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A CAHN–HILLIARD MODEL COUPLED TO VISCOELASTICITY
WITH LARGE DEFORMATIONS∗

ABRAMO AGOSTI† , PIERLUIGI COLLI‡ , HARALD GARCKE§ , AND

ELISABETTA ROCCA¶

Abstract. We propose a new class of phase field models coupled to viscoelasticity with large defor-
mations, obtained from a diffuse interface mixture model composed by a phase with elastic properties
and a liquid phase. The model is formulated in the Eulerian configuration and it is derived by imposing
the mass balance for the mixture components and the momentum balance that comes from a generalized
form of the principle of virtual powers. The latter considers the presence of a system of microforces and
microstresses associated to the microscopic interactions between the mixture’s constituents together
with a system of macroforces and macrostresses associated to their viscoelastic behavior, taking into
account also the friction between the phases. The free energy density of the system is given as the sum
of a Cahn–Hilliard term and an elastic polyconvex term, with a coupling between the phase field vari-
able and the elastic deformation gradient in the elastic contribution. General constitutive assumptions
complying with a mechanical version of the second law of thermodynamics in isothermal situations are
taken. We study the global existence of a weak solution for a simplified and regularized version of the
general model, which considers an incompressible elastic free energy of Neo–Hookean type with elastic
coefficients depending on the phase field variable. The regularization is properly designed to deal with
the coupling between the phase field variable and the elastic deformation gradient in the elastic energy
density. The analysis is made both in two and three space dimensions.

Keywords. Cahn–Hilliard; Viscoelasticity; Large elastic deformations; Existence of weak solu-
tions.
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1. Introduction
In recent years, mathematical models based on the phase field approach which

describe the phase separation phenomena for multicomponent materials in presence of
elastic interactions between the material constituents have been proposed and analyzed,
starting from the works [7, 16, 20, 21]. The dynamics for these materials is character-
ized, on short time scales, by spinodal decomposition and phase separation, where a
microstructure of domains of separated phases is formed, driven by the microscopic
interactions between the individual components. On large time scales, the domains
coarsen and grow, driven by their interfacial energy and by the elastic properties of the
constituents. These models, which take the form of modified Cahn–Hilliard equations
coupled with viscoelastic systems, may find applications in describing the evolution of
soft matter materials, e.g. in tumor growth dynamics [24] and in polymeric soft gel
dynamics [12].

The major modeling challenge in this framework is to combine the balance equations
associated to the dynamics of the phase field variables, which are naturally formulated
in the Eulerian configuration, with the constitutive assumptions for elasticity, which are
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typically formulated in the Lagrangian configuration. This issue is typically overcome
by formulating the models in the small-strain setting, or by rephrasing the phase field
dynamics in the Lagrangian configuration. In [26], a unified framework for the derivation
of Cahn–Hilliard type equations coupled with elasticity is developed, based on standard
force and momentum balances for elastic deformations and on balance laws for mass
and microforces, given constitutive assumptions consistent with a mechanical version
of the second law of thermodynamics. The balance laws and the constitutive assump-
tions in [26] are formulated in a fixed reference configuration, assuming an infinitesimal
elastic deformation and neglecting inertia effects. A similar approach is carried out
in [7, 20, 21, 24, 28, 32], where a Cahn–Hilliard equation coupled with infinitesimal elas-
ticity is introduced and analyzed. In these latter studies, the models are derived from
a multiphasic mixture. In all the aforementioned works, the elasticity tensor and the
elastic coefficients depend on the phase field variables. This coupling between the phase
field variables and the elastic deformations is an important feature of the model, which
eventually may describe the different elastic properties of each constituent of the mix-
tures.

Another possibility is to formulate both the phase field and the elasticity governing
equations in the Eulerian reference configuration, employing the change of variables
from the Lagrangian to the Eulerian configuration in the finite elasticity constitutive
assumptions. In this framework, the main state variable for elasticity is the velocity
field, and the deformation gradient, entering in the elasticity constitutive assumptions,
is determined solving a transport equation in terms of the velocity and the velocity
gradient. This modeling approach is employed, for example, in [6], which studies a
problem in magnetoelasticity, and in [12], which studies a Cahn–Hilliard model coupled
with viscoelasticity for a non–Newtonian mixture with a polymeric fluid component. In
both the aforementioned works, the coupling between the phase field variable and the
elastic deformation gradient in the elasticity constitutive assumptions is not taken into
account.

As for the analysis of the evolutionary problems defined by phase field models
coupled with elasticity, we list the following results obtained in the aforementioned
literature. In [7] existence and uniqueness results for solutions of a Cahn–Hilliard prob-
lem coupled with linear elasticity are obtained, while in [24] existence, uniqueness and
regularity results are proved for solutions of a tumor growth model consisting of a
Cahn–Hilliard model coupled with linear elasticity and growth. For what concerns the
problem with nonlinear finite elasticity, in [6] the existence of a global-in-time weak so-
lution to a model of magnetoelasticity is obtained in two space dimensions, while strong
well-posedness and stability results are obtained in two space dimensions for a similar
problem in [22]. In [12], existence of a global-in-time weak solution to a Cahn–Hilliard
model coupled with viscoelasticity is obtained in two space dimensions. Very recently,
in [23] existence of a global-in-time weak solution to a Cahn–Hilliard model coupled
with viscoelasticity and growth, extending the model considered in [12], is obtained in
two space dimensions. We observe that in all the mentioned works [6, 12] and [23], an
elliptic regularization in the transport equation for the deformation gradient is intro-
duced, and the finite elastic energy density is considered to be of Neo–Hookean type, i.e.
convex, and independent on the phase field variable. We further observe that analytical
results for this kind of phase-field problems are obtained in the cited literature only in
two space dimensions.

For what concerns the analysis of evolutionary viscoelastic problems alone, without
the presence of phase field dynamics, stronger results are available in the literature. Re-
garding models with finite viscoelasticity formulated in the Eulerian configuration, we



A. AGOSTI, P. COLLI, H. GARCKE, AND E. ROCCA 2085

cite [11], where the existence and regularity of a global-in-time weak solution in three
space dimensions for an evolutionary viscoelastic problem with finite incompressible
Neo–Hookean elasticity is proved. We also cite the recent work in [39], where existence
and regularity results of a distributional solution of an evolutionary non-isothermal vis-
coelastic problem with polyconvex and compressible elastic energy have been obtained,
employing a regularization approach in which a dissipative contribution to the Cauchy
stress tensor is introduced which involves high order nonlinear terms in the small strain
rate (i.e. the symmetric part of the velocity gradient). We highlight the fact that the
latter regularization approach, differently from the elliptic regularization in the trans-
port equation for the deformation gradient introduced in [6] and [12], preserves the
kinematical relationship between the velocity and the deformation gradient variables.
Its main drawback is the introduction of nonlinear terms involving the velocity gradi-
ent in the definition of the Cauchy stress tensor, making numerical approximations of
the model not straightforward. Also, as we will see in the following, the regularization
approach based on the elliptic regularization of the transport equation for the deforma-
tion gradient may be easily adapted to enhance the regularity in space of the combined
product of a function of a phase field variable and a function of the deformation gradient
involved in elasticity constitutive assumptions. Regarding models with finite elasticity
formulated in the Lagrangian configuration, we cite [8], where a local-in-time existence
result for an evolutionary compressible large deformation problem with Neo–Hookean
elasticity and third order gradient regularization in two space dimensions is obtained,
and [9], where an analogous result is obtained for an evolutionary incompressible large
deformation problem formulated in the Lagrangian configuration in three space dimen-
sions. We also cite [34], where existence of a weak solution is proved for an evolutionary
non-isothermal viscoelastic problem similar to the one studied in [39] with second order
gradient regularization. For what concerns non-isothermal linear viscoelasticity, we cite,
for example, [25], where the asymptotic behavior of a system describing a thermovis-
coelastic plate with hereditary effects is studied.

In the present paper, we derive a Cahn–Hilliard model coupled to viscoelasticity
with finite deformations, starting from binary mixture dynamics, obtaining the mass
and momentum balance of the mixture using a generalized form of the principles of
virtual powers, giving constitutive assumptions satisfying the first and second law of
thermodynamics in isothermal situations. The model equations are formulated in the
Eulerian configuration, taking both finite elasticity and inertia effects into account.
Moreover, we further consider in the model derivation the friction between the mixture
constituents. We thus propose a new general class of phase field models, expressed
in terms of the dynamics of the phase field variables of the two components and in
terms of their associated velocity fields, considering general compressible polyconvex
elastic energy densities in which the phase field variables and the elastic deformation
are inherently coupled. Then, we study the existence of a global-in-time weak solution
for a simplified version of the general model, considering a Neo–Hookean incompressible
law for elasticity with an elastic modulus depending on the phase field variable. We
highlight that the main difficulties in the analysis of the model, especially in three
space dimensions, arise when dealing with the nonlinear coupling betwen the phase field
variable and the elastic deformation gradient in the elastic energy density. The resulting
PDE system for the latter simplified version of the general model is the following:

−ν∆v+∇q=µ∇ϕ−
(
c
2
f ′(ϕ)(F : F−d)

)
∇ϕ+div

(
f(ϕ)FFT

)
,

divv=0,
∂F
∂t

+(v ·∇)F−(∇v)F−λ∆(f(ϕ)F)=0,
∂ϕ
∂t

+v ·∇ϕ−div(b(ϕ)∇µ)=0,
µ=ψ′(ϕ)−∆ϕ+ c

2
f ′(ϕ)(F : F−d),

(1.1)
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valid in Ω× [0,T ], endowed with the boundary conditions

b(ϕ)∇µ ·n=∇ϕ ·n=0, v=0, [∇(f(ϕ)F)]n=0 (1.2)

on ∂Ω× [0,T ], and with proper initial conditions. Here, v is the velocity field, q is the
pressure, F is the elastic deformation gradient, ϕ is the phase field variable and µ is
the chemical potential. Moreover, ν and c are physical parameters, representing the
viscosity and the Young elastic modulus of the viscoelastic phase in the mixture, while
λ is a positive regularization parameter. The function b(ϕ) represents a positive phase-
dependent mobility, ψ(ϕ) represents the bulk interaction energy between the viscoelastic
phase microscopic constituents, and f(ϕ) describes the dependence of the macroscopic
elastic properties of the elastic phase on its concentration. In order to obtain analytic
results, following ideas proposed in [6], we design and include a proper elliptic regu-
larization in equation (1.1)3. We obtain existence results both in two and three space
dimensions. In the latter case, we need to add a further viscous regularization in the
right-hand side of (1.1)5 to obtain the analytic results.

Hence, the novelties of the present work with respect to previous studies in the
literature are the following:

• Derivation of a new class of phase field models of Cahn–Hilliard type coupled
with viscoelasticity, in Eulerian coordinates, which consider the microscopic
coupling between the mixture constituents, their viscoelastic behaviour and the
friction between the phases, with a general compressible polyconvex elastic en-
ergy which depends on both the elastic deformation and the phase field variable
within a nonlinear coupling;

• Proof of existence results for a simplified and regularized incompressible version
of the model, where the regularization substantially depends on the coupling
between the phase field variable and the elastic deformation gradient in the
elastic energy density, for both two and three space dimensions.

Possible applications of the proposed models are the investigation of their predictive and
diagnostic abilities for diseases in which the anatomical tissue viscosity and stiffness play
a crucial role in determining the diseases’ evolution. This is the case, for example, for
neurological diseases [13, 35, 36], where the brain tissues stiffness has been proved to
be a robust biomarker for neurodegeneration; for tumor growth models [30], where the
mechanical feedback of the surrounding healthy tissues is relevant to predict the disease
progression and the consequent tissue reorganization; for neuromuscular diseases [14],
where fat infiltrates the healthy tissues of muscles and the correct assessment of the
amount of fat substitution is crucial to evaluate the disease progression and the outcome
of possible therapeutic strategies. We highlight the fact that the proposed models may
be quantitatively informed by medical imaging data, for example, by Elastography
Magnetic Resonance imaging [36], which may give as a processing output the values of
viscosity and shear elastic modulus of anatomical tissues.

The paper is organized as follows. In Section 2 we introduce some notation regarding
the employed tensor calculus and functional analysis. In Section 3 we develop the
model derivation for different class of general models. In Section 4 we report the study
of existence for a global weak solution for a simplified version of the general model.
Finally, Section 5 collects some considerations and conclusions.

2. Notation
Let Ω⊂Rd be an open bounded domain in Rd, where d is the space dimension.

Let T >0 denote some final time, and set ΩT :=Ω×(0,T ). We start by introducing
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the notation for vectorial and tensorial calculus. Given a,b∈Rd, we denote by a ·
b∈R their canonical scalar product in Rd, with associated norm |a| := (a ·a) 1

2 , and
by a⊗b∈Rd×d their tensorial product. Given two second order tensors A,B∈Rd×d,
we denote by A : B∈R their Frobenius scalar product in Rd×d, i.e. by components
A : B :=

∑d
i,j=1AijBij , with associated norm |A| := (A : A)

1
2 . Given two third order

tensors C,D∈Rd×d×d, we denote by C ..
.
D∈R their scalar product in Rd×d×d, i.e. by

components

C ..
.
D :=

d∑
i,j,k=1

CijkDijk.

We also introduce the operation, defined by components,

(C⊙D)kl :=
∑
ij

CkijDlij ,

which contracts two third order tensors C,D∈Rd×d×d to a second order tensor C⊙D∈
Rd×d.

We denote by Lp(Ω;K) and W r,p(Ω;K) the standard Lebesgue and Sobolev spaces
of functions defined on Ω with values in a set K, where K may be R or a multiple power
of R, and by Lp(0,t;V ) the Bochner space of functions defined on (0,t) with values
in the functional space V , with 1≤p≤∞, r>0. If K≡R, we simply write Lp(Ω) and
W r,p(Ω). Moreover, when stating general results which are valid for both functions with
scalar or vectorial or tensorial values, we write f ∈Lp, f ∈W r,p, without specifying if
f is a function with scalar, vectorial or tensorial values. For a normed space X, the
associated norm is denoted by || · ||X . In the case p=2, we use the notations H1 :=W 1,2

and H2 :=W 2,2, and we denote by (·, ·) and || · || the L2 scalar product and induced norm
between functions with scalar, vectorial or tensorial values. The dual space of a Banach
space Y is denoted by Y ′. The duality pairing between H1(Ω;K) and

(
H1(Ω;K)

)′
is

denoted by < ·,·>, while the duality pairing between H2
N (Ω;K) and

(
H2
N (Ω;K)

)′
is

denoted by < ·, ·>2, where H
2
N (Ω;K) :={f ∈H2

N (Ω;K) : ∂nf =0on∂Ω}. Moreover, we
denote by Ck([0,t];V ), k≥0, and by C0

w([0,t];V ) the space of continuously differentiable
functions up to order k and of weakly continuous functions, respectively, from [0,t] to
the space V . When X≡R, we write Ck([0,t]). We finally introduce the spaces

L2
div(Ω,Rd) :={u∈C∞

c (Ω,Rd) : divu=0 inΩ}
||·||
,

H1
0,div(Ω,Rd) :={u∈C∞

c (Ω,Rd) : divu=0 inΩ}
||·||

H1
0(Ω;Rd) .

In the following, C denotes a generic positive constant independent of the unknown
variables, the discretization and the regularization parameters, the value of which might
change from line to line; C1,C2,. .. indicate generic positive constants whose particular
value must be tracked through the calculations; C(a,b,...) denotes a constant depending
on the nonnegative parameters a,b,... .

3. Model derivation
We consider a binary, saturated, closed and non-reactive mixture in an open bounded

domain Ω⊂Rd, d=2,3, fixed in time, composed by a phase c with volume fraction ϕc
and a phase l with volume fraction ϕl. In applications, the phase c may represent a solid
or a fluid component (with elastic properties), while the phase l may represent a liquid
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component of the mixture. We assume that both the phases have constant density
γ. In life sciences applications, with the phase c representing a soft biological tissue
and the phase l representing water and interstitial fluid, γ should be equal to the water
density, since biological cells are mostly composed by water. We assume that the mixture
dynamics is determined by the microscopic interactions between its constituents as well
as by their macroscopic visco–elastic behaviour. In [26], a system of scalar microforces
and vectorial microstresses transmitted across surfaces of uniform states, (i.e. level sets
ϕc(x,t)=constant), was introduced, which performs work against changes in the phase
variables identified as movements of surfaces of uniform states along their normal. This
means that the power expended by microforces and microstresses, computed using the
velocity of surfaces of uniform state, is independent of the parameterizations of the state
surface, and consequently is independent of the component of the velocity tangential
to the state surfaces. Since the normal velocity of the isosurfaces ϕc(x,t)=constant is
given by ∂tϕc

|∇ϕc| , the proper kinematic variables power–conjugated to the microforces and

microstresses in this theoretical framework are ∂tϕc and ∇(∂tϕc), respectively.
The balance laws and the constitutive assumptions in [26] were formulated in a

fixed reference configuration, assuming an infinitesimal elastic deformation and neglect-
ing inertia effects. In the following, we will consider inertia effects and assume that
the elastic deformation is finite. We formulate the mixture dynamics in the Eulerian
reference configuration, employing the change of variables from the Lagrangian to the
Eulerian configuration in the finite elasticity constitutive assumptions.

Following [27, Sections 5 and 6] (see also [17]), we derive the mass and momentum
balance of the mixture using a generalized form of the principles of virtual powers,
giving constitutive assumptions satisfying the first and second law of thermodynamics
in isothermal situations. Hence, each phase satisfies a mass balance equation,

γ
∂ϕc
∂t

+γdiv(ϕcvc)+div(hc)=0, (3.1)

γ
∂ϕl
∂t

+γdiv(ϕlvl)+div(hl)=0, (3.2)

where, as in [26], hc and hl are proper mass fluxes associated with the microsystem
dynamics, whose contributions to the mass balance for each phase are added to the
corresponding transport contributions determined by the macrosystem dynamics. Since
the mixture is closed, its mass ρ=γ(ϕc+ϕl) is conserved, i.e.

∂ρ

∂t
+div(ρv)=0,

where v= γ
ρ (ϕcvc+ϕlvl) is the volume-averaged mixture velocity. Hence, adding (3.1)

and (3.2) gives that div(hc+hl)=0. Moreover, since the mixture is saturated, i.e.
ϕc+ϕl=1, we have the incompressibility condition

divv=0. (3.3)

In the following, we will take γ=1 for simplicity.
We now introduce the power–conjugate variables:

Tc←→∇vc, Cauchy stress tensor of the phase c,

Tl←→∇vl, Cauchy stress tensor of the phase l,

m←→ (vc−vl), internal force associated to the slip between the two phases,
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π←→ ∂ϕc
∂t

, internal microforce,

ξ←→∇∂ϕc
∂t

, microstress,

where, as previously explained, the microsystem power is computed using the velocity
of surfaces of uniform states along their normal.

Considering an arbitrary part of the mixture R(t)⊂Ω, moving with the mixture, the
principle of virtual powers states that the virtual internal power expended within R(t)
is equal to the virtual external powers expended in R(t) by material external to R(t)
or by external forces. Moreover, as a consequence of frame–indifference, the internal
power expended within R(t) for rigid virtual velocities must be equal to zero.
We consider the fields vc, vl and ∂tϕc as virtual velocities, to be specified independently.
Denoting the virtual fields as v̂c, v̂l and ˆ∂tϕc, we define a generalized virtual velocity to

be a list V={v̂c,v̂l, ˆ∂tϕc}, with v̂c=0 on a portion of the domain boundary ∂ΩD,c⊂∂Ω,
v̂l=0 on ∂ΩD,l⊂∂Ω. We also define a rigid macroscopic virtual velocity to be a list
Vrigid={v̂c=v0c+A0cx,v̂l=v0l+A0lx}, with v0c,v0l constant vectors and A0c,A0l

constant antisymmetric tensors. Moreover, we define the internal and external virtual
powers

Wint(R(t),V)=
∫
R(t)

(
Tc : ∇v̂c+Tl : ∇v̂l+m ·(v̂c− v̂l)+π ˆ∂tϕc+ξ ·∇ ˆ∂tϕc

)
,

Wext(R(t),V)=
∫
∂R(t)

(
tc · v̂c+tl · v̂l+η ˆ∂tϕc

)
− 1

2

∫
R(t)

K(ϕc,ϕl)|v̂c− v̂l|2,

where tc,tl are tractions on the boundary of R(t), η is a scalar microscopic traction
and the last term represents friction between the phases exerted on R(t) by material
external to it. The function K(ϕc,ϕl) is a positive coefficient representing the effects
of the mixture viscosity and permeability, whose form must be constitutively assigned.
Then, the principle of virtual powers states that

Wint(R(t),V)=Wext(R(t),V), ∀V, ∀R(t)⊂Ω, (3.4)

Wint(R(t),V)=0 ∀V ≡Vrigid, ∀R(t)⊂Ω. (3.5)

Condition (3.4) gives the momentum balances:
divTc−K(ϕc)(vc−vl)−m=0 inΩ,

Tcn= tc on∂ΩN,c,

vc=0 on∂ΩD,c,

(3.6)

with ∂ΩD,c∪∂ΩN,c=∂Ω,
divTl+K(ϕc)(vc−vl)+m=0 inΩ,

Tln= tl on∂ΩN,l,

vl=0 on∂ΩD,l,

(3.7)

with ∂ΩD,l∪∂ΩN,l=∂Ω, {
divξ−π=0 inΩ,

ξ ·n=η on∂Ω,
(3.8)
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where n is the outward normal to Ω. The condition in (3.5) gives the relations Tc : Ac=
0 and Tl : Al=0 for any antisymmetric tensors Ac,Al, i.e. Tc and Tl are symmetric
tensors.

In order to proceed, we need to introduce the free energy E of the system in R(t).
We assume that elasticity acts only on the phase c, with a negligible contribution of the
phase l to the elastic energy. We thus postulate the following form for E:

E(ϕc,∇ϕc,Fc,∇Fc)=
∫
R(t)

e(ϕc,∇ϕc,Fc,∇Fc)

=

∫
R(t)

(
1

detFc
w(ϕc,∇ϕc,Fc,∇Fc)+ΠΦ(ϕc,∇ϕc)

)
, (3.9)

where

Φ(ϕc,∇ϕc)=
ϵ

2
|∇ϕc|2+

1

ϵ
ψ(ϕc). (3.10)

Here, Fc is the deformation gradient associated to the motion of the phase c, 1
detFc

w is
the hyperelastic free energy density, with units of [Pa], in Eulerian coordinates, and Π
is proportional to the surface tension, in units of [N/m]. The surface energy of the in-
terface between the phases is expressed through a diffuse interface approach, with ψ(ϕc)
representing a bulk energy due to the mechanical interactions of the micro–components.
The parameter ϵ has units of [m] and is related to the interface thickness. The depen-
dence of w on ∇Fc is associated to elastic energy contributions from interfaces in the
elastic material, while the dependence on ∇ϕc is associated to the energy contributions
from elastic deformations of material surfaces on the isosurfaces ϕc=constant. In the
following, we will take Π=1 for simplicity.

The first and second law of thermodynamics in isothermal situations take the form
of the following dissipation inequality [26]:

d

dt

∫
R(t)

e(ϕc,∇ϕc,Fc,∇Fc)+
∫
∂R(t)

Je ·n

≤Wext(R(t))−
∫
∂R(t)

µc(ϕcvc+hc) ·n+
∫
R(t)

pdiv(ϕcvc+ϕlvl), (3.11)

which means that the free energy of R(t) increases at a rate not greater than the working
of all forces external to R(t) plus the free energy carried into R(t) by mass transport.
We note that we have introduced in (3.11) the constraint (3.3) as a mass contribution
for the mixture through a Lagrange multiplier p. Here, µc is the chemical potential
of the phase c, and p is a Lagrange multiplier for the incompressibility condition for
the mixture (3.3). Using (3.4) and (3.1) in (3.11) and the following relations for the
material derivative of the deformation gradient, for the gradient of the deformation
gradient (which are valid if the deformation gradient is sufficiently regular), and for
∂Fc detFc:

Ḟc=(∇vc)Fc, (3.12)

˙(∇Fc)=∇Ḟc−
[
∇Fc

]
∇vc, (3.13)

∂Fc detFc=detFcF
−T
c =:cofFc, (3.14)
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where Ḟc and ˙(∇Fc) indicate the material time derivatives of F and ∇F respectively,
we get, with the help of the Reynolds transport theorem,∫

R(t)

(
(∂ϕc

e)
∂ϕc
∂t

+(∂∇ϕc
e) · ∂∇ϕc

∂t
+(∂ϕc

e)vc ·∇ϕc+(∂∇ϕc
e) ·∇(∇ϕc)vc+eI : ∇vc

)
+

∫
R(t)

(
1

detFc
(∂Fc

w)FTc −
wI

detFc

)
: ∇vc+

∫
R(t)

{(
−div

(
1

detFc
∂∇Fc

w

)
FTc

− 1

detFc
∇Fc⊙∂∇Fc

w

)
: ∇vc

}
+

∫
∂R(t)

(
Je+

1

detFc
[∂∇Fc

w]T Ḟc

)
·n

≤
∫
R(t)

(
Tc : ∇vc+Tl : ∇vl+m ·(vc−vl)+(π+µc)

∂ϕc
∂t

+ξ ·∇∂ϕc
∂t
−ϕcvc ·∇µc

−hc ·∇µc+pdiv(ϕcvc+ϕlvl)
)

=

∫
R(t)

(
Tc : ∇vc+Tl : ∇vl+m ·(vc−vl)

+(π+µc)

(
∂ϕc
∂t

+vc ·∇ϕc
)
−πvc ·∇ϕc+(µcϕc+pϕc)I : ∇vc+pϕlI : ∇vl−hc ·∇µc

+p∇ϕc ·vc+p∇ϕl ·vl+ξ ·∇∂ϕc
∂t

)
−
∫
∂R(t)

µcϕcvc ·n.

Remark 3.1. We note that, in accordance with the axioms of the theory of mixtures
[2] and due to the fact that the energy density e is a quantity associated with the phase
c, the advective velocity used in the Reynolds transport theorem is vc. This means
that the quantity e in the first term in (3.11) is integrated over a material volume for
the phase c, namely Rc(t), which coincides with the material volume R(t) for the whole
mixture by assumption.

Integrating by parts, and using (3.8), in the term∫
R(t)

πvc ·∇ϕc=
∫
∂R(t)

(vc ·∇ϕc)ξ ·n−
∫
R(t)

(ξ ·∇(∇ϕc)vc+∇ϕc⊗ξ : ∇vc)

we get∫
R(t)

(
(∂ϕc

e−π−µc)
(
∂ϕc
∂t

+vc ·∇ϕc
)
+(∂∇ϕc

e−ξ) ·
(
∂∇ϕc
∂t

+∇(∇ϕc)vc
))

+

∫
R(t)

(
1

detFc
(∂Fc

w)FTc −div

(
1

detFc
∂∇Fc

w

)
FTc −

1

detFc
∇Fc⊙∂∇Fc

w

−∇ϕc⊗ξ+

[
Φ(ϕc,∇ϕc)−ϕcµc−pϕc

]
I−Tc

)
: ∇vc−

∫
R(t)

(Tl+pϕlI) : ∇vl

−
∫
R(t)

(m+p∇ϕc) ·vc+
∫
R(t)

(m−p∇(1−ϕc)) ·vl+
∫
R(t)

hc ·∇µc

+

∫
∂R(t)

(
Je+

1

detFc
[∂∇Fc

w]T Ḟc+(vc ·∇ϕc)ξ+ϕcµcvc
)
·n≤0. (3.15)
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Inequality (3.15) is satisfied if we make the following general constitutive assumptions:

µc=∂ϕc
e−π+δ

(
∂ϕc

∂t +vc ·∇ϕc
)
=∂ϕc

e−divξ+δ
(
∂ϕc

∂t +vc ·∇ϕc
)
,

ξ=∂∇ϕc
e+θ

(
∂∇ϕc

∂t +∇(∇ϕc)vc
)
,

Tc=
1

detFc
(∂Fcw)F

T
c −div

(
1

detFc
∂∇Fcw

)
FTc − 1

detFc
∇Fc⊙∂∇Fcw

−∇ϕc⊗ξ+

[
Φ(ϕc,∇ϕc)−ϕcµc−pϕc

]
I+νc

(
∇vc+(∇vc)T

)
,

Tl=−p(1−ϕc)I+νl
(
∇vl+(∇vl)T

)
,

m=−p∇ϕc,

hc=−b(ϕc)∇µc,

Je=− 1
detFc

[∂∇Fc
w]T Ḟc−(vc ·∇ϕc)ξ−ϕcµcvc,

(3.16)

where (3.8) has been used in the first relation of (3.16), δ,θ,νc,νl are positive coefficients
(which we assume to be constant) and b(ϕc) is a positive mobility function, considered
as dependent only on ϕc.

Inserting (3.16) in (3.1), (3.6), and (3.7), considering ∂ΩD,c=∂ΩD,l=∂Ω, η=0,
and imposing Neumann boundary conditions on ∂∇Fc

w and on the flux hc, we finally
obtain the system

Tc=
1

detFc
(∂Fcw)F

T
c −div

(
1

detFc
∂∇Fcw

)
FTc − 1

detFc
∇Fc⊙∂∇Fcw−∇ϕc⊗∂∇ϕce

−θ∇ϕc⊗
(
∂∇ϕc

∂t +∇(∇ϕc)vc
)
+

[
Φ(ϕc,∇ϕc)−ϕcµc−pϕc

]
I+νc

(
∇vc+(∇vc)T

)
,

divTc−K(ϕc)(vc−vl)+p∇ϕc=0,

Tl=−p(1−ϕc)I+νl
(
∇vl+(∇vl)T

)
,

divTl+K(ϕc)(vc−vl)−p∇ϕc=0,

div(ϕcvc+ϕlvl)=0,

Ḟc=(∇vc)Fc,
∂ϕc

∂t +div(ϕcvc)−div(b(ϕc)∇µc)=0,

µc=∂ϕc
e−div∂∇ϕc

e−θdiv
(
∂∇ϕc

∂t +∇(∇ϕc)vc
)
+δ
(
∂ϕc

∂t +vc ·∇ϕc
)
,

(3.17)
valid in Ω× [0,T ], where T >0 is the final time of evolution of the system, endowed with
the boundary conditions

b(ϕc)∇µc ·n=

(
∂∇ϕc

e+θ

(
∂∇ϕc
∂t

+∇(∇ϕc)vc
))
·n=0, [∂∇Fc

w]n=0, vc=vl=0,

(3.18)
on ∂Ω× [0,T ], and with initial conditions for Fc(x,0) and ϕc(x,0), x∈Ω. Here,

∂ϕce=
ψ′(ϕc)

ϵ
+

1

detFc
∂ϕcw, ∂∇ϕce= ϵ∇ϕc+

1

detFc
∂∇ϕcw. (3.19)

With the choice of boundary conditions in (3.17), we have that Je ·n=0 on ∂Ω. We
note that the boundary condition vc=vl=0 on ∂Ω× [0,T ] implies that the boundary
of the domain Ω is not deformed over time by the elastic deformation, hence the domain
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Ω is fixed in time. We moreover note that the elastic contribution 1
detFc

(∂Fcw)F
T
c in

the Cauchy stress tensor Tc is the push–forward of the Piola stress tensor ∂Fcw from
the Lagrangian to the Eulerian configuration.

Remark 3.2. The terms in (3.17) which are multiplied by the coefficients δ and
θ, which are dissipative contributions in (3.15) and (3.16), can be identified as viscous
regularizations of the material time derivatives of ϕc and ∇ϕc in the system dynamics.

Remark 3.3. The dependence of w on ∇Fc in (3.9) could be associated, in a
framework of a second–gradient theory, to a third order stress tensor power–conjugated
to ∇∇vc, instead of being incorporated in the second order stress tensor Tc, as done in
(3.16).

3.1. Energy estimate. In this section we prove that a solution of system (3.17)
formally satisfies an energy equality, as a direct consequence of (3.15) and of the con-
stitutive Assumptions (3.16). Let us multiply (3.17)1 and (3.17)2 by ∇vc and vc re-
spectively, (3.17)3 and (3.17)4 by ∇vl and vl respectively, (3.17)5 by p, (3.17)6 by

∂Fc

(
w

detFc

)
−div

(
1

detFc
∂∇Fcw

)
, (3.17)7 by µc and (3.17)8 by ∂tϕc+vc ·∇ϕc, and inte-

grate over Ω. We obtain:

(
∂Fc

(
w

detFc

)
FT

c −
(
div

(
1

detFc
∂∇Fcw

)
FT

c + 1
detFc

∇Fc⊙∂∇Fcw
)
−∇ϕc⊗∂∇ϕce

−θ∇ϕc⊗
(
∂∇ϕc
∂t

+∇(∇ϕc)vc

)
+

[
e(ϕc,∇ϕc,Fc)−ϕcµc−pϕc

]
I

+νc
(
∇vc+(∇vc)

T
)
,∇vc

)
+(K(ϕc)(vc−vl),vl)−(p∇ϕc,vc)=0,(

−p(1−ϕc)I+νl
(
∇vl+(∇vl)

T
)
,∇vl

)
−(K(ϕc)(vc−vl),vl)+(p∇ϕc,vl)=0,

(
ϕcdivvc+vc ·∇ϕc+(1−ϕc)divvl+vl ·∇(1−ϕc),p

)
=0,(

∇vc,∂Fc

(
w

detFc

)
FT

c −div
(

1
detFc

∂∇Fcw
)
FT

c

)
=
(
Ḟc,∂Fc

(
w

detFc

))
+
(
∇Ḟc,

1
detFc

∂∇Fcw
)

=
(
Ḟc,∂Fc

(
w

detFc

))
+
(

˙(∇Fc),
1

detFc
∂∇Fcw

)
+
(

1
detFc

∇Fc⊙∇∂∇Fcw,∇vc

)
,

(
∂ϕc
∂t
,µc

)
+(ϕcdivvc,µc)+(vc ·∇ϕc,µc)+(b(ϕc)∇µc,∇µc)=0,

(
µc,

∂ϕc
∂t

+vc ·∇ϕc

)
=
(
∂ϕce,

∂ϕc
∂t

+vc ·∇ϕc

)
+
(
∂∇ϕce,∇

(
∂ϕc
∂t

+vc ·∇ϕc

))
+θ

(
∂∇ϕc
∂t

+∇(∇ϕc)vc,∇
(
∂ϕc
∂t

+vc ·∇ϕc

))
+δ

∣∣∣∣ ∂ϕc
∂t

+vc ·∇ϕc

∣∣∣∣2
=
(
∂ϕce,

∂ϕc
∂t

+vc ·∇ϕc

)
+
(
∂∇ϕce,

∂∇ϕc
∂t

+∇(∇ϕc)vc

)
+θ

∣∣∣∣ ∂∇ϕc
∂t

+∇(∇ϕc)vc

∣∣∣∣2
+δ

∣∣∣∣ ∂ϕc
∂t

+vc ·∇ϕc

∣∣∣∣2+(
∇ϕc⊗

(
∂∇ϕce+θ

(
∂∇ϕc
∂t

+∇(∇ϕc)vc

))
,∇vc

)
,

(3.20)

where in the seventh line we used (3.13), and in the last equality we used the relation

(∂∇ϕc
e,∇(vc ·∇ϕc))=(∂∇ϕc

e, [∇∇ϕc]vc)+(∇ϕc⊗∂∇ϕc
e,∇vc) ,

and a similar relation for the term multiplied by the coefficient θ. Summing all the
equations in (3.20) and using the boundary conditions (3.18), we obtain the energy
equality

d

dt

∫
Ω

e(ϕc,∇ϕc,Fc,∇Fc)+
∫
Ω

b(ϕc)|∇µc|2
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+
νc
2

∫
Ω

∣∣∣∇vc+(∇vc)T
∣∣∣2+ νl

2

∫
Ω

∣∣∣∇vl+(∇vl)T
∣∣∣2

+
1

2

∫
Ω

K(ϕc)|vc−vl|2+θ
∣∣∣∣∣∣∣∣∂∇ϕc∂t

+∇(∇ϕc)vc
∣∣∣∣∣∣∣∣2+δ ∣∣∣∣∣∣∣∣∂ϕc∂t +vc ·∇ϕc

∣∣∣∣∣∣∣∣2=0. (3.21)

3.2. Constitutive assumptions for w and K(ϕc). In the following, we specify
the model derivation by considering an hyperelastic free energy density which depends
only on ϕc and Fc, i.e. w=w(ϕc,Fc), and which satisfies objectivity, i.e.

w(ϕc,Fc)= ŵ(ϕc,Bc),

where Bc=FcF
T
c . Of particular interest for both analytical aspects of the theory of

nonlinear elasticity [5] and for applications [38] are the polyconvexity and the coercivity
conditions for w. The function w is said to be polyconvex if (in 3 space dimensions)
there exists a function g :Ω×R19→R with g(x, ·, ·, ·) convex for a.e. x∈Ω and

w(ϕc,Fc)=g(ϕc,Fc,cofFc,detFc). (3.22)

Moreover, if w is polyconvex, the following coercivity condition on g(ϕc,·,·,·) is typically
required: there exist α>0, β∈R, p≥2, q≥ p

p−1 , r>0 such that, for each F,C∈L(R3),
η>0,

g(ϕc,F,C,η)≥α(|F|p+ |C|q+ηr)+β. (3.23)

Many realistic models of nonlinear elastic materials satisfy the polyconvexity and the
coercivity properties, e.g. the generalized Ogden model and the Mooney-Rivlin model
[38]. Specifically, the isotropic Mooney–Rivlin model, which is a particular case of the
Ogden model, has been used in the literature to describe the mechanical behavior of
soft brain tissues, and it has been experimentally calibrated and validated on in–vivo
data [4].

In light of these considerations, in the following we specify the model derivation by
considering the following Mooney–Rivlin form (in 3 space dimensions) for w,

w(ϕc,Fc)=
c1
2
f(ϕc)(Fc : Fc−3)+

c2
2
g(ϕc)(cof(Fc) : cof(Fc)−3)+c3h(detFc), (3.24)

with

∂Fcw(ϕc,Fc)=c1f(ϕc)Fc+c2g(ϕc)
(
(cof(Fc) : cof(Fc))F

−T
c −cof(Fc)(cof(Fc))

T
F−T
c

)
+c3h

′(detFc)detFcF
−T
c , (3.25)

where c1,c2,c3 are material parameters, in units of [Pa], the functions f(ϕc),g(ϕc)
represent the change in stiffness of the material depending on the concentration ϕc,
and h :R+→R is a convex function which penalizes the infinite compression situation
detFc=0 in the energy density and which eventually contains a weak compressibility
contribution.

Remark 3.4. Realistic constitutive assumptions for the functions f(ϕc),g(ϕc), if
the mixture is composed by an elastic and an anelastic component, should satisfy the
property f(0)=g(0)=0, with the particular form of f,g : [0,1]→ [0,1] determined by
empirical observations on the considered materials.
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We make the simplifying assumption that the momentum transfer in the mixture
due to shear stresses in the liquid is negligible with respect to the momentum transfer
between the solid and the liquid components, i.e. we take

Tl=−p(1−ϕc)I. (3.26)

We moreover assume that the momentum exchange between the phases c and l, ex-
pressed as a Stokes drag in (3.6) and (3.7), is induced by a Darcy–like flow of the viscous
fluid associated to the phase l through the porous-permeable solid matrix associated to
the phase c, hence (see e.g. [2])

K(ϕc)=
µl(1−ϕc)
k(ϕc)

, (3.27)

where µl is the viscosity of the phase l and k(ϕc) is the intrinsic permeability of the
phase c. Assuming µl=µϕl and k(ϕc)=k constant, we obtain

K(ϕc)=
µ(1−ϕc)2

k
. (3.28)

Inserting (3.26) and (3.28) in the third and fourth equations of system (3.17), we obtain
the Darcy–like relation

divTl−
µ

k
(1−ϕc)2(vl−vc)−p∇ϕc=0→ (vl−vc)=−

k

µ(1−ϕc)
∇p. (3.29)

We finally substitute (3.29) in the fifth equation of (3.17), thus eliminating the variables
Tl and vl from the system, and consider the Mooney–Rivlin model (3.24), with (3.25),
taking also δ=θ=0. Hence, system (3.17) reduces to:

Tc=
1

detFc

(
c1f(ϕc)FcF

T
c −c2g(ϕc)cof(Fc)(cof(Fc))T

)
−ϵ∇ϕc⊗∇ϕc

+
[

c2
detFc

g(ϕc)(cof(Fc) : cof(Fc))+Φ(ϕc,∇ϕc)−ϕcµc+c3h′(detFc)
]
I+νc

(
∇vc+(∇vc)T

)
,

divTc−∇p=0,

div
(
k
µ∇p

)
=divvc,

Ḟc=(∇vc)Fc,
∂ϕc

∂t +div(ϕcvc)−div(b(ϕc)∇µc)=0,

µc=
ψ′(ϕc)
ϵ −ϵ∆ϕc+ c1

2detFc
f ′(ϕc)(Fc : Fc−3)+ c2

2detFc
g′(ϕc)(cof(Fc) : cof(Fc)−3),

(3.30)
valid in Ω× [0,T ], endowed with the boundary conditions

b(ϕc)∇µc ·n=∇ϕc ·n=∇p ·n=0, vc=0, (3.31)

on ∂Ω× [0,T ], and with initial conditions for Fc(x,0) and ϕc(x,0), x∈Ω.

Remark 3.5. Different possible constitutive assumptions on the form of the intrinsic
permeability k(ϕc) in (3.27) could be given, depending on the particular microstructure
of the considered constituent c. For instance, k(ϕc)∝ (1−ϕc) if the phase c consists of
homogeneous and isotropic parallel cylindrical pores, and using the Poiseuille formula

for a capillary tube [29], while k(ϕc)∝ (1−ϕc)
2

ϕc
when a Kozeny–Carman permeability-

porosity relation is assumed for the porous medium [15,31]. In these situations, (3.30)3
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would take the form of a degenerate elliptic equation for p, with a mobility depending
on ϕc.

A solution of (3.30) formally satisfies an energy equality analogous to (3.21). In-
deed, multiplying (3.30)1 and (3.30)2 by ∇vc and vc respectively, (3.30)3 by p, (3.30)4

by ∂Fc

(
w

detFc

)
, (3.30)5 by µc and (3.30)6 by ∂tϕc+vc ·∇ϕc, integrating over Ω and

employing similar calculations as in (3.20) and the boundary conditions, we obtain

d

dt

∫
Ω

e(ϕc,∇ϕc,Fc)+
∫
Ω

b(ϕc)|∇µc|2+
νc
2

∫
Ω

∣∣∣∇vc+(∇vc)T
∣∣∣2+∫

Ω

k

µ
|∇p|2=0. (3.32)

3.3. Elastic incompressibility constraint for the cell phase. Let us in-
troduce a solenoidal constraint for the velocity of the phase c, i.e. divvc=0, with a
corresponding Lagrange multiplier in the dissipation inequality (3.11),

d

dt

∫
R(t)

e(ϕc,∇ϕc,Fc,∇Fc)+
∫
∂R(t)

Je ·n

≤Wext(R(t))−
∫
∂R(t)

µc(ϕcvc+hc) ·n+

∫
R(t)

pdiv(ϕcvc+ϕlvl)+

∫
R(t)

qdivvc. (3.33)

This constraint implies that the partial volume occupied by the phase c within a material
volume changes only due to the presence of the micro–flux. Analogously to the mixture
model introduced in [18], this modeling choice introduces two kinds of pressures in the
system dynamics, a liquid pressure p and a solid pressure q.

Remark 3.6. The constraint divvc=0 implies detFc=constant. Indeed, taking the
Frobenius scalar product of equation (3.12) with ∂Fc

detFc, we have that

d(detFc)

dt
= Ḟc : detFcF

−T
c =(∇vc)Fc : detFcF−T

c =(∇vc) : IdetFc=divvcdetFc=0.

(3.34)
Starting from (3.33), using similar calculations as in (3.15) and (3.16), imposing

detFc(x,t)=detFc(x,0)=1, and redefining q= q−Φ(ϕc,∇ϕc)+ϕcµc, we obtain the sys-
tem

Tc=(∂Fc
w)FTc −div(∂∇Fc

w)FTc −∇Fc⊙∂∇Fc
w−∇ϕc⊗∂∇ϕc

e

−θ∇ϕc⊗
(
∂∇ϕc

∂t +∇(∇ϕc)vc
)
+[−pϕc−q]I+νc

(
∇vc+(∇vc)T

)
,

divTc−K(ϕc)(vc−vl)+p∇ϕc=0,

Tl=−p(1−ϕc)I+νl
(
∇vl+(∇vl)T

)
,

divTl+K(ϕc)(vc−vl)−p∇ϕc=0,

div(ϕcvc+ϕlvl)=0,

divvc=0,

Ḟc=(∇vc)Fc,
∂ϕc

∂t +div(ϕcvc)−div(b(ϕc)∇µc)=0,

µc=∂ϕc
e−div∂∇ϕc

e−θdiv
(
∂∇ϕc

∂t +∇(∇ϕc)vc
)
+δ
(
∂ϕc

∂t +vc ·∇ϕc
)
,

(3.35)
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valid in Ω× [0,T ], endowed with the boundary conditions

b(ϕc)∇µc ·n=

(
∂∇ϕc

e+θ

(
∂∇ϕc
∂t

+∇(∇ϕc)vc
))
·n=0, [∂∇Fc

w]n=0, vc=vl=0

(3.36)
on ∂Ω× [0,T ], and with initial conditions for Fc(x,0) and ϕc(x,0), x∈Ω. Note that the
energy estimate (3.21) is still formally satisfied by a solution of (3.35).

Remark 3.7. We observe that div(ϕcvc+ϕlvl)=0 and divvc=0 are independent
constraints, as it is easily verifiable by direct calculations.

We finally rewrite the system (3.35) by introducing the constitutive assumption
(3.28) and considering the Mooney–Rivlin model (3.24) without the dependence on
h(detFc), due to (3.34), taking also δ=θ=0. We observe that (3.30)3, which now takes
the form

div

(
k

µ
∇p
)
=divvc=0,

gives, together with the boundary condition ∇p ·n=0 on ∂Ω, that p=constant. This
would be true also if we would consider a homogeneous degenerate elliptic equation for
p starting from different constitutive assumptions for the friction function K(ϕc) than
(3.28), as described in Remark 3.5. Hence, the contribution of the variable p disappears
from (3.30)2. Redefining the variable q= q−c2g(ϕc)(cof(Fc) : cof(Fc))−Φ(ϕc,∇ϕc)+
ϕcµc, and considering that

div
(
∇vc+(∇vc)T

)
=∆vc+∇(divvc) ,

we obtain

−νc∆vc+∇q
=−ϵdiv(∇ϕc⊗∇ϕc)+div

(
c1f(ϕc)FcF

T
c −c2g(ϕc)cof(Fc)(cof(Fc))T

)
,

divvc=0,

Ḟc=(∇vc)Fc,
∂ϕc

∂t +vc ·∇ϕc−div(b(ϕc)∇µc)=0,

µc=
ψ′(ϕc)
ϵ −ϵ∆ϕc+ c1

2 f
′(ϕc)(Fc : Fc−3)+ c2

2 g
′(ϕc)(cof(Fc) : cof(Fc)−3),

(3.37)

valid in Ω× [0,T ], endowed with the boundary conditions

b(ϕc)∇µc ·n=∇ϕc ·n=0, vc=0 (3.38)

on ∂Ω× [0,T ], and with initial conditions for Fc(x,0) and ϕc(x,0), x∈Ω. To system
(3.37), with boundary conditions (3.38), is associated an energy estimate analogous to
(3.32), without the dissipative term depending on ∇p,

d

dt

∫
Ω

e(ϕc,∇ϕc,Fc)+
∫
Ω

b(ϕc)|∇µc|2+νc
∫
Ω

|∇vc|2=0. (3.39)
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4. Global existence of a weak solution
In this section we develop the analysis of existence of a global weak solution to

a simplified version of system (3.37), both in 2 and 3 space dimensions, obtained by
regularizing the system and considering a Neo–Hookean model for the finite elasticity,

w(ϕc,Fc)=
c1
2
f(ϕc)(Fc : Fc−d), (4.1)

where d=2,3, which is both polyconvex (w(·,Fc) is strictly convex) and coercive, with
p=2, in the sense of (3.22) and (3.23). In particular, we add to system (3.37) a regular-
izing term δ ∂ϕc

∂t in the expression for the chemical potential µc, in order to enhance the
regularity in time of the variable ϕc, while we add a regularizing term λ∆(f(ϕ)F) in the
transport equation for Fc, in order to enhance the regularity in space of the variable Fc,
hence improving the compactness properties of sequences of approximating solutions to
the system. We will obtain existence of a weak solution in two space dimensions in the
case λ>0, δ=0 (i.e. no time derivative regularization is needed in 2D), while we will
show the existence of a weak solution in three space dimensions in the case λ>0, δ >0
(i.e. the viscous regularization term in the expression of the chemical potential µc is
needed to recover existence in 3D).

As

µc=−ϵ∆ϕc+
1

ϵ
ψ′(ϕc)+∂ϕcw,

we can obtain the relation

−ϵdiv(∇ϕc⊗∇ϕc)=−∇
(
ϵ

2
|∇ϕc|2+

1

ϵ
ψ(ϕc)

)
+µc∇ϕc−∂ϕc

w∇ϕc

=−∇
(
ϵ

2
|∇ϕc|2+

1

ϵ
ψ(ϕc)+w(ϕc,Fc)

)
+µc∇ϕc+(∇Fc)T ∂Fcw, (4.2)

to rewrite the first term on the right-hand side of (3.37)1. Omitting the subscript c,
setting ϵ= c1=1 for ease of notation and employing (4.1), we thus arrive at the following
system 

−ν∆v+∇q=µ∇ϕ−
(
1
2f

′(ϕ)(F : F−d)
)
∇ϕ+div

(
f(ϕ)FFT

)
,

divv=0,

∂F
∂t +(v ·∇)F−(∇v)F−λ∆(f(ϕ)F)=0,

∂ϕ
∂t +v ·∇ϕ−div(b(ϕ)∇µ)=0,

µ=ψ′(ϕ)−∆ϕ+ 1
2f

′(ϕ)(F : F−d)+δ ∂ϕ∂t ,

(4.3)

valid in ΩT , endowed with the boundary conditions

b(ϕ)∇µ ·n=∇ϕ ·n=0, v=0, [∇(f(ϕ)F)]n=0 (4.4)

on ∂ΩT , and with initial conditions for F(x,0)=F0 and ϕ(x,0)=ϕ0, x∈Ω. Here, in
view of (3.10), we have redefined q= q+Φ(ϕc,∇ϕc).

Remark 4.1. As we will see in the next paragraphs, the viscous regularization inserted
in the chemical potential in (4.3)5 aims at bounding the L2(ΩT ) norm of ∂ϕ∂t using the a–
priori energy estimates associated to the system. A different viscous regularization of the
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time derivative of ϕ was introduced in (3.16), which was compatible with the dissipation
inequality (3.15) and which aimed at bounding the L2(ΩT ) norm of the material time
derivative of ϕ through (3.21), obtained when the first term on the right-hand side of
(3.37)1 is written as −ϵdiv(∇ϕc⊗∇ϕc). Since we will need to enhance the regularity
of the partial time derivative of ϕ in order to obtain proper compactness results for
the convergence of approximate solutions in 3D, we have rewritten the first term in
the right-hand side of (3.37)1 using (4.2) and inserted by hand a viscous regularization
involving only the partial time derivative of ϕ in the chemical potential.

Remark 4.2. The regularization term λ∆(f(ϕ)F) in (4.3)3 is introduced, follow-
ing [6], to enhance the regularity in space of the variable F, without considering a
dependence on ∇F in the elastic energy density w. Differently from [6, 22] and due to
the combined dependence of w on ϕ and F in (4.1), this elliptic regularization term
must depend also on ϕ in order to be able to derive a–priori energy estimates in a closed
form, and its particular form prevents to obtain elliptic regularity for the variable F. We
note that, due to the presence of this regularization term, the constraint divvc=0 no
longer implies, from (3.34), that detFc=constant. The kinematic relationship between
the variables vc and Fc is therefore lost due to the presence of the regularization term.
In order to proceed, we make the following assumptions:

A0 Ω is smooth and the boundary ∂Ω of the domain is of class C∞;

A1 b∈C0(R) and there exist b0,b1>0 such that b0≤ b(s)≤ b1, ∀s∈R;
A2 ψ∈C1(R) and there exist c1,c2>0 such that |ψ′(s)|≤ c1 (|s|p+1), ψ(s)≥−c2,
∀s∈R, with p∈ [0,6) if d=3 and p∈R+ arbitrary if d=2. Moreover, there exists
a convex decomposition of ψ=ψ++ψ−, where ψ+ is convex and ψ− is concave,
such that |ψ′′

−(s)|≤ c1 (|s|q+1), with q∈ [0,4) if d=3 and q∈R+ arbitrary if
d=2;

A3 f ∈C1,1(R), and there exists a constant fmin∈R+ such that 0<fmin≤f(s)≤1,
∀s∈R. We also assume that there exists a constant f1∈R+ such that |f ′(s)|≤
f1, ∀s∈R;

A4 The initial data have the regularity F0∈L2(Ω;Rd×d), ϕ0∈H1(Ω).

Note that through A3 we assume the function f to be uniformly positive, which, as
will be evident in the following, is a fundamental property to obtain analytic results for
system (4.3), even if realistic constitutive assumptions for f should entail the degeneracy
f(0)=0 (see Remark 3.4).

We state here the main theorems of the present work concerning the existence of a
global weak solution to (4.3) in 2 and 3 space dimensions, which will be proved in the
forthcoming sections.

Theorem 4.1 (2D). Let d=2 and let the assumptions A0–A4 be satisfied. Then,
there exists a weak solution (v,F,ϕ,µ) of (4.3)-(4.4) for δ=0, λ>0, with

v∈L2
(
0,T ;H1

0,div

(
Ω;R2

))
,

F∈L∞(0,T ;L2(Ω;R2×2))∩L2(0,T ;H1(Ω;R2×2)),

∂tF∈L2−h
(
0,T ;

(
H1(Ω;R2×2)

)′)
, h∈ (0,1],

ϕ∈L∞(0,T ;H1(Ω))∩L2(0,T ;H2(Ω)),

∂tϕ∈L2
(
0,T ;

(
H1(Ω)

)′)
,
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µ∈L2
(
0,T ;H1 (Ω)

)
,

such that

ν

∫
Ω

∇v : ∇u=

∫
Ω

µ∇ϕ ·u−
∫
Ω

f ′ (ϕ)

2
(F : F−2)∇ϕ ·u−

∫
Ω

f (ϕ)FFT : ∇u,

⟨∂tF,Σ⟩−
∫
Ω

F⊗v ..
.∇Σ−

∫
Ω

(∇v)F : Σ+λ

∫
Ω

∇(f(ϕ)F) ..
.∇Σ=0,

<∂tϕ,q>+

∫
Ω

(v ·∇ϕ)q+
∫
Ω

b(ϕ)∇µ ·∇q=0,∫
Ω

µr=

∫
Ω

∇ϕ ·∇r+
∫
Ω

ψ′ (ϕ)r+

∫
Ω

f ′ (ϕ)

2
(F : F−2)r,

(4.5)

a.e. in t∈ (0,T ) and for all u∈H1
0,div

(
Ω;R2

)
, Σ∈H1

(
Ω;R2×2

)
, q,r∈H1(Ω), satisfying

the initial conditions F(·,0)=F0 a.e. in Ω and ϕ(·,0)=ϕ0 a.e. in Ω.

Theorem 4.2 (3D). Let d=3 and let the assumptions A0–A4 be satisfied. Then,
there exists a weak solution (v,F,ϕ,µ) of (4.3)-(4.4), with λ, δ>0, with

v∈L2
(
0,T ;H1

0,div

(
Ω;R3

))
,

f(ϕ)F∈L∞(0,T ;L2(Ω;R3×3))∩L2(0,T ;H1(Ω;R3×3)),

F∈L∞(0,T ;L2(Ω;R3×3)),

∂tF∈L
4
3

(
0,T ;

(
H1(Ω;R3×3)

)′)
,

ϕ∈L∞(0,T ;H1(Ω))∩L 4
3 (0,T ;H2(Ω)),

∂tϕ∈L2 (ΩT ) ,

µ∈L2
(
0,T ;H1 (Ω)

)
,

such that

ν

∫
Ω

∇v : ∇u=

∫
Ω

µ∇ϕ ·u−
∫
Ω

f ′ (ϕ)

2
(F : F−3)∇ϕ ·u−

∫
Ω

f (ϕ)FFT : ∇u,

⟨∂tF,Σ⟩−
∫
Ω

F⊗v ..
.∇Σ−

∫
Ω

(∇v)F : Σ+λ

∫
Ω

∇(f(ϕ)F) ..
.∇Σ=0,∫

Ω

∂tϕq+

∫
Ω

(v ·∇ϕ)q+
∫
Ω

b(ϕ)∇µ ·∇q=0,∫
Ω

µr=

∫
Ω

∇ϕ ·∇r+
∫
Ω

ψ′ (ϕ)r+

∫
Ω

f ′ (ϕ)

2
(F : F−3)r+δ

∫
Ω

∂tϕr,

(4.6)

a.e. in t∈ (0,T ) and for all u∈H1
0,div

(
Ω;R3

)
, Σ∈H1

(
Ω;R3×3

)
, q,r∈H1(Ω), satisfying

the initial conditions F(·,0)=F0 a.e. in Ω and ϕ(·,0)=ϕ0 a.e. in Ω.

In the following, we will define a proper Faedo–Galerkin approximation of (4.3),
proving the existence of a discrete solution and studying its convergence to a continuous
weak solution in both 2 and 3 space dimensions. In order to prove the well posedness
of the Faedo–Galerkin approximation, we will need to add some further regularizing
terms γ ∂v∂t and θ ∂µ∂t to (4.3)1 and (4.3)4, respectively, with regularization parameters
γ, θ. The limit problem of the approximation will be then investigated in a first step as
γ, θ→0, and in a second step as the discretization parameter tends to infinity. Before
proceeding, we state some preliminary results which will be used in the analysis.
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4.1. Preliminary lemmas. We state here some Sobolev embedding and inter-
polation results which will be used in the following calculations. We start by recalling
the Gagliardo-Nirenberg inequality (see e.g. [10, 19,33,37]).

Lemma 4.1. Let Ω⊂Rd, d=2,3, be a bounded domain with Lipschitz boundary and
f ∈Wm,r∩Lq, q≥1, r≤∞, where f can be a function with scalar, vectorial or tensorial
values. For any integer j with 0≤ j <m, suppose there is α∈R such that

j− d
p
=

(
m− d

r

)
α+(1−α)

(
−d
q

)
,

j

m
≤α≤1.

Then, there exists a positive constant C depending on Ω, d, m, j, q, r, and α such that

||Djf ||Lp ≤C||f ||αWm,r ||f ||1−αLq . (4.7)

We also state the following interpolation results.

Lemma 4.2. Let Ω⊂Rd, d=2,3, be a bounded domain with Lipschitz boundary and
f ∈L∞(0,T ;L2)∩L2(0,T ;H1), where f(x,t), with t∈ (0,T ), x∈Ω, may be a scalar, a
vector or a tensor. Then, there exists a positive constant C depending on Ω and d such
that ∫ T

0

||f ||
2(2+h)

h

L2+h ≤C
∫ T

0

||f ||
4
h

L2 ||f ||2H1 , d=2, h>0, (4.8)

∫ T

0

||f ||
4(2+h)

3h

L2+h ≤C
∫ T

0

||f ||
2(4−h)

3h

L2 ||f ||2H1 , d=3, h∈ (0,4]. (4.9)

We observe that (4.8) and (4.9) are consequences of the Gagliardo–Nirenberg inequal-
ity (4.7) with j=0, m=1, p=2+h, r=2, q=2. We moreover recall the following
interpolation inequality.

Lemma 4.3. Let Ω⊂Rd be a bounded domain and f ∈Lq, q≥1, where f can be a
function with scalar, vectorial or tensorial values. Let also s≤ r≤ q. Then, there exists
a positive constant C depending on Ω and d such that

∫
Ω

|f |r≤
(∫

Ω

|f |s
) q−r

q−s
(∫

Ω

|f |q
) r−s

q−s

. (4.10)

We finally state two Agmon type inequalities in two and three space dimensions (see
e.g. [1]) which will be used in the following calculations.

Lemma 4.4. Let Ω⊂Rd, d=2,3, be a bounded domain with Lipschitz boundary and
f ∈H2(Ω). Then, there exists a positive constant C depending on Ω and d such that

||f ||L∞(Ω)≤C||f ||1−θH1(Ω)||f |||
θ
H2(Ω), ∀θ∈ (0,1],d=2, (4.11)

||f ||L∞(Ω)≤C||f ||
1
2

H1(Ω)||f |||
1
2

H2(Ω), d=3. (4.12)
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4.2. Faedo–Galerkin approximation scheme. Adding the regularizing terms
γ ∂v∂t ,θ

∂µ
∂t to (4.3)1 and (4.3)4 respectively, we formulate a Faedo–Galerkin approximation

scheme for the following system:

γ ∂v∂t −ν∆v+∇q=µ∇ϕ−
(
1
2f

′(ϕ)(F : F−d)
)
∇ϕ+div

(
f(ϕ)FFT

)
,

divv=0,

∂F
∂t +(v ·∇)F−(∇v)F−λ∆(f(ϕ)F)=0,

∂ϕ
∂t +v ·∇ϕ−div(b(ϕ)∇µ)+θ ∂µ∂t =0,

µ=ψ′(ϕ)−∆ϕ+ 1
2f

′(ϕ)(F : F−d)+δ ∂ϕ∂t ,

(4.13)

endowed with the same boundary conditions as (4.3), and with initial conditions
v(x,0)=v0, F(x,0)=F0, ϕ(x,0)=ϕ0, µ(x,0)=µ0 for x∈Ω. As previously explained,
the regularizing terms γ ∂v∂t and θ ∂µ∂t are introduced to formulate a well-posed approxi-
mation scheme, and imply the specification of artificial initial conditions for v and µ.
In this context, we modify Assumption A4 by the following

A4 Bis The initial data have the regularity v0∈L2
div(Ω;Rd), F0∈L2(Ω;Rd×d), ϕ0∈

H1(Ω), µ0∈L2(Ω).

We will then obtain existence of a discrete solution for γ, θ→0, while we will study the
limit problem for the discretization parameter tending to infinity in the case δ→0, λ>0
in two space dimensions, and in the case δ, λ>0 in three space dimensions.

In view of obtaining a–priori energy estimates associated to system (4.13), observe
that the equation for F should be tested by ∂Fw=f(ϕ)F (see (3.20)), which, when ϕ
and F are projected onto proper discrete spaces, does not belong to the discrete space
associated to the variable F. Then, we formulate a Galerkin approximation where the
third equation of (4.13) is solved in a continuous space.

We start by defining the finite dimensional spaces which will be used to formulate
the Galerkin ansatz to approximate the solutions of system (4.13). Let {ηi}i∈N be the
eigenfunctions of the Stokes operator with homogeneous Dirichlet boundary conditions,
i.e.

PL(−∆)ηi=βiηi inΩ, ηi=0 on∂Ω,

where PL :L
2(Ω;Rd)→L2

div(Ω;Rd) is the Leray projection operator, with 0<β0≤β1≤
···≤βm→∞. The sequence {ηi}i∈N can be chosen as an orthonormal basis in L2

div

(Ω;Rd) and an orthogonal basis in H1
0,div(Ω;Rd), and, thanks to Assumption A0, we

have that {ηi}i∈N⊂C∞(Ω̄;Rd). We introduce the projection operator

PSm :H1
0,div(Ω;Rd)→ span{η0,η1,. ..,ηm}.

Let moreover {ξi}i∈N be the eigenfunctions of the Laplace operator with homogeneous
Neumann boundary conditions, i.e.

−∆ξi=αiξi inΩ, ∇ξi ·n=0 on∂Ω,

with 0=α0<α1≤···≤αm→∞. The sequence {ξi}i∈N can be chosen as an orthonormal
basis in L2(Ω) and an orthogonal basis in H1(Ω), and, thanks to Assumption A0,
{ξi}i∈N⊂C∞(Ω̄). Without loss of generality, we assume α0=0. We introduce the
projection operator

PLm :H1(Ω)→ span{ξ0,ξ1,. ..,ξm}.
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We make the Galerkin ansatz vm=
∑
id
m
i (t)ηi(x), ϕm=

∑
ia
m
i (t)ξi(x), µm=

∑
i b
m
i (t)

ξi(x) to approximate the solutions v,ϕ,µ of system (4.13). Hence, we project the
equation for vm onto span {η0,η1,. ..,ηm} and the equations for ϕm and µm onto
span {ξ0,ξ1,. ..,ξm}, and formulate the following Galerkin approximation of system
(4.13):

γ

∫
Ω

∂tvm ·ηi+ν
∫
Ω

∇vm : ∇ηi

=
∫
Ω
µm∇ϕm ·ηi−

∫
Ω
f ′(ϕm)

2 (Fm : Fm−d)∇ϕm ·ηi−
∫
Ω
f (ϕm)FmFTm : ∇ηi,

⟨∂tFm,Σ⟩+
∫
Ω

(vm ·∇)Fm : Σ−
∫
Ω

(∇vm)Fm : Σ+λ

∫
Ω

∇(f(ϕm)Fm) ..
.∇Σ=0,∫

Ω

∂tϕmξi+

∫
Ω

(vm ·∇ϕm)ξi+

∫
Ω

b(ϕm)∇µm ·∇ξi+θ
∫
Ω

∂tµmξi=0,∫
Ω

µmξi=

∫
Ω

∇ϕm ·∇ξi+
∫
Ω

ψ′ (ϕm)ξi+

∫
Ω

f ′ (ϕm)

2
(Fm : Fm−d)ξi+δ

∫
Ω

∂tϕmξi,

(4.14)
a.e. in [0,t), with 0<t≤T , for i=0,. ..,m and ∀Σ∈H1(Ω;Rd×d), with Fm belonging to
a proper continuous space, which will be defined in the following. Here, we take the ini-
tial conditions ϕm(x,0)=PLm(ϕ0),µm(x,0)=PLm(µ0),vm(x,0)=PSm(v0),Fm(x,0)=F0.

In order to prove the existence of a solution of (4.14) and its convergence to a
continuous weak solution of system (4.13), following [6], we employ a fixed point strategy,
which in our case can be developed in the following steps:

Step 1. In the second equation of (4.14), we take fixed values ϕ̄m and v̄m of the variables
ϕm and vm in proper convex subsets of the corresponding Galerkin spaces, and
solve for Fm in a proper continuous space;

Step 2. Given the solution Fm obtained in the previous step, we solve for the variables
ϕm, µm and vm, hence a fixed point map is defined from (ϕ̄m,v̄m) to (ϕm,vm);

Step 3. We prove the existence of a fixed point of the map defined in the previous step,
which yields a solution of the original approximating problem (4.14);

Step 4. We obtain a–priori estimates, uniformly independent of the discretization pa-
rameter, for the discrete solutions, and study the limit problem as the dis-
cretization parameter tends to zero.

4.3. Step 1: Solution for F at the Galerkin level. We define the following
spaces, for t>0,

Vm(t) :=

v=

m∑
i=0

dmi (s)ηi(x) : sup
s∈[0,t]

(
m∑
i=0

|dmi (s)|2
) 1

2

≤Lv :=
∣∣∣∣PSm(v0)

∣∣∣∣
L2(Ω;Rd)

+1

,
Φm(t) :=

ϕ=
m∑
i=0

ami (s)ξ(x) : sup
s∈[0,t]

(
m∑
i=0

|ami (s)|2
) 1

2

≤Lϕ :=
∣∣∣∣PLm(ϕ0)

∣∣∣∣
L2(Ω)

+1

,
(4.15)

which are closed and convex subsets of the spaces C0([0,t];span{η0,η1,. ..,ηm}) and
C0([0,t];span{ξ0,ξ1,. ..,ξm}) respectively.
Given fixed v̄m∈Vm(t0) and ϕ̄m∈Φm(t0), with 0<t0≤T , we can define a proper weak
solution of the third equation of system (4.13) through the following theorem.
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Theorem 4.3. Given v̄m∈Vm(t0) and ϕ̄m∈Φm(t0), there exist a t1, with 0<t1≤ t0,
and a unique Fm, with

Fm∈L∞(0,t1;L2(Ω;Rd×d)
)
∩L2

(
0,t1;H

1(Ω;Rd×d)
)
∩H1

(
0,t1;

(
H1(Ω;Rd×d)

)′)
,

(4.16)
and

||Fm||L∞(0,t1;L2(Ω;Rd×d))+ ||Fm||L2(0,t1;H1(Ω;Rd×d))+ ||Fm||H1(0,t1;(H1(Ω;Rd×d))′)≤C,
(4.17)

where C is independent of the regularization parameters γ,θ,δ, satisfying the weak for-
mulation

⟨∂tFm,Σ⟩+
∫
Ω

(v̄m ·∇)Fm : Σ−
∫
Ω

(∇v̄m)Fm : Σ+λ

∫
Ω

∇
(
f(ϕ̄m)Fm

)
..
.∇Σ=0,

(4.18)
for all Σ∈H1(Ω;Rd×d) and a.e. t∈ [0,t1), with initial condition Fm(x,0)=F0(x).
Here, t1 depends on the discretization parameter m, on Lv, Lϕ, and on the initial
conditions v0,ϕ0.

Proof. Let {Σi}i∈N be the eigenfunctions of the Laplace operator with homoge-
neous Neumann boundary conditions, i.e.

−∆Σi=γiΣi inΩ, ∇Σin=0 on∂Ω,

with 0=γ0<γ1≤···≤γm→∞. The sequence {Σi}i∈N can be chosen as an orthonormal
basis in L2(Ω;Rd×d)) and an orthogonal basis in H1(Ω;Rd×d)), and, thanks to Assump-
tionsA0 andA1, {Σi}i∈N⊂C∞(Ω̄;Rd×d). Without loss of generality, we assume γ0=0.
We introduce the projection operator

PΣ
n :H1(Ω;Rd×d)→ span{Σ0,Σ1,. ..,Σn}.

We make the Galerkin ansatz

Fn=
∑
i

fni (t)Σi(x)

for the solution of the third equation of (4.13), and project the equation onto span
{Σ0,Σ1,. ..,Σn}, i.e.∫

Ω

∂tFn : Σi+

∫
Ω

(v̄m ·∇)Fn : Σi

−
∫
Ω

(∇v̄m)Fn : Σi+λ

∫
Ω

∇
(
f(ϕ̄m)Fn

)
..
.∇Σi=0, i=0,. ..,n, (4.19)

with initial condition Fn(x,0)=
∑
i (F0,Σi)Σi(x), where F0(x)=F(x,0). System (4.19)

defines a collection of initial value problems for the ODEs

d

dt
fni =

∑
l

(
−
∫
Ω

(v̄m ·∇)Σl : Σi+

∫
Ω

(∇v̄m)Σl : Σi

−λ
∫
Ω
f(ϕ̄m)∇Σl ..

.∇Σ−λ
∫
Ω
f ′(ϕ̄m)Σl⊗∇ϕ̄m ..

.∇Σi

)
fnl ,

fni (0)=(F0,Σi) , i=0,. ..,n.

(4.20)
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Thanks to the regularity of the fields v̄m∈Vm(t0), ϕ̄m∈Φm(t0) and Σi∈C∞(Ω̄;Rd×d),
we can apply the Peano existence theorem to infer that there exists a sufficiently small
t∗ with 0<t∗≤ t1 and a unique local solution fni ∈C1([0,t∗)) of (4.20), for i=0,. ..,n.

Remark 4.3. We observe that t∗ depends on n, on the initial condition F0, on the
L∞(0,t0;H

1
0 (Ω;Rd)) norm of v̄m and on the L∞(0,t0;H

1(Ω)) norm of ϕ̄m, which in
turn, given the definitions (4.15), depend on Lv and Lϕ, hence on the initial conditions
v0, ϕ0 and on m.

We now derive a–priori estimates uniform in n for the Galerkin solution Fn, in
order to pass to the limit as n→∞ and to prove (4.18). Combining the n+1 Equations
(4.19), for i=0,. ..,n, we get∫

Ω

∂tFn : Σ+

∫
Ω

(v̄m ·∇)Fn : Σ−
∫
Ω

(∇v̄m)Fn : Σ+λ

∫
Ω

f(ϕ̄m)∇Fn ..
.∇Σ

+λ

∫
Ω

f ′(ϕ̄m)Fn⊗∇ϕ̄m ..
.∇Σ=0, (4.21)

with Σ∈ span{Σ0,Σ1,. ..,Σn}. Taking Σ=Fn, considering that∫
Ω

v̄m ·∇

(
|Fn|2

2

)
=−

∫
Ω

div v̄m
|Fn|2

2
+

∫
∂Ω

|Fn|2

2
v̄m ·n=0,

using the Cauchy–Schwarz and the Young inequalities and Assumption A3, we obtain

1

2

d

dt

∫
Ω

|Fn|2+λ
∫
Ω

f(ϕ̄m) |∇Fn|2=
∫
Ω

(∇v̄m) : FnF
T
n −λ

∫
Ω

f ′(ϕ̄m)Fn⊗∇ϕ̄m ..
.∇Fn

≤||∇v̄m||L∞(Ω;Rd×d)

∫
Ω

|Fn|2+λf1
∣∣∣∣∇ϕ̄m∣∣∣∣L∞(Ω;Rd)

||Fn||L2(Ω;Rd×d) ||∇Fn||L2(Ω;Rd×d×d)

≤λ
2
fmin

∫
Ω

|∇Fn|2+
(
||∇v̄m||L∞(Ω;Rd×d)+

λf21
2fmin

∣∣∣∣∇ϕ̄m∣∣∣∣2L∞(Ω;Rd)

)∫
Ω

|Fn|2 .

Integrating in time over the interval (0,t∗), using again Assumption A3 and the fact
that v̄m∈Vm(t0), ϕ̄m∈Φm(t0), we get

1

2

∫
Ω

|Fn|2+
λ

2
fmin

∫ t∗

0

∫
Ω

|∇Fn|2≤
1

2

∫
Ω

∣∣PΣ
n (F0)

∣∣2+C(Lv,Lϕ,m)

∫ t∗

0

∫
Ω

|Fn|2 .

(4.22)
Using a Gronwall argument, we get from (4.22) the uniform in n estimate

||Fn||2C0([0,t∗];L2(Ω;Rd×d))+ ||∇Fn||
2
L2(0,t∗;L2(Ω;Rd×d×d))≤C (Lv,Lϕ,m,F0,t∗) . (4.23)

Thanks to the a–priori estimate (4.23) and using an extension argument for the local
solution, it turns out that the maximal solution of (4.20) lives in some interval [0,t1),
with 0<t1≤ t0 depending only on Lv, Lϕ and on m. In order to derive a uniform
in n bound for ∂tFn, we multiply (4.21) by a time function ζ ∈L2(0,t1), integrate in
time from 0 to t1 and take Σ=PΣ

n (Π), with Π∈H1(Ω;Rd×d), obtaining, using the
Cauchy–Schwarz inequality,∫ t1

0

∫
Ω

∂tFn : Πζ=

∫ t1

0

∫
Ω

∂tFn : P
Σ
n (Π)ζ
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=−
∫ t1

0

∫
Ω

(v̄m ·∇)Fn : PΣ
n (Π)ζ+

∫ t1

0

∫
Ω

(∇v̄m)Fn : P
Σ
n (Π)ζ

−λ
∫ t1

0

∫
Ω

f(ϕ̄m)∇Fn ..
.∇
(
PΣ
n (Π)

)
ζ−λ

∫ t1

0

∫
Ω

f ′(ϕ̄m)Fn⊗∇ϕ̄m ..
.∇
(
PΣ
n (Π)

)
ζ

≤
∫ t1

0

(
||v̄m||L∞(Ω;Rd) ||∇Fn||L2(Ω;Rd×d×d)+ ||∇v̄m||L∞(Ω;Rd×d) ||Fn||L2(Ω;Rd×d)

)
|ζ|
∣∣∣∣PΣ

n (Π)
∣∣∣∣
L2(Ω;Rd×d)

+

∫ t1

0

(
λ ||∇Fn||L2(Ω;Rd×d×d)+λf1

∣∣∣∣∇ϕ̄m∣∣∣∣L∞(Ω;Rd)
||Fn||L2(Ω;Rd×d)

)
|ζ|
∣∣∣∣∇PΣ

n (Π)
∣∣∣∣
L2(Ω;Rd×d×d)

≤C(Lv,Lϕ,m)||Fn||L2(0,t1;H1(Ω;Rd×d)) ||ζ||L2(0,t1)

∣∣∣∣PΣ
n (Π)

∣∣∣∣
H1(Ω;Rd×d)

≤C(Lv,Lϕ,m,F0)||ζ||L2(0,t1) ||Π||H1(Ω;Rd×d) . (4.24)

Using (4.23), extended to the time interval [0,t1), in (4.24), we obtain the bound

||∂tFn||L2(0,t1;(H1(Ω;Rd×d))′)≤C (Lv,Lϕ,m,F0). (4.25)

The bounds (4.23), extended to the time interval [0,t1), and (4.25) prove (4.16). Hence,
applying the Banach–Alaoglu theorem, there exists a subsequence of (Fn)n∈N, which
we still call (Fn)n∈N, such that

∂tFn⇀∂tFm in L2
(
0,t1;

(
H1
(
Ω;Rd×d

))′)
;

Fn
∗
⇀Fm in L∞(0,t1;L2

(
Ω;Rd×d

))
;

∇Fn⇀∇Fm in L2
(
0,t1;L

2
(
Ω;Rd×d×d

))
. (4.26)

Passing to the limit as n→∞ in (4.21) and using the aforementioned convergence prop-
erties, on noting that (4.21) is linear in Fn, and using a density argument on the test
elementsΣ, we get that the limit point Fm is the unique solution of (4.18). Finally, from
the facts that Fn(x,0)→F0 in L2(Ω;Rd×d) and that Fn→Fm in C0

w([0,t1];L
2(Ω;Rd×d)),

which follows from (4.26) and e.g. [40, Ch. 3, Lemma 1.4], we get that Fm(x,0)=F0.

4.4. Step 2: Definition of the fixed point map. Given (v̄m,ϕ̄m)∈Vm(t0)×
Φm(t0) and Fm as in (4.16), a solution of (4.18) in the time interval [0,t1), with 0<
t1≤ t0, the equations for vm, ϕm and µm in (4.14) define an initial value problem for a
system of coupled ODEs,

γ
d

dt
dmi =−νβidmi +

∑
l,s

[∫
Ω

ξl∇ξs ·ηi
]
bml a

m
s

−
∑
l

[∫
Ω

f ′(
∑

sa
m
s ξs)

2 (Fm : Fm−d)∇ξl ·ηi
]
aml −

∫
Ω
f (
∑
sa
m
s ξs)FmFTm : ∇ηi,

d

dt
ami =−

∑
l,s

[∫
Ω

(ηl ·∇ξs) ·ξi
]
dml a

m
s −

∑
l

[∫
Ω

b

(∑
s

ams ξs

)
∇ξl ·∇ξi

]
bml −θ

d

dt
bmi

bmi =αia
m
i +

∫
Ω

ψ′

(∑
s

ams ξs

)
ξi+

∫
Ω

f ′ (
∑
sa
m
s ξs)

2
(Fm : Fm−d)ξi+δ

d

dt
ami

ami (0)=(ϕ0,ξi) , b
m
i (0)=(µ0,ξi) , d

m
i (0)=(v0,ηi), i=0,. ..,m.

(4.27)
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We can substitute d
dta

m
i from the third equation in the second equation of system (4.27),

and obtain a system of coupled first order ODEs, which, upon introducing the vectors
of time coefficients a=(am0 ,. ..,a

m
m)∈Rm+1, b=(bm0 ,. ..,b

m
m)∈Rm+1, d=(dm0 ,. ..,d

m
m)∈

Rm+1, takes the form

γ
d

dt
d=−νdiag(β)d+D(b⊗a)−E(a,Fm)a−p(a,Fm) ,

δ
d

dt
a=b−diag(α)a−r(a)−q(a,Fm) ,

θ
d

dt
b=−1

δ
(b−diag(α)a−r(a)−q(a,Fm))−B(d⊗a)−C(a)b,

a(0)=a0,b(0)=b0,d(0)=d0,

(4.28)

where we defined the third order and second order tensors and vectors as (in components,
for i,j,k=0,. ..,m)

Dijk :=

∫
Ω

ξk∇ξj ·ηi; Bijk :=

∫
Ω

(ηk ·∇ξj) ·ξi;

E(a,Fm)ij :=
∫
Ω

f ′(
∑

sa
m
s ξs)

2 (Fm : Fm−d)∇ξj ·ηi; C(a)ij :=
∫
Ω
b(
∑
sa
m
s ξs)∇ξj ·∇ξi;

p(a,Fm)i :=

∫
Ω

f

(∑
s

ams ξs

)
FmFTm : ∇ηi; r(a)i :=

∫
Ω

ψ′

(∑
s

ams ξs

)
ξi;

q(a,Fm)i :=
∫
Ω

f ′(
∑

sa
m
s ξs)

2 (Fm : Fm−d)ξi; a0i := (ϕ0,ξi); b0i := (µ0,ξi); d0i := (v0,ηi) .
(4.29)

Due to the Assumptions A1, A2, A3 on the regularity of the functions b,ψ,f , the regu-
larity in space of the functions ξi,ηi and the regularity result Fm∈L∞(0,t1;L

2(Ω;Rd×d)),
the right-hand side of (4.28) depends continuously on the variables a,b,d, with bounded
coefficients in L∞(0,t1). Hence, we can apply Carathéodory’s existence theorem to ob-
tain the existence of a sufficiently small value t2, with 0<t2≤ t1, and of a unique
Lipschitz continuous solution a,b,d∈W 1,∞(0,t2).

Remark 4.4. The Lipschitz constant of the solution of the system (4.28), as well as
the parameter t2, depend on m, on the initial conditions a0,b0,d0 and on the L∞(0,t2)
norm of the coefficients, hence on the L∞(0,t2;L

2(Ω;Rd×d)) norm of Fm. The latter
norm depends, thanks to (4.23) and (4.16), on Lv, Lϕ, m and F0.

Given the solution Fm of (4.18), with fixed
(
v̄m,ϕ̄m

)
∈Vm(t0)×Φ(t0), the solution

of system (4.28) defines a map

L :Vm(t0)×Φ(t0)→W 1,∞(0,t2;span{η0,η1,. ..,ηm})×W 1,∞(0,t2;span{ξ0,ξ1,. ..,ξm}),
L
(
v̄m,ϕ̄m

)
=(vm,ϕm). (4.30)

In the following, we will prove the existence of a fixed point of L, which is a solution of
system (4.14), by applying the Schauder fixed point theorem.

4.5. Step 3: Existence of a solution of the Faedo–Galerkin approxima-
tion. We prove the following lemma.

Lemma 4.5. There exists a small enough value t3, with 0<t3≤ t2, such that (vm,ϕm),
solution of system (4.28), belongs to the space Vm(t3)×Φm(t3). Hence,

L :Vm(t3)×Φm(t3)→Vm(t3)×Φm(t3).
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Moreover, the image of the map L is precompact in the space

X :=C0([0,t3];span{η0,η1,. ..,ηm})×C0([0,t3];span{ξ0,ξ1,. ..,ξm}),

and L is continuous on Vm(t3)×Φm(t3) in the topology of X.

Proof. We separate the proof in three parts.

Part I : L maps Vm(t3)×Φm(t3) into itself for a small enough value 0<t3≤ t2.
Combining the first and second equations of (4.27) for i=0,. ..,m, we get

γ

∫
Ω

∂tvm ·η+ν
∫
Ω

∇vm : ∇η=

∫
Ω

µm∇ϕm ·η−
∫
Ω

f ′ (ϕm)

2
(Fm : Fm−d)∇ϕm ·η

−
∫
Ω

f (ϕm)
(
FmFTm

)
: ∇η,∫

Ω

∂tϕmξ+

∫
Ω

(vm ·∇ϕm)ξ+

∫
Ω

b(ϕm)∇µm ·∇ξ+θ
∫
Ω

∂tµmξ=0,

with η∈ span{η0,η1,. ..,ηm}, ξ∈ span{ξ0,ξ1,. ..,ξm}. Taking η=vm, considering the
regularity in space of ηi and ξi, the fact that ami ,b

m
i ∈C0([0,t2]), Remark 4.4, Assump-

tion A3 and the inverse inequalities ||ηi||L∞(Ω;Rd)≤C(m) ||ηi||L2(Ω;Rd), ||∇ηi||L∞(Ω;Rd×d)≤
C(m) ||ηi||L2(Ω;Rd), we get

γ

2

d

dt
||vm||2L2(Ω;Rd)+ν ||∇vm||

2
L2(Ω;Rd×d)

≤||µm∇ϕm||L2(Ω;Rd) ||vm||L2(Ω;Rd)

+C ||∇ϕm||L∞(Ω;Rd) ||Fm||
2
L∞(0,t2;L2(Ω;Rd×d) ||vm||L∞(Ω;Rd)

+C ||Fm||2L∞(0,t2;L2(Ω;Rd×d) ||∇vm||L∞(Ω;Rd×d)

≤C (m,Lv,Lϕ,F0) ||vm||L2(Ω;Rd) .

Integrating in time and applying a Gronwall–Bellman type inequality, we obtain that

sup
[0,t]

||vm||L2(Ω;Rd)≤
∣∣∣∣PSm (v0)

∣∣∣∣
L2(Ω;Rd)

+C1 (m,Lv,Lϕ,F0)t,

for t∈ [0,t2]. Taking moreover ξ=ϕm, considering the regularity in space of ξi, the fact

that bmi ∈W 1,∞([0,t2]), Remark 4.4, Assumption A1, the fact that
∫
Ω

(
vm ·∇ |ϕm|2

2

)
=0

and the inverse inequality ||∇ξi||L2(Ω;Rd)≤C(m) ||ξi||L2(Ω), we get that

1

2

d

dt
||ϕm||2L2(Ω)

≤b1 ||∇µm||L2(Ω;Rd) ||∇ϕm||L2(Ω;Rd)+θ ||∂tµm||L∞(0,t2;L2(Ω)) ||ϕm||L2(Ω)

≤C (m,Lv,Lϕ,F0) ||ϕm||L2(Ω) .

Integrating in time and applying a Gronwall–Bellman type inequality, we obtain that

sup
t∈[0,t]

||ϕm||L2(Ω)≤
∣∣∣∣PLm (ϕ0)

∣∣∣∣
L2(Ω)

+C2 (m,Lv,Lϕ,F0)t,

for t∈ [0,t2]. Taking finally t3 to be the maximum value such that C1t3≤1 and C2t3≤1,
from the definitions (4.15) we obtain that (vm,ϕm)∈Vm(t3)×Φm(t3).



A. AGOSTI, P. COLLI, H. GARCKE, AND E. ROCCA 2109

Part II : the image of L is precompact in X.

Thanks to Remark 4.4 and to the Ascoli–Arzelá theorem, the image of L is precom-
pact in X, since the solution of (4.28) is uniformly Lipschitz continuous with respect to
(v̄m,ϕ̄m).

Part III : the map L is continuous on Vm(t3)×Φm(t3).

In the rest of the proof, we will omit writing the subscriptm for the discrete variables
vm,Fm,ϕm,µm for ease of notation. Let us take a sequence {v̄l=

∑
i

(
d̄mi
)
l
ηi}l∈N in

Vm(t3) converging to v̄=
∑
i d̄
m
i ηi in Vm(t3), in the sense that

(
d̄mi
)
l
→ d̄mi in C0([0,t3])

as l→∞. Let us moreover take a sequence {ϕ̄l=
∑
i (ā

m
i )l ξi}l∈N in Φm(t3) converging

to ϕ̄=
∑
i ā
m
i ξi in Φm(t3), in the sense that (āmi )l→ āmi in C0([0,t3]) as l→∞. Then, if

Fl is the solution of (4.18) with fixed values v̄l and ϕ̄l, and if F is the solution of (4.18)
with fixed values v̄ and ϕ̄, we have that

Fl→F in L∞(0,t3;L
2(Ω;Rd×d)). (4.31)

Indeed, taking the difference between Equations (4.18) for Fl and for F, and choosing
Σ=Fl−F, we get

⟨∂t (Fl−F) ,Fl−F⟩+
∫
Ω

(v̄l ·∇)(Fl−F) : (Fl−F)︸ ︷︷ ︸
=0

+

∫
Ω

((v̄l− v̄) ·∇)F : (Fl−F)

−
∫
Ω

(∇v̄l)(Fl−F) : (Fl−F)−
∫
Ω

∇(v̄l− v̄)F : (Fl−F)+λ

∫
Ω

f(ϕ̄l)∇(Fl−F) ..
.∇(Fl−F)

+λ

∫
Ω

(
f(ϕ̄l)−f(ϕ̄)

)
∇F ..

.∇(Fl−F)+λ

∫
Ω

f ′(ϕ̄l)(Fl−F)⊗∇ϕ̄l ..
.∇(Fl−F)

+λ

∫
Ω

F⊗∇
(
f(ϕ̄l)−f(ϕ̄)

)
..
.∇(Fl−F)=0,

where the second term is equal to zero due to the boundary condition on v̄l and the fact
that divvl=0. Integrating in time over the interval (0,t3), using the Cauchy–Schwarz
and the Young inequalities, Assumption A3, (4.16) and considering that Fl(x,0)=
F(x,0), we obtain the inequality

1

2
||Fl−F||2L2(Ω;Rd×d)+λfmin

∫ t3

0

∫
Ω

|∇(Fl−F)|2

≤||v̄l− v̄||L∞(0,t3;L∞(Ω;Rd))

∫ t3

0

||∇F||L2(Ω;Rd×d×d) ||Fl−F||L2(Ω;Rd×d)

+ ||∇v̄l||L∞(0,t3;L∞(Ω;Rd×d))

∫ t3

0

||Fl−F||2L2(Ω;Rd×d)

+ ||∇(v̄l− v̄)||L∞(0,t3;L∞(Ω;Rd×d))

∫ t3

0

||F||L2(Ω;Rd×d) ||Fl−F||L2(Ω;Rd×d)

+λ
∣∣∣∣f(ϕ̄l)−f(ϕ̄)∣∣∣∣L∞(0,t3;L∞(Ω))

∫ t3

0

||∇F||L2(Ω;Rd×d×d) ||∇(Fl−F)||L2(Ω;Rd×d×d)

+λf1
∣∣∣∣∇ϕ̄l∣∣∣∣L∞(0,t3;L∞(Ω;Rd))

∫ t3

0

||Fl−F||L2(Ω;Rd×d) ||∇(Fl−F)||L2(Ω;Rd×d×d)

+λ
∣∣∣∣∇(f(ϕ̄l)−f(ϕ̄))∣∣∣∣L∞(0,t3;L∞(Ω;Rd))

∫ t3

0

||F||L2(Ω;Rd×d) ||∇(Fl−F)||L2(Ω;Rd×d×d)

≤C
∫ t3
0
||Fl−F||2L2(Ω;Rd×d)+C||d̄l− d̄||2L∞(0,t3)

(∫ t3
0
||∇F||2L2(Ω;Rd×d×d)+

∫ t3
0
||F||2L2(Ω;Rd×d)

)
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+λ
2 fmin

∫ t3
0

∫
Ω
|∇(Fl−F)|2+C||āl− ā||2L∞(0,t3)

(∫ t3
0
||∇F||2L2(Ω;Rd×d×d)+

∫ t3
0
||F||2L2(Ω;Rd×d)

)
≤ λ

2 fmin

∫ t3
0

∫
Ω
|∇(Fl−F)|2+C||d̄l− d̄||2L∞(0,t3)

+C||āl− ā||2L∞(0,t3)
+C

∫ t3
0
||Fl−F||2L2(Ω;Rd×d) ,

from which, using a Gronwall argument and from the assumed convergence d̄l→ d̄ and

āl→ ā in
[
C0([0,t3])

]m+1
, we get (4.31).

We now show that, if (4.31) is valid, then correspondingly

(dmi )l→dmi in C0([0,t3]),

(ami )l→ami in C0([0,t3]),

(bmi )l→ bmi in C0([0,t3]), (4.32)

for i=0,. ..,m, which give the continuity of L in the proposed topology. Taking the
difference between the equations for dl and d in (4.28) and taking its scalar product
with dl−d, we get

γ

2

d

dt
|dl−d|2+νdiag(β)(dl−d) ·(dl−d)=D((bl−b)⊗a) ·(dl−d)

+D(bl⊗(al−a)) ·(dl−d)−E(al,Fl−F)al ·(dl−d)−E(al,F)(al−a) ·(dl−d)

−E(al−a,F)a ·(dl−d)−p(al,Fl−F) ·(dl−d)−p(al−a,F) ·(dl−d). (4.33)

Taking the difference between the second equations for al,bl and a,b in (4.28) and
taking its scalar product with (al−a)+ d

dt (al−a), we get

diag(α)(al−a) ·(al−a)+(r(al)−r(a)) ·(al−a)+q(al−a,Fl) ·(al−a)+q(a,Fl−F) ·(al−a)

+ δ
2

d
dt
|al−a|2+diag(α)(al−a) · d

dt
(al−a)+(r(al)−r(a)) · d

dt
(al−a)+q(al−a,F) · d

dt
(al−a)

+q(a,Fl−F) · d
dt

(al−a)+δ

∣∣∣∣ ddt (al−a)

∣∣∣∣2=(bl−b) ·(al−a)+(bl−b) · d
dt

(al−a). (4.34)

Taking finally the difference between the third equations for al,bl and a,b in (4.28)
and taking its scalar product with (bl−b), we get

d

dt
(al−a) ·(bl−b)=−B((dl−d)⊗al) ·(bl−b)−B(d⊗(al−a)) ·(bl−b)

−(C(al)−C(a))bl ·(bl−b)−C(a)(bl−b) ·(bl−b)− θ
2

d

dt
|bl−b|2 . (4.35)

We use the identity

Fl : Fl−F : F=(Fl−F) : (Fl+F) (4.36)

in the expressions for E(al,Fl−F) and q(a,Fl−F) from (4.29) to get, using (4.16),
Assumption A3, the Cauchy–Schwarz and the Young inequalities, that

|E(al,Fl−F)al ·(dl−d)|≤C ||Fl−F||2L∞(0,t3;L2(Ω;Rd×d))+C|dl−d|2,

q(a,Fl−F) ·
(
(al−a)+

d

dt
(al−a)

)
≤C ||Fl−F||2L∞(0,t3;L2(Ω;Rd×d))+C|al−a|2+ δ

10

∣∣∣∣ ddt (al−a)

∣∣∣∣2 .
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We moreover use the identity
FlF

T
l −FFT =(Fl−F)(Fl+F)

T
+(F−Fl)F

T +F(Fl−F)
T

(4.37)

in the expression for p(al,Fl−F) from (4.29) to get analogously

|p(al,Fl−F) ·(dl−d)|≤C ||Fl−F||2L∞(0,t3;L2(Ω;Rd×d))+C|dl−d|2.

Summing (4.33), (4.34), and (4.35), using the Assumptions A1, A2, A3, the Cauchy–
Schwarz and the Young inequalities and the previous arguments, we obtain

γ

2

d

dt
|dl−d|2+νdiag(β)(dl−d) ·(dl−d)+diag(α)(al−a) ·(al−a)+

δ

2

d

dt
|al−a|2

+δ

∣∣∣∣ ddt (al−a)

∣∣∣∣2+C(a)(bl−b) ·(bl−b)+
θ

2

d

dt
|bl−b|2

≤C|dl−d|2+C|al−a|2+C|bl−b|2+C ||Fl−F||2L∞(0,t3;L2(Ω;Rd×d))+5
δ

10

∣∣∣∣ ddt (al−a)

∣∣∣∣2 ,
which gives that

d

dt

(
γ

2
|dl−d|2+ δ

2
|al−a|2+ θ

2
|bl−b|2

)
≤C

(
γ

2
|dl−d|2+ δ

2
|al−a|2+ θ

2
|bl−b|2

)
+C ||Fl−F||2L∞(0,t3;L2(Ω;Rd×d)) . (4.38)

Integrating (4.38) in time with respect to t, for t∈ [0,t3], and applying a Gronwall
argument, given the convergence result (4.31), we establish the convergence results
(4.32), hence the continuity of the map L.

Remark 4.5. In the case δ=θ=0 (which will be considered in the 2D case), the proof
of the continuity of the map L could be obtained by a simpler argument by testing the
difference between the equations for dl and d in (4.28) by dl−d, the difference between
the second equations for bl and b by bl−b, and the difference between the third
equations for al and a by al−a. Since, in the case δ>0, θ=0, the continuity of the
map L would be true only for sufficiently small values of δ, the term θ∂tµm has been
introduced in (4.14) to obtain a more general result.

Thanks to Lemma 4.5, we can apply the Schauder fixed point theorem and prove that
there exists a fixed point of L, which is a solution of system (4.14) in the time interval
[0,t3].

4.6. Step 4: A priori estimates and convergence to a continuous weak
solution. We now deduce a priori estimates, uniform in the discretization parameter
m, for the solutions of system (4.14), which can be rewritten, summing the first, the
third and the fourth equations over i=0,. ..,m, as

γ

∫
Ω

∂tvm ·η+ν
∫
Ω

∇vm : ∇η

=
∫
Ω
µm∇ϕm ·η−

∫
Ω
f ′(ϕm)

2 (Fm : Fm−d)∇ϕm ·η−
∫
Ω
f (ϕm)FmFTm : ∇η,

⟨∂tFm,Σ⟩+
∫
Ω

(vm ·∇)Fm : Σ−
∫
Ω

(∇vm)Fm : Σ+λ

∫
Ω

∇(f(ϕm)Fm) ..
.∇Σ=0,∫

Ω

∂tϕmξ+

∫
Ω

(vm ·∇ϕm)ξ+

∫
Ω

b(ϕm)∇µm ·∇ξ+θ
∫
Ω

∂tµmξ=0,∫
Ω

µmχ=

∫
Ω

∇ϕm ·∇χ+
∫
Ω

ψ′ (ϕm)χ+

∫
Ω

f ′ (ϕm)

2
(Fm : Fm−d)χ+δ

∫
Ω

∂tϕmχ,

(4.39)
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for a.e. t∈ [0,t3], with η∈ span{η0,η1,. ..,ηm}, ξ,χ∈ span{ξ0,ξ1,. ..,ξm} and ∀Σ∈
H1(Ω;Rd×d), with initial conditions defined in (4.14). We take η=vm, Σ=f(ϕm)Fm,
ξ=µm, χ=−∂ϕm

∂t in (4.39), sum all the equations and integrate in time between 0
and t∈ [0,t3]. Note that, thanks to Assumption A3 and (4.16), f(ϕm)Fm is a.e. in
H1(Ω;Rd×d). We get, for any t∈ [0,t3],

γ

2
||vm||2L2(Ω;Rd)+ν

∫ t

0

∫
Ω

|∇vm|2+λ
∫ t

0

∫
Ω

|∇(f(ϕm)Fm)|2+
∫ t

0

∫
Ω

b(ϕm) |∇µm|2

+

∫
Ω

(
1

2
f(ϕm)(Fm : Fm−d)+

1

2
|∇ϕm|2+ψ(ϕm)

)
+
θ

2
||µm||2L2(Ω)+δ

∫ t

0

∫
Ω

∣∣∣∣∂ϕm∂t
∣∣∣∣2

=−
∫ t

0

∫
Ω

f ′ (ϕm)

2
(Fm : Fm−d)∇ϕm ·vm−

∫ t

0

∫
Ω

(vm ·∇)Fm : f(ϕm)Fm

+
γ

2
||vm(0)||2L2(Ω;Rd)+

θ

2
||µm(0)||2L2(Ω)

+

∫
Ω

(
1

2
f(ϕm(0))(Fm(0) : Fm(0)−d)+ 1

2
|∇ϕm(0)|2+ψ(ϕm(0))

)
. (4.40)

Similarly to (4.2), we rewrite the first term on the right-hand side of (4.40), integrating
by parts, as

−
∫ t

0

∫
Ω

f ′ (ϕm)

2
(Fm : Fm−d)∇ϕm ·vm

=− 1

2

∫ t

0

∫
Ω

∇(f(ϕm)(Fm : Fm−d)) ·vm︸ ︷︷ ︸
=0

+

∫ t

0

∫
Ω

(vm ·∇)Fm : f(ϕm)Fm,

which is valid, for any t∈ [0,t3], thanks to (4.16) and the regularity in space and time
of ϕm and vm. Hence, (4.40) becomes

sup
t∈[0,t3]

(
γ

2
||vm||2L2(Ω;Rd)+

∫
Ω

(
1

2
f(ϕm)(Fm : Fm−d)+ 1

2
|∇ϕm|2+ψ(ϕm)

)
+
θ

2
||µm||2L2(Ω)

)
+ν

∫ t3

0

∫
Ω

|∇vm|2+λ
∫ t3

0

∫
Ω

|∇(f(ϕm)Fm)|2+
∫ t3

0

∫
Ω

b(ϕm) |∇µm|2+δ
∫ t3

0

∫
Ω

∣∣∣∣∂ϕm

∂t

∣∣∣∣2
≤C(v0,F0,ϕ0,µ0), (4.41)

where we used Assumptions A2, A3 and A4 Bis. The constant in the right-hand
side of (4.41) depends only on the initial data and not on the discretization parameter
m and on the regularization parameters γ,θ,δ. Thanks to the a priori estimate (4.41),
we may extend by continuity the local solution of system (4.14) to the interval [0,T ].
Next, taking ξ=1 (which is a multiple of ξ0) in (4.39)3, we obtain, using the facts that
divvm=0, vm=0 on ∂Ω and integrating by parts in the second term, that

(∂tϕm,1)=−θ(∂tµm,1). (4.42)

Integrating in time both sides of (4.42) and using Assumption A4 Bis and (4.41), we
get that

|(ϕm(t),1)|= |(ϕm(0),1)+θ(µm(0),1)−θ(µm(t),1)|≤C(v0,F0,ϕ0,µ0), (4.43)

for all t∈ [0,T ]. Hence, from (4.41), (4.43) and the Poincaré–Wirtinger inequality we
deduce that

||ϕm||L∞(0,T ;H1(Ω))≤C(v0,F0,ϕ0,µ0). (4.44)
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Now, taking χ=1 in (4.39)4, we obtain, using Assumptions A2, A3, (4.44) and the
uniform boundedness of Fm in L∞(0,T ;L2(Ω,Rd×d)) (cf. (4.41)), that

|(µm,1)|=
∣∣∣∣∫

Ω

ψ′ (ϕm)+

∫
Ω

f ′ (ϕm)

2
(Fm : Fm−d)+δ

∫
Ω

∂tϕm

∣∣∣∣
≤C

(
||ϕm||pH1(Ω)+1

)
+C||Fm||2L2(Ω,Rd×d)+δ||∂tϕm||L2(Ω)+C, (4.45)

where p is as in Assumption A2. Hence, |(µm,1)| is bounded in L2(0,T ) and conse-
quently, by the Poincaré–Wirtinger inequality and (4.41),

||µm||L2(0,T ;H1(Ω))≤C(v0,F0,ϕ0,µ0). (4.46)

Before studying the convergence properties of the discrete solution of system (4.39)
to a continuous solution, identifying its limit as the discretization parameter m tends
to infinity, we identify preliminarily its limit at the discrete level as the regularization
parameters γ,θ→0. Indeed, as described at the beginning of Section 4, we want to
identify the limit problem of (4.39) in the case γ=θ=0, with m∈N and δ>0 being
fixed in this limit procedure. We thus multiply the equations in (4.39) by a function
ω∈C∞

0 ([0,T ]) and integrate in time over the interval [0,T ], letting γ,θ→0. From the a
priori estimate (4.41), from (4.45) and (4.17), which are uniform in the parameters γ,θ,
we have that, at least for a subsequence which we still label by the index m without
reporting the dependence on γ,θ,

√
γvm

∗
⇀ v̂m, in L∞ (0,T ;span{η0,η1,. ..,ηm}) ,

vm⇀ ṽm, in L2 (0,T ;span{η0,η1,. ..,ηm}) ,√
θµm

∗
⇀µ̂m, in L∞ (0,T ;span{ξ0,ξ1,. ..,ξm}) ,

µm⇀µ̃m, in L2 (0,T ;span{ξ0,ξ1,. ..,ξm}) ,

ϕm
∗
⇀ϕ̃m, in L∞ (0,T ;span{ξ0,ξ1,. ..,ξm}),

∂ϕm
∂t

⇀
∂ϕ̃m
∂t

, in L2 (0,T ;span{ξ0,ξ1,. ..,ξm}),

Fm
∗
⇀ F̃m in L∞(0,T ;L2(Ω;Rd×d)

)
∩L2

(
0,T ;H1(Ω;Rd×d)

)
,

∂Fm
∂t

⇀
∂F̃m
∂t

in L2
(
0,T ;

(
H1(Ω;Rd×d)

)′)
. (4.47)

Hence,

√
γ

∫ T

0

ω(t)

∫
Ω

√
γ∂tvm ·η=−√γ

∫ T

0

d

dt
ω(t)

∫
Ω

√
γvm ·η→0, (4.48)

√
θ

∫ T

0

ω(t)

∫
Ω

√
θ∂tµmξ=−

√
θ

∫ T

0

d

dt
ω(t)

∫
Ω

√
θµmξ→0, (4.49)

as γ,θ→0. Moreover, note that, as a consequence of the second and fourth convergence
properties in (4.47), it turns out that v̂m≡0 and µ̂m≡0. It’s easy to identify the limit of
the remaining terms in (4.39), as γ,θ→0, thanks to (4.47) and exploiting the regularity
in space of ϕm,µm,vm. We finally obtain the following system, where we do not report
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the tilde notation for the limit point for ease of notation,

ν

∫
Ω

∇vm : ∇η=

∫
Ω

µm∇ϕm ·η−
∫
Ω

f ′ (ϕm)

2
(Fm : Fm−2)∇ϕm ·η−

∫
Ω

f (ϕm)FmFT
m : ∇η,

⟨∂tFm,Σ⟩+
∫
Ω

(vm ·∇)Fm : Σ−
∫
Ω

(∇vm)Fm : Σ+λ

∫
Ω

∇(f(ϕm)Fm) ..
.∇Σ=0,∫

Ω

∂tϕmξ+

∫
Ω

(vm ·∇ϕm)ξ+

∫
Ω

b(ϕm)∇µm ·∇ξ=0,∫
Ω

µmχ=

∫
Ω

∇ϕm ·∇χ+
∫
Ω

ψ′ (ϕm)χ+

∫
Ω

f ′ (ϕm)

2
(Fm : Fm−2)χ+δ

∫
Ω

∂tϕmχ,

(4.50)

for a.e. t∈ [0,T ], with η∈ span{η0,η1,. ..,ηm}, ξ,χ∈ span{ξ0,ξ1,. ..,ξm} and ∀Σ∈
H1(Ω;R2×2).

We now study the convergence properties of the discrete solution of system (4.50),
identifying its limit as the discretization parameter m tends to infinity, starting from
(4.41), which is valid also for the limit case γ,θ→0. Note that in the latter case the
constant in the right-hand side of (4.41) depends only on the initial data F0 and ϕ0.
Since this study will be different in the cases of 2 or 3 space dimensions, we separate
the two cases in two different paragraphs.

4.7. Limit problem in the 2D case. We derive the necessary regularity results
to study the limit point of (4.50), as m→∞ and δ→0. From the Poincaré inequality
and from (4.41) (with γ=0), we have that

vm is uniformly bounded inL2(0,T ;H1
0,div(Ω;R2)) ↪→L2(0,T ;Lpdiv(Ω;R

2)), (4.51)

with p≥1. Moreover, from (4.41) and Assumption A3, we have that

f(ϕm)Fm is uniformly bounded inL∞(0,T ;L2(Ω;R2×2))∩L2(0,T ;H1(Ω;R2×2)),
(4.52)

which implies

||Fm||L∞(0,T ;L2(Ω;R2×2))≤C. (4.53)

We recall (4.44) and take χ=−∆ϕm in (4.50)4. Integrating in time over the interval
[0,T ] and using the Cauchy–Schwarz and Young inequalities and Assumptions A2 and
A3, we get∫ T

0

||∆ϕm||2+
∫ T

0

ψ′′
+(ϕm)|∇ϕm|2+

δ

2
||∇ϕm(T )||2

≤
∫ T

0

||∇µm||L2(Ω;R2)||∇ϕm||L2(Ω;R2)

−
∫ T

0

ψ′′
−(ϕm)|∇ϕm|2+

∫ T

0

∫
Ω

f ′ (ϕm)

2
(Fm : Fm−2)∆ϕm+

δ

2
||∇ϕm(0)||2

≤1

2

∫ T

0

||∇µm||2L2(Ω;R2)+
1

2

∫ T

0

||∇ϕm||2L2(Ω;R2)+C

∫ T

0

∫
Ω

(1+ |ϕm|q) |∇ϕm|2

+
f1
2

∫ T

0

||∆ϕm||||Fm||2L4(Ω;R2×2)+
1

6

∫ T

0

||∆ϕm||2+C. (4.54)

We use (4.11), elliptic regularity and the Young inequality, observing that 2
θq >1 when

q< 2
θ , which complies with Assumption A2 since θ can be taken arbitrarily small, to
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write ∫ T

0

∫
Ω

|ϕm|q|∇ϕm|2≤
∫ T

0

||ϕm||qL∞(Ω)||∇ϕm||
2
L2(Ω;R2)

≤C
∫ T

0

||ϕm||2+q(1−θ)H1(Ω;R2)

(
||ϕm||qθ+ ||∆ϕm||qθ

)
≤C||ϕm||2+qL∞(0,T ;H1(Ω;R2))+ ||ϕm||

2(2+q(1−θ))
2−qθ

L∞(0,T ;H1(Ω;R2))+
1

6

∫ T

0

||∆ϕm||2.

Choosing h=2 in (4.8), then

f(ϕm)Fm is uniformly bounded in

L∞(0,T ;L2(Ω;R2×2))∩L2(0,T ;H1(Ω;R2×2)) ↪→L4(0,T ;L4(Ω;R2×2)),

which implies ||Fm||L4(0,T ;L4(Ω;R2×2))≤C. (4.55)

Using the preceding results in (4.54), using moreover the Young inequality, (4.41) and
Assumption A1, we obtain that∫ T

0

||∆ϕm||2≤C+C||Fm||4L4(0,T ;L4(Ω;R2×2))+
1

2

∫ T

0

||∆ϕm||2,

which implies that ∫ T

0

||∆ϕm||2≤C. (4.56)

Hence, from (4.44) and (4.56) we obtain that

ϕm is uniformly bounded in L∞(0,T ;H1(Ω))∩L2(0,T ;H2(Ω)). (4.57)

Note that, thanks again to (4.8) with h=2,

||∇ϕm||L4(0,T ;L4(Ω;R2))≤C. (4.58)

In the 2D case, thanks to (4.55) and (4.58),
√
f(ϕm)Fm∈L2(0,T ;H1(Ω;R2×2)) implies

that

||Fm||L2(0,T ;H1(Ω;R2×2))≤C. (4.59)

Indeed, writing∫ T

0

∫
Ω

∇(f(ϕm)Fm) ..
.∇(f(ϕm)Fm)=

∫ T

0

∫
Ω

f(ϕm)2 |∇Fm|2+
∫ T

0

∫
Ω

f ′(ϕm)2 |Fm⊗∇ϕm|2

+2

∫ T

0

∫
Ω

f(ϕm)f ′(ϕm)∇Fm ..
.
(Fm⊗∇ϕm) ,

and, due to (4.41), we have that∫ T

0

∫
Ω

f(ϕm)2 |∇Fm|2+
∫ T

0

∫
Ω

f ′(ϕm)2 |Fm⊗∇ϕm|2

+2

∫ T

0

∫
Ω

f(ϕm)f ′(ϕm)∇Fm ..
.
(Fm⊗∇ϕm)≤C,
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from which we infer, using Assumption A3, (4.55), and (4.58), the Cauchy-Schwarz and
Young inequalities,

fmin

∫ T

0

∫
Ω

|∇Fm|2≤
∫ T

0

∫
Ω

f(ϕm)2 |∇Fm|2

≤C+2f1

∫ T

0

||∇Fm||L2(Ω;R2×2×2) ||Fm⊗∇ϕm||L2(Ω;R2×2×2)

≤C+
fmin

2

∫ T

0

∫
Ω

|∇Fm|2+C
∫ T

0

||Fm||2L4(Ω;R2×2) ||∇ϕm||
2
L4(Ω;R2)

≤C+
fmin

2

∫ T

0

∫
Ω

|∇Fm|2+C ||Fm||2L4(0,T ;L4(Ω;R2×2)) ||∇ϕm||
2
L4(0,T ;L4(Ω;R2)) , (4.60)

which implies that

fmin

2

∫ T

0

∫
Ω

|∇Fm|2≤C. (4.61)

We now deduce a priori estimates, uniform in m and δ, for the time derivatives of
Fm and ϕm in (4.50), which are needed to obtain compactness results for the sequence
of discrete solutions of the system. We start from the second equation of (4.50). We
rewrite the second term on the left-hand side, integrating by parts and considering the
properties of the variable vm, as∫

Ω

(vm ·∇)Fm : Σ=

∫
∂Ω

(Fm : Σ)vm ·n︸ ︷︷ ︸
=0

−
∫
Ω

divvmFm : Σ︸ ︷︷ ︸
=0

−
∫
Ω

Fm⊗vm ..
.∇Σ, (4.62)

which is valid, for a fixed m, thanks to (4.16) and the regularity of vm. We multiply
(4.62) by a time function ζ ∈L2+h(0,T ), with h>0, and integrate in time over the
interval (0,T ), to infer that∫ T

0

∫
Ω

(vm ·∇)Fm : Σζ=−
∫ T

0

∫
Ω

Fm⊗vm ..
.∇Σζ

≤
∫ T

0

||Fm||L2+h(Ω;R2×2)||vm||
L

2(2+h)
h (Ω;R2)

||∇Σ||L2(Ω;R2×2×2)|ζ|

≤C||Fm||
L

2(2+h)
h (0,T ;L2+h(Ω;R2×2))

||vm||
L2

(
0,T ;L

2(2+h)
h (Ω;R2)

)||∇Σ||L2(Ω;R2×2×2)||ζ||L2+h(0,T ).

(4.63)

Then, thanks to (4.8) and Sobolev embedding, we have that

(vm ·∇)Fm is uniformly bounded inL2− h
1+h

(
0,T ;

(
H1(Ω;R2×2)

)′)
, (4.64)

for arbitrary h>0. Using (4.64), multiplying (4.50)2 by a time function ζ ∈L2+h(0,T ),
with h>0, and integrating in time over the interval (0,T ), we get∫ T

0

⟨∂tFm,Σ⟩ζ≤
∫ T

0

||(vm ·∇)Fm||(H1(Ω;R2×2))′ ||Σ||H1(Ω;R2×2)|ζ|

+

∫ T

0

||∇vm||L2(Ω;R2)||Fm||L2+h(Ω;R2×2)||Σ||
L

2(2+h)
h (Ω;R2×2)

|ζ|
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+λ

∫ T

0

||∇(f(ϕm)Fm) ||L2(Ω;R2×2×2)||∇Σ||L2(Ω;R2×2×2)|ζ|≤C||Σ||H1(Ω;R2×2)||ζ||L2+h(0,T )

+C||∇vm||L2(0,T ;L2(Ω;R2×2))||Fm||
L

2(2+h)
h (L2+h(Ω;R2×2))

||Σ||H1(Ω;R2×2)||ζ||L2+h(0,T ).

(4.65)

Hence, we have that

∂tFm is uniformly bounded inL2− h
1+h

(
0,T ;

(
H1(Ω;R2×2)

)′)
. (4.66)

We now consider the third equation of (4.50). For what concerns the advective term,
thanks to (4.57) and (4.51), we have the estimate∫ T

0

(∫
Ω

|vm ·∇ϕm|2−h
) 2

2−h

≤
∫ T

0

||vm||2
L

2(2−h)
h (Ω;R2)

||∇ϕm||2L2(Ω;R2)≤C, (4.67)

hence

||vm ·∇ϕm||L2(0,T ;L2−h(Ω))≤C, (4.68)

for h∈ (0,1]. Multiplying (4.50)3 by a time function ζ ∈L2(0,T ), integrating in time
over the interval (0,T ) and choosing ξ=PLm(π), with generic π∈H1(Ω), using (4.68),
(4.41), and Assumption A1, we get∫ T

0

∫
Ω

∂tϕmπζ=

∫ T

0

∫
Ω

∂tϕm
(
π+(PLm(π)−π)

)
ζ

≤
∫ T

0

||vm ·∇ϕm||L2−h(Ω)||PLm(π)||
L

2+ h
1−h (Ω)

|ζ|

+

∫ T

0

||b(ϕm)∇µm||L2(Ω;R2)||∇PLm(π)||L2(Ω;R2)|ζ|≤C||π||H1(Ω)||ζ||L2(0,T ).

Hence, we have that

||∂tϕm||L2(0,T ;(H1(Ω))′)≤C. (4.69)

Collecting the estimates (4.51), (4.52), (4.53), (4.59), (4.57), (4.46), (4.66), and (4.69),
which are uniform in m and δ, from the Banach–Alaoglu and the Aubin–Lions lemma,
we finally obtain the convergence properties, up to subsequences of the solutions, which
we still label by the index m,

vm⇀v in L2
(
0,T ;H1

0,div

(
Ω;R2

))
, (4.70)

f(ϕm)Fm
∗
⇀β in L∞(0,T ;L2(Ω;R2×2))∩L2(0,T ;H1(Ω;R2×2)), (4.71)

Fm
∗
⇀F in L∞(0,T ;L2(Ω;R2×2))∩L2(0,T ;H1(Ω;R2×2)), (4.72)

∂tFm⇀∂tF in L2−h
(
0,T ;

(
H1(Ω;R2×2)

)′)
, h∈ (0,1), (4.73)

Fm→F in L2(0,T ;Lp(Ω;R2×2)), p≥1, and a.e. in ΩT , (4.74)

ϕm
∗
⇀ϕ in L∞(0,T ;H1(Ω))∩L2(0,T ;H2(Ω)), (4.75)

∂tϕm⇀∂tϕ in L2
(
0,T ;

(
H1(Ω)

)′)
, (4.76)
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ϕm→ϕ in C0(0,T ;Lp(Ω))∩L2(0,T ;W 1,p(Ω)), p≥1, and a.e. in ΩT , (4.77)

µm⇀µ in L2
(
0,T ;H1 (Ω)

)
, (4.78)

asm→∞, δ→0, for some limit function β in L∞(0,T ;L2(Ω;R2×2))∩L2(0,T ;H1(Ω;R2×2)),
which may be identified as β=f(ϕ)F thanks to (4.74) and (4.77) (see the later calcu-
lations). Moreover, from (4.41), we have the convergence result

√
δ∂tϕm⇀α in L2(ΩT ), (4.79)

as m→∞, δ→0, for some function α∈L2(ΩT ), which should be zero as a consequence
of (4.76).

With the convergence results (4.70)–(4.78), we can pass to the limit in the system
(4.50) as m→∞ and δ→0. Let’s take η=ηm=PSm(u), for arbitrary u∈H1

0,div(Ω;R2),

ξ= ξm=PLm(q), for arbitrary q∈H1(Ω), χ=χm=PLm(r), for arbitrary r∈H1(Ω), mul-
tiply the equations by a function ω∈C∞

0 ([0,T ]) and integrate over the time interval
[0,T ]. This gives

ν

∫ T

0

ω

∫
Ω

∇vm : ∇ηm=

∫ T

0

ω

∫
Ω

µm∇ϕm ·ηm−
∫ T

0

ω

∫
Ω

f ′ (ϕm)

2
(Fm : Fm−2)∇ϕm ·ηm

−
∫ T

0

ω

∫
Ω

f (ϕm)FmFT
m : ∇ηm,∫ T

0

ω ⟨∂tFm,Σ⟩+
∫ T

0

ω

∫
Ω

(vm ·∇)Fm : Σ−
∫ T

0

ω

∫
Ω

(∇vm)Fm : Σ

+λ

∫ T

0

ω

∫
Ω

∇(f(ϕm)Fm) ..
.∇Σ=0,∫ T

0

ω

∫
Ω

∂tϕmξm+

∫ T

0

ω

∫
Ω

(vm ·∇ϕm)ξm+

∫ T

0

ω

∫
Ω

b(ϕm)∇µm ·∇ξm=0,∫ T

0

ω

∫
Ω

µmχm=

∫ T

0

ω

∫
Ω

∇ϕm ·∇χm+

∫ T

0

ω

∫
Ω

ψ′ (ϕm)χm

+

∫ T

0

ω

∫
Ω

f ′ (ϕm)

2
(Fm : Fm−2)χm+δ

∫ T

0

ω

∫
Ω

∂tϕmχm.

(4.80)

Thanks to (4.70), we have

ν

∫ T

0

ω

∫
Ω

∇vm : ∇ηm→ν

∫ T

0

ω

∫
Ω

∇v : ∇u,

as m→∞, δ→0. Thanks to (4.77) and the fact that PSm(u) converges strongly to
u in H1(Ω;R2), we have that ω∇ϕm ·ηm→ω∇ϕ ·u strongly in L2(0,T ;Lp(Ω)), with
arbitrary p≥1. Indeed,∫ T

0

(∫
Ω
|ω∇ϕm ·ηm−ω∇ϕ ·u|p

) 2
p =

∫ T
0

(∫
Ω
|ω(∇ϕm−∇ϕ) ·ηm+ω∇ϕ ·(ηm−u)|p

) 2
p

≤C
∫ T

0

|ω|2 ||∇ϕm−∇ϕ||2L2p(Ω;R2)||ηm||
2
L2p(Ω;R2)

+C

∫ T

0

|ω|2 ||∇ϕ||2L2p(Ω;R2)||ηm−u||2L2p(Ω;R2)→0, (4.81)

as m→∞, δ→0. Hence, using (4.78), which implies that µm⇀µ in L2 (0,T ;Lp (Ω)),
with arbitrary p≥1, by the product of weak–strong convergence we have that∫ T

0

ω

∫
Ω

µm∇ϕm ·ηm→
∫ T

0

ω

∫
Ω

µ∇ϕ ·u,
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as m→∞, δ→0. Regarding the second term on the right-hand side of the first equa-
tion of (4.80), we observe that f ′ (ϕm)Fm : Fm→f ′ (ϕ)F : F strongly in L2(0,T ;L2−h(Ω)),
for arbitrary h∈ (0,1]. Indeed, using an inequality similar to (4.67), using moreover
Assumption A3 and (4.36), we get∫ T

0

(∫
Ω

|f ′ (ϕm)Fm : Fm−f ′ (ϕ)F : F|2−h
) 2

2−h

=

∫ T

0

(∫
Ω

|f ′ (ϕm)((Fm−F) : (Fm+F))+(f ′ (ϕm)−f ′ (ϕ))F : F|2−h
) 2

2−h

≤f1
∫ T

0

||Fm−F||2
L

2(2−h)
h (Ω;R2×2)

||Fm+F||2L2(Ω;R2×2)

+cf

∫ T

0

||ϕm−ϕ||2
L

2(2−h)
h (Ω)

||F : F||2L2(Ω;R2×2)→0,

as m→∞, δ→0, where cf is the Lipschitz constant of f ′ and where we used (4.72),
(4.74), (4.77), and (4.55), which implies that F : F∈L2

(
0,t;L2(Ω;R2×2)

)
. Then, con-

sidering the strong convergence of ηm=PSm(u) to u in H1(Ω) and making similar calcu-
lations to (4.81), we have that f ′ (ϕm)(Fm : Fm−2)ηm→f ′ (ϕ)(F : F−2)u strongly in
L2(0,T ;L2−h1(Ω;R2)), with 0<h<h1≤1, where we also used Assumption A3, (4.77)
and the Lebesgue convergence theorem to obtain f ′ (ϕm)→f ′ (ϕ) strongly in
L2(0,T ;L2(Ω)). Hence, using (4.75) and the product of weak–strong convergence we
have that∫ T

0

ω

∫
Ω

f ′ (ϕm)

2
(Fm : Fm−2)∇ϕm ·ηm→

∫ T

0

ω

∫
Ω

f ′ (ϕ)

2
(F : F−2)∇ϕ ·u,

as m→∞, δ→0. For what concerns the third term on the right-hand side of the
first equation of (4.80), we observe that, thanks to Assumption A3 and to (4.77),
f(ϕm)→f(ϕ) a.e. in ΩT and is uniformly bounded. Hence, due to (4.74), a generalized
version of the Lebesgue convergence theorem (see e.g. [3, Theorem 3.25, p. 60]) gives
that f(ϕm)Fm→f(ϕ)F strongly in L2(0,T ;Lp(Ω;R2×2)), for arbitrary p≥1, and a.e. in
ΩT . In particular, thanks to the uniqueness of the weak limit and the a.e. convergence,

β=f(ϕ)F. (4.82)

Then, considering again the strong convergence of ηm=PSm(u) to u in H1(Ω), we have
that f(ϕm)∇ηmFm→f(ϕ)∇uF strongly in L2(0,T ;L2−h(Ω;R2×2)), for arbitrary h∈
(0,1]. Hence, using (4.72) and the product of weak–strong convergence we have that∫ T

0

ω

∫
Ω

f (ϕm)FmFTm : ∇ηm→
∫ T

0

ω

∫
Ω

f (ϕ)FFT : ∇u,

as m→∞, δ→0.
Now, if we consider the second equation in (4.80), since

ωΣ∈C0(0,T ;H1(Ω;R2×2)) ↪→L2+h
(
0,T ;H1(Ω;R2×2)

)
,

we get from (4.73) that ∫ T

0

ω ⟨∂tFm,Σ⟩→
∫ T

0

ω ⟨∂tF,Σ⟩ ,
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as m→∞, δ→0. Due to the fact that we only have weak convergence for both vm
and ∇Fm in (4.70)–(4.74), we rewrite the second term in the second equation of (4.80)
employing the formula (4.62). Thanks to (4.74) and the fact that ∇Σ∈L2(Ω;R2×2×2),

we have that ω (∇Σ)
T
Fm→ω (∇Σ)

T
F strongly in L2(0,T ;L2−h(Ω;R2)), for arbitrary

h∈ (0,1]. Hence, using (4.70) and the product of weak–strong convergence we have that∫ T

0

ω

∫
Ω

(vm ·∇)Fm : Σ=−
∫ T

0

ω

∫
Ω

Fm⊗vm ..
.∇Σ→−

∫ T

0

ω

∫
Ω

F⊗v ..
.∇Σ,

as m→∞, δ→0. Moreover, thanks to (4.74) and the fact that Σ∈H1(Ω;R2×2) ↪→
Lp(Ω;R2×2), for arbitrary p≥1, we have that ωΣFT

m→ωΣFT strongly in L2(0,T ;Lp(Ω;R2)),
for arbitrary p≥1. Hence, using (4.70) and the product of weak–strong convergence we
have that ∫ T

0

ω

∫
Ω

(∇vm)Fm : Σ→
∫ T

0

ω

∫
Ω

(∇v)F : Σ,

as m→∞, δ→0. Finally, given (4.71) and (4.82),

λ

∫ T

0

ω

∫
Ω

∇(f(ϕm)Fm) ..
.∇Σ→λ

∫ T

0

ω

∫
Ω

∇(f(ϕ)F) ..
.∇Σ,

as m→∞, δ→0.
We now consider the third equation of (4.80). Since

ωξm=ωPLm(q)∈C0(0,T ;H1(Ω)) ↪→L2
(
0,T ;H1(Ω)

)
,

we get from (4.76) that ∫ T

0

ω

∫
Ω

∂tϕmξm→
∫ T

0

ω<∂tϕ,q>,

as m→∞, δ→0. Thanks to (4.77) and the fact that ξm=PLm(q) converges strongly
to q in H1(Ω), with similar considerations as in (4.81) we have that ω∇ϕmξm→ω∇ϕq
strongly in L2(0,T ;Lp(Ω)), with arbitrary p≥1. Hence, using (4.70), by the product of
weak–strong convergence we have that∫ T

0

ω

∫
Ω

(vm ·∇ϕm)ξm→
∫ T

0

ω

∫
Ω

(v ·∇ϕ)q,

as m→∞, δ→0. Finally, considering (4.77) and Assumption A1, b(ϕm)→ b(ϕ) a.e. in
ΩT and is uniformly bounded, hence by applying a generalized form of the Lebesgue
convergence theorem, considering also that PLm(q) converges strongly to q in H1(Ω), we
may obtain that b(ϕm)∇ξm→ b(ϕ)∇q strongly in L2

(
0,T ;L2(Ω;R2)

)
. Then, by (4.78)

and the product of weak–strong convergence we have that∫ T

0

ω

∫
Ω

b(ϕm)∇µm ·∇ξm→
∫ T

0

ω

∫
Ω

b(ϕ)∇µ ·∇q,

as m→∞, δ→0.
As for (4.80)4, from the convergence properties (4.75) and (4.78), we obtain that∫ T

0

ω

∫
Ω

µmχm→
∫ T

0

ω

∫
Ω

µr,
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0

ω

∫
Ω

∇ϕm ·∇χm→
∫ T

0

ω

∫
Ω

∇ϕ ·∇r,

as m→∞, δ→0. Moreover, using (4.77) and the continuity of ψ′, we have that
ψ′(ϕm)→ψ′(ϕ) a.e. in ΩT . Then, thanks to Assumption A2, in particular to the
growth law |ψ′(ϕm)|≤ c1(|ϕm|p+1), for arbitrary p∈R+, and again to (4.77), applying
a generalized form of the Lebesgue convergence theorem we have that∫ T

0

ω

∫
Ω

ψ′ (ϕm)χm→
∫ T

0

ω

∫
Ω

ψ′ (ϕ)r,

as m→∞, δ→0. Using the properties that f ′ (ϕm)Fm : Fm→f ′ (ϕ)F : F strongly in
L2(0,T ;L2−h(Ω)) and f ′ (ϕm)→f ′ (ϕ) strongly in L2(0,T ;L2(Ω)), which we previously
derived, we conclude that∫ T

0

ω

∫
Ω

f ′ (ϕm)

2
(Fm : Fm−2)χm→

∫ T

0

ω

∫
Ω

f ′ (ϕ)

2
(F : F−2)r,

as m→∞, δ→0. Lastly, from (4.79), we get that

√
δ

∫ T

0

ω

∫
Ω

√
δ∂tϕmχm→0,

as m→∞, δ→0.
We need finally to prove that the initial conditions hold. Due to (4.77), in partic-

ular to the fact that ϕm→ϕ strongly in C0([0,T ];L2(Ω)), and the fact that ϕm(0)=
PLm(ϕ0)→ϕ0 strongly in L2(Ω), we have that ϕ(0)=ϕ0 a.e. in Ω. Moreover, due to
(4.72) and (4.73),

F∈C0
(
[0,T ];

(
H1(Ω;R2×2)

)′)∩L∞(0,T ;L2(Ω;R2×2)) ↪→C0
w

(
[0,T ];L2(Ω;R2×2)

)
.

Then, using the same reasoning as in [6], we obtain from the convexity of w(ϕ, ·) and
from the energy estimate (4.41) that F(·,t)→F0 strongly in L2(Ω;R2×2) as t→0+.

All the aforementioned results prove Theorem 4.1.

4.8. Limit problem in the 3D case. As we will see in the following calculations,
in the 3D case the viscous regularization term δ ∂ϕm

∂t will be needed to enhance the
regularity of ∂tϕm and to recover a compactenss result for the sequence Fm, without
disposing of a direct control on ∇Fm in some Böchner space. Hence, the limit problem
of (4.14) in 3 space dimensions will be identified in the case γ=θ=0. We thus consider
system (4.50) with δ>0.

We now derive the necessary regularity results to study the limit point of (4.50),
as m→∞, starting from (4.41). From the Poincaré inequality and from (4.41) (with
γ=0), we have that

vm is uniformly bounded inL2(0,T ;H1
0,div(Ω;R3)) ↪→L2(0,T ;Lpdiv(Ω;R

3)), (4.83)

with p∈ [1,6]. Moreover, from (4.41) and Assumption A3, we have that

f(ϕm)Fm is uniformly bounded inL∞(0,T ;L2(Ω;R3×3))∩L2(0,T ;H1(Ω;R3×3)),
(4.84)
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which implies

||Fm||L∞(0,T ;L2(Ω;R3×3))≤C. (4.85)

Taking h=2 in (4.9),

f(ϕm)Fm is uniformly bounded in

L∞(0,T ;L2(Ω;R3×3))∩L2(0,T ;H1(Ω;R3×3)) ↪→L
8
3 (0,T ;L4(Ω;R3×3)),

which implies ||Fm||
L

8
3 (0,T ;L4(Ω;R3×3))

≤C. (4.86)

Taking χ=−∆ϕm in the fourth equation of (4.50), using the Cauchy–Schwarz and
Young inequalities and Assumptions A2 and A3, we get

||∆ϕm||2+
∫
Ω

ψ′′
+(ϕm)|∇ϕm|2≤||∇µm||L2(Ω;R3)||∇ϕm||L2(Ω;R3)−

∫
Ω

ψ′′
−(ϕm)|∇ϕm|2

+

∫
Ω

f ′ (ϕm)

2
(Fm : Fm−2)∆ϕm+δ||∂tϕm||||∆ϕm||

≤1

2
||∇µm||2L2(Ω;R3)+

1

2
||∇ϕm||2L2(Ω;R3)

+C

∫
Ω

(1+ |ϕm|q) |∇ϕm|2+
f1
2
||∆ϕm||||Fm||2L4(Ω;R3×3)+

1

6
||∆ϕm||2+C||∂tϕm||2+C.

(4.87)

We use (4.12), elliptic regularity and the Young inequality, observing that 4
q >1 when

q<4, to write ∫
Ω

|ϕm|q|∇ϕm|2≤||ϕm||qL∞(Ω)||∇ϕm||
2
L2(Ω;R3)

≤C||ϕm||
4+q
2

H1(Ω;R3)

(
||ϕm||

q
2 + ||∆ϕm||

q
2

)
≤C||ϕm||2+qH1(Ω;R3)+ ||ϕm||

2(q+4)
4−q

H1(Ω;R3)+
1

6
||∆ϕm||2.

Using this inequality in (4.87), together with the Young inequality, we obtain that

||∆ϕm||2≤
1

2
||∇µm||2L2(Ω;R3)+C||ϕm||

2
H1(Ω;R3)+C||ϕm||

2+q
H1(Ω;R3)+ ||ϕm||

2(q+4)
4−q

H1(Ω;R3)

+C||Fm||4L4(Ω;R3×3)+
1

2
||∆ϕm||2+C||∂tϕm||2+C. (4.88)

Taking the power 2
3 of both sides of (4.88), integrating in time over the interval (0,T ),

using (4.41), Assumption A1, and (4.86), we infer that∫ T

0

||∆ϕm||
4
3 ≤C+C||Fm||

8
3

L
8
3 (0,T ;L4(Ω;R3×3))

≤C, (4.89)

from which we have, considering also (4.44) and (4.89), that

ϕm is uniformly bounded inL∞(0,T ;H1(Ω))∩L 4
3 (0,T ;H2(Ω)). (4.90)

We observe that, taking the Gagliardo–Nirenberg inequality (4.7), specified for j=0,
m=1, p=2+h, r=2, q=2, to the power of 2

3 and integrating over (0,T ), thus obtaining
(4.9) with the integrands to the power of 2

3 , choosing h=2, we get

||∇ϕm||
L

16
9 (0,T ;L4(Ω;R3))

≤C, (4.91)
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and choosing h=1,

||∇ϕm||
L

8
3 (0,T ;L3(Ω;R3))

≤C. (4.92)

Note that, unlike the 2D case, in the 3D case, given (4.86) and (4.91), we cannot use
the arguments in (4.61) to deduce (4.59), which is not valid in 3 space dimentions.

We now deduce a priori estimates, uniform in m, for the time derivative of Fm in
(4.50). We note that, from the energy estimate (4.41), with δ>0, we already have

||∂tϕm||L2(0,T ;L2(Ω))≤C. (4.93)

Multiplying (4.62) by a time function ζ ∈L4(0,T ) and integrating in time over the
interval (0,T ), considering (4.9) with h=1 and (4.83), we get∫ T

0

∫
Ω

(vm ·∇)Fm : Σζ=−
∫ T

0

∫
Ω

Fm⊗vm ..
.∇Σζ

≤
∫ T

0

||Fm||L3(Ω;R3×3)||vm||L6(Ω;R3)||∇Σ||L2(Ω;R3×3×3)|ζ|

≤C||Fm||L4(0,T ;L3(Ω;R3×3))||vm||L2(0,T ;L6(Ω;R3))||∇Σ||L2(Ω;R3×3×3)||ζ||L4(0,T ). (4.94)

Then, we have that

||(vm ·∇)Fm||
L

4
3 (0,T ;(H1(Ω;R3×3))′)

≤C. (4.95)

Using (4.95), multiplying (4.50)2 by a time function ζ ∈L4(0,T ) and integrating in time
over the interval (0,T ), using moreover (4.41), we get∫ T

0

⟨∂tFm,Σ⟩ζ≤
∫ T

0

||(vm ·∇)Fm||(H1(Ω;R3×3))′ ||Σ||H1(Ω;R3×3)|ζ|

+

∫ T

0

||∇vm||L2(Ω;R3)||Fm||L3(Ω;R3×3)||Σ||L6(Ω;R3×3)|ζ|

+λ

∫ T

0

||∇(f(ϕm)Fm) ||L2(Ω;R3×3)||∇Σ||L2(Ω;R3×3×3)|ζ|≤C||Σ||H1(Ω;R3×3)||ζ||L4(0,T )

+C||∇vm||L2(0,T ;L2(Ω;R3×3))||Fm||L4(0,T ;L3(Ω;R3×3))||Σ||H1(Ω;R3×3)||ζ||L4(0,T ). (4.96)

Hence, we deduce that

||∂tFm||
L

4
3 (0,T ;(H1(Ω;R3×3))′)

≤C. (4.97)

Given (4.97) and (4.93), we can infer that

||∂t (f(ϕm)Fm)||
L

4
3 (0,T ;(H2

N (Ω;R3×3))
′
)
≤C. (4.98)

The latter result is fundamental to study the limit problem of (4.50), in particular
to deduce compactness results for the sequence Fm from a compactness result for the
sequence f(ϕm)Fm, which can be obtained from (4.84) and (4.98). In order to prove
(4.98), let us take generic functions Π∈H2

N (Ω;R3×3) and ζ ∈L4(0,T ), and consider the
integral in time over (0,T ) of the dual product <∂t (ϕmFm) ,Π>2 multiplied by ζ. We
get, using Assumption A3,∫ T

0

ζ <∂t (f(ϕm)Fm) ,Π>2=

∫ T

0

∫
Ω

f ′(ϕm)(∂tϕm)Fm : Πζ+

∫ T

0

ζ <∂tFm,f(ϕm)Π>
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≤C||∂tϕm||L2(ΩT )||Fm||L4(0,T ;L3(Ω;R3×3))||ζ||L4(0,T )||Π||H1(Ω;R3×3)

+C||∂tFm||
L

4
3 (0,T ;(H1(Ω;R3×3))′)

||f(ϕm)Π||L∞(0,T ;H1(Ω;R3×3))||ζ||L4(0,T ),

and from the bound

||f(ϕm)Π||L∞(0,T ;H1(Ω;R3×3))

=ess.sup
(0,T )

(∫
Ω

(
|f(ϕm)Π|2+ |Π⊗∇f(ϕm)|2+ |f(ϕm)∇Π|2

)
+2f(ϕm)∇Π ..

.
Π⊗∇f(ϕm)

) 1
2

≤C
(
1+ ||ϕm||L∞(0,T ;H1(Ω))

)
||Π||H2

N (Ω;R3×3),

where we used the embedding H2
N (Ω;R3×3) ↪→L∞(Ω;R3×3), we obtain (4.98).

Collecting the estimates (4.83), (4.84), (4.85), (4.90), (4.46), (4.98), and (4.93),
which are uniform in m, from the Banach–Alaoglu and the Aubin–Lions lemma, we
finally obtain the convergence properties, up to subsequences of the solutions, which we
still label by the index m,

vm⇀v in L2
(
0,T ;H1

0,div

(
Ω;R3

))
, (4.99)

f(ϕm)Fm
∗
⇀β in L∞(0,T ;L2(Ω;R3×3))∩L2(0,T ;H1(Ω;R3×3)), (4.100)

Fm
∗
⇀F in L∞(0,T ;L2(Ω;R3×3)), (4.101)

∂tFm⇀∂tF in L
4
3

(
0,T ;

(
H1(Ω;R3×3)

)′)
, (4.102)

∂t (f(ϕm)Fm)⇀∂tβ in L
4
3

(
0,T ;

(
H2
N (Ω;R3×3)

)′)
, (4.103)

f(ϕm)Fm→β in L2(0,T ;Lp(Ω;R3×3)), p∈ [1,6), and a.e. in ΩT , (4.104)

ϕm
∗
⇀ϕ in L∞(0,T ;H1(Ω))∩L 4

3 (0,T ;H2(Ω)), (4.105)

∂tϕm⇀∂tϕ in L2(ΩT ), (4.106)

ϕm→ϕ in C0(0,T ;Lp(Ω))∩L 4
3 (0,T ;W 1,p(Ω)), p∈ [1,6), and a.e. in ΩT ,

(4.107)

µm⇀µ in L2
(
0,T ;H1 (Ω)

)
, (4.108)

for some limit function β in L∞(0,T ;L2(Ω;R3×3))∩L2(0,T ;H1(Ω;R3×3)), which will
be identified as β=f(ϕ)F in the following calculations. Moreover, thanks to (4.107),
the Assumption A3 and the Lebesgue dominated convergence theorem,

f(ϕm)→f(ϕ),
1

f(ϕm)
→ 1

f(ϕ)
, f ′(ϕm)→f ′(ϕ) in Lp (ΩT ),∀p≥1. (4.109)

We now derive a useful interpolation result for ϕm from (4.105) and (4.107), which
will be used to identify the limit of system (4.50) asm→∞. From (4.10) with s=2,q=6
we have that

L∞(0,T ;L2(Ω,R3))∩L 4
3 (0,T ;L6(Ω,R3)) ↪→L

26
9 (0,T ;L

26
9 (Ω,R3)),

hence, from (4.105) and (4.107) we have that

∇ϕm→∇ϕ in Lp(0,T ;Lp(Ω,R3)), p∈ [1,26/9). (4.110)
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We also observe that, from (4.100) and (4.10) with q=6 we have that

f(ϕm)Fm→β in Lp(0,T ;Lp(Ω,R3×3)), p∈ [1,10/3), (4.111)

and from (4.9) with h←4−h,

β∈L2+ 2
3

h
4−h (0,T ;L6−h(Ω,R3×3)). (4.112)

We prove now a compactness result for the sequence Fm. Given (4.104), (4.112), (4.109)
and writing Fm as

Fm=
1

f(ϕm)
f(ϕm)Fm,

we have, for arbitrarily small h∈ (0,5/2], using also Assumption A3,

∫ T

0

(∫
Ω

∣∣∣∣Fm− β

f(ϕ)

∣∣∣∣6−2h
) 2

6−2h

≤
∫ T

0

(∫
Ω

∣∣∣∣ 1

f(ϕm)
(f(ϕm)Fm−β)

∣∣∣∣6−2h
) 2

6−2h

+

∫ T

0

(∫
Ω

∣∣∣∣( 1

f(ϕm)
− 1

f(ϕ)

)
β

∣∣∣∣6−2h
) 2

6−2h

≤C||f(ϕm)Fm−β||2L2(0,T ;L6−2h(Ω;R3×3))

+C

∣∣∣∣∣∣∣∣ 1

f(ϕm)
− 1

f(ϕ)

∣∣∣∣∣∣∣∣2
L

24−4h
h

(
0,T ;L

(6−2h)(6−h)
h (Ω)

) ||β||2
L

2+ 2
3

h
4−h (0,T ;L6−h(Ω;R3×3))

→0,

(4.113)

as m→∞. Hence,

Fm→
β

f(ϕ)
strongly in L2(0,T ;L6−h(Ω;R3×3)) and a.e. inΩT , (4.114)

with h∈ (0,5]. From (4.114), (4.101) and the uniqueness of the weak limit and the a.e.
convergence, F= β

f(ϕ) , whence

β=f(ϕ)F. (4.115)

Analogously to (4.111), we thus have that

Fm→F in Lp(0,T ;Lp(Ω,R3×3)), p∈ [1,10/3). (4.116)

With the convergence results (4.99)–(4.109), (4.110), (4.115), and (4.114) we can pass
to the limit in the system (4.50) as m→∞. We proceed in a different way with respect
to the 2D case. We fix 0≤ i≤m, and take η=ηi, ξ= ξi, χ= ξi, multiply the equations
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by a function ω∈C∞
0 ([0,T ]) and integrate over the time interval [0,T ]. This gives

ν

∫ T

0

ω

∫
Ω

∇vm : ∇ηi=

∫ T

0

ω

∫
Ω

µm∇ϕm ·ηi−
∫ T

0

ω

∫
Ω

f ′ (ϕm)

2
(Fm : Fm−3)∇ϕm ·ηi

−
∫ T

0

ω

∫
Ω

f (ϕm)FmFT
m : ∇ηi,∫ T

0

ω ⟨∂tFm,Σ⟩+
∫ T

0

ω

∫
Ω

(vm ·∇)Fm : Σ−
∫ T

0

ω

∫
Ω

(∇vm)Fm : Σ

+λ

∫ T

0

ω

∫
Ω

∇(f(ϕm)Fm) ..
.∇Σ=0,∫ T

0

ω

∫
Ω

∂tϕmξi+

∫ T

0

ω

∫
Ω

(vm ·∇ϕm)ξi+

∫ T

0

ω

∫
Ω

b(ϕm)∇µm ·∇ξi=0,∫ T

0

ω

∫
Ω

µmξi=

∫ T

0

ω

∫
Ω

∇ϕm ·∇ξi+
∫ T

0

ω

∫
Ω

ψ′ (ϕm)ξi

+

∫ T

0

ω

∫
Ω

f ′ (ϕm)

2
(Fm : Fm−3)ξi+δ

∫ T

0

ω

∫
Ω

∂tϕmξi.

(4.117)

Thanks to (4.99), we have

ν

∫ T

0

ω

∫
Ω

∇vm : ∇ηi→ν

∫ T

0

ω

∫
Ω

∇v : ∇ηi,

as m→∞. Thanks to (4.110) and the fact that ηi∈H2(Ω;R3) ↪→L∞(Ω;R3), we have
that ω∇ϕm ·ηi→ω∇ϕ ·ηi strongly in L2(0,T ;L2(Ω)). Hence, using (4.108), by the
product of weak–strong convergence we have that∫ T

0

ω

∫
Ω

µm∇ϕm ·ηi→
∫ T

0

ω

∫
Ω

µ∇ϕ ·ηi,

asm→∞. For what concerns the second term on the right-hand side of the first equation
of (4.117), we observe that f ′ (ϕm)Fm : Fm→f ′ (ϕ)F : F strongly in L

4
3−h(0,T ;L2(Ω)),

with h∈ (0,1/3]. In order to prove this convergence result, we recall the following
regularity result,

Fm,F∈L
8
3−

4
3

h
2+h (0,T ;L4+h(Ω,R3×3))∩L 20

9 − 2
3h
(
0,T ;L5+ 9h

4−3h (Ω,R3×3)
)
, (4.118)

with h∈ [0,1/3], which are obtained from (4.84) and (4.9) with h←2+h and h←
3+ 9h

4−3h . Introducing the parameter k := 4
3

h
2+h , with h∈ (0,2/3]→k∈ (0,1/3], using

Assumption A3, (4.36), (4.109), and (4.118), we have that∫ T

0

(∫
Ω

|f ′ (ϕm)Fm : Fm−f ′ (ϕ)F : F|2
) 4−3k

6

=

∫ T

0

(∫
Ω

|f ′ (ϕm)((Fm−F) : (Fm+F))+(f ′ (ϕm)−f ′ (ϕ))F : F|2
) 4−3k

6

≤f1
∫ T

0

||Fm−F||
4
3−k

L
10
3

−k(Ω;R3×3)
||Fm+F||

4
3−k

L
5+ 9k

4−3k (Ω;R3×3)

+

∫ T

0

||f ′(ϕm)−f ′(ϕ)||
4
3−k

L
2(4+h)

h (Ω)
||F||

8
3−2k

L4+h(Ω;R3×3)

≤f1||Fm−F||
4
3−k

L
10
3

−k
(
0,T ;L

10
3

−k(Ω;R3×3)
)||Fm+F||

4
3−k

L
20
9

− k(14−3k)
6

(
0,T ;L

5+ 9k
4−3k (Ω;R3×3)

)
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+ ||f ′(ϕm)−f ′(ϕ)||
4
3−k

L
(4−3k)(8−3k)

9k

(
0,T ;L

2(4+h)
h (Ω)

)||F|| 83−2k

L
8
3
−k(0,T ;L4+h(Ω;R3×3))

→0,

as m→∞, where we used the fact that 2
3k<

k(14−3k)
6 for k∈ (0,1/3]. Then, considering

again that ηi∈L∞(Ω;R3) we have that f ′ (ϕm)(Fm : Fm−3)ηi→f ′ (ϕ)(F : F−3)ηi
strongly in L

4
3−h(0,T ;L2(Ω;R3)), where we also used Assumption A3, (4.107) and the

Lebesgue convergence theorem to obtain f ′ (ϕm)→f ′ (ϕ) strongly in L
4
3−h(0,T ;L2(Ω)).

Hence, using (4.105) and the product of weak–strong convergence we have that∫ T

0

ω

∫
Ω

f ′ (ϕm)

2
(Fm : Fm−3)∇ϕm ·ηi→

∫ T

0

ω

∫
Ω

f ′ (ϕ)

2
(F : F−3)∇ϕ ·ηi,

as m→∞. For what concerns the third term on the right-hand side of the first equation
of (4.117), since, from (4.104), f(ϕm)Fm→f(ϕ)F strongly in L2(0,T ;L6−h(Ω;R3×3)),
h∈ (0,5], and considering that ηi∈H2(Ω;R3) ↪→W 1,6(Ω;R3), we have that f(ϕm)∇ηiFm→
f(ϕ)∇ηiF strongly in L2(0,T ;L3−h(Ω;R3×3)). Hence, using (4.101) and the product of
weak–strong convergence we have that∫ T

0

ω

∫
Ω

f (ϕm)FmFTm : ∇ηi→
∫ T

0

ω

∫
Ω

f (ϕ)FFT : ∇ηi,

as m→∞.
Now considering the second equation in (4.117), since

ωΣ∈C0(0,T ;H1(Ω;R3×3)) ↪→L4
(
0,T ;H1(Ω;R3×3)

)
,

we get from (4.102) that ∫ T

0

ω ⟨∂tFm,Σ⟩→
∫ T

0

ω ⟨∂tF,Σ⟩ ,

as m→∞. Thanks to (4.114) and the fact that ∇Σ∈L2(Ω;R3×2×3), we have that

ω (∇Σ)
T
Fm→ω (∇Σ)

T
F strongly in L2(0,T ;L

3
2−h(Ω;R3)). Hence, using (4.99) and

the product of weak–strong convergence we have that∫ T

0

ω

∫
Ω

(vm ·∇)Fm : Σ=−
∫ T

0

ω

∫
Ω

Fm⊗vm ..
.∇Σ→−

∫ T

0

ω

∫
Ω

F⊗v ..
.∇Σ,

as m→∞.
Moreover, thanks to (4.114), we have that ωΣFTm→ωΣFT strongly in

L2(0,T ;L3−h(Ω;R3×3)). Hence, using (4.99) and the product of weak–strong conver-
gence we have that ∫ T

0

ω

∫
Ω

(∇vm)Fm : Σ→
∫ T

0

ω

∫
Ω

(∇v)F : Σ,

as m→∞. Finally, given (4.100) and (4.115),

λ

∫ T

0

ω

∫
Ω

∇(f(ϕm)Fm) ..
.∇Σ→λ

∫ T

0

ω

∫
Ω

∇(f(ϕ)F) ..
.∇Σ,

as m→∞.
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The limit forms of the terms in the third and fourth equations of (4.80) can be
identified with similar calculations as in the 2D case, given the convergence properties
obtained in the 3D case. Hence, we omit the details. Also, the same arguments as in
the 2D case can be used to verify the attainment of the initial conditions.

We have just shown that the limit point (v,F,ϕ,µ) satisfies the same weak formu-
lation (4.5), with the addition of the viscous term in the equation for µ, with u=ηi,
q= ξi, r= ξi, for all i≥0. Observing that {ηi}i∈N is an Hilbert basis of H2(Ω;R3)∩
H1

0,div(Ω;R3), with H2(Ω;R3)∩H1
0,div(Ω;R3) dense in H1

0,div(Ω;R3), and also that {ξi}i∈N
is an Hilbert basis of H2

N (Ω), with H2
N (Ω) dense in H1(Ω), we have proved Theorem

4.2.

5. Conclusion

In this paper we have proposed a class of phase field models of Cahn–Hilliard type
coupled with finite viscoelasticity, which considers the microscopic coupling between the
mixture constituents, their viscoelastic behaviour and the friction between the phases,
with a general compressible polyconvex elastic energy which depends on both the elas-
tic deformation and the phase field variable within a nonlinear coupling. The model
was formulated in the Eulerian configuration and it was derived by imposing the mass
balance for the mixture components and the momentum balance implied by a general-
ized form of the principle of virtual powers, given constitutive assumptions complying
with a mechanical version of the second law of thermodynamics in isothermal situa-
tions. We then studied analytically a simplified and regularized incompressible version
of the model, where the regularization substantially depends on the coupling between
the phase field variable and the elastic deformation gradient in the elastic energy density.
Through a Galerkin approximation of the model equations and the definition of a fixed
point problem, where the velocity field is approximated in terms of basis functions of the
Stokes operator, the phase field variables are approximated in terms of basis functions
of the Laplace operator, and the transport equation for the elastic deformation gradient
is solved in a continuous space, we proved existence of a global-in-time weak solution in
two and three space dimensions by studying the limit problem of the Galerkin approx-
imation. In the case of three space dimensions, we added a viscous regularization for
the partial time derivative of the phase field variable in the chemical potential in order
to obtain the necessary compactness results to study the limit problem of the Galerkin
approximation. Future developments of the present work will investigate the inclusion
in the elasticity dynamics of plasticity and growth, together with the design of stable
and convergent numerical approximations and the investigation of numerical simulations
of related image-informed models for neurological diseases and tumor growth models.
Also, future developments will concern the analysis for the polyconvex case.
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