (c,s)∈C2(R,R2n). We define the function
Ud∈C2(R2n,R) by

Ud(c,s) :=

n∑
j=1

(
1

4
(c2j +s2j )

2− p

2
(c2j −s2j )+

1

2
(c2j +s2j )

)
− 1

2
cTΞc− 1

2
sTΞs.

Via direct computations, (3.2) can be rewritten as{
ċj =−∂Ud

∂cj
,

ṡj =−∂Ud

∂sj
.

We further define a function Ũd(c)∈C2(Rn,R) by

Ũd(c) :=Ud(c,0)=

n∑
i=1

(
1

4
c4i +

1−p

2
c2i

)
− 1

2
cTΞc.

Denote the set of critical points of Ud(c,s) and the set of critical points of Ũd(c) by
C(Ud) and C(Ũd) respectively. Furthermore, define the projection map πd by

πd : C(Ud)→C(Ũd), (c,s) 7→c.

Then we have the following result.
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Lemma 3.1. For p>λΞ where λΞ is the largest eigenvalue of Ξ, if (c,s)∈C(Ud), then
s=0. Moreover, the map πd is bijective and iUd

((c,0))= iŨd
(c).

Proof. Note that ∇Ud=0 is equivalent to{(
1−p+

(
c2j +s2j

))
cj−

∑n
l=1,l ̸=j ξjlcl=0,(

1+p+
(
c2j +s2j

))
sj−

∑n
l=1,l ̸=j ξjlsl=0.

Since p>λΞ, ∇Ud=0 implies sj =0. Therefore, ∇Ud=0 can be reduced to

(
1−p+c2j

)
cj−

n∑
l=1,l ̸=j

ξjlcl=0, 1≤ j≤n. (3.3)

Note that (3.3) is equivalent to ∇Ũd=0. It yields that (c,0)∈C(Ud) if and only if
c∈C(Ũd). Therefore, the map πd is a bijection between C(Ud) and C(Ũd).

The Hessian of Ud at the critical point (c,0) is given by

D2Ud(c,0)=diag{3C,On}+diag{(1−p)In,(1+p)In}−diag{Ξ,Ξ}
=diag{3C+(1−p)In−Ξ,(1+p)In−Ξ},

where C=diag{c21,. ..,c2n}T , On is an n×n matrix with all elements being 0 and c=
(c1,. ..,cn). By direct computations, D2Ũd(c)=3C+(1−p)In−Ξ. Note that (1+p)In−
Ξ is positive definite since p>λΞ. It follows that iUd

((c,0))= iŨd
(c). The proof is

complete.

Via Theorem 1.1, we have following result.

Proposition 3.1. When p>max{α2
∗,λΞ}, if (c,0) is a global minimum point of Ud,

then sgn(c) minimizes Ising model E=− 1
2v

TΞv.

Proof. By Lemma 3.1 and Ud(c,0)= Ũd(c), if (c,0) minimizes Ud(c,s) globally,
then c minimizes Ũd globally for p>λmax. Assume that the parameters of U(x) in (1.2)
satisfy α=

√
p, β=1 and S=Ξ. Then function U = Ũd. Via Theorem 1.1, it follows that

if (c,0) minimizes Ud globally, the signum vector sgn(c) is a minimizer of Ising model
(3.1) for p>max{α2

∗,λΞ}.

Another CIM, proposed in [23], can also be written in classical variables. Define
that

Uc(x)=

n∑
i=1

1

4
x4
i +

1−p

2
x2
i −ϵxTScx,

where xi is the in-phase amplitude. The dynamics of x is given as follows.

ẋ=−∇Uc, (3.4)

where p>0 is the normalized pump rate, ϵ is a small constant with 0<ϵ≪1 and Sc=
(sij)n×n is symmetric coupling constant matrix with sii=0.

Let β=1, α=
√
p, and S=2ϵSc. The function Uc is the same as U(x) given by

(1.2). So minimizing E=− 1
2v

TSv is equivalent to minimizing E=− ϵ
2v

TScv. Then we
apply Theorem 1.1 directly and obtain the following result.

Proposition 3.2. For p>α2
∗, if x is a global minimum point of Uc(x), then sgn(x)

is a minimizer of Ising model E=− 1
2x

TScx.
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Remark 3.1. From the mathematical point of view, CIM in (3.2) and (3.4) are both
designed to minimize Ud globally via the gradient descent flow. A global minimum point
yields a minimizer of the Ising model.

Readers may refer [10, 14] for the large-scale of CIMs. With the help of the Brow-
nian motion in CIMs, these computations show their power on solving the large-scale
combinatorial problems.

3.2. Adiabatic Hamiltonian systems. Suppose the Ising problem

min
v

E :=−1

2
vTJv, (3.5)

where v∈C(E)={−1,1}n and J =(Ji,j)n×n is a symmetric matrix with Ji,i=0. An-
other quantum computation Ising machine based on Kerr-nonlinear parametric oscil-
lators (KPO) is first proposed theoretically in [4] and be realized in experiment by
superconducting circuits [8]. Instead of threshold and stable oscillations in CIM, KPO
mainly uses the detuning and the Kerr effect. It follows that KPO is nondissipative.
The nondissipative linear couplings between KPOs is introduced by the coupling coeffi-
cients Ji,j of the Ising model. This network can be used to find the ground state of the
Ising model via quantum adiabatic evolution by increasing the pumping rate gradually.
The system can be formulated as the following classical Hamiltonian system{

ẋi=
∂Hk

∂yi
=
(
p(t)+∆+K

(
x2
i +y2i

))
yi−ξ0

∑n
j=1Ji,jyj ,

ẏi=−∂Hk

∂xi
=
(
p(t)−∆−K

(
x2
i +y2i

))
xi+ξ0

∑n
j=1Ji,jxj

where K is a positive Kerr coefficient, ∆ is the detuning, ξ0>0 is a constant, p(t)>0 is
the parametric pumping rate with ṗ>0 and Ji,j are the coupling coefficients in (3.5).
The corresponding Hamiltonian is

Hk(x,y,t)=

n∑
i=1

(
K

4

(
x2
i +y2i

)2− p(t)

2

(
x2
i −y2i

)
+

∆

2

(
x2
i +y2i

))

− ξ0
2

n∑
i=1

n∑
j=1

Ji,j (xixj+yiyj) .

For the problem (3.5), a heuristic algorithm called simulated bifurcation (SB) al-
gorithm is proposed in [7]. It is a nonlinear oscillator network of classical nonlinear
Hamiltonian systems. It uses two bifurcations in each non-linear oscillator to represent
the two states of the Ising spin. It is a mechanical Hamiltonian system given as follows{

ẋi=
∂Hs

∂yi
=∆yi,

ẏi=−∂Hs

∂xi
=−

(
Kx2

i +∆−p(t)
)
xi+ξ0

∑n
j=1Ji,jxj .

The corresponding Hamiltonian is

Hs(x,y,t)=

n∑
i=1

∆

2
y2i +

n∑
i=1

(
K

4
x4
i +

∆−p(t)

2
x2
i

)
− ξ0

2
xTJx,

where K,∆,ξ0>0 are constants, and p(t)>0 is a function with ṗ(t)>0. The SB al-
gorithm can be simulated in digitial computers because it is a classical Hamiltonian
system.
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To apply Theorem 1.1, we define the function Uh(x) which is the potential of Hs

as follows

Uh(x)=

n∑
i=i

K

4
x4
i +

(
∆−p

2

)
x2
i −

ξ0
2
xTJx,

where p is a parameter. Define the project maps πk :C(Hk)→C(Uh),(x,y) 7→x and
πs :C(Hs)→C(Uh),(x,y) 7→x. We first discuss the relationship between C(Hk) (resp.
C(Hs)) of Hk (resp. Hs) and C(Uh).

Lemma 3.2. For p>λJ where λJ is the largest eigenvalue of ξ0J , if (x,y)∈C(Hk),
then y=0. Furthermore, πk is a bijection and iHk

((x,y))= iUh
(x).

Since the proof of this lemma is similar to the one of Lemma 3.1, we only sketch
the proof.

Proof. (The sketch of proof of Lemma 3.2.) For p>λJ , the critical point
(x,y) of ∇Hk=0 satisfies that y=0 and x=(x1,. ..,xn)

T is the root of

−
(
p−∆−Kx2

i

)
xi+ξ0

n∑
j=1

Ji,jxj =0, 1≤ i≤n.

Therefore, if (x,y)∈C(Hk), we have that ẋ=
(
p+∆+K

(
x2
i +y2i

))
yi−ξ0

∑n
j=1Ji,jyj =

0. Since p>ξ0J , pI−ξ0J is positive definite. Moreover, the diagonal matrix diag(∆+
K(x2

1+y21),. ..,∆+K(x2
n+y2n)) is always a positive definite matrix. It follows that if

(x,y)∈C(Hk), then y=0 and x∈C(Uh), and vice versa. It follows that πh is a bijection.
Note that the Hessian of Hk at the critical point (x,0) is given by

D2Hk(x,0)=diag{3KX+(∆−p)In−ξ0J,(∆+p)In−ξ0J},

where X=diag{x2
1,. ..,x

2
n}. Note that (∆+p)In−ξ0J is positive definite for p>λJ . It

follows that iHk
((x,y))= iUh

(x). This lemma follows.

Proposition 3.3. For p>max{α2
∗,λJ}, if (x,y) is a global minimum point of

Hk(x,y), then sgn(x) minimizes the Ising model (3.5).

Proof. By Lemma 3.1, if (x,0)∈C(Hk), then Hk(x,0)=Uh(x). Therefore, if (x,0)
minimizes Hk globally, then x minimizes Uh globally. Via re-scaling of x and Theorem
1.1, the signum vector of the global minimum of Uh is a minimizer of the Ising model
E(v)=− 1

2v
TJv. It follows that if x minimizes Hk globally, sgn(x) is a minimizer of

Ising model.

Similary, the following results for SB algorithm hold.

Proposition 3.4. For p>α2
∗, if (x,y)∈C(Hs), then y=0. Moreover, the map πs is

a well-defined bijection and iHs
((x,y))= iUh

(x). If (x,y) is a global minimum point of
Hs(x,y), then sgn(x) minimizes the Ising model (3.5).
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