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OPTIMAL LARGE-TIME BEHAVIOR OF THE COMPRESSIBLE
PHAN-THEIN-TANNER MODEL∗

YIN LI† , RUIYING WEI‡ , GUOCHUN WU§ , AND ZHENG-AN YAO¶

Abstract. In this paper, we investigate global existence and optimal decay rates of strong solutions
to the three dimensional compressible Phan-Thein-Tanner model. We prove the global existence of the
solutions by the standard energy method under the small initial data assumptions. Furthermore, if
the initial data belong to L1(R3), we establish the optimal time decay rates of the solution as well
as its higher-order spatial derivatives. In particular, we also obtain the optimal decay rates of the
highest-order spatial derivatives of the velocity. Finally, we derive the lower bound time decay rates for
the solution and its spatial derivatives. Our method is based on Hodge decomposition, low-frequency
and high-frequency decomposition, delicate spectral analysis, and energy methods.
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1. Introduction
The theory of Phan-Thein-Tanner model recently gained quite some attention, this

model is derived from network theory for the polymeric fluid. This type of fluid is
described by the following set of equations

ρt+div(ρu)=0,
ρ(ut+u ·∇u)−µ(△u+∇divu)+∇p=µ1divτ,
τt+u ·∇τ+Q(τ,∇u)+(a+btrτ)τ =µ2D(u),
(ρ,u,τ)|t=0=(ρ0,u0,τ0),(t,x)∈R+×R3.

(1.1)

The unknowns ρ,u,τ,p are the density, velocity, stress tensor and scalar pressure of
fluid, respectively. D(u) is the symmetric part of ∇u, that is

D(u)=
1

2
(∇u+(∇u)t).

Q(τ,∇u) is a given bilinear form

Q(τ,∇u)= τΩ(u)−Ω(u)τ+λ(D(u)τ+τD(u)),

where Ω(u) is the skew-symmetric part of ∇u, namely

Ω(u)=
1

2
(∇u−(∇u)t).

µ>0 is the viscosity coefficient and µ1 is the elastic coefficient. a and µ2 are associated
to the Debroah number De= µ2

a , which indicates the relation between the characteristic
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flow time and elastic time [2]. λ∈ [−1,1] is a physical parameter, in particular, we call
the system co-rotational when λ=0. b≥0 is a constant related to the rate of creation
or destruction for the polymeric network junctions.

To complete the system (1.1), the initial data are given by

(ρ,u,τ)|t=0=(ρ0,u0,τ0), x∈R3. (1.2)

In the present paper, we consider the Cauchy problem of (1.1) subject to the initial
condition

(ρ,u,τ)(t,x)=(ρ̄,0,0) as |x|→∞,∈R3. (1.3)

1.1. History of the problem. Let us review some previous works about
the model (1.1) and the related models. If we ignore the stress tensor, (1.1) reduces
to the compressible Navier-Stokes (NS) equations. The convergence rate of solution
for the compressible Navier-Stokes equations to the steady state has been investigated
extensively since the first global existence of small solutions inH3 was improved by Mat-
sumura and Nishida [19,20]. When the initial perturbation (ρ0−1,u0)∈Lp∩HN (N ≥3)
with p∈ [1,2], the L2 optimal decay rate of the solution to the NS system is

∥(ρ−1,u)(t)∥L2 ≤C(1+ t)−
3
2 (

1
p−

1
2 ).

For the small initial perturbation belonging to H3 only, Matsumura [18] employed the
weighted energy method to show the L2 decay rates. In order to establish optimal
decay rates for higher order spatial derivatives of solutions, if the initial perturbation
is bounded in H−s(s∈ [0, 32 )) norm instead of L1-norm, Guo and Wang [11] developed
the time convergence rates, as follows, by using a general energy method,

∥∇l(ρ−1,u)(t)∥HN−l ≤C(1+ t)−
l+s
2 ,

for 0≤ l≤N−1. In addition, the decay rate of solutions to the NS system was investi-
gated in [3, 6, 25] and the references therein.

If b=0, the system (PTT) reduces to the famous Oldroyd-B model (see [23]) which
has been studied widely, most of the results on Oldroyd-B fluids in the literature are
about the incompressible model. C. Guillopé and J.C. Saut [10] proved the existence
of local strong solutions and the global existence of one dimensional shear flows. Later,
the smallness restriction on the coupling constant in [10] was removed by Molinet and
Talhouk [21]. In [17], F. Lin, C. Liu and P. Zhang proved that if the initial data are
a small perturbation around equilibrium, then the strong solution is global in time.
Similar results were obtained in several papers by virtue of different methods, see T.
Zhang and D. Fang [29], Y. Zhu [31]. D. Fang and R. Zi [7] proved the global existence
of strong solutions with a class of large data. On the other hand, there are relatively
few results for the compressible model. Lei [13] proved the local and global existence
of classical solutions for a compressible Oldroyd-B system in a torus with small initial
data. He also studied the incompressible limit problem and showed that the compressible
flows with well-prepared initial data converge to incompressible ones when the Mach
number converges to zero. The case of ill prepared initial data was considered by Fang
and Zi [8] in the whole space Rd, d≥2. Recently, the smallness restriction on coupling
constant was removed by Zi in [32]. Zhou, Zhu and Zi [30] proved the existence of global
strong solution provided the initial data are close to the constant equilibrium state in
H2-framework and obtained the convergence rates of the solutions. Recently, for the
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compressible Oldroyd type model based on the deformation tensor, the authors proved
the decay rate in [16,28].

In this paper, we focus on the PTT model (b ̸=0). To our knowledge, there are
a lot of numerical results about the PTT model (see, [1, 9, 24]). Recently, [5] proved
that the strong solution in critical Besov spaces exists globally when the initial data
are a small perturbation around the equilibrium. [4] proved that the strong solution
will blow up in finite time and proved the global existence of strong solution with small
initial data. However, there are few results to our knowledge on the compressible PTT
model, especially the large-time behavior. Although the authors proved the decay rate
in [27], the decay rate of N-th order derivative of solution (ϱ−1,u) coincides with the
lower one. Recently, this tricky problem is solved in a series of articles [14, 15] by
using the spectrum analysis of the linearized part. On the other hand, compared with
the incompressible models, the compressible equations of PTT model are more difficult
to deal with because of the strong nonlinearities and interactions among the physical
quantities. The main purpose in this paper is to study the global existence and decay
rates of smooth solutions for the compressible PTT model. We first establish the global
solution of (1.1)-(1.2) in the whole space R3 near the constant equilibrium state. Then
the optimal convergence rates of the higher-order spatial derivatives of the solutions are
also obtained. Furthermore, for well-chosen initial data, we also show the lower bounds
on the convergence rates. Our method is based on Hodge decomposition, low-frequency
and high-frequency decomposition, delicate spectral analysis and energy methods.

Before stating our main result, let us first introduce the notations and conventions
used throughout this paper. We use Hk(R3) to denote the usual Sobolev space with
norm ∥·∥Hk and Lp, 1≤p≤∞ to denote the usual Lp(R3) space with norm ∥·∥Lp .
For the sake of conciseness, we do not precise in functional space names when they
are concerned with scalar-valued or vector-valued functions, ∥(f,g)∥X denotes ∥f∥X +
∥g∥X . We will employ the notation a≲ b to mean that a≤Cb for a universal constant
C>0 that only depends on the parameters coming from the problem. We denote
∇=∂x=(∂1,∂2,∂3), where ∂i=∂xi

, ∇i=∂i and put ∂ℓxf =∇ℓf =∇(∇ℓ−1f). Let Λs be
the pseudo differential operator defined by

Λsf =F−1(|ξ|sf̂), for s∈R,

where f̂ and F(f) are the Fourier transforms of f . The homogenous Sobolev space

Ḣs(R3) with norm given by ∥f∥Ḣs

△
=∥Λsf∥L2 . For a radial function ϕ∈C∞

0 (R3
ξ) such

that ϕ(ξ)=1 when |ξ|≤ η
2 and ϕ(ξ)=0 when |ξ|≥η, we define the low–frequency part

of f by

f l=F−1[ϕ(ξ)f̂ ]

and the high–frequency part of f by

fh=F−1[(1−ϕ(ξ))f̂ ].

It is direct to check that f =f l+fh if Fourier transform of f exists.

1.2. Main results. Now, we state our main result about the global existence
and decay properties of solution to the system (1.1)-(1.2) in the following theorem.

Theorem 1.1. Assume that (ρ0−1, u0, τ0)∈Hℓ(R3) for an integer ℓ≥3. Then there
exists a constant δ0 such that if

K0 :=∥(ρ0−1,u0,τ0)∥Hℓ ≤ δ0, (1.4)
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then the Cauchy problem (1.1)–(1.2) admits a unique solution (ρ,u,τ) globally in time
in the sense that

∥(ρ−1,u,τ)(t)∥2Hℓ +

∫ t

0

(∥∇ρ(s)∥2Hℓ−1 +∥∇u(s)∥2Hℓ +∥τ(s)∥2Hℓ)ds≤CK2
0 . (1.5)

Moreover, the following convergence rates hold true.

• Upper bounds. If additionally

N0 :=∥(ρ0−1,u0,τ0)∥L1 <∞, (1.6)

then for any t≥0, it holds that∥∥∇k (ρ−1,u)(t)
∥∥
Hℓ−k ≤C(N0)(1+ t)

− 3
4−

k
2 , 0≤k≤ ℓ, (1.7)∥∥∇kτ(t)

∥∥
Hℓ−k ≤C(N0)(1+ t)

− 5
4−

k
2 , 0≤k≤ ℓ−1. (1.8)

• Lower bounds. Let (ϱ0,u0,τ0)=(ρ0−1,u0,τ0) and assume that Fourier trans-
form of functions (ϱ0,u0,τ0) satisfy

Λ−1divû0(ξ)=Λ−1divΛ−1divτ̂0(ξ)=0, and |ϱ̂0(ξ)|≥N0

√
δ0, (1.9)

for any |ξ|≤η. Then there is a positive constant c1 independent of t such that
for any large enough t and 0≤k≤ ℓ, it holds that

min
{
∥∇k(ρ−1)(t)∥Hℓ−k ,∥∇ku(t)∥Hℓ−k

}
≥ c1(1+ t)−

3
4−

k
2 , (1.10)

∥∇kτ(t)∥Hℓ−k ≥ c1(1+ t)−
5
4−

k
2 . (1.11)

Remark 1.1. Compared with our previous results [27], it is worth noting that the
optimal time decay rates of the highest-order spatial derivatives of the velocity are
obtained. This is due to the decomposition on the system. On the other hand, to the
best knowledge of the authors, there was no result about the lower bounds of decay
rates (1.10)-(1.11) for the spatial derivatives of density, velocity, and stress tensor to
the compressible Phan-Thein-Tanner Model (1.1) before. That is to say, in this paper,
this result was obtained for the first time.

Remark 1.2. In Theorem 1.1, a smallness assumption on the higher-order Sobolev
norms of the initial data is not entirely necessary. Indeed, on the one hand, motivated by
the pure energy method the authors [27] proved the global existence result in Theorem
1.1 under the assumption that the H3 norm of the initial data is small, while the
higher-order Sobolev norms can be arbitrarily large. On the other hand, it is clear that
in deriving the large-time behavior of solutions, we only need the smallness of H3 -norm
of the initial data. However, this is not our main concern. We will focus our attention
on the large-time behavior of the solutions and thus omit the details for the sake of
simplicity.

2. Spectral analysis and linear L2 estimates

2.1. Reformulation. In this subsection, we first reformulate the system (1.1).
Denoting ϱ=ρ−1, then we can rewrite system (1.1)-(1.2) into the following equivalent
form: ϱt+divu=S1,

ut+γ∇ϱ−µ(△u+∇divu)−µ1divτ =S2,
τt+aτ−µ2D(u)=S3,

(2.1)
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where the nonlinear terms Si(i=1,2,3) are defined by

S1=−div(ϱu),

S2=−u ·∇u−µf(ϱ)(△u+∇divu)−g(ϱ)∇ϱ−µ1f(ϱ)divτ,

S3=−u ·∇τ−Q(τ,∇u)−btrττ,

with

(ϱ,u,τ)(x,0)=(ϱ0,u0,τ0)→0 as |x|→∞, (2.2)

and here

γ=
P ′(1)

1
, f(ϱ)=

ϱ

ϱ+1
, g(ϱ)=

P ′(ϱ+1)

ϱ+1
− P ′(1)

1
.

We define Ũ =(ϱ̃, ũ, τ̃)t. In terms of the semigroup theory for evolutionary equation,
we can write the corresponding linear system of model (2.1) as follows:{

Ũt=CŨ ,
Ũ
∣∣
t=0

=U0.
(2.3)

To derive the linear time–decay estimates, if we utilize the method in [19], we
need to make a detailed analysis on the properties of the semigroup. Unfortunately,
it seems untractable, since the system (2.3) has thirteen equations. To overcome this
difficulty, we take Hodge decomposition to system (2.3) such that it can be decoupled
into two systems. One has three equations, and the other has two equations. This key
observation allows us to derive the optimal linear convergence rates.

Let v=Λ−1divτ̃ , Ṽ =(ϱ̃, ũ,v)t. The system (2.3) can be expressed by{
Ṽt=BṼ ,
Ṽ
∣∣
t=0

=V0,
(2.4)

where the operator B is given by

B=

 0 −div 0
−γ∇ µ(∆+∇⊗∇) µ1Λ
0 µ2Λ

−1(∆+∇⊗∇) −a

,
here ∇tu := (∇u)t for any vector u∈ (R3). Applying Fourier transform to the system
(2.4), we have 

̂̃
V t=A(ξ)

̂̃
V ,̂̃

V
∣∣
t=0

= V̂0=(ϱ0,u0,v0),
(2.5)

where
̂̃
V (ξ,t)=F(Ṽ (x,t)), ξ=(ξ1,ξ2,ξ3)t and A(ξ) is defined as

A(ξ)=

 0 −iξt 0
−iξ −µ|ξ|2I3×3−µξ⊗ξ −iµ1ξ
0 −µ|ξ|−1(|ξ|2I3×3+ξ⊗ξ) −a

.
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We will take Hodge decomposition to analyze the system (2.4), let φ=Λ−1divũ,ψ=
Λ−1divv be the “compressible part” of the velocities ũ and τ , and denote Φ=
Λ−1curlũ,Ψ=Λ−1curlv (with (curlz)ji =∂xj

zi−∂xi
zj) by the “incompressible part” of

the velocities ũ and v. Then we can rewrite (2.4) as
∂tϱ̃+Λφ=0,

∂tφ−γΛϱ̃+2µΛ2φ−µ1Λψ=0,

∂tψ+aψ+2µ2Λφ=0,

(ϱ̃,φ,ψ)
∣∣
t=0

=(ϱ0,Λ
−1divu0,Λ

−1divv0)(x),

(2.6)

and 
∂tΦ+µΛ2Φ−µ1ΛΨ=0,

∂tΨ+aΨ+µ2ΛΦ=0,

(Φ,Ψ)
∣∣
t=0

=(Λ−1curlu0,Λ
−1curlv0)(x).

(2.7)

2.2. Spectral analysis for IVP (2.6). In view of the semigroup theory, we
may represent the IVP (2.6) for U =(ϱ̃,φ,ψ)t as{

Ut=B1U ,
U
∣∣
t=0

=U0,
(2.8)

where the operator B1 is defined by

B1=

 0 −Λ 0
γΛ −2µΛ2 µ1Λ
0 −2µ2Λ −a

 .
Taking Fourier transform to system (2.8), we obtain{

Ût=A1(ξ)Û ,
Û
∣∣
t=0

= Û0,
(2.9)

where Û(ξ,t)=F(U(x,t)) and A1(ξ) is given by

A1(ξ)=

 0 −|ξ| 0
γ|ξ| −2µ|ξ|2 µ1|ξ|
0 −2µ2|ξ| −a

. (2.10)

The eigenvalues of the matrix A1(ξ) can be computed by

det(λI−A1(ξ))

=λ3+(a+2µ|ξ|2)λ2+(2aµ+2µ1µ2+γ)|ξ|2λ+aγ|ξ|2

=0,

which implies that matrix A1(ξ) possesses three eigenvalues:
λ1=−a+ 2µ1µ2

a |ξ|2+O(|ξ|3),
λ2=

√
γi|ξ|− aµ+µ1µ2

a |ξ|2+O(|ξ|3),
λ3=−√

γi|ξ|− aµ+µ1µ2

a |ξ|2+O(|ξ|3).
(2.11)
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Consequently, we can represent the solution of IVP (2.6) as

Û(ξ,t)=etA1(ξ)Û0(ξ)=

(
3∑

i=1

eλitPi(ξ)

)
Û0(ξ), (2.12)

where the projection operators Pi can be computed as

P1(ξ)=
1

a2

0 0 0
0 0 −aµ1|ξ|
0 2aµ2|ξ| a2

+O(|ξ|2), (2.13)

P2(ξ)=
1

2a
√
γi

a√γi+(aµ+µ1µ2−γ)|ξ| −a−√
γi|ξ| −µ1|ξ|

aγ+γ
√
γi|ξ| a

√
γi−(γ+aµ+µ1µ2)|ξ| µ1

√
γi|ξ|

−2µ2γ|ξ| −2µ2
√
γi|ξ| 0


+O(|ξ|2), (2.14)

P3(ξ)=− 1

2a
√
γi

−a√γi+(aµ+µ1µ2−γ)|ξ| −a+√
γi|ξ| −µ1|ξ|

aγ−γ√γi|ξ| −a√γi−(γ+aµ+µ1µ2)|ξ| −µ1
√
γi|ξ|

−2µ2γ|ξ| 2µ2
√
γi|ξ| 0


+O(|ξ|2). (2.15)

By virtue of (2.12)-(2.15), we can establish the following estimates on low-frequency

part of the solution Û(ξ,t) to the IVP (2.6).

Lemma 2.1. Let ν1=
aµ+µ1µ2

a , then there exists a sufficiently small positive constant
η1, such that the following estimates hold∣∣∣̂̃ϱ∣∣∣ , |φ̂|,∣∣∣ψ̂∣∣∣≲ e−ν1|ξ|2t

(
|ϱ̂0|+ |φ̂0|+

∣∣∣ψ̂0

∣∣∣) (2.16)

for any |ξ|≤η1.

With the key estimate (2.16) in hand, we are able to establish the optimal
L2−convergence rate on the low-frequency part of the solution, which is stated in the
following proposition.

Proposition 2.1 (L2–theory). For any k>− 3
2 , there exists a positive constant C

independent of t, such that∥∥∇k
(
ϱ̃l,φl,ψl

)
(t)
∥∥
L2 ≤C(1+ t)−

3
4−

k
2

∥∥∥Û l(0)
∥∥∥
L∞

, (2.17)

for any t≥0.

Proof. By virtue of (2.16) and the Plancherel theorem, one has

∥∥∇ketA1 ∗U l(0)
∥∥2
L2 =

∥∥∥|ξ|ketA1(ξ)Û l(0)
∥∥∥2
L2

≲
∫
|ξ|≤η

e−2ν1|ξ|2t|ξ|2k|Û l(0)|2dξ

≤C(1+ t)− 3
2−k

∥∥∥Û l(0)
∥∥∥2
L∞

,

which implies (2.17). Therefore, we have completed the proof of Proposition 2.1.
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In order to derive the optimal linear convergence rates, we need to establish the
lower bounds on the convergence rates which are stated in the following proposition.

Proposition 2.2. Assume that (ϱ0,φ0,ψ0,)∈L1 satisfies

φ̂0(ξ)= ψ̂0(ξ)=0, and |ϱ̂0(ξ)|≥ c0 (2.18)

for any |ξ|≤η, where c0 is a positive constant. Then, there exists a positive constant
C1 independent of t, such that it holds that

min
{
∥ϱ̃l(t)∥L2 ,∥φl(t)∥L2

}
≥C1c0(1+ t)

− 3
4 ,

∥ψl(t)∥L2 ≥C1c0(1+ t)
− 5

4 ,
(2.19)

for sufficiently large t.

Proof. Due to (2.18), it follows from (2.12)-(2.15) that

̂̃ϱl= (
1

2
+

aµ+µ1µ2−γ

2a
√
γi

|ξ|+O(|ξ|2)
)
eλ2(|ξ|)tϱ̂l0+

(
1

2
− aµ+µ1µ2−γ

2a
√
γi

|ξ|+O(|ξ|2)
)
eλ3(|ξ|)tϱ̂l0

∼ e−ν1|ξ|2t
(
aµ+µ1µ2−γ

a
√
γ

|ξ|sin(√γ|ξ|t)+cos(
√
γ|ξ|t)

)
ϱ̂l0,

which together with Plancherel theorem and the double angle formula implies

∥ϱ̃l(t)∥2L2 = ∥ ̂̃ϱl(t)∥2L2

≥ c20
2

∫
|ξ|≤η

e−2ν1|ξ|2tcos2(
√
γ|ξ|t)dξ

−(
aµ+µ1µ2−γ

a
√
γ

)2
∫
|ξ|≤η

e−2ν1|ξ|2t|ξ|2 sin2(√γ|ξ|t)|ϱ̂l0|2dξ

≥ c20
4

(∫
|ξ|≤η

e−2ν1|ξ|2tdξ+

∫
|ξ|≤η

e−2ν1|ξ|2tcos(2
√
γ|ξ|t)dξ

)

−(
aµ+µ1µ2−γ

a
√
γ

)2
∫
|ξ|≤η

e−2ν1|ξ|2t|ξ|2 sin2(√γ|ξ|t)|ϱ̂l0|2dξ

≥ C1c0(1+ t)
− 3

2 ,

if t large enough. Similarly, for the terms φl,ψl, we have

∥φl(t)∥L2 ≥C1c0(1+ t)
− 3

2 .

ψ̂l=

(
µ2

√
γ

ai
|ξ|+O(|ξ|2)

)(
eλ3(|ξ|)t−eλ2(|ξ|)t

)
ϱ̂l0

∼
2µ2

√
γ

a
|ξ|e−ν1|ξ|2t sin(

√
γ|ξ|t)ϱ̂l0,

which together with Plancherel theorem leads to∥∥ψl(t)
∥∥2
L2 =

∥∥∥ψ̂l
∥∥∥2
L2

≥C2c0(1+ t)
− 5

2 .

Therefore, we have completed the proof of Proposition 2.2.
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2.3. Spectral analysis for IVP (2.7). Similar to the proof of (2.8), we may
express the IVP (2.7) for V=(Φ,Ψ)t as{

Vt=B2V,
V
∣∣
t=0

=V0,
(2.20)

where the operator B2 is defined by

B2=

(
−µΛ2 µ1Λ
−µ2Λ −a

)
.

Taking Fourier transform to system (2.20), we obtain{
V̂t=A2(ξ)V̂,

V̂
∣∣
t=0

= V̂0,
(2.21)

where V̂(ξ,t)=F(V(x,t)) and A2(ξ) is given by

A2(ξ)=

(
−µ|ξ|2 µ1|ξ|
−µ2|ξ| −a

)
. (2.22)

We compute the eigenvalues of matrix A2(ξ) from the determinant

det(λI−A2(ξ))=λ
2+(a+µ|ξ|2)λ+(aµ+µ1µ2)|ξ|2=0,

which implies that matrix A2(ξ) possesses two eigenvalues:{
λ1=−a+ µ1µ2

a |ξ|2+O(|ξ|3),
λ2=−aµ+µ1µ2

a |ξ|2+O(|ξ|3).
(2.23)

Consequently, we can represent the solution of IVP (2.7) as

V̂(ξ,t)=etA2(ξ)V̂0(ξ)=

(
2∑

i=1

eλitQi(ξ)

)
V̂0(ξ), (2.24)

where

Q1(ξ)=−1

a

(
0 µ1|ξ|

−µ2|ξ| −a

)
+O(|ξ|2), (2.25)

Q2(ξ)=
1

a

(
a µ1|ξ|

−µ2|ξ| 0

)
+O(|ξ|2). (2.26)

By virtue of (2.24)-(2.26), we can establish the following estimates on low-frequency

part of the solution V̂(ξ,t) to the IVP (2.7).

Lemma 2.2. There exists a sufficiently small positive constant η2, such that the
following estimates hold ∣∣∣Φ̂∣∣∣ ,∣∣∣Ψ̂∣∣∣≲ e−ν1|ξ|2t

(∣∣∣Φ̂0

∣∣∣+ ∣∣∣Ψ̂0

∣∣∣) (2.27)

for any |ξ|≤η2.
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Similar to the proof of Proposition 2.1, we can also get the following lemma which
is concerned with L2-convergence rate on the low-frequency part of the solution V.

Proposition 2.3 (L2–theory). For any k>− 3
2 , there exists a positive constant C

independent of t, such that∥∥∇k
(
Φl,Ψl

)
(t)
∥∥
L2 ≤C(1+ t)−

3
4−

k
2

∥∥∥V̂ l(0)
∥∥∥
L∞

, (2.28)

for any t≥0.

Proof. By virtue of (2.27) and the Plancherel theorem, one has

∥∥∇ketA2 ∗V l(0)
∥∥2
L2 =

∥∥∥|ξ|ketA2(ξ)V̂ l(0)
∥∥∥2
L2

≲
∫
|ξ|≤η

e−2ν2|ξ|2t|ξ|2k|V̂ l(0)|2dξ

≤C(1+ t)− 3
2−k

∥∥∥Û l(0)
∥∥∥2
L∞

,

for any t≥0.

Noticing the definition of φ,ψ,Φ and Ψ, and the fact that the relations

u=−∧−1∇φ−∧−1divΦ,v=−∧−1∇ψ−∧−1divΨ, (2.29)

involve pseudodifferential operators of degree zero, the estimates in space Hk for the
original function (u,v) will be the same as for (φ,ψ,Φ,Ψ). Combining Propositions 2.1,
2.2 and 2.3, we have the following result concerning long-time properties for the solution
semigroup e−tA.

Proposition 2.4. Let k>− 3
2 and assume that the initial data U0∈L1(R3), then for

any t≥0, the global solution Ṽ =(ϱ̃, ũ,v)t of the IVP (2.4) satisfies∥∥∇k
(
ϱ̃l,ũl,vl

)∥∥
L2 ≤C(1+ t)−

3
4−

k
2 ∥V (0)∥L1 . (2.30)

If in addition, the initial data satisfies (2.18), the following lower-bounds on convergence
rate hold

min
{∥∥ϱ̃l(t)∥∥

L2 ,
∥∥ũl(t)∥∥

L2

}
≥C1c0(1+ t)

− 3
4 ,∥∥vl(t)∥∥

L2 ≥C1c0(1+ t)
− 5

4 ,
(2.31)

if t large enough.

Lemma 2.3. Let k>− 3
2 and assume that the initial data U0∈L1(R3), then for any

t≥0, it holds that ∥∥∇k τ̃ l
∥∥
L2 ≤C(1+ t)−

5
4−

k
2 . (2.32)

Proof. By delicate calculation to the system (2.3)3, we can deduce that

τ̃ l=e−atτ l0+µ2

∫ t

0

e−a(t−s)D(u)lds,
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then integrating the equality over R3, and by virtue of (2.30) and the Plancherel theo-
rem, one has

∥∥∇k τ̃ l
∥∥
L2 ≲ e−at

∥∥∇kτ l0
∥∥
L2 +

∫ t

0

e−a(t−s)
∥∥∇kD(u)l

∥∥
L2 ds

≲ e−at
∥∥∇kτ l0

∥∥
L2 +

∫ t

0

e−a(t−s)(1+ t)−
5
4−

k
2 ds

≤C(1+ t)− 5
4−

k
2 ,

for any t≥0.

Noticing the definition of v, combining Proposition 2.4 and Lemma 2.3, we finally
deduce that the solution Ũ to (2.3) has the following decay rates in time.

Proposition 2.5. Under the assumption of Proposition 2.4, the global solution
Ũ =(ϱ̃, ũ, τ̃)t of the IVP (2.3) satisfies∥∥∇k

(
ϱ̃l,ũl

)
(t)
∥∥
L2 ≤C(1+ t)−

3
4−

k
2 ∥U(0)∥L1 , (2.33)∥∥∇k τ̃ l(t)

∥∥
L2 ≤C(1+ t)−

5
4−

k
2 ∥U(0)∥L1 , (2.34)

min
{∥∥ϱ̃l(t)∥∥

L2 ,
∥∥ũl(t)∥∥

L2

}
≥C1c0(1+ t)

− 3
4 , (2.35)∥∥τ̃ l(t)∥∥

L2 ≥C1c0(1+ t)
− 5

4 , (2.36)

for any t≥0.

3. Optimal convergence rate

In this section, we devote ourselves to deriving the a priori energy estimates for the
nonlinear system (2.1). To see this, we assume a priori that for sufficiently small δ>0,

∥(ϱ,u,τ)(t)∥Hℓ ≤ δ, (3.1)

by (3.1) and Sobolev’s inequality, we obtain

1

2
≤ϱ+1≤2.

Hence, we immediately have

|f(ϱ)|, |g(ϱ)|≤C|ϱ|, |f (k)(ϱ)|,|g(k)(ϱ)|≤C for any k≥1. (3.2)

In this section, we shall show the optimal convergence rate of the solution stated
in Theorem 1.1. The global existence and uniqueness of the solution to the Cauchy
problem (2.1) have been proven in [27] based on the classical energy method, therefore
we omit the details for the sake of simplicity.

Theorem 3.1. Assume that (ρ0−1, u0, τ0)∈Hℓ(R3) for an integer ℓ≥3. Then there
exists a constant δ0 such that if

∥(ρ0−1,u0,τ0)∥Hℓ ≤ δ0, (3.3)
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then the problem (1.1)-(1.2) has a unique global solution (ρ,u,τ) satisfying that for all
t≥0,

∥(ρ−1,u,τ)(t)∥2Hℓ +

∫ t

0

(∥∇ρ(s)∥2Hℓ−1 +∥∇u(s)∥2Hℓ +∥τ(s)∥2Hℓ)ds≤C∥(ρ0−1,u0,τ0)∥2Hℓ .

(3.4)

In what follows, we devote ourselves to proving the optimal convergence rate of
the solution stated in Theorem 1.1. We first prove the upper bound on the optimal
convergence rate of the solution stated in (1.7)–(1.8). To do this, for any 0≤k≤ ℓ, we
define the time-weighted energy functional

Eℓ
k(t)= sup

0≤s≤t

{
(1+s)

3
4+

k
2

(
∥∇k(ϱ,u,τ)(s)∥Hℓ−k

)}
. (3.5)

Therefore, it suffices to prove that for any 0≤k≤ ℓ,Eℓ
k(t) has a uniform time-

independent bound. We will take advantage of the low-frequency and high-frequency
decomposition and use the key linear convergence estimates to achieve this goal by
induction.

Theorem 3.2. Assume that the hypotheses of Theorem 1.1 and (1.6) are in force.
Then there exists a positive constant C independent of t, such that

Eℓ
k(t)≤C(N0),

for 0≤k≤ ℓ.

Proof. We will employ mathematical induction method to prove Theorem 3.2.
Therefore, by noticing (3.5), it suffices to prove the following Lemmas 3.1 and 3.2.
Thus, the proof of Theorem 3.2 is completed.

The first lemma is concerned with the estimate on Eℓ
0(t).

Lemma 3.1. Assume that the hypotheses of Theorem 3.1 and (1.6) are in force. Then
there exists a positive constant C, which is independent of t, such that

Eℓ
0(t)≤C(N0). (3.6)

Proof. Under the assumption of Theorem 1.1, we derive the following energy
estimates on (ϱ,u,τ) which have been proven in [27]:

d

dt
Eℓ
0(t)+C(∥∇ϱ∥2Hℓ−1 +∥∇u∥2Hℓ +∥τ∥2Hℓ)≤0, (3.7)

where Eℓ
0(t) is equivalent to ∥(ϱ,u,τ)(t)∥2Hℓ , using the fact that ∥(ϱh,uh,τh)(t)∥L2 ≤

C∥∇(ϱ,u,τ)(t)∥L2 , (3.7) implies that there exists a positive constant D1 such that

d

dt
Eℓ
0(t)+D1Eℓ

0 ≤C∥(ϱl,ul,τ l)(t)∥2L2 . (3.8)

Defining S=(S1,S2,S3)t, it follows from Duhamel’s principle that

U l=etCU l(0)+

∫ t

0

e(t−s)CSl(s)ds, (3.9)
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which together with Plancherel theorem, integration by parts, Proposition 2.5, Lemma
A.4 and (3.4) implies

∥(ϱl,ul,τ l)(t)∥L2 =∥(ϱ̂l,ûl, τ̂ l)(t)∥L2

≲(1+ t)−
3
4 ∥U(0)∥L1 +

∫ t

0

(1+ t−s)− 3
4 ∥Sl(s)∥L1ds

≲N0(1+ t)
− 3

4 +

∫ t

0

(1+ t−s)− 3
4 ∥(ϱ,u,τ)(s)∥L2∥∇(ϱ,u,τ)(s)∥H1ds

≲N0(1+ t)
− 3

4 +

∫ t
2

0

(1+ t−s)− 3
4 (1+s)−

3
4Eℓ

0(t)∥∇(ϱ,u,τ)(s)∥H1ds

+

∫ t

t
2

(1+ t−s)− 3
4 (1+s)−

3
4Eℓ

0(t)∥∇(ϱ,u,τ)(s)∥H1ds

≲N0(1+ t)
− 3

4 +Eℓ
0(t)(1+ t)

− 3
4

(∫ t
2

0

(1+s)−
3
2 ds

) 1
2
(∫ t

2

0

∥∇(ϱ,u,τ)(s)∥2H1ds

) 1
2

+Eℓ
0(t)(1+ t)

− 3
4

(∫ t

t
2

(1+ t−s)− 3
2 ds

) 1
2
(∫ t

t
2

∥∇(ϱ,u,τ)(s)∥2H1ds

) 1
2

≲(1+ t)−
3
4

(
N0+δ0E

ℓ
0(t)

)
. (3.10)

Substituting (3.10) into (3.8), one has

d

dt
Eℓ
0(t)+D1Eℓ

0 ≤C(1+ t)−
3
2

(
N0+δ0E

ℓ
0(t)

)2
. (3.11)

Applying Gronwall’s inequality to the above inequality, we can infer that

Eℓ
0(t)≤ e−D1tEℓ

0(0)+C

∫ t

0

e−D1(t−s)(1+s)−
3
2

[
N0+δ0E

ℓ
0(s)

]2
ds

≤ C(1+ t)−
3
2

[
N0+δ0E

ℓ
0(t)

]2
,

which together with (3.5) implies that

(1+ t)
3
2 ∥(ϱ,u,τ)(t)∥2Hℓ ≲N2

0 +δ
2
0(E

ℓ
0(t))

2,

Eℓ
0(t)≤C(N0), (3.12)

if δ0 is small enough. Therefore, we have completed the proof of Lemma 3.1.

The next lemma is devoted to closing the estimates Eℓ
k(t) for 1≤k≤ ℓ.

Lemma 3.2. Assume that the hypotheses of Theorem 3.1 and (1.6) are in force. If
additionally

Eℓ
k−1(t)≤C(N0). (3.13)

Then it holds that

Eℓ
k(t)≤C(N0), (3.14)

for 1≤k≤ ℓ.
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Proof. We will combine the key linear estimates with delicate nonlinear energy
estimates based on good properties of the low–frequency and high–frequency decompo-
sition to prove Lemma 3.2, and the process involves the following six steps.

Step 1. L2 estimate of (∇jϱl,∇jul,∇jτ l) with 1≤ j≤k. First, similar to the proof
of (3.10), we also have

∥∇j(ϱl,ul,τ l)(t)∥L2 ≲(1+ t)−
3
4−

j
2 +

∫ t
2

0

(1+ t−s)− 3
4−

j
2 ∥U(0)∥L1ds

+

∫ t

t
2

(1+ t−s)− 5
4 ∥|ξ|j−1Ŝl(s)∥L∞ds

≲C(N0)(1+ t)
− 3

4−
j
2 +

∫ t

t
2

(1+ t−s)− 5
4 ∥|ξ|j−1Ŝl(s)∥L∞ds. (3.15)

Next, we shall estimate the second term on the right-hand side of (3.15). The main
idea of our approach is to make full use of the benefit of the low-frequency and high-
frequency decomposition. To see this, by virtue of (3.13), Lemma A.2, and Lemma A.3,

we can bound the term ∥|ξ|j−1Ŝl(s)∥L∞ by

∥|ξ|j−1Ŝl(s)∥L∞

≲
∥∥∥∇j−1

(
div(ϱu),u ·∇u,g(ϱ)∇ϱ,µ1f(ϱ)divτ,u ·∇τ,Q(τ,∇u),btrττ

)
(t)
∥∥∥
L1

+∥∇max{0,j−2}µf(ϱ)(△u+∇divu)(t)∥L1

≲∥(ϱ,u,τ)(t)∥L2∥∇j(ϱ,u,τ)(t)∥L2 +∥∇(ϱ,u,τ)(t)∥L2∥∇j−1(ϱ,u,τ)(t)∥L2

+∥τ(t)∥L2∥∇j−1τ(t)∥L2 +∥∇max{0,j−2}ϱ(t)∥L2∥∇2u(t)∥L2

≲ (1+ t)−
3
4Eℓ

0(t)(1+ t)
− 3

4−
j−1
2 Eℓ

j−1(t)

≲C(N0)(1+ t)
−1− j

2 . (3.16)

Substituting (3.16) into (3.15) yields that

∥∇j(ϱl,ul,τ l)(t)∥L2 ≤C(N0)(1+ t)
− 3

4−
j
2 . (3.17)

It should be mentioned that the low-frequency convergence estimate (3.17) plays a
critical role in proving the optimal convergence rates of the highest-order derivatives of
solutions.

Step 2. L2 estimate of ∇jϱ. Applying the operator ∇j to (2.1)1, multiplying the
resulting equation by ∇jϱ, and integrating over R3, we obtain

1

2

d

dt

∫
R3

|∇jϱ|2dx+
∫
R3

∇jdivu∇jϱdx

=−
∫
R3

∇jdiv(ϱu)∇jϱdx

=−
∫
R3

∇j(ϱdivu) ·∇jϱdx−
∫
R3

∇j(u ·∇jϱ) ·∇jϱdx. (3.18)

We shall estimate each term on the right-hand side of (3.18). By using integration
by parts, (3.4), Lemma A.1 and Hölder’s inequality, one has∣∣∣∣∫

R3

∇j(ϱdivu) ·∇jϱdx

∣∣∣∣
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≲∥ϱ∥L∞∥∇j+1u∥L2∥∇jϱ∥L2 +∥∇u∥L∞∥∇jϱ∥2L2

+H(j−1)

j−1∑
m=1

∥∇mϱ∥L4∥∇j−m+1u∥L4∥∇jϱ∥L2

≲∥ϱ∥L∞∥∇j+1u∥L2∥∇jϱ∥L2 +∥∇u∥L∞∥∇jϱ∥2L2

+H(j−1)

j−1∑
m=1

∥∇ 3
2 ϱ∥

4(j−m)−3
4j−6

L2 ∥∇jϱ∥
4m−3
4j−6

L2 ∥∇ 5
2u∥

4m−3
4j−6

L2 ∥∇j+1u∥
4(j−m)−3

4j−6

L2 ∥∇jϱ∥L2

≲ δ(∥∇jϱ∥2L2 +∥∇j+1u∥2L2), (3.19)

and ∣∣∣∣∫
R3

∇j(u ·∇ϱ) ·∇jϱdx

∣∣∣∣
≲

∣∣∣∣∫
R3

divu|∇jϱ|2dx
∣∣∣∣+∥∇u∥L∞∥∇jϱ∥2L2 +∥∇ϱ∥L∞∥∇ju∥L2∥∇jϱ∥L2

+H(j−2)

j−1∑
m=2

∥∇mu∥L4∥∇j−m+1ϱ∥L4∥∇jϱ∥L2

≲∥∇u∥L∞∥∇jϱ∥2L2 +∥∇ϱ∥L∞∥∇ju∥L2∥∇jϱ∥L2

+H(j−2)

j−1∑
m=2

∥∇ 5
2u∥

4(j−m)−3
4j−10

L2 ∥∇ju∥
4m−7
4j−10

L2 ∥∇ 5
2 ϱ∥

4m−7
4j−10

L2 ∥∇jϱ∥
4(j−m)−3

4j−10

L2 ∥∇jϱ∥L2

≲ δ(∥∇jϱ∥2L2 +∥∇ju∥2L2), (3.20)

where H=X (0,∞) is the Heaviside function
Combining (3.18)−(3.20), by Cauchy’s inequality, we deduce

1

2

d

dt

∫
R3

|∇jϱ|2dx+
∫
R3

∇jdivu∇jϱdx≲ δ(∥∇jϱ∥2L2 +∥∇ju∥2L2 +∥∇j+1u∥2L2). (3.21)

Step 3. L2 estimate of ∇ju. Applying the operator ∇j to (2.1)2, multiplying the
resulting equation by ∇ju, and integrating over R3, we can deduce that

1

2

d

dt

∫
R3

|∇ju|2dx−γ
∫
R3

∇jdivu∇jϱdx+µ

∫
R3

|∇j+1u|2dx

+µ

∫
R3

|∇jdivu|2dx−µ1

∫
R3

∇jdivτ∇judx

=−
∫
R3

∇j(u ·∇u) ·∇judx−
∫
R3

∇j [g(ϱ)∇ϱ] ·∇judx

−µ
∫
R3

∇j [f(ϱ)(△u+∇divu)] ·∇judx−µ1

∫
R3

∇j [f(ϱ)divτ ] ·∇judx

:=

4∑
i=1

Ii. (3.22)

Next, we shall estimate the terms on the right-hand side of (3.22) one by one. For
the term I1, employing a similar argument used in proof of (3.20), we have

|I1|≲ δ∥∇ju∥2L2 . (3.23)
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For the term I2, due to (3.2),(3.4), we have from Lemma A.1 that

|I2|=
∣∣∣∣∫

R3

∇j−1[g(ϱ)∇ϱ] ·∇j+1udx

∣∣∣∣
≲∥g(ϱ)∥L∞∥∇jϱ∥L2∥∇j+1u∥L2 +H(j−1)

j−1∑
m=1

∥∇mg(ϱ)∥L4∥∇j−mϱ∥L4∥∇j+1u∥L2

≲∥ϱ∥L∞∥∇jϱ∥L2∥∇j+1u∥L2

+H(j−1)

j−1∑
m=1

∥∇
3
2 ϱ∥

4(j−m)−3
4j−6

L2 ∥∇jϱ∥
4m−3
4j−6

L2 ∥∇
3
2 ϱ∥

4m−3
4j−6

L2 ∥∇jϱ∥
4(j−m)−3

4j−6

L2 ∥∇j+1u∥L2

≲δ(∥∇jϱ∥2L2 +∥∇j+1u∥2L2). (3.24)

For the term I3, applying a similar argument used in (3.24), we obtain

|I3|=
∣∣∣∣−µ∫

R3

∇j [f(ϱ)(△u+∇divu)] ·∇judx

∣∣∣∣
≈
∣∣∣∣µ∫

R3

∇j−1(f(ϱ)∇2u) ·∇j+1udx

∣∣∣∣
≲∥g(ϱ)∥L∞∥∇j+1u∥2L2 +H(j−1)

j−1∑
m=1

∥∇mf(ϱ)∥L4∥∇j−m+1u∥L4∥∇j+1u∥L2

≲ δ(∥∇jϱ∥2L2 +∥∇j+1u∥2L2). (3.25)

And, for the term I4, one has

|I4|=
∣∣∣∣µ1

∫
R3

∇j−1[f(ϱ)divτ ] ·∇j+1udx

∣∣∣∣
≲∥f(ϱ)∥L∞∥∇jτ∥L2∥∇j+1u∥L2

+H(j−1)

j−1∑
m=1

∥∇mf(ϱ)∥L4∥∇j−m−1divτ∥L4∥∇j+1u∥L2

≲ δ(∥∇jϱ∥2L2 +∥∇j+1u∥2L2 +∥∇jτ∥2L2). (3.26)

Combining (3.23)-(3.26), we deduce that

1

2

d

dt

∫
R3

|∇ju|2dx−γ
∫
R3

∇jdivu∇jϱdx+µ

∫
R3

|∇j+1u|2dx

+µ

∫
R3

|∇jdivu|2dx−µ1

∫
R3

∇jdivτ∇judx

≲δ(∥∇jϱ∥2L2 +∥∇ju∥2L2 +∥∇j+1u∥2L2 +∥∇jτ∥2L2). (3.27)

Step 4. L2 estimate of ∇jτ . Applying the operator ∇j to (2.1)3, multiplying the
resulting equation by ∇jτ , and integrating over R3, one has

1

2

d

dt

∫
R3

|∇jτ |2dx+a
∫
R3

|∇jτ |2dx−µ2

∫
R3

∇jD(u)∇jτdx

=−
∫
R3

∇j(u ·∇τ) ·∇jτdx−
∫
R3

∇jQ(τ,∇u) ·∇jτdx−b
∫
R3

∇j(trττ) ·∇jτdx :=

3∑
i=1

Ji.

(3.28)



Y. LI, R.R. WEI, G.C. WU, AND Z.A. YAO 2161

Next, we shall estimate the terms on the right-hand side of (3.28) one by one. For
the term J1, employing a similar argument used in proof of (3.20), we have

|J1|≲ δ(∥∇ju∥2L2 +∥∇jτ∥2L2). (3.29)

Similarly,

|J2|≲ δ(∥∇ju∥2L2 +∥∇jτ∥2L2), (3.30)

and

|J3|≲ δ∥∇jτ∥2L2 . (3.31)

Combining (3.29)−(3.31), we deduce from (3.28) that

1

2

d

dt

∫
R3

|∇jτ |2dx+a
∫
R3

|∇jτ |2dx−µ2

∫
R3

∇jD(u)∇jτdx≲δ(∥∇ju∥2L2 +∥∇jτ∥2L2).

(3.32)

Step 5. Dissipation of ∇jϱh. Applying the operator ∇j−1F−1(1−ϕ(ξ)) to (2.1)2,
multiplying the resulting equation by ∇j−1∇ϱh, and integrating over R3, one has

γ

∫
R3

|∇jϱh|2dx=−
∫
R3

∇j−1uht ·∇∇j−1ϱhdx+µ

∫
R3

∇j−1(△uh+∇divuh) ·∇∇j−1ϱhdx

+µ1

∫
R3

∇j−1divτh ·∇∇j−1ϱhdx+

∫
R3

∇j−1Sh
2 ·∇∇j−1ϱhdx

:=

4∑
i=1

Ki. (3.33)

For first term on the right-hand side of (3.33), by (2.1)1, Lemma A.1, and Lemma
A.4, we can use integration by parts, Hölder’s inequality and Young’s inequality to
deduce that

|K1|=− d

dt

∫
R3

∇j−1uh ·∇∇j−1ϱhdx−
∫
R3

∇j−1divuh ·∇j−1ϱht dx

=− d

dt

∫
R3

∇j−1uh ·∇∇j−1ϱhdx+

∫
R3

|∇j−1divuh|2dx+
∫
R3

∇j−1divuh∇j−1div(ϱu)hdx

≲− d

dt

∫
R3

∇j−1uh ·∇∇j−1ϱhdx+∥∇j−1divu∥2L2 +∥ϱ∥L∞∥∇j−1divu∥2L2

+∥u∥L∞∥∇jϱ∥L2∥∇j−1divu∥L2 +∥ϱ∥L∞∥∇ju∥L2∥∇j−1divu∥L2

+H(j−1)

j−1∑
m=1

∥∇mϱ∥L4∥∇j−m−1divu∥L4∥∇j−1divu∥L2

+H(j−1)

j−1∑
m=1

∥∇mu∥L4∥∇j−mϱ∥L4∥∇j−1divu∥L2

≲− d

dt

∫
R3

∇j−1uh ·∇∇j−1ϱhdx+∥∇j−1divu∥2L2

+∥ϱ∥L∞∥∇j−1divu∥2L2 +∥u∥L∞∥∇jϱ∥L2∥∇j−1divu∥L2 +∥ϱ∥L∞∥∇ju∥L2∥∇j−1divu∥L2

+H(j−1)

j−1∑
m=1

∥∇
3
2 ϱ∥

4(j−m)−3
4j−6

L2 ∥∇jϱ∥
4m−3
4j−6

L2 ∥∇
3
2 u∥

4m−3
4j−6

L2 ∥∇ju∥
4(j−m)−3

4j−6

L2 ∥∇j−1divu∥L2
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+H(j−1)

j−1∑
m=1

∥∇
3
2 u∥

4(j−m)−3
4j−6

L2 ∥∇ju∥
4m−3
4j−6

L2 ∥∇
3
2 ϱ∥

4m−3
4j−6

L2 ∥∇jϱ∥
4(j−m)−3

4j−6

L2 ∥∇j−1divu∥L2

≲− d

dt

∫
R3

∇j−1uh ·∇∇j−1ϱhdx+∥∇j−1divu∥2L2 +δ(∥∇jϱ∥2L2 +∥∇ju∥2L2). (3.34)

Employing Hölder’s inequality and Young’s inequality, the terms K2 and K3 can
be bounded by

|K2|+ |K3|≲
γ

4

∫
R3

|∇jϱh|2dx+C(∥∇j+1u∥2L2 +∥∇jτ∥2L2). (3.35)

For the last term K4, we rewrite it as

K4=−
∫
R3

∇j−1(u ·∇u)h ·∇∇j−1ϱhdx−
∫
R3

∇j−1[g(ϱ)∇ϱ]h ·∇∇j−1ϱhdx

−µ

∫
R3

∇j−1[f(ϱ)(△u+∇divu)]h ·∇∇j−1ϱhdx−µ1

∫
R3

∇j−1[f(ϱ)divτ ]h ·∇∇j−1ϱhdx

:=

4∑
i=1

K4i. (3.36)

Now we shall estimate the four terms on the right-hand side of (3.36) as follows.
For the first term, employing a similar argument used in the proof of (3.19), it holds
that

|K41|≲ δ(∥∇jϱh∥2L2 +∥∇ju∥2L2). (3.37)

Similarly, for the terms K42−K44, we also have

|K42|+ |K43|+ |K44|≲ δ(∥∇jϱh∥2L2 +∥∇ju∥2L2 +∥∇j+1u∥2L2 +∥∇jτ∥2L2). (3.38)

Plugging the estimates (3.34)−(3.38) into (3.33), by Cauchy’s inequality, since δ is
small, we then obtain

d

dt

∫
R3

∇j−1uh ·∇∇j−1ϱhdx+
γ

2

∫
R3

|∇jϱh|2dx≲∥∇ju∥2L2 +∥∇j+1u∥2L2 +∥∇jτ∥2L2 .

(3.39)

Step 6. Closing the estimates. Now, we are in a position to close the estimates. To
do this, for 1≤k≤ ℓ, we define the temporal energy functional

Eℓ
k(t)=

D1

2

ℓ∑
j=k

∫
R3

(
µ2γ|∇jϱ|2+µ2|∇ju|2+µ1|∇jτ |2

)
dx+

ℓ∑
j=k

∫
R3

∇j−1uh ·∇∇j−1ϱhdx,

Note that Eℓ
k(t) is equivalent to ∥∇k(ϱ,u,τ)∥2Hℓ−k if we choose D2 large enough. Sub-

stituting (3.39) into

D1× [µ2×(γ×(3.21)+(3.27))+µ1×(3.32)],

and summing up the resulting inequality from k≤ j≤ ℓ, we have

d

dt
Eℓ
k(t)+

1

D1
Eℓ
k(t)≲∥∇k(ϱl,ul,τ l)∥2Hℓ−k .
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Applying Gronwall’s inequality and (3.17) to the above inequality, we can infer that

Eℓ
k(t)≤C(N0)(1+ t)

− 3
2−k. (3.40)

Consequently, (3.14) follows from (3.40) and the definition of Eℓ
k(t) given in (3.5) im-

mediately. Therefore, we have completed the proof of Lemma 3.2.

Lemma 3.3. Under the assumption of Theorem 1.1, for any t≥0, and 0≤k≤ ℓ−1,
it holds that ∥∥∇kτ(t)

∥∥
Hℓ−k ≤CK0(1+ t)

− 5
4−

k
2 . (3.41)

Proof. Applying ∇k to (2.1)3 and multiplying the resultant identity by ∇kτ , then
integrating over R3, we have

1

2

d

dt

∫
R3

|∇kτ |2dx+a
∫
R3

|∇kτ |2dx

=−
∫
R3

∇k(u ·∇τ+Q(τ,∇u)+btrττ) ·∇kτdx+µ2

∫
R3

∇kD(u) ·∇kτdx

:=

4∑
i=1

Pi. (3.42)

We now estimate the term P1, by Lemma A.2 and Hölder’s inequality, we get

P1=−
∫
R3

∇k(u ·∇τ) ·∇kτdx

=−
∫
R3

∇k(u ·∇∇kτ+[∇k,u]∇τ) ·∇kτdx

≲∥∇u∥L∞∥∇kτ∥2L2 +∥∇ku∥L6∥∇τ∥L3∥∇kτ∥L2

≲δ(∥∇k+1u∥2L2 +∥∇kτ∥2L2)

≲δ∥∇kτ∥2L2 +(1+ t)−
5
2−k. (3.43)

Similarly, the terms P2−P4 can be estimated as

P2≲ δ(∥∇k+1u∥2L2 +∥∇kτ∥2L2)≲ δ∥∇kτ∥2L2 +(1+ t)−
5
2−k. (3.44)

P3≲ δ∥∇kτ∥2L2 . (3.45)

P4≲
a

2
∥∇kτ∥2L2 +

µ2
2

2a
∥∇k+1u∥2L2 ≤

a

2
∥∇kτ∥2L2 +C(1+ t)−

5
2−k. (3.46)

Combining (3.43)−(3.46), we deduce from (3.42) that

d

dt
∥∇kτ∥2L2 +∥∇kτ∥2L2 ≤C(1+ t)−

5
2−k.

This, together with the Gronwall’s inequality implies (3.41).

In what follows, we devote ourselves to deducing the lower bound on the convergence
rate of the global solution to complete the proof of Theorem 1.1.
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Theorem 3.3. Assume that the hypotheses of Theorem 1.1 and (1.9) are in force.
Then there is a positive constant c1 independent of t such that for any large enough t
and 0≤k≤ ℓ, it holds that

min
{
∥∇k(ϱ,u)(t)∥L2

}
≥ c1(1+ t)−

3
4−

k
2 , (3.47)

∥∇kτ(t)∥L2 ≥ c1(1+ t)−
5
4−

k
2 , (3.48)

min
{
∥∇k(ϱ,u)(t)∥Lp

}
≥ c1(1+ t)−

3
2 (1−

1
p ), (3.49)

∥∇kτ(t)∥Lp ≥ c1(1+ t)−
3
2 (

4
3−

1
p ). (3.50)

Proof. If t is large enough, it follows from (3.9), Proposition 2.6, Lemma 3.4 and
Lemma A.4 that∥∥Λ−1(ϱ,u)(t)

∥∥
L2 ≤

∥∥Λ−1(ϱl,ul)(t)
∥∥
L2 +

∥∥Λ−1(ϱh,uh)(t)
∥∥
L2

≤C(N0)(1+ t)
− 1

4 +

∫ t

0

(1+ t−s)− 1
4 ∥S(s)∥L1 ds+

∥∥(ϱh,uh)(t)∥∥
L2

≤C(N0)

(
(1+ t)−

1
4 +

∫ t

0

(1+ t−s)− 1
4 (1+s)−

3
2 ds

)
≤C(N0)(1+ t)

− 1
4 ,

∥∥Λ−1τ(t)
∥∥
L2 ≤

∥∥Λ−1τ l(t)
∥∥
L2 +

∥∥Λ−1τh(t)
∥∥
L2

≤C(N0)(1+ t)
− 3

4 +

∫ t

0

(1+ t−s)− 3
4 ∥S(s)∥L1 ds+

∥∥τh(t)∥∥
L2

≤C(N0)

(
(1+ t)−

3
4 +

∫ t

0

(1+ t−s)− 3
4 (1+s)−

3
2 ds

)
≤C(N0)(1+ t)

− 3
4 ,

and

min∥(ϱ,u)(t)∥L2 ≥min
∥∥(ϱl,ul)(t)∥∥

L2

≥C1

√
δN0(1+ t)

− 3
4 −
∫ t

0

(1+ t−s)− 3
4 ∥S(s)∥L1 ds

≥C1

√
δN0(1+ t)

− 3
4 −CδN0(1+ t)

− 3
4

≥c2(1+ t)−
3
4 .

Similarly, we can prove

∥τ(t)∥L2 ≥
∥∥τ l(t)∥∥

L2 ≥c2(1+ t)−
5
4 .

Since N0 is sufficiently small. These together with the interpolation inequality

∥f∥L2 ≤C∥Λ−1f∥
k

k+1

L2 ∥∇kf∥
1

k+1

L2

and

∥f∥L2 ≤C∥Λ−1f∥
3p−6
5p−6

L2 ∥f∥
2p

5p−6

Lp
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imply (3.47)-(3.50) immediately, and thus the proof of Theorem 3.3 is completed.
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Appendix. Analytic tools. We recall the Sobolev interpolation of the Gagliardo–
Nirenberg inequality.

Lemma A.1. Let 0≤ i,j≤k, then we have

∥∇if∥Lp ≲∥∇jf∥1−a
Lq ∥∇kf∥aLr

where a satisfies

i

3
− 1

p
=

(
j

3
− 1

q

)
(1−a)+

(
k

3
− 1

r

)
a.

Especially, while p= q= r=2, we have

∥∇if∥L2 ≲∥∇jf∥
k−i
k−j

L2 ∥∇kf∥
i−j
k−j

L2 .

Proof. This is a special case of [22, pp. 125, Theotem].

Next, to estimate the Lp–norm of the spatial derivatives of the product of two
functions, we shall recall the following estimate:

Lemma A.2 ([12]). Let m≥1 be an integer and define the commutator

[∇m,f ]g=∇m(fg)−f∇mg,

then we have

∥[∇m,f ]g∥Lp ≲∥∇f∥Lp1 ∥∇m−1g∥Lp2 +∥∇mf∥Lp3 ∥g∥Lp4 , (A.1)

and for m≥0

∥∇m(fg)∥Lp ≲∥f∥Lp1 ∥∇mg∥Lp2 +∥∇mf∥Lp3 ∥g∥Lp4 , (A.2)

where p,p2,p3∈ [1,∞] and 1
p =

1
p1

+ 1
p2

= 1
p3

+ 1
p4
.

Lemma A.3 ([26]). Assume that ∥ϱ∥L∞ ≤1 and p>1. Let g(ϱ) be a smooth function
of ϱ with bounded derivatives of any order, then for any integer m≥1, we have

∥∇mg(ϱ)∥Lp ≲∥∇mϱ∥Lp .

Finally, the following two lemmas concern the estimate for the low-frequency part
and the high-frequency part of f .

Lemma A.4. If f ∈Lp(R3) for any 2≤p≤∞, then we have

∥f l∥Lp +∥fh∥Lp ≲∥f∥Lp .
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Proof. For 2≤p≤∞, by virtue of Young’s inequality for convolutions, for the low
frequency, it holds that

∥f l∥Lp ≲∥F−1ϕ∥L1∥f∥Lp ≲∥f∥Lp ,

and hence

∥fh∥Lp ≲∥f∥Lp +∥f l∥Lp ≲∥f∥Lp .

Lemma A.5. Let f ∈Hk(R3) for any integer k≥2. Then there exists a positive
constant C0 such that

∥∇jfh∥L2 ≤C0∥∇j+1f∥L2 ,

and

∥∇j+1f l∥L2 ≤C0∥∇jf∥L2 ,

for any 0≤ j≤k−1.

Proof. This lemma can be shown directly by the definitions of the low–frequency
and high–frequency of f and the Plancherel theorem, and thus we omit the details.
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