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OPERATOR SHIFTING FOR MODEL-BASED POLICY EVALUATION∗

XUN TANG† , LEXING YING‡ , AND YUHUA ZHU§

Abstract. In model-based reinforcement learning, the transition matrix and reward vector are
often estimated from random samples subject to noise. Even if the estimated model is an unbiased
estimate of the true underlying model, the value function computed from the estimated model is biased.
We introduce an operator shifting method for reducing the error introduced by the estimated model.
When the error is in the residual norm, we prove that the shifting factor is always positive and upper
bounded by 1+O(1/n), where n is the number of samples used in learning each row of the transition
matrix. We also propose a practical numerical algorithm for implementing the operator shifting.
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1. Introduction

Reinforcement learning (RL) has received much attention following recent successes,
such as AlphaGo and AlphaZero [25, 26]. One of the fundamental problems of RL is
policy evaluation [29]. When the transition dynamics are unknown, one learns the
dynamics model from observed data in model-based RL. However, even if the learned
model is an unbiased estimate of the true dynamics, the policy evaluation under the
learned model is biased. The question of interest in this paper is whether one can
increase the accuracy of the policy evaluation given an estimated dynamics model.

We consider a discounted Markov decision process (MDP) M=(S,A,P,r,γ) with
discrete state space S and discrete action space A. |S| and |A| are used to denote the
size of S and A, respectively. P is a third-order tensor, where for each action a∈A,
P a∈R|S|×|S| is the transition matrix between the states. r is a second-order tensor
such that rs,a is the reward at state s∈S if action a∈A is taken. Finally, γ∈ (0,1) is
the discount factor. A policy π is a second-order tensor, where for each state s∈S, πs

represents the probability distribution over A. At each time step t, one observes a state
st∈S and takes an action at∈A according to the policy πst . The environment returns
the next state st+1 according to the distribution P at

st,· and an associated reward rst,at
.

The state value function vπ ∈R|S| is the expected discounted cumulative reward if one
starts from an initial state s and follows a policy π, i.e., the s-th component is

vπs = E
at∼πst

st+1∼P
at
st,·

∑
t≥0

γtrst,at
|s0=s

.
Given a policy π, the goal of policy evaluation in MDP is to solve for vπ. Let

bπ ∈R|S|,Pπ ∈R|S|×|S| be the reward vector and the transition matrix under policy π,
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i.e.,

bπ =
∑
a

rsaπ
a
s , Pπ =

∑
a

P a
ss′π

a
s . (1.1)

The value function vπ satisfies the Bellman equation [29] (I−γPπ)vπ = bπ. For nota-
tional simplicity, we drop the dependency on π and write this system as

(I−γP )v= b. (1.2)

In practice, the true transition matrix P and the reward vector b are often in-
accessible. In the model-based RL, one approximates the transition matrix P and
the reward vector b by the empirical data P̂ and b̂ estimated from samples, respec-
tively [6, 16,22,28,31]. A naive approach is to solve(

I−γP̂
)
v̂= b̂. (1.3)

Even if P̂ and b̂ are unbiased estimates for P and b, v̂=
(
I−γP̂

)−1

b̂ is a biased estimate

for v, i.e., EP̂ ,b̂v̂ ̸=v.

The operator shifting idea was introduced in [9, 10] to address this issue. The pa-
per [10] considers the noisy symmetric elliptic systems, while the follow-up paper [9] ad-

dresses the asymmetric setting under the assumption that b̂ is isotropic, i.e., E[b̂b̂⊤]= I.
However, this isotropic condition often fails to hold in RL. In this paper, we extend the
operator shifting framework to general MDPs of form (1.2). When applying this frame-
work to the MDP setting, we add an appropriately chosen matrix K̂ to the operator(
I−γP̂

)−1

so that the shifted estimate ṽ=

[(
I−γP̂

)−1

−βK̂

]
b̂ is a better estimate

than v̂ in the sense that,

EP̂ ,b̂∥ṽ−v∥2<EP̂ ,b̂∥v̂−v∥2 (1.4)

for a certain norm ∥·∥.

Contributions. We derive a stable shifted operator for model-based policy eval-
uation without assumptions on the underlying transition dynamics or reward vectors.
When the approximated transition matrix P̂ follows the multinomial distribution and
n samples are used to learn each row of the transition matrix P ,

• we prove that the optimal shifting factor is always positive and upper bounded
by 1+O

(
1
n

)
for any P and b, which guarantees the stability of the shifted

operator, and

• we propose a numerical algorithm to find the optimal shifting factor, which is
more efficient and accurate than the bootstrapping method proposed in [10].

Related work. Our problem is a special instance of the larger field of uncertainty
quantification (UQ). In most UQ problems, one assumes that the operator (linear or
non-linear) and the source term are generated from known distributions, and the task
is to estimate certain quantities (such as moments, tail bounds) of the distribution of
the solution. A large variety of numerical methods have been developed in UQ for this
purpose in the last two decades [8, 11, 13, 15, 17, 23, 27, 33], including Monte-Carlo and
quasi Monte-Carlo methods [4,7,12,18,20], stochastic collocation methods [1,3,21,34],
stochastic Galerkin methods [2,5,19,35], and etc. The problem that we face is somewhat
different: since the true P and b are unknown, one does not know the distributions of
the empirical data P̂ or b̂. As a result, the solution relies more on statistical techniques
such as shrinkage [14] rather than the traditional UQ techniques.
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Contents. Section 2 derives the oracle estimators and proves their lower and upper
bounds. Section 3 proposes a practical estimator and demonstrates its performance with
a few numerical examples. Section 4 contains all the proofs of the main results.

2. Operator shifting for policy evaluation

2.1. Problem setup. As mentioned above, P and b are the unknown underlying
transition matrix and reward vector, while P̂ and b̂ are unbiased estimates for P and b,
respectively. For notational convenience, we introduce A and Â

A=(I−γP ) , Â=
(
I−γP̂

)
. (2.1)

Since the transition dynamics is not symmetric in general, both P and A are non-
symmetric. The norm of interest is a slightly generalized version of the residual norm

∥x∥2M =x⊤A⊤MAx, (2.2)

where M is a symmetric positive definite matrix. This paper mainly discusses two cases:
(1) M = I, which means ∥·∥M is the usual residual norm, and (2) M =A−⊤A−1, which
means ∥·∥M is the l2 norm.

In this paper, we choose the shifting matrix K̂= Â−1, which implies that the shifted
estimate is (1−β)Â−1b̂. By using ε=(1−β) instead as the shifting parameter, one can

write the above estimate as ṽε≡εÂ−1b̂, and the objective is to minimize the following
mean square error over ε,

MSE(ε)≡EP̂ ,b̂∥v− ṽε∥2M . (2.3)

The minimizer ε∗ to (2.3) is referred as the optimal shifting factor.
Since (2.3) is a quadratic minimization, one can explicitly write out the optimal

shifting factor ε∗:

ε∗=
EP̂ ,b̂

[
b⊤MAv̂

]
EP̂ ,b̂ [v̂

⊤A⊤MAv̂]
, where v̂= Â−1b̂. (2.4)

The oracle estimate (2.4) is not easy to work with as it depends on the unknown
matrix A. Our immediate goal is to derive a closed-form approximation of ε∗, which
is accurate and allows for efficient implementation. To achieve this, we introduce a
second-order approximation ε◦ to ε∗. We show that ε◦ takes a simple closed-form
without approximating any expectations under the following mild assumption:

Assumption 2.1. The i-th row p̂⊤i of P̂ is a random vector 1
ni
Xi, where ni is the number

of samples for state i and Xi follows the multinomial distribution with E[Xi]=nip
⊤
i .

Moreover, Xi is independent from Xj whenever i ̸= j. The i-th entry of b̂ is an average
of observed reward at state i.

The part of Assumption 2.1 on the estimation of P is equivalent to that p̂⊤i follows
the normalized multinomial distribution, which holds when a tabular maximum likeli-
hood model [28] is used to estimate the transition dynamics P . That is, one generates
sufficiently many transitions according to P and lets P̂ii′ =nii′/ni, where nii′ denotes
the number of transitions observed from i to i′, and ni=

∑
i′ nii′ .

Throughout this paper, we assume for simplicity that the number of samples ni of
each state is the same, i.e., for any i∈S, ni≡n. The sample size n plays an important
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role in determining the magnitude of the operator shifting factor ε∗ and the performance
of the operator shifting algorithm. If the value of ni depends on i∈S, all the theoretical
results still hold with slight modification (see Remark 2.1 for details).

2.2. Second-order approximation for ε∗. To simplify the discussion, we in-
troduce Ẑ and Ŷ

Ẑ=A−Â=γ
(
P − P̂

)
, Ŷ = ẐA−1=

(
A−Â

)
A−1, (2.5)

where A and Â are defined in (2.1). Some basic algebraic manipulations lead to the
following lemma.

Lemma 2.1. When E
[
b̂
]
= b, the optimal shifting factor ε∗ defined in (2.4) has the

form

ε∗=

EP̂

[
b⊤M

(
I− Ŷ

)−1

b

]
EP̂

[
tr

((
cov
[
b̂
]
+b⊤b

)(
I− Ŷ

)−⊤
M
(
I− Ŷ

)−1
)] , (2.6)

where Ŷ is defined in (2.5). Moreover, if the values of the reward at state s and s′ (i.e.

b̂s and b̂s′) are uncorrelated, the matrix cov[b̂] is diagonal.

Next, we approximate the value of ε∗ using a Neumann expansion of the matrix(
I− Ŷ

)−1

(
I− Ŷ

)−1

= I+ Ŷ + Ŷ 2+O

(
ρ(Ŷ )3

1−ρ(Ŷ )

)
, (2.7)

when the spectral radius ρ(Ŷ )<1. In fact, a modest requirement on n guarantees
ρ(Ŷ )<1 with high probability, as shown in Appendix A.1. The denominator term in
(2.6) admits the approximation(

I− Ŷ
)−⊤

M
(
I− Ŷ

)−1

≈M+M
(
Ŷ + Ŷ 2

)
+(Ŷ ⊤+(Ŷ ⊤)2)M+ Ŷ ⊤MŶ . (2.8)

Assumption 2.1 implies E
[
Ŷ
]
=E

[
Ŷ ⊤
]
=0 as a simple consequence of P̂ being an un-

biased estimator. Therefore, after taking an expectation, the first order terms of Ŷ in
(2.7) and (2.8) disappear.

We can further approximate the shifting factor ε∗ by expanding
(
I− Ŷ

)−1

in the

numerator and denominator of (2.6) up to the second order in Ŷ . When Assumption
2.1 holds and ρ(Ŷ )<1, the approximated optimal shifting factor ε∗ defined in (2.4) has
a second-order approximation

ε∗≈ε◦≡
EP̂

[
b⊤(M+ MŶ 2+(Ŷ ⊤)2M

2 )b
]

EP̂

[
tr
((

cov
[
b̂
]
+b⊤b

)
(M+ Ŷ ⊤MŶ +MŶ 2+(Ŷ ⊤)2M)

)] . (2.9)

The derivation of (2.9) is deferred to Section 4.2.
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Under Assumption 2.1, this second-order approximation can be written in a form
without explicit expectation. This expectation-free form depends on the transition

matrix P , the expected reward b, and the reward covariance cov
[
b̂
]
. Let p̂i be random

vectors corresponding to the i-th row of P̂ and pi=E[p̂i], i.e., {p̂i}|S|i=1 and {pi}|S|i=1 are

the row vectors of P̂ and P , respectively:

P̂ =

 p̂⊤1.. .
p̂⊤|S|

, P =

p⊤1.. .
p⊤|S|

. (2.10)

Theorem 2.1. The second-order approximation ε◦ in (2.9) admits the expectation-free
form

ε◦=θ(b,P )≡ b⊤(M+H/2)b

b⊤(M+G+H)b+tr
(
cov
[
b̂
]
(M+G+H)

) , (2.11)

where

Bi=
1
n

(
diagpi−pip

⊤
i

)
;

G=EP̂

[
Ŷ ⊤MŶ

]
=γ2A−⊤

(∑|S|
i=1 [M ]iiBi

)
A−1;

H=EP̂

[
(Ŷ ⊤)2M+MŶ 2

]
=γ2

 |S|∑
i=1

A−⊤BiA
−1diag(ei)

M+γ2M

 |S|∑
i=1

diag(ei)A
−⊤BiA

−1

.
(2.12)

Here diag(ei)∈R|S|×|S| is a matrix with elements 0 except for 1 on the (i,i)-th entry, pi
are row vectors of P as defined in (2.10), and the matrices A and Ŷ depend on P .

The proof of the above theorem is given in Section 4.2.

Remark 2.1. Theorem 2.1 still holds under conditions weaker than Assumption 2.1.
Assuming the rows of P̂ and entries for b̂ are independent unbiased estimators, then the
second-order approximation in (2.9) is still valid. Moreover, the expectation-free form
in (2.11) holds when one replaces the definition of Bi in (2.12) by Bi=cov[p̂i]. This
slightly more general statement is presented in Lemma 4.1, from which Theorem 2.1 is
derived as a special case. In particular, if the state i receives ni samples, then (2.11)
will still hold with Bi in (2.12) replaced by 1

ni

(
diagpi−pip

⊤
i

)
.

Theorem 2.1 also proves that the choice of ε◦ is asymptotically as powerful as ε∗

with n→∞. For MSE(ε) defined in (2.3), the following estimation holds, with the proof
deferred to Section 4.3.

Lemma 2.2. The MSE in (2.3) can be approximated by

MSE(ε)=(1−ε)
2∥b∥2M +(g+h+ t)ε2−hε+O

(
n− 3

2

)
, (2.13)

where g= b⊤Gb,h= b⊤Hb,t=tr
(
cov
[
b̂
]
(M+G+H)

)
with all symbols defined in The-

orem 2.1. In addition,

ε∗−ε◦=O
(
n− 3

2

)
. (2.14)
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The relative error reduction factor η≡ MSE(1)−MSE(ε◦)
MSE(1) , with MSE representing the

mean square error defined in (2.3), is a useful measure for improvements. Below is a
corollary of Lemma 2.2 regarding η.

Corollary 2.1. Define relative error reduction factor as η≡ MSE(1)−MSE(ε◦)
MSE(1) . For n

sufficiently large, η is positive, and decays as follows

η=O(1/n), (2.15)

where MSE is defined in (2.3).

The proof is given in Section 4.3. The numerical results also verify the relationship
in the above corollary.

2.3. Lower and upper bounds for ε◦. In this section, we aim to provide
bounds to show that ε◦ will approximately fall in the (0,1) range. Throughout this
subsection, we conduct the analysis in the residual norm, which is the case with M = I.
We present an upper bound and a lower bound for ε◦ in Theorem 2.2. The relevant
parameters are |S|, n and γ, which are the number of states, the number of samples per
state and the discount factor, respectively.

Theorem 2.2. Let pM =maxPi,j and bM =maxi |bi|. If pM

n
γ2

(1−γ)2

(
(1−γ)

γ +

√
|S|bM
∥b∥2

)2

≤ 1
2 , then ε◦ is bounded by

0<ε◦≤1+
pM
n

γ2

(1−γ)
2

(
(1−γ)+γ

√
|S|bM
∥b∥2

)2

.

The bound comes from technique using the spectral structure of the covariance matrix
of a multinomial distribution and a tight bound for (I−γP )−1b. We defer the proof to
Section 4.

We now discuss the implication of Theorem 2.2. The reward vector b is spread

if maxi |bi|
∥b∥2

∼O
(
|S|−1/2

)
. Similarly, the transition matrix P is spread if maxPij∼

o
(
|S|−1/2

)
. If both b and P are spread, it follows that ϵ◦−1 is upper bounded by

a term in O(n−1 |S|−1/2
).

3. Practical algorithm

3.1. Algorithm. In practice, we do not have direct access to P or b. Therefore,
the second-order estimate ε◦ derived in (2.11) is an oracle estimator. One can address
this issue by bootstrapping the distribution of P̂ . More specifically, let P be a tran-
sition matrix and denote Mn(P ) as the normalized multinomial distribution that the
estimated transition matrix P̂ follows according to Assumption 2.1. Since one only has
access to a single observation P̂ , Mn(P ) is approximated by Mn(P̂ ) in the numeri-
cal implementation. In the usual bootstrapping procedure, one needs to simulate i.i.d.
samples {P̃(j)}lj=1∼Mn(P̂ ). By setting Ỹ(j)=γ(P̃(j)− P̂ )Â−1 and following the form
in Theorem 2.1, one can approximate ε◦ in (2.9) by replacing the expectation with an
empirical mean:

ε◦≈ b̂⊤(M+H̃/2)b̂

b̂⊤
(
M+G̃+H̃

)
b̂+tr

(
Σ̃
(
M+G̃+H̃

)) , (3.1)
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with 
G̃= 1

l

∑l
j=1 Ỹ

⊤
(j)MỸ(j)≈EP̂

[
Ŷ ⊤MŶ

]
=G;

H̃= 1
l

∑l
j=1MỸ 2

(j)+
(
Ỹ ⊤
(j)

)2
M ≈EP̂

[
MŶ 2+(Ŷ ⊤)2M

]
=H;

Σ̃≈ cov
[
b̂
]
.

(3.2)

However, there is a major drawback to this scheme. In addition to the error caused by
the difference betweenMn(P̂ ) andMn(P ), the scheme introduces additional errors due
to the empirical mean in place of the expectation. The empirical mean errors G̃−G and
H̃−H are of order O

(
l−1/2

)
. In addition, the procedure in (3.1) has a computational

cost of order O
(
l |S|3

)
.

Plug-in estimate. Luckily in our case, Assumption 2.1 (i.e., P̂ follows the normal-
ized multinomial distribution) allows for a direct formula for ε◦, which automatically
removes the error in the empirical mean. We can simply set

ε̃◦ :=θ(b̂,P̂ ), (3.3)

where θ(b,P ) is defined in Theorem 2.1. The complete numerical algorithm is presented

in Algorithm 1. The right-hand side of (3.1) converges to θ(b̂,P̂ ) as l→∞. In addition,

the computational cost is reduced from O
(
l |S|3

)
to O

(
|S|3
)
. This complete removal

of empirical mean error is what sets the multinomial MDP case apart from general
operator shifting. Moreover, since both ε◦ in (2.11) and ε̃◦ in (3.3) share the same
functional form, the lower and upper bounds in Section 2.3 automatically apply to both
ε◦ and ε̃◦. In all the following numerical examples, we use the approximated factor ε̃◦,
which does not rely on oracle access.

3.2. Numerical examples.
Policy evaluation of an MDP over a circle. We first consider an MDP over a

discrete state space S={k}N−1
k=0 with N =64 and γ=0.9. The transition dynamics are

given as below,

st+1←st+(1+Zt)at modN,

rst,at
=sin

(
2πst
N

)
+atcos

(
2πst
N

)
/10+Xt,

where at∈{±1} is drawn from a policy π(at|st)= 1
2 +

1
5at sin

(
2πst
N

)
, and Xt∼N(0,δ)

with δ∈{0,0.1,0.2}. When δ=0, the reward is deterministic. Here Zt is a random
integer taking values in the set {−σ,...,σ} with equal probability, where σ∈{1,2,4}.
A larger σ means each state could transit to more neighboring states under one step.
Figure 3.1 illustrates the distribution of the estimated v(xs) for xs :=0, see caption for
implementation detail. One can see that the shifted value is more concentrated around
the ground truth value than the naive solution. One can also bootstrap to reduce the
l2 error. Specifically, the l2 error refers to the case when M =A−⊤A−1 in the norm
∥·∥M defined in (2.2). Despite a lack of access to A, one can use M = Â−⊤Â−1 for l2
error minimization, which works well empirically. The error reduction trend remains
the same (see Figure 3.2 for details). Overall, the error reduction for l2 norm is less
significant than the residual norm, though it is still significant for small n.

In the following examples, we focus on the results for the residual norm.
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Algorithm 1 Operator Shifting for estimating MDP (Multinomial)

Outputs the bootstrapped ε̃◦=θ(b̂,P̂ ). The function can also output the true value by
ε◦=θ(b,P ) if one has oracle access to P,b.

Require: P̂ : Estimated transition matrix
Require: b̂: Estimated expected reward
Require: n: Sample data size per state
Require: Σ̃: Estimated covariance matrix of b̂
Require: γ: Discount factor
Require: M : The chosen norm matrix

1: function θ(P̂ , b̂)
2: Ĉ,D̂ ← zeros(|S|) ▷ zeros(n): A zero matrix of size n
3: for i←1 to |S| do
4: p̂i ← P̂⊤ei ▷ Get the i-th row of P̂
5: B̂i ← 1

n

(
p̂ip̂

⊤
i −diag(p̂i)

)
▷ Estimate covariance

6: Ĉ ← Ĉ+B̂iÂ
−1diag(ei)

7: D̂ ← D̂+[M ]iiB̂i

8: end for
9: Ĉ ← γ2Â−⊤Ĉ ▷ Approximate E

[
(Ŷ ⊤)2

]
10: Ĝ ← γ2Â−⊤D̂Â−1 ▷ Approximate E

[
Ŷ ⊤MŶ

]
11: Ĥ ← ĈM+MĈ⊤ ▷ Approximate E

[
(Ŷ ⊤)2M+MŶ 2

]
12: ε̃◦ ← b̂⊤(M+Ĥ/2)b̂

b̂⊤(M+Ĝ+Ĥ)b̂+tr(Σ̃(M+Ĝ+Ĥ))
13: return ε̃◦

14: end function

MDPs generated by random graphs. To test the robustness of Algorithm 1, here
we apply the operator shifting method to different underlying transition matrices. For
consistency, we set |S|=64.

As discussed in the 1D circle case, the randomness in b̂ usually boosts the per-
formance of the operator shifting method. Here we take out the randomness in the
reward and instead let b̂ be deterministic, i.e., b̂= b and cov[b̂]=0. To test different b,
we assume that b is randomly generated according to N (0,I). The transition matrix P
corresponds to the random walk on a directed random graph G=(V,E,w), where V =S
is the vertex set, E is the edge set, and the edge weight is w :E→R≥0.

Two types of random graphs are considered. In the first dense case, the graph G is
considered to be fully connected, and the weight w(e) on each edge e is an i.i.d. random
variable following w(e)∼U(0,1). In the second sparse case, a sparse graph is considered.
In order to generate a random sparse graph, one initializes with a graph containing an
empty edge set,

G←G0 := (V =S,E=∅).

For each vertex v∈V , two vertices v1,v2 are randomly selected from the set S\{v} that
excludes v itself with equal probability, and then

E←E∪{(v1,v),(v,v2)}.
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Fig. 3.1: 1D circle example. Histogram of vsol(xs)−v(xs), where v(xs) denotes the true return at
xs, and vsol(xs) denotes the estimated return from either the naive solution or the operator shifting
solution. The shifted solution is more concentrated around the ground truth. The histogram is obtained
via 20,000 simulations, and we set n=8, δ=0.2, and σ=4.
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Fig. 3.2: 1D circle example. Error reduction as a function of n for the residual norm (left) and
the l2 norm (right). The y-axis is the error reduction rate in MSE, relative to the error of the naive
solution. The error reduction rate is inversely proportional to n across different choices of σ and δ.
For the residual norm case, the error reduction is heavily influenced by the choice of parameters, where
a larger σ or δ implies a larger reduction in error.

After enumerating over all vertices, one then assigns a weight of one to all existing edges
in G. This construction ensures that none of the vertices is a well or sink node, that
is, each vertex has at least one indegree and one outdegree, but the transition matrix
is still quite sparse. Figure 3.3 shows that the same MSE reduction pattern holds
in the random directed graph cases. The operator shifting solution still consistently
outperforms the naive solution.
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Fig. 3.3: Random directed graphs. Error reduction as a function of sample size n. Left: the random
dense graph. Right: the random sparse graph.
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Fig. 3.4: 2D torus example. Error reduction as a function of sample size n.

Policy evaluation of an MDP over a torus. We now consider an MDP with a
discrete state space S={sij =(i,j)}N−1

i,j=0 with N =8 and γ=0.9. Note that the size of
the state space |S| is still 64. Let (s)k stand for the first or second entry of the vector s
with k=1 or 2. The transition dynamics and reward are given by

st+1←st+(1+Zt)at modN,

rst,at
←2+sin

(
2π(st)1

N

)
+cos

(
2π(st)2

N

)
+Xt,

where at∈A={(±1,0),(0,±1)}, Xt∼N(0,δ) with δ∈{0,0.1,0.2}. Here Zt is a random
integer taking values in the set {−σ,...,σ} with equal probability, where σ∈{1,2,4}.
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Fig. 3.5: The normalized MSE of the operator shifting solution is plotted against that of the naive
solution. All data points are below or close to the diagonal, showing that the operator shifting solution
outperforms the naive solution in all data points collected.

We use the policy

π(at=(a1,a2)|st)=
1

4
+

1

20

(
a1 cos

(
2π(st)1

N

)
+a2 sin

(
2π(st)2

N

))
. (3.4)

Figure 3.4 summarizes the performance and exhibits a similar error reduction trend.
Contrary to the role of the parameters in the 1D circle case, different choices of σ and
δ do not change the performance of the operator shifting method.

Summary of numerical experiments. Figure 3.5 plots the normalized MSE of
the naive solution against the operator shifting solution. In the torus and circle cases,
the data points are obtained by varying the sample size n, the reward variance δ, and
the transition parameter σ. In the randomly generated MDP case, the data points are
obtained by sampling random MDPs and varying the value of the sample size n. The
vast majority of the data points are below the diagonal line, suggesting that operator
shifting consistently reduces the MSE.

As a further remark, the numerical result shows that the bounds in Theorem 2.2
for ε◦ are quite pessimistic. In practice, ε◦ almost always falls in the (0,1) range, even
for small n.



2180 OPERATOR SHIFTING FOR POLICY EVALUATION

4. Proofs

4.1. Proof of Lemma 2.1.

Proof. From (2.5),
(
I− Ŷ

)
Av̂=

(
ÂA−1

)
Av̂= Âv̂= b̂ and

Av̂=
(
I− Ŷ

)−1

b̂.

Hence (2.4) can be written as

ε∗=

EP̂ ,b̂

[
b⊤M

(
I− Ŷ

)−1

b̂

]
EP̂ ,b̂

[
b̂⊤
(
I− Ŷ

)−⊤
M
(
I− Ŷ

)−1

b̂

] .
From Assumption 2.1, E[b̂]= b. Moreover, it follows from Assumption 2.1 that P̂ is

independent to b̂. Hence one can write the numerator as

EP̂ ,b̂

[
b⊤M

(
I− Ŷ

)−1

b̂

]
=EP̂

[
b⊤M

(
I− Ŷ

)−1

b

]
,

and the denominator as

EP̂ ,b̂

[
b̂⊤
(
I− Ŷ

)−⊤
M
(
I− Ŷ

)−1

b̂

]
=EP̂

[
b⊤
(
I− Ŷ

)−⊤
M
(
I− Ŷ

)−1

b

]
+EP̂ ,b̂

[
(b− b̂)⊤

(
I− Ŷ

)−⊤
M
(
I− Ŷ

)−1

(b− b̂)

]
.

One can rewrite the second term in terms of the variance of b̂ by the trace property

EP̂ ,b̂

[
(b− b̂)⊤

(
I− Ŷ

)−⊤
M

(
I− Ŷ

)−1

(b− b̂)

]
=EP̂

[
tr

(
cov

[
b̂
](

I− Ŷ
)−⊤

M
(
I− Ŷ

)−1
)]

,

and likewise one has

EP̂

[
b⊤
(
I− Ŷ

)−⊤
M
(
I− Ŷ

)−1

b

]
=EP̂

[
tr

(
b⊤b

(
I− Ŷ

)−⊤
M
(
I− Ŷ

)−1
)]

.

The entries of b̂ are uncorrelated because as defined in (1.1),

P(bs1 = ra1
s1 ,bs2 = ra2

s2 )=πs1,a2
πs1,a2

=P(bs1 = ra1
s1 )P(bs2 = ra2

s2 ).

As a result, cov
[
b̂
]
is a diagonal matrix as claimed.

4.2. Proof of Theorem 2.1 and derivation of (2.9).

Derivation of (2.9). We first show the derivation of (2.9). First one inserts the
truncated Neumann series into the definition of ε∗ in (2.6). According to (2.7),(

I− Ŷ
)−1

≈ I+ Ŷ + Ŷ 2.

One has the following series of approximations by truncating out terms beyond order
two

M
(
I− Ŷ

)−1

≈M+MŶ +MŶ 2,
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I− Ŷ

)−⊤
M
(
I− Ŷ

)−1

≈M+M
(
Ŷ + Ŷ 2

)
+(Ŷ ⊤+(Ŷ ⊤)2)M+ Ŷ ⊤MŶ .

Note that E
[
P̂
]
=P due to Assumption 2.1. Thus E

[
Ŷ
]
=0. Therefore, taking expec-

tation of the above two terms gives

EP̂

[
M
(
I− Ŷ

)−1
]
≈M+MEP̂

[
Ŷ 2
]
, (4.1)

EP̂

[(
I− Ŷ

)−⊤
M
(
I− Ŷ

)−1
]
≈M+MEP̂

[
Ŷ 2
]
+EP̂

[
(Ŷ ⊤)2

]
M+EP̂

[
Ŷ ⊤MŶ

]
.

(4.2)

Plugging (4.1) and (4.2) into (2.6) leads to

ε∗=

EP̂

[
b⊤M

(
I− Ŷ

)−1

b

]
EP̂

[
tr

((
cov
[
b̂
]
+b⊤b

)(
I− Ŷ

)−⊤
M
(
I− Ŷ

)−1
)]

≈
EP̂

[
b⊤(M+MŶ 2)b

]
EP̂

[
tr
((

cov
[
b̂
]
+b⊤b

)
(M+ Ŷ ⊤MŶ +MŶ 2+(Ŷ ⊤)2M)

)] ,
where the numerator term can be symmetrized so as to get (2.9).

Proof of Theorem 2.1. Let N = |S|. Denote by {p̂i}Ni=1 and {pi} the row vectors

of P̂ and P , respectively:

P̂ =

p̂⊤1.. .
p̂⊤N

, P =

p⊤1.. .
p⊤N

.
To show that ε◦ follows the formula in Theorem 2.1, it suffices to prove the following

auxiliary lemma:

Lemma 4.1. Assume the following two conditions hold.

(a): P̂ , b̂ are unbiased estimators of P,b.

(b): Xi is independent to Xj whenever i ̸= j.

Then one has

E
[
Ŷ ⊤MŶ

]
=γ2A−⊤

(
N∑
i=1

[Mii]cov[p̂i]

)
A−1, (4.3)

E
[
Ŷ 2
]
=γ2

N∑
i=1

diag(ei)A
−⊤cov[p̂i]A

−1, (4.4)

E
[
(Ŷ ⊤)2

]
=γ2

N∑
i=1

A−⊤cov[p̂i]A
−1diag(ei) , (4.5)

where p̂i is the random vector corresponding to the i-th row of P̂ .
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Both conditions in Lemma 4.1 are satisfied under Assumption 2.1. In Theorem 2.1,
one has Xi∼multinomial(n,pi) with the following covariance structure

cov[p̂i]=
1

n

[
diagpi−pip

⊤
i

]
=Bi. (4.6)

Plugging in (4.6) in Lemma 4.1 immediately gives the expectation-free form in Lemma
2.1, which proves Theorem 2.1.

Proof. (Proof of Lemma 4.1.) We first calculate E
[
Ŷ ⊤MŶ

]
. To do this, we

rely on the assumption that the i-th row p̂i is independent to p̂j whenever i ̸= j. As a

consequence, the rows of Ẑ are independent. Then, for any matrix M , one has

E
[
Ŷ ⊤MŶ

]
=E

[
A−⊤Ẑ⊤MẐA−1

]
=A−⊤E

[
Ẑ⊤MẐ

]
A−1.

By denoting the rows of Ẑ by ẑ⊤1 ,. .., ẑ⊤N ,

Ẑ⊤MẐ=
[
ẑ1 .. . ẑN

]
M

ẑ⊤1.. .
ẑ⊤N

= N∑
i,j=1

ẑiMij ẑ
⊤
j .

By taking the expectation, the only non-zero terms are the ones with i= j. Hence,

E
[
Ẑ⊤MẐ

]
=

N∑
i=1

MiiE
[
ẑiẑ

⊤
i

]
.

Then by definition of Ẑ one has

E
[
ẑiẑ

⊤
i

]
=γ2E

[
(p̂i−E[p̂i])(p̂i−E[p̂i])

⊤
]
=γ2cov[p̂i]. (4.7)

Hence one can get the first part of Lemma 4.1, which is

E
[
Ŷ ⊤MŶ

]
=A−⊤E

[
Ẑ⊤MẐ

]
A−1=γ2A−⊤

(
N∑
i=1

Miicov[p̂i]

)
A−1.

Now we move on to proving the form of E
[
Ŷ 2
]
. Writing out Ŷ 2 explicitly

Ŷ 2= ẐA−1ẐA−1=

ẑ⊤1 A−1

.. .
ẑ⊤NA−1

ẑ⊤1.. .
ẑ⊤N

A−1=

N∑
i=1

N∑
j=1


0
.. .

ẑ⊤i A−1

.. .
0




0
.. .
ẑ⊤j
.. .
0

A−1.

After the expectation, the only non-zero terms are i= j. Thus one has

E
[
Ŷ 2
]
=

N∑
i=1

E




0
.. .

ẑ⊤i A−1

.. .
0




0
.. .
ẑ⊤i
.. .
0


A−1,
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with 


0
.. .

ẑ⊤i A−1

.. .
0




0
.. .
ẑ⊤i
.. .
0




jk

=

{∑N
l=1 ẐilA

−1
li Ẑik j= i

0 j ̸= i.

For the matrix A−⊤ẑiẑ
⊤
i , note that

[
A−⊤ẑiẑ

⊤
i

]
jk

=(A−⊤ẑi)j(ẑ
⊤
i )k=

N∑
l=1

A−⊤
jl ẐilẐik=

N∑
l=1

A−1
lj ẐilẐik.

Applying j= i leads to

[
diag(ei)A

−⊤ẑiẑ
⊤
i

]
jk

=

{∑N
l=1 ẐilA

−1
li Ẑik j= i

0 j ̸= i
.

Hence we have

E
[
Ŷ 2
]
=

N∑
i=1

E




0
.. .

ẑ⊤i A−1

.. .
0




0
.. .
ẑ⊤i
.. .
0


A−1=

N∑
i=1

E

diag(ei)


0
.. .

ẑ⊤i A−1

.. .
0




0
.. .
ẑ⊤i
.. .
0


A−1

=

N∑
i=1

E
[
diag(ei)A

−⊤ẑiẑ
⊤
i

]
A−1=

N∑
i=1

diag(ei)A
−⊤E

[
ẑiẑ

⊤
i

]
A−1.

Taking transpose results in

E
[
(Ŷ ⊤)2

]
=

N∑
i=1

A−⊤E
[
ẑiẑ

⊤
i

]
A−1diag(ei) .

4.3. Proof of Lemma 2.2 and Corollary 2.1. We first prove Lemma 2.2.
Proof. (Proof of Lemma 2.2.) Going back to the original quadratic optimization

problem, one has

EP̂ ,b̂∥b−εAv̂∥2M =ε2EP̂ ,b̂∥Av̂∥2M −2εEP̂ ,b̂

[
b⊤MAv̂

]
+∥b∥2M . (4.8)

Using Lemma 2.1 and the second-order approximation in equation (2.9), one has

EP̂ ,b̂

[
b⊤MAv̂

]
=EP̂

[
b⊤(M+

MŶ 2+(Ŷ ⊤)2M

2
)b

]
+h.o.t.,

and

EP̂ ,b̂∥Av̂∥2M =EP̂

[
b⊤(M+ Ŷ ⊤MŶ +MŶ 2+(Ŷ ⊤)2M)b

]
+EP̂

[
tr
(
cov
[
b̂
]
(M+ Ŷ ⊤MŶ +MŶ 2+(Ŷ ⊤)2M)

)]
+h.o.t.,
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where h.o.t. stands for high order terms.

We now show that h.o.t.=O
(
n− 3

2

)
. The expectation of the third order or higher

terms in Ŷ is computed by moments of third order or higher in Ẑ. Under Assumption
2.1, rows of Ẑ are independent, and hence moments of Ẑ are linear combinations of
moments in multinomial distribution. Each row of matrix Ẑ is an average of n random
variables with mean zero, which is why its moments of third order or higher decay at

the rate of at least O
(
n− 3

2

)
by use of the Marcinkiewicz-Zygmund inequality.

One can then plug in the explicit formula from Lemma 4.1 and (4.6), leading to

EP̂ ,b̂

[
b⊤MAv̂

]
=∥b∥2M +b⊤Hb/2+O

(
n− 3

2

)
=∥b∥2M +h/2+O

(
n− 3

2

)
. (4.9)

and

EP̂ ,b̂∥Av̂∥2M =∥b∥2M +b⊤Gb+b⊤Hb+tr
(
cov
[
b̂
]
(M+G+H)

)
+O

(
n− 3

2

)
=∥b∥2M +h+g+ t+O

(
n− 3

2

)
. (4.10)

Plugging it into (4.8) results in (2.13).
We now move to prove (2.14). From (4.8) and the results before, one has

ε∗=
∥b∥2M +h/2+O

(
n− 3

2

)
∥b∥2M +h+g+ t+O

(
n− 3

2

) .
On the other hand, Theorem 2.1 proves that ε◦ follows the following form:

ε◦=
∥b∥2M +h/2

∥b∥2M +h+g+ t
. (4.11)

Moreover, from Theorem 2.1, it follows that G,H,cov
[
b̂
]
∝ 1

n , and therefore g,h,t∝
1
n . Hence (2.14) holds and ε◦ is asymptotically optimal.

Proof. (Proof of Corollary 2.1.) Throughout this proof, we use the fact that

g,h,t∝ 1
n as in the proof of Lemma 2.2. Without loss of generality, assume that ∥b∥2M =1.

The proof is organized as follows. First, we prove that MSE(1)−MSE(ε∗)=O
(
n−2

)
.

Second, we prove that MSE(ε∗)−MSE(ε◦)=O
(
n−3

)
. As a consequence, one obtains

MSE(1)−MSE(ε◦)=O
(
n−2

)
. Then, note that

MSE(1)=(g+ t)+O
(
n− 3

2

)
=O(1/n), (4.12)

and so the relative error is of order O(1/n) as claimed, and η is positive for n sufficiently
large.

We first estimate MSE(1)−MSE(ε∗). Plugging in (2.4), one has

MSE(1)−MSE(ε∗)=

(
∥Av̂∥2M −EP̂ ,b̂

[
b⊤MAv̂

])2
∥Av̂∥2M

. (4.13)

Under the assumption that ∥b∥2M =1, (4.9) and (4.10) shows

EP̂ ,b̂∥Av̂∥2M =1+h+g+ t+O
(
n− 3

2

)
,EP̂ ,b̂

[
b⊤MAv̂

]
=1+h/2+O

(
n− 3

2

)
.
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Thus, plugging in the previously derived terms into (4.15), one has

MSE(1)−MSE(ε∗)=

(
g+h/2+ t+O

(
n− 3

2

))2
1+g+h+ t+O

(
n− 3

2

) =O
(
n−2

)
. (4.14)

We then estimate MSE(ε∗)−MSE(ε◦):

MSE(ε∗)−MSE(ε◦)=((ε∗)
2−(ε◦)

2
)EP̂ ,b̂∥Av̂∥2M −2(ε∗−ε◦)EP̂ ,b̂

[
b⊤MAv̂

]
. (4.15)

Then, one uses

ε∗=
EP̂ ,b̂

[
b⊤MAv̂

]
EP̂ ,b̂∥Av̂∥2M

, ε◦=
1+h/2

1+h+g+ t
.

By simple algebra, one obtains from (4.15) that

MSE(ε∗)−MSE(ε◦)=−

(
(1+h+g+ t)EP̂ ,b̂

[
b⊤MAv̂

]
−EP̂ ,b̂∥Av̂∥2M (1+h/2)

)2
(
EP̂ ,b̂∥Av̂∥2M

)
(1+h+g+ t)2

,

(4.16)
Importantly, for the numerator term in (4.16), note that

(1+h+g+ t)EP̂ ,b̂

[
b⊤MAv̂

]
=(1+h+g+ t)(1+h/2)+O

(
n− 3

2

)
,

and likewise one has

EP̂ ,b̂∥Av̂∥2M (1+h/2)=(1+h+g+ t)(1+h/2)+O
(
n− 3

2

)
.

Consequently, the numerator term in (4.16) is of order O
(
n−3

)
. Thus

MSE(ε∗)−MSE(ε◦)=
O
(
n−3

)(
1+g+h+ t+O

(
n− 3

2

))
(1+g+h+ t)

2
=O

(
n−3

)
, (4.17)

as is desired.

4.4. Proof of Theorem 2.2. To prove Theorem 2.2, one first finds a tight
bound for A−1b and A−1diag(ei)b. The tight upper and lower bounds for A−1b are

stated in Lemma 4.2. Then, the upper bounds for
∥∥A−1b

∥∥2 and
∑

i

∥∥A−1diag(ei)b
∥∥2

are listed in Corollary 4.1. Finally, based on Corollary 4.1, we derive the bound for ε◦

in Theorem 2.2.

Lemma 4.2. For any transition matrix P ∈R|S|×|S|, vector b∈R|S| and γ∈ (0,1),

b+
γ

1−γ
bm1≤ (I−γP )

−1
b≤ b+

γ

1−γ
bM1,

where bm=mins bs,bM =maxs bs, and inequality between vectors denotes an entry-wise
inequality.

Proof. Let x=(I−γP )
−1

b, and s=argminixi, then the s-th row of (I−γP )x= b
is

bs=xs−γ
∑
t

Pstxt≤xs−γ
∑
t

Pstxs=(1−γ)xs,
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which implies

xs≥
bs

1−γ
≥ bm

1−γ
, (4.18)

where bm=mins bs. For ∀j ̸=s, one has

bj =xj−γ
∑
t

Pjtxt≤xj−γ
∑
t

Pstxs=xj−γxs≤xj−γ
bm
1−γ

,

which yields,

xj≥ bj+
γ

1−γ
bm. (4.19)

Combining (4.18) and (4.19) gives

x=(I−γP )
−1

b≥ b+
γ

1−γ
bm1.

On the other hand, let l=argmaxixi, then the l-th row of (I−γP )x= b is

bl=xl−γ
∑
t

Pltxt≥xl−γ
∑
t

Pltxl=(1−γ)xl,

which implies

xl≤
bl

1−γ
≤ bM

1−γ
, (4.20)

where bM =maxs bs. For ∀j ̸= l, one has

bj =xj−γ
∑
t

Pjtxt≥xj−γ
∑
t

Pjtxl≥xj−γ
bM
1−γ

,

which yields,

xj≤ bj+
γ

1−γ
bM . (4.21)

Combining (4.20) and (4.21) gives

x=(I−γP )
−1

b≤ b+
γ

1−γ
bM1,

which completes the proof.

Lemma 4.3. For a vector v=(vi)
d
i=1, define |v| := (|vi|)di=1, i.e. the entry-wise absolute

value of v. Suppose a matrix Q has only non-negative entries. Then, for any vector
v∈R|S| and γ∈ (0,1),

|Qv|≤Q|v| .

Proof. Define x=Qv. Denote by v+,v− the positive and negative parts of v, respec-
tively. That is, (v+)i=vi1vi>0 and (v−)i=vi1vi≤0. Since Q has only non-negative en-
tries, it follows Qv+≥0 and Qv−≤0. Because x=Qv++Qv−, one has x≤Qv+−Qv−
and −x≥−Qv++Qv−. Hence

|x|≤Qv+−Qv−=Q|v|.
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Corollary 4.1. For any transition matrix P , vector b∈R|S| and γ∈ (0,1), one has,∥∥∥(I−γP )
−1

b
∥∥∥
2
≤∥k∥2 ,∑

i

∥∥∥(I−γP )
−1

diag(ei)b
∥∥∥2
2
≤∥k∥22 ,∑

i

∥∥∥(I−γP )
−1

diag(ei)b
∥∥∥
2
≤
√
|S|∥k∥2 ,

where k= 1
1−γ ((1−γ) |b|+γbM1) with bM =maxi |bi| and

∥k∥22=
1

(1−γ)
2

(
(1−γ)

2∥b∥22+ |S|γ
2b2M +2γ (1−γ)bM ∥b∥1

)
.

Proof. Note that (I−γP )
−1

is a matrix with non-negative entries, and therefore
one has ∣∣∣(I−γP )

−1
b
∣∣∣≤ (I−γP )

−1 |b|.

Then, Lemma 4.2 leads to∣∣∣(I−γP )
−1

b
∣∣∣≤ (I−γP )

−1 |b|≤k=
1

1−γ
((1−γ) |b|+γbM1),

where bM =maxi |bi|, which is the first inequality in the corollary.
The second inequality is because

∑
i

∥∥∥(I−γP )
−1

diag(ei)b
∥∥∥2
2
≤

∥∥∥∥∥∑
i

∣∣∣(I−γP )
−1

diag(ei)b
∣∣∣∥∥∥∥∥

2

2

≤
∥∥∥(I−γP )

−1 |b|
∥∥∥2
2
≤∥k∥22 .

The third inequality is due to∑
i

∥∥∥(I−γP )
−1

diag(ei)b
∥∥∥
2

≤
√
|S|

∥∥∥∥∥∑
i

∣∣∣(I−γP )
−1

diag(ei)b
∣∣∣∥∥∥∥∥

2

≤
√
|S|
∥∥∥(I−γP )

−1 |b|
∥∥∥
2

≤
√
|S|∥k∥2 .

Now we are ready to prove Theorem 2.2.

Proof. (Proof of Theorem 2.2.) Since Bi is the covariance matrix, Bi⪰0. By

the definition of G,H in Theorem 2.1, one has tr
(
cov
[
b̂
]
(I+G+H)

)
≥0. By letting

ai=(I−γP )
−1

diag(ei)b and d=(I−γP )
−1

b,

ε◦≤
1
γ2 b

⊤b+
∑

ia
⊤
i Bid

1
γ2 b⊤b+

∑
id

⊤Bid+2
∑

ia
⊤
i Bid
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=1−
∑

id
⊤Bid+

∑
ia

⊤
i Bid

1
γ2 b⊤b+

∑
id

⊤Bid+2
∑

ia
⊤
i Bid

=1+
1
2

∑
ia

⊤
i Biai− 1

2

∑
i(ai+d)⊤Bi(ai+d)− 1

2

∑
id

⊤Bid
1
γ2 b⊤b+

∑
i(ai+d)⊤Bi(ai+d)−

∑
ia

⊤
i Biai

. (4.22)

The numerator of the second term in (4.22) can be bounded by

1

2

∑
i

a⊤i Biai−
1

2

∑
i

(ai+d)⊤Bi(ai+d)− 1

2

∑
i

d⊤Bid≤
1

2
λM

∑
i

∥ai∥22 ,

where λM is the largest eigenvalue of Bi for ∀i.
Suppose that

λM∥k∥2
2

1
γ2 b⊤b

≤ 1
2 . Then the denominator of the second term of (4.22) can

be lower bounded by

1

γ2
b⊤b+

∑
i

(ai+d)⊤Bi(ai+d)−
∑
i

a⊤i Biai≥
1

γ2
b⊤b−λM ∥k∥22>0, (4.23)

where
∑

i∥ai∥
2
2≤∥k∥

2
2 from Corollary 4.1 is used. Therefore, (4.22) can be bounded by

ε◦≤1+
1
2λM ∥k∥22

1
γ2 b⊤b−λM ∥k∥22

≤1+
λM ∥k∥22

1
γ2 b⊤b

.

Note that

∥k∥22
1
γ2 ∥b∥22

≤ γ2

(1−γ)
2

(
(1−γ)

2∥b∥22+ |S|γ2b2M +2γ (1−γ)bM ∥b∥1
)

∥b∥22

≤ γ2

(1−γ)
2

(
(1−γ)

2
+ |S|γ2 b2M

∥b∥22
+2γ (1−γ)

√
|S| bM
∥b∥2

)

=
γ2

(1−γ)
2

(
(1−γ)+γ

√
|S|bM
∥b∥2

)2

, (4.24)

where ∥b∥1≤
√
|S|∥b∥2 is used in the above inequality. The largest eigenvalue λM of

Bi defined in (2.12) is smaller than λM < pM

n , where pM =maxi,jPi,j is the maximum
probability of the transition matrix P [30]. This implies that

λM ∥k∥22
1
γ2 ∥b∥22

≤ pM
n

γ2

(1−γ)
2

(
(1−γ)+γ

√
|S|bM
∥b∥2

)2

≤ 1

2
,

where the second inequality follows from the stronger assumption that

pM

n
γ2

(1−γ)2

(
(1−γ)

γ +

√
|S|bM
∥b∥2

)2

≤ 1
2 . Therefore,

ε◦≤1+
pM
n

γ2

(1−γ)
2

(
(1−γ)γ

√
nbM
∥b∥2

)2

,

which completes the proof for the upper bound of ε◦.
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We now move on to the condition for which ϵ◦>0. From Theorem 2.1, it suffices to
show b⊤b+b⊤Hb/2>0 and b⊤b+b⊤Hb+b⊤Gb>0 to obtain ϵ◦>0. As a consequence
of (4.23), one has

b⊤b+b⊤Hb+b⊤Gb

=b⊤b+γ2
∑
i

(ai+d)⊤Bi(ai+d)−γ2
∑
i

a⊤i Biai

≥b⊤b−γ2
∑
i

a⊤i Biai

≥b⊤b−γ2λM ∥k∥22 .

Hence the denominator term in ϵ◦ is positive whenever b⊤b>γ2λM ∥k∥22, which

holds when n>γ2λM
∥k∥2

2

∥b∥2
2

.

For b⊤b+b⊤Hb/2, one has

b⊤b+b⊤Hb/2= b⊤b+γ2
∑
i

a⊤i Bid≥ b⊤b−γ2

∥∥∥∥∥∑
i

Biai

∥∥∥∥∥
1

∥d∥∞ ,

where the inequality follows from Holder’s inequality. Moreover, one has ∥d∥∞=∥∥∥(I−γP )
−1

b
∥∥∥
∞
≤
∥∥∥(I−γP )

−1
∥∥∥
∞
∥b∥∞= bM

1−γ . Thus, it suffices to bound the term

∥
∑

iBiai∥1. We will show that∥∥∥∥∥∑
i

Biai

∥∥∥∥∥
1

≤2
pM
n
|S| 1

1−γ
bM . (4.25)

Assuming (4.25) holds, one has

b⊤b+b⊤Hb/2≥ b⊤b−γ2

∥∥∥∥∥∑
i

Biai

∥∥∥∥∥
1

∥d∥∞≥ b⊤b−2γ2 1

n
pM |S|

1

(1−γ)2
b2M ,

which implies the numerator term b⊤b+b⊤Hb/2 is positive whenever

n>2γ2pM |S|
1

(1−γ)2
b2M
∥b∥22

.

Thus, for ϵ◦>0, one needs

n>max

(
γ2λM

∥k∥22
∥b∥22

,2γ2pM |S|
1

(1−γ)2
b2M
∥b∥22

)
.

By (4.24), one can see that n>γ2λM
∥k∥2

2

∥b∥2
2

holds if pM

n
γ2

(1−γ)2

(
(1−γ)+γ

√
|S|bM
∥b∥2

)2

≤ 1
2 .

Moreover, the condition that n>2γ2pM |S| 1
(1−γ)2

b2M
∥b∥2

2

is simply a restatement of the

condition that pM

n
γ2

(1−γ)2

(√
|S|bM
∥b∥2

)2

< 1
2 .
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Then, since γ∈ (0,1), the theorem’s assumption pM

n
γ2

(1−γ)2

(
(1−γ)

γ +

√
|S|bM
∥b∥2

)2

≤ 1
2

implies pM

n
γ2

(1−γ)2

(
(1−γ)+γ

√
|S|bM
∥b∥2

)2

≤ 1
2 and pM

n
γ2

(1−γ)2

(√
|S|bM
∥b∥2

)2

< 1
2 . Therefore,

the theorem’s assumption implies ϵ◦>0.

For the remainder of the proof, we show that (4.25) holds. Define Bi,+= 1
n diagpi

and Bi,−=− 1
npip

⊤
i . It follows that Bi=Bi,++Bi,−, and one has∥∥∥∥∥∑

i

Biai

∥∥∥∥∥
1

≤

∥∥∥∥∥∑
i

Bi,+ai

∥∥∥∥∥
1

+

∥∥∥∥∥∑
i

Bi,−ai

∥∥∥∥∥
1

. (4.26)

We first bound the first term on the right-hand side of (4.26). Let b+,b− be the
positive and negative parts of b as in Lemma 4.3, and define

ai,+ := (I−γP )
−1

diag(ei)b+, ai,− := (I−γP )
−1

diag(ei)b−.

In particular, one has ai,+≥0 and ai,+≤0, as (I−γP )
−1

diag(ei) has only non-negative
entries. Thus one can further bound by∥∥∥∥∥∑

i

Bi,+ai

∥∥∥∥∥
1

≤

∥∥∥∥∥∑
i

Bi,+ai,+

∥∥∥∥∥
1

+

∥∥∥∥∥∑
i

Bi,+ai,−

∥∥∥∥∥
1

.

Due to the non-negativity of the entries in (−ai,−) and ai,+, the right-hand side is
a monotonically non-decreasing function in the entries of Bi,+, and therefore one has∥∥∥∥∥∑

i

Bi,+ai,+

∥∥∥∥∥
1

+

∥∥∥∥∥∑
i

Bi,+ai,−

∥∥∥∥∥
1

≤

∥∥∥∥∥ 1n diag(pM1)
∑
i

ai,+

∥∥∥∥∥
1

+

∥∥∥∥∥ 1n diag(pM1)
∑
i

ai,−

∥∥∥∥∥
1

=
pM
n

(∥∥∥(I−γP )
−1

b+

∥∥∥
1
+
∥∥∥(I−γP )

−1
b−

∥∥∥
1

)
.

Now, note that
∥∥∥(I−γP )

−1
b+

∥∥∥
1
=1⊤ (I−γP )

−1
b+, and

∥∥∥(I−γP )
−1

b−

∥∥∥
1
=

−1⊤ (I−γP )
−1

b−. Therefore,∥∥∥(I−γP )
−1 |b|

∥∥∥
1
=1⊤ (I−γP )

−1 |b|=1⊤ (I−γP )
−1

(b+−b−) .

Hence one has∥∥∥∥∥∑
i

Bi,+ai,+

∥∥∥∥∥
1

+

∥∥∥∥∥∑
i

Bi,+ai,−

∥∥∥∥∥
1

≤pM
n

(∥∥∥(I−γP )
−1

b+

∥∥∥
1
+
∥∥∥(I−γP )

−1
b−

∥∥∥
1

)
=
pM
n

∥∥∥(I−γP )
−1 |b|

∥∥∥
1

≤pM
n
|S|
∥∥∥(I−γP )

−1 |b|
∥∥∥
∞

≤pM
n
|S| 1

1−γ
bM .
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For the second term in (4.26), one similarly has∥∥∥∥∥∑
i

Bi,−ai

∥∥∥∥∥
1

≤

∥∥∥∥∥∑
i

Bi,−ai,−

∥∥∥∥∥
1

+

∥∥∥∥∥∑
i

Bi,−ai,+

∥∥∥∥∥
1

.

One can check∥∥∥∥∥∑
i

Bi,−ai,−

∥∥∥∥∥
1

+

∥∥∥∥∥∑
i

Bi,−ai,+

∥∥∥∥∥
1

=1⊤
∑
i

1

n
pip

⊤
i (I−γP )

−1
diag(ei) |b|

=
∑
i

1

n
p⊤i (I−γP )

−1
diag(ei) |b|

≤
∑
i

pM
n

1⊤ (I−γP )
−1

diag(ei) |b|

=
pM
n

1⊤ (I−γP )
−1 |b|

≤pM
n

∥∥∥(I−γP )
−1 |b|

∥∥∥
1

≤pM
n
|S| 1

1−γ
bM .

Thus ∥
∑

iBiai∥1≤2pM

n |S|
1

1−γ bM .

Appendix.

A.1. Condition for Convergence of Neumann Series. The spectral radius
ρ(Ŷ ) of Ŷ can be bounded by the size of state space |S|, the number of samples n used
to learn the model P and the number of possible transitions. We define κ as the largest
number of transitions among all states,

κ=max
s∈S
{k :k=∥Ps∥0 ,Ps is the s-th row of P}. (A.1)

The following lemma gives the condition for ρ(Ŷ )<1 with high probability. The proof
relies on the concentration inequality of l1-norm of the multinomial distribution.

Lemma A.1. Under Assumption 2.1, for any C>0 and any positive integer q>1, if

n≥ 2C2γ2κ
(1−γ)2

log(2 |S|q),

P
[
ρ(Ŷ )<

1

C

]
≥1− 1

|S|q−1 .

Proof. We have

ρ(Ŷ )≤
∥∥∥Ŷ ∥∥∥

∞
≤
∥∥∥Ẑ∥∥∥

∞

∥∥A−1
∥∥
∞=

γ

1−γ

∥∥∥P − P̂
∥∥∥
∞
.

By the concentration inequality in [24,32], for arbitrary r∈ [0,1]

P

[∥∥∥e⊤i (P̂ −P
)∥∥∥

1
≥
√
2κlog2/r√

n

]
≤ r. (A.2)
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Taking union bound and setting r= 1
|S|q leads to

P

[∥∥∥P − P̂
∥∥∥
∞
≥
√
2κlog2 |S|q√

n

]
≤1−(1−1/ |S|q)|S|≤1/|S|q−1

,

where the second inequality is by Bernoulli’s inequality: for r≥1 and x≤1,

(1−x)r≥1−rx.

The proof is completed by noticing√
2κ log2 |S|q√

n
≤ 1

C
⇐⇒ n≥ 2C2γ2κ

(1−γ)
2 log(2 |S|

q
).

Remark A.1. In particular, our goal is to show a bound of n to ensure that ρ(Ŷ )<1
with high probability. In this case, the sample size requirement is

n≥ 2γ2κ

(1−γ)
2 log(2 |S|

q
).

The requirement of sample size n only grows at the rate of O(κlog(|S|)). Even though
κ may grow proportionally to |S|, one can generally assume that κ grows sublinearly
with respect to |S|. In practice, the numerical examples are more well-behaved if κ is
large, and usually the convergence of the Taylor series needs only n=1. The bound on
the spectral radius is intended for ill-behaved MDP with small κ.
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