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A NON-EQUILIBRIUM MULTI-COMPONENT MODEL WITH
MISCIBLE CONDITIONS∗
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Abstract. This paper concerns the study of a full non-equilibrium model for a compressible
mixture of any number of phases. Miscible conditions are considered in one phase, which lead to
non-symmetric constraints on the statistical fractions. These models are subject to the choice of
interfacial and source terms. We show that under a standard assumption on the interfacial velocity,
the interfacial pressures are uniquely defined. The model is hyperbolic and symmetrizable under non-
resonance conditions. Classes of entropy-consistent source terms are then proposed.
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1. Introduction

The present paper concerns the modelling of multiphase compressible flows which
arise in many industrial applications, especially in the nuclear safety framework. Among
the several scenarios that are studied (see IRSN website [19]), the Loss Of Coolant
Accident (LOCA) involves these types of flows. It is a brutal rupture in the coolant
circuit that creates phase transition waves in the loop and leads to the appearance of
vapor inside the liquid. These phases can interact with the ambient air at the breach.
Other types of accidents require to consider more phases, for instance in vapor explosion
type scenarios [3]. Consequently, a model must account for the dynamical and the
thermodynamical disequilibrium.

A wide range of multiphase flow models has been proposed since decades, especially
in the two-phase flow situation, see for instance [1,4,7,11,20] for the Baer-Nunziato two-
fluid approach and [2, 17, 22] for the homogeneous (in terms of velocity) models. More
recently, three-phase flows have been investigated with full non-equilibrium models in
the immiscible [10, 13, 14] and miscible [12] conditions, and also with homogeneous
models [2, 17, 22]. Among all these models, two classes can be distinguished: the first
one is based on the multifluid approach [1, 4, 10–13, 20], where each component has its
own velocity field. The second one corresponds to the homogeneous models [2, 18, 22]
where all the component share the same velocity.

In the multifluid approach, the dynamics of each component is described by
an Euler-type model and the different systems are coupled through interfacial non-
conservative terms and source terms which model the return to the equilibrium. Clo-
sure conditions have been investigated in the immiscible case in [4, 13] respectively for
two-phase and three-phase flows. Analysis of this model for a two-phase flow has been
done for instance in [6, 8], and a generalization with all these features has been pro-
posed in [23]. More recently, these type of results have been investigated with hybrid
miscible-immiscible conditions in [11, 12]. In the continuity of these works, this paper
is a generalization of [23] by adding miscible components, and of [11,12] by considering
an arbitrary number of phases.

For the sake of clarity, let us specify that the term “phase” refers to a state of the
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matter, “component” to a chemical substance and “field” to a component in a given
phase. For instance, a hybrid mixture of liquid water, vapor water and an inert gas is
composed of three fields, two phases and two components, see [11]. This configuration
will be given as the main example throughout the article.

The present work focuses on the modelling of a N -phase mixture of M fields, with
N ≤M , where the whole miscible part of the fluid is contained in the N -th phase. That
is a physically relevant situation where this latter phase would be the gaseous phase,
and no miscibility can be observed for another state of the matter. These miscible
components are then supposed to be perfectly intricate like ideal gases, and so all their
statistical fractions are equal

∀k≥N, αk=αN . (1.1)

Since we consider that no void can occur, the global volume constraint is

N∑
k=1

αk=1, (1.2)

with αk ∈ [0;1] for all k=1,...,N . The equations are written in the one-dimensional case
for the sake of clarity. This work can be extended to the multi-dimensional situation.

The outline of the article is the following.

The first part presents the model by introducing the thermodynamical framework,
the system of equations and the evolution equation of the mixture entropy. Then we
demonstrate the uniqueness of the interfacial pressure terms under classical hypotheses
concerning the interfacial velocity. In the third part, the analysis of the convective
system is investigated, by studying its hyperbolicity and the symmetrization. Finally,
admissible forms of source terms are detailed, in order to satisfy the second principle of
thermodynamics.

2. Model

2.1. Thermodynamical framework. The fluid is composed of N ≥2 phases
that are immiscible, where only the N -th phase can contain several components of
number K≥1. The fluid is then composed of M =N+K−1 fields. In other words, we
consider a mixture ofN phases andM fields, where the phaseN contains all the miscible
components of the fluid. We define K the set of fields, and thus we have #K=M .

1 2 3 ... N, N+1, ..., M

In the hybrid two-phase configuration, M is equal to 3, N is equal to 2 and the schematic
representation is l v, g . Later on, we will refer to this configuration as the {N =
2,M =3} case, where l=1, v=2 and g=3.

2.1.1. Equations of state. Each field k∈K is depicted by its phasic specific
volume τk>0 and its specific energy ek>0. The thermodynamical behaviour of each
phase k is fully described by its intensive entropy function (τk,ek) 7→sk(τk,ek) defined on
Ωk⊂ (R+

∗ )
2 that is supposed to be a convex set. Such an entropy function is a complete

equation of state and it will always be supposed to be concave. By adopting the Gibbs
formalism, each entropy function sk complies with the following differential form

Tkdsk=dek+pkdτk, (2.1)
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where the phasic temperature Tk=Tk(τk,ek) and pressure pk=pk(τk,ek) are defined by

1

Tk
=

∂sk
∂ek

∣∣∣∣
τk

, pk=Tk
∂sk
∂τk

∣∣∣∣
ek

, (2.2)

and the phasic chemical potential by the relation

µk=−Tksk+pkτk+ek. (2.3)

The phasic temperatures Tk will be supposed to be stricly positive.

2.1.2. Volume constraints and mixture entropy. We now turn to the
description of the thermodynamical behaviour of the mixture. The volume conservation
and the miscibility hypotheses give the following relations on the statistical fractions{∑N

k=1αk=1
αk=αN for k≥N,

(2.4)

thus the derivatives satisfy

N−1∑
k=1

∂xαk=−∂xαN . (2.5)

In the sequel, several mathematical proofs rely on these constraints. We define the
state vector of the field k by

Yk=(αk,ρk,vk,ek),

where ρk=1/τk and vk is the phasic velocity. For a given mixture state (τ,e), the
mixture entropy is defined as a combination of the phasic entropies with weights mk=
αkρk. Denoting Y=

⋃
k∈KYk, it reads

σ(Y)=
∑
k∈K

mksk(Yk). (2.6)

Finally, the specific total energy of the phase k is noted Ek=ek+v2k/2.

2.2. Set of partial differential equations. Let W be the main unknowns
vector, defined by

W =(α1,...,αN ,W⊤
1 ,...W

⊤
M )⊤, W k=

 mk

mkvk
mkEk

. (2.7)

Following the models in [11–13, 23], the fluid equations contain N transport equa-
tions on αk, for k=1,...,N

∂tαk+VI(Y)∂xαk=Φk(Y), (2.8)

plus, for k∈K, the following Euler-type systems

∂tWk+∂xf(Wk)+Ck∂xα=Sk, (2.9)
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where

f(W)k=

 mkvk
mkv

2
k+αkpk

mkvk(Ek+
pk

ρk
)

, α=

 α1

...
αM

, Sk=

 Γk(Y )
Sq,k(Y )
SE,k(Y )

 (2.10)

and

Ck=

 0 ·· · ·· · 0 ·· · · ·· 0
Pk,1 ·· · Pk,k−1 0 Pk,k+1 ·· · Pk,M

VIPk,1 ·· · VIPk,k−1 0 VIPk,k+1 ·· · VIPk,M

, (2.11)

where the k-th column only contains null terms. In the sequel, the vector Y=
⋃

k∈KYk

will be refered as the secondary unkowns vector.
In order to identify this class of models to practical cases, we refer the reader to [11]

for the case {N =2,M =3} and [12] for the case {N =3,M =4}.
Source terms Φk, Γk, Sq,k, SE,k must be chosen in agreement with the second law

of thermodynamics. Let us emphasize that the (Φk)k=1,...,N are only defined for the N
first statistical fractions.

Exchanges between the different fields are modeled by non-conservative terms in
Equations (2.8) and (2.9), involving interfacial velocity VI and interfacial pressures
(Pk,l), defined for k ̸= l. These terms must be specified in order to close the system,
which will be done in Section 2.3.

The set of equations for the water-gas case {N =2,M =3} is

∂tαl+VI(Y)∂xαl=Φl(Y),

plus 
∂t(ml)+∂x(mlvl)=Γl(Y),

∂t(mlvl)+∂x(mlv
2
l +αlpl)+

(
Pl,v(Y)+Pl,g(Y)

)
∂xαl=Sq,l(Y),

∂t(mlEl)+∂x(mlvl(El+
pl

ρl
))+

(
Pl,v(Y)+Pl,g(Y)

)
VI(Y)∂xαl=SE,l(Y),


∂t(mv)+∂x(mvvv)=Γv(Y),

∂t(mvvv)+∂x(mvv
2
v+αvpv)−

(
Pv,l(Y)+Pv,g(Y)

)
∂xαl=Sq,v(Y),

∂t(mvEv)+∂x(mvvv(Ev+
pv

ρv
))−

(
Pv,l(Y)+Pv,g(Y)

)
VI(Y)∂xαl=SE,v(Y),


∂t(mg)+∂x(mgvg)=Γg(Y),

∂t(mgvg)+∂x(mgv
2
g+αgpg)−

(
Pg,l(Y)+Pg,v(Y)

)
∂xαl=Sq,g(Y),

∂t(mgEg)+∂x(mgvg(Eg+
pg

ρg
))−

(
Pg,l(Y)+Pg,v(Y)

)
VI(Y)∂xαl=SE,g(Y),

where Γg(Y)=0 since the gas is inert.

Remark 2.1. Following recent works [11, 12], we consider that source terms and
interfacial closures only depend on Y. These could depend on the derivatives of Y, as
suggested for instance in [16,25].

Since we consider a closed system, the total mass, momentum and energy exchanges
must balance, thus the source terms must satisfy∑

k∈K

Γk(Y)=0,
∑
k∈K

Sq,k(Y)=0,
∑
k∈K

SE,k(Y)=0. (2.12)
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Moreover, as we consider no vacuum occurence, the source terms on the void frac-
tions satisfy

N∑
k=1

Φk(Y)=0. (2.13)

Besides, the interfacial pressure terms (Pk,l) should cancel each other∑
k∈K

∑
l∈K
l ̸=k

Pk,l(Y)∂xαl=0, (2.14)

in order to preserve the mixture conservative equations on momentum and energy.

2.2.1. Entropy production. The mixture entropy has been defined in (2.6),
and by manipulating evolution equations on the phasic densities, kinetic energies and
internal energies [12, Appendix A], we can derive the following equation

∂tσ(Y)+∂xfσ(Y)=Aσ(Y,∂xY)+RHSσ(Y), (2.15)

where fσ(Y)=
∑

k∈Kmkskvk is the entropy flux and the production terms are defined
by

Aσ(Y,∂xY)=
∑
k∈K

1

Tk
(vk−VI)

(∑
l∈K
l ̸=k

Pk,l(Y)∂xαl+pk∂xαk

)
, (2.16)

that correspond to the interfacial contribution, and

RHSσ(Y)=
∑
k∈K

1

Tk

(
SE,k(Y)−Γk(Y)ek−vk(Sq,k(Y)

− 1

2
Γk(Y)vk)+ρk

∂ek
∂ρk

(ρkΦk(Y)−Γk(Y))
)

+
∑
k∈K

(
skΓk(Y)+ρk

∂sk
∂ρk

(Γk(Y)−ρkΦk(Y))
)
,

which correspond to the source terms contribution. According to the second law of
thermodynamics, these production terms have to be non-negative. By following the
work in [4,13] in the two- and three-phase flow context, our concern here is to determine
constraints such that

Aσ(Y,∂xY)=0, (2.17)

which defines the so-called minimal entropy dissipation model [11], which is the subject
of the following section. The second term RHSσ relies on the source terms, which we
will study later on, see Section 4.

2.3. Definition of the interfacial pressures. The system of partial differen-
tial Equations (2.8)-(2.9) requires a unique definition of the interfacial pressure terms.
Derivation of these terms has been done for immiscible two, three and N -phase flow
in [4, 13,23], or more recently for hybrid mixtures in [11,12].
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For this purpose, we postulate that the interfacial velocity is a convex combination
(using Galilean invariance) of the phasic velocities

VI(Y)=
∑
k∈K

βk(Y)vk, (2.18)

with {∑
k∈Kβk(Y)=1,

βk(Y)≥0 ∀k∈K.
(2.19)

Determining the interfacial pressures (Pk,l) as it is done in [23] is out of reach due to
the miscibility constaints, that correspond mathematically to adding unkowns without
adding equations. However, these constraints allow to consider another set of pressure
terms that we define here.

Let us introduce the interfacial terms (Kk,l), defined for k=1,...,M and l=1,...,N−
1. For the sake of clarity, we allow ourselves to write the initial pressure terms (Pk,l)
for k= l.

Definition 2.1. For k=1,...,M and l=1,...,N−1, we define

Kk,l=Pk,l(1−δk,l)−
M∑

j=N

Pk,j(1−δk,j). (2.20)

The coefficients (χk,l) are defined for the same indices by

χk,l= δk,l−
M∑

j=N

δk,j =

0 if k≤N−1 and k ̸= l,
1 if k= l,
−1 if k≥N for all l≤N−1,

(2.21)

where δk,l is the Kronecker symbol.

For the hybrid two-phase case {N =2,M =3}, there are only 3 coefficients Kk,l that
are :

Kl,l=−
(
Pl,v+Pl,g

)
, Kv,l=Pv,l−Pv,g, Kg,l=Pg,l−Pg,v. (2.22)

We now introduce the following lemma that contains fundamental rewriting tech-
niques used in this paper.

Lemma 2.1. For all k=1,...,M , we have the two relations

∑
l∈K
l ̸=k

Pk,l∂xαl=

N−1∑
l=1

Kk,l∂xαl, (2.23)

∑
l∈K
l ̸=k

Pk,l∂xαl+pk∂xαk=

N−1∑
l=1

(Kk,l+χk,lpk)∂xαl. (2.24)

Proof. By using miscibility constraints (2.4) and relation (2.5), we can rewrite the
sum as ∑

l∈K
l ̸=k

Pk,l∂xαl=

N−1∑
l=1

Pk,l(1−δk,l)∂xαl+

M∑
j=N

Pk,j(1−δk,j)∂xαj
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=

N−1∑
l=1

Pk,l(1−δk,l)∂xαl+∂xαN

M∑
j=N

Pk,j(1−δk,j)

=

N−1∑
l=1

Pk,l(1−δk,l)∂xαl−
N−1∑
l=1

∂xαl

M∑
j=N

Pk,j(1−δk,j)

=

N−1∑
l=1

(
Pk,l(1−δk,l)−

M∑
j=N

Pk,j(1−δk,j)
)
∂xαl

=

N−1∑
l=1

Kk,l∂xαl, (2.25)

where Kk,l has been defined in (2.20).
The second relation can be deduced from the first one, we just need to express the

term pk∂xαk as a function of the (∂xαl)1≤l≤N−1, that is

pk∂xαk=

N−1∑
l=1

χk,lpk∂xαl, (2.26)

where χk,l is defined by (2.21). Then we deduce the relation (2.24).

These relations allow us to rewrite any expression involving (∂xαl)1≤l≤M in terms
of the first N−1 quantities (∂xαl)l≤N−1.

Using Lemma 2.1, the momentum and energy equations of (2.9) can be rewritten

∂t(αkρkvk)+∂x(αkρkv
2
k+αkpk)+

N−1∑
k=1

Kk,l∂xαl=0, (2.27)

∂t(αkρkEk)+∂x(αkρkvk(Ek+pk/ρk))+

N−1∑
k=1

Kk,lVI∂xαl=0. (2.28)

Thereby, we have reduced the number of interfacial unknowns. Indeed, there were
M(M−1) coefficients (Pk,l) and now there are M(N−1) effective coefficients (Kk,l).
We can now rewrite the minimal entropy dissipation condition (2.17) as a function of
the (Kk,l).

Lemma 2.2. The term Aσ(Y,∂xY) reads

Aσ(Y,∂xY)=
∑
k∈K

1

Tk
(vk−VI)

N−1∑
l=1

(Kk,l+χk,lpk)∂xαl, (2.29)

with (χ)k,l defined by (2.21).

Proof. It consists in rewriting (2.17) as a function of the N−1 firsts (∂xαk), using
Lemma 2.1.

Let us now give the main result of this paper.

Proposition 2.1 (Minimal entropy production due to the interfacial states). Let us
assume that (2.14) hold true. If all the phasic temperatures are positive, then for any
convex combination (2.18), the interfacial pressure terms (Kk,l) are uniquely defined.
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Proof. The structure of the proof is similar to [23]. We determine equations thanks
to

(1) The independence of the derivatives (∂xαk)

(2) The independence of the relative velocities (vk+1−vk)

Then we obtain N−1 linear systems, one for each l=1,...,N−1, in the variables
(Kk,l)k=1,...,M . All of them are defined by the same matrix, thus we have to demonstrate
that it is regular.

According to (2.4), the (∂xαl)1≤l≤N−1 must be independent. Using this and Lemma
2.2, imposing Aσ(Y,∂xY)=0 is equivalent to writing, for l=1,...,N−1 the following
relations ∑

k∈K

1

Tk
(vk−VI)(Kk,l+χk,lpk)=0. (2.30)

Using the convex combination (2.18), we rewrite the difference vk−VI as

vk−VI =

k−1∑
i=1

i∑
j=1

(−βj)(vi−vi+1)+

M−1∑
i=k

M∑
j=i+1

(βj)(vi−vi+1), (2.31)

which allows us to rearrange (2.30) in terms of the independent differences (vi−vi+1).
Let us introduce the coefficients ci and ci defined for i=1,...,M−1

ci=

i∑
j=1

βj , c
i=

M∑
j=i+1

βj . (2.32)

We obtain the following relations

i∑
k=1

1

Tk
ciKk,l−

M∑
k=i+1

1

Tk
ciKk,l=

i∑
k=1

1

Tk
ciχk,lpk−

M∑
k=i+1

1

Tk
ciχk,lpk, (2.33)

for l=1,...,N−1 and i=1,...,M−1. We define for the same indices

dil =

i∑
k=1

akc
iχk,lpk−

M∑
k=i+1

akciχk,lpk and ai=
1

Ti
.

We obtain the final system defined by the following equations for l=1,...,N−1 and
i=1,...,M−1

i∑
k=1

ciakKk,l−
M∑

k=i+1

ciakKk,l=dil. (2.34)

In other words, for any l=1,...,N−1, there are M−1 equations for M unknowns
that are the (Kk,l)1≤k≤M . This can be balanced by adding the constraint (2.14) that
gives, using (2.20) and the independence of (∂xαl)l≤N−1, for l=1,...,N−1∑

k∈K

Kk,l=0. (2.35)

Then we have N−1 linear systems of size M×M , for each l∈{1,...,N−1}, that
are

AKl=dl, (2.36)

with
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• A=


c1a1 −c1a2 −c1a3 ·· · −c1aM
c2a1 c2a2 −c2a3 ·· · −c2aM
...

...
cM−1a1 cM−1a2 ·· · cM−1aM−1 −cM−1aM

1 1 ·· · ··· 1

,

• Kl=(K1,l,K2,l,...,KM,l)
⊤,

• dl=(d1l ,d
2
l ,...,d

M
l )⊤.

Finally, we need to show that A is regular so the (Kk,l) are uniquely determined.
Let us note

D=detA. (2.37)

The idea of the proof is to expand this determinant along the last row, then express
the minors of sizeM−1 with a second order determinant thanks toM−3 developments.

Two relations must be reminded here. For i=1,...,M−1, we have

ci+ci=1, ci+1−ci=−βi. (2.38)

By developing D on the last row and factorizing by āi, we get

D=

M∑
i=1

(−1)M+iāiDi, (2.39)

where Di is the minor formed by deleting the last row and the i-th column, and āi=∏M
j ̸=iaj . For i=1,...,M−1, we have

Di=det



c1 −c1 ·· · −c1 −c1 ·· · −c1
c2 c2 ·· · ··· −c2

. . . −ci−1 −ci−2

...
. . . ci−1 −ci−1

...
ci −ci

ci+1 ci+1

...
...

. . .

cM−1 cM−1 ·· · cM−1 cM−1 ·· · −cM−1


, (2.40)

that we can rewrite with the columns Cj =(−c1,...,−cj−1,c
j ,...,cM−1)⊤∈RM−1 as

Di=det
(
C1 C2 ... Ci−1 Ci+1... CM

)
. (2.41)

Then, Di can be reduced to a second order determinant with M−3 operations:

• C1←C1−C2 and a development along C1 is done i−2 times,

• Cn←Cn−Cn−1 and a development along Cn is done M−(i+1) times, where n
is the size of the considered minor.

A factor (−1) appears for each second type operation, thus we have

Di=(−1)M−(i+1)det

(
ci−1 −ci−1

ci −ci

)
, (2.42)
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so, thanks to relations (2.32), we can express the latter determinant as

Di=(−1)M−(i+1)(−βi)

=(−1)M−iβi, (2.43)

for i=2,...,M−1. On the other hand, the cases i=1 and i=M give D1= c1 and
DM = cM−1.

Coming back to (2.39), we get

D= ā1c1+ ¯aMcM−1+

M−1∑
i=2

(−1)M+iāi(−1)M−iβi, (2.44)

that simplifies into

D= ā1c1+ ¯aMcM−1+

M−1∑
i=2

āiβi>0. (2.45)

Since
∑

iβi=1 and ai>0 for all i=1,...,M , then detA>0 and the interfacial terms
(Kk,l) are fully determined.

Let us give an example for {N =2,M =3}, studied in [11]. As seen earlier in (2.22),
we only have to determine the three terms (Kk,l)k=l,v,g since N =2. We obtain the
simple expressions

Kl,l=−(pv+pg), Kv,l=pv, Kg,l=pg. (2.46)

We refer to [11, Prop. 1] for the complete proof. The case {N =3,M =4} is more
intricate and is detailed in [12, Prop. 1].

Remark 2.2 (Preservation of the pressure equilibria). An important feature is
the preservation of an initial steady state where the fluid is supposed to be at the
thermodynamical equilibrium: the phasic pressures satisfy Dalton’s law, the phasic
temperatures are equal to each other and the velocities are null. A detailed explanation
is given in [15, Appendix A] in the three-phase immiscible case.

3. Analysis
In this section, we investigate the hyperbolicity and the symmetrization of the

system. The hyperbolicity sets a known framework in order to solve the system of
equations. The symmetrization is important to show the existence of a local-in-time
smooth solution for a Cauchy problem, by applying Kato’s theorem [21].

• In the conservative case, the existence of an entropy function gives the sym-
metrization of the system, thanks to the Godunov-Mock theorem [9, Theorem
3.1].

• In the nonconservative case, this theorem does not apply. Consequently, the
symmetrization must be proved by hand.

3.1. Hyperbolicity. First, we consider the convective system associated to
(2.8)-(2.9) and rewrite it in the primitive variables w=(α1,...,αN−1,w1,...,wM ), where
wk=(ρk,vk,pk). For k=1,...,N we have

∂tαk+VI∂xαk=0, (3.1)
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and for k∈K

∂tρk+
ρk
αk

(vk−VI)∂xαk+vk∂xρk+ρk∂xvk=0, (3.2)

∂tvk+
1

αkρk

(∑
l∈K

Pk,l∂xαl+pk∂xαk

)
+vk∂xvk+

1

ρk
∂xpk=0, (3.3)

∂tpk+
ρk
αk

(vk−VI)
∑
l∈K
l ̸=k

C2
k,l∂xαl+ρkc

2
k∂xvk+vk∂xpk=0, (3.4)

where Ck,l and ck are respectively the interfacial sound speed and the phasic sound
speed, defined by

C2
k,l=−

(
(∂pk/∂ek)Pk,l/ρ

2
k+(∂pk/∂ρk)

)
, (3.5)

c2k=∂pk/∂ρk+pk/ρk+pk/ρ
2
k(∂pk/∂ek).

Then, we express the (∂xαl)1≤l≤M as a function of the (∂xαl)l≤N−1 by using Lemma
2.1, it reads

∂tαk+VI∂xαk=0, (3.6)

∂tρk+
ρk
αk

(vk−VI)

(
(1−

M∑
j=N

δk,j)∂xαk−
( M∑
j=N

δk,j

)N−1∑
l=1

∂xαl

)
+vk∂xρk+ρk∂xvk=0,

(3.7)

∂tvk+
1

αkρk

N−1∑
l=1

(Kk,l+χk,lpk)∂xαl+vk∂xvk+
1

ρk
∂xpk=0, (3.8)

∂tpk+ρkc
2
k∂xvk+

ρk
αk

(vk−VI)

N−1∑
l=1

γk,l∂xαl+vk∂xpk=0, (3.9)

with γk,l=C2
k,l(1−δk,l)−

∑M
j=NC2

k,j(1−δk,j) and Kk,l defined by (2.20). Note that we
used the argument from Lemma 2.2 for the velocity equation.

Thus, we have the following quasi-linear system

∂tw+B(w)∂xw=0, (3.10)

where B(w)∈MN−1+3M (R) is the block matrix

B(w)=


VIIN−1 0 ... 0

A1 B1

... ...
AM BM

 . (3.11)

The matrices Ak ∈M3,N−1(R) and Bk ∈M3(R) are defined by

Ak=


ρk

αk
(vk−VI)(e

⊤
k (1−

∑M
j=N δk,j)−1⊤

N−1

∑M
j=N δk,j)

1
αkρk

β⊤
k

ρk

αk
(vk−VI)γ

⊤
k

, (3.12)
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Bk=

vk ρk 0
0 vk 1/ρk
0 ρkc

2
k vk

, (3.13)

where

• ek is the k-th unit vector in RN−1 when k<N , and with the convention ek=0
if k≥N ,

• 1N−1 is the vector in RN−1 whose components are all equal to 1,

• the vectors βk, γk ∈RN−1 are defined, for l=1,...,N−1, by

βk=
(
Kk,1+χk,1pk, ... ,Kk,N−1+χk,N−1pk

)⊤
, (3.14)

γk=
(
γk,1, ... ,γk,N−1

)⊤
. (3.15)

We notice that the phasic matrices Bk do not differ from the immiscible case [23],
but the Ak matrices do change. The eigenstructure of B is exactly the same as in this
latter case and its eigenvalues are:

• λI,k=VI , k=1,...,N−1

• λk=vk and λk,±=vk±ck, k=1,...,M .

Remark 3.1. The nature and properties of these characteristic fields are as expected,
see [8] for their analysis in the two-phase framework. We emphasize that the nature
of VI remains unknown, and so its Riemann invariants, which obviously depend on its
definition. One can refer to [4] where different closures for VI are investigated for a
two-phase mixture, allowing to define unique jump relations.

We now turn to the determination of the eigenvectors. The matrix R composed of
the right eigenvectors has a block structure and reads

R=


R0

I 0 ... 0

R1
I R1

... ...

RM
I RM

. (3.16)

The phasic problems are well known, and thus matricesRk containing the associated
right eigenvectors are classical. For Rk

I , we introduce the following notations

κ0=

M∏
l=1

αlσl, κk=

M∏
l=1,̸=k

αlσl, k=1,...,M (3.17)

σk= δ2k−c2k and δk=vk−VI . (3.18)

Thus we have

Rk
I =κkρk

 αkc
2
kβ

⊤
k −δ2kγ

⊤
k

−(αkβ
⊤
k −γ⊤

k )δk/ρk
−σk(e

⊤
k (1−

∑M
j=N δk,j)−1⊤

N−1

∑M
j=N δk,j)+αkβ

⊤
k −γ⊤

k

, (3.19)

R0
I =κ0IN−1, Rk=

 1 1 1
−ck/ρk 0 ck/ρk

c2k 0 c2k

 . (3.20)
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The matrix R is regular under the following well known condition

σk ̸=0⇐⇒ VI ̸=vk±ck, ∀k=1,...,M (3.21)

called the non-resonance condition.

Proposition 3.1. The system (2.8)-(2.9) is hyperbolic under the non-resonance
condition (3.21).

The non-resonance condition appears when a genuinely non-linear field associated
to vk±ck overlaps the coupling wave VI . In such a situation, the vector space is not
any more spanned by the eigenvectors.

3.2. Symmetrization. The proof of the symmetrization relies on the same
arguments as in [6, 11] and is exactly the same as in the generalized immiscible case
of N phases [23]. We build a symmetric positive definite matrix P =P (w) such that
PB is symmetric, by using the block structure of B and its left and right eigenvectors
matrices. We remind here the general idea.

First we define P k the symmetrizer of the phasic problem by

P k=

 1 0 −1/c2k
0 0.5(ρk/ck)

2 0
−1/c2k 0 1.5/c4k

, (3.22)

that is a symmetric positive definite matrix. Moreover, it is such that P kBk is sym-
metric. We then define P k,α under the non-resonance condition (3.21) by

P k,α=L⊤
k (Λk−VII3)

−1R⊤
k P kAk, (3.23)

where Lk is the left eigenvectors matrix of Bk and Λk is the eigenvalues matrix of Bk.
We remind that these matrices satisfy LkBkRk=Λk and LkRk=I3. Thus, we can
define the symmetrizer for B, that is

P =


NPαIN−1 P⊤

1,α ... P⊤
M,α

P 1,α P 1

... ...
PM,α PM

 , (3.24)

where PαIN−1 must be specified.

The cornerstone is that (V1P k,α+P kAk)
⊤=P⊤

k,αBk, which corresponds to the
symmetry of the first row and column of block of PB.

It relies on the fact that P⊤
k,αAk is a symmetric matrix, since P⊤

k Rk=L⊤
k .

Now we prove that P is positive definite. Let a∈RN−1+3M such as a=
(aα,a1,...,aM ), with aα∈RN−1. We have

a⊤Pa=Pα

N−1∑
k=1

N−1∑
i=1

(
aα,i+(P⊤

k,αak)i/Pα

)2
+

M∑
k=1

1

Pα
a⊤
k Qak, (3.25)

where Q=PαP k−P k,αP
⊤
k,α. Let us determine a condition on Pα such that the terms

a⊤
k Qak are non-negative.
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We consider the Cholesky decomposition of P k=CkC
⊤
k , and we define Ek=

C−1
k P⊤

k,αP k,αC
⊤
k , that is a symmetric matrix. Thus, there exists T k so that T kEkT

⊤
k =

Dk=diag(µk
1 ,µ

k
2 ,µ

k
3), where (µk

i )1≤i≤3 are the eigenvalues of Ek. Thus we have

a⊤
k Qak=b⊤k (PαI3−Dk)bk=

3∑
i=1

bk,i(Pα−µk
i ), (3.26)

with bk=T⊤
k C

⊤
k ak. Choosing Pα>maxi,k |µk

i |>0 the term a⊤
k Qak is non-negative and

is positive for ak ̸=0, so a⊤Qa is.
Finally, the system (3.6)-(3.9) is symmetrizable and according to Kato’s theorem

[21], there exists a local-in-time smooth solution to the associated Cauchy problem.

4. Admissible source terms
We investigate in this section some conditions on the source terms in order to satisfy

the second principle of thermodynamics.
We omit the dependence on Y of the source terms for the sake of readability. We

first give the form of each source term, and then we determine conditions on each
contribution.

Firstly, let us remark that the mechanical transfer source terms Φk satisfy

∀k≥N,Φk=ΦN ,

N∑
k=1

Φk=0, (4.1)

which is a consequence of the miscibility and saturation constraints. This allows us to
use a similar rewriting to (2.23) and (2.24), which will be useful later.

The mass transfer term Γk is defined as a sum of dyadic contributions

Γk=
∑
l∈K
l ̸=k

Γkl, (4.2)

where Γkl represents the mass transfer from phase k towards phase l. In practical
modelling, some of these terms may equal zero, for example if the phase k is a non-
condensable gas.

The momentum contribution is decomposed into a drag term and a mass transfer
term

Sq,k=
∑
l ̸=k

Dkl+
∑
l ̸=k

Γklvkl. (4.3)

Last, the total energy source term contains thermal transfer, drag effects and mass
transfer

SE,k=
∑
l ̸=k

Ψkl+
∑
l ̸=k

vklDkl+
∑
l ̸=k

ΓklHkl+
∑
l ̸=k

Pk,lΦl, (4.4)

plus the last term
∑

l ̸=kPk,lΦl, coming from the choice of modelling we made at the
beginning of the paper. Indeed, by choosing the derivatives in space for αl in the energy
equation from (2.9), the associated source term SE,k contains a mechanical contribution,
which is not the case for example in [11,12].

Let us remark some relations on these contributions. First, the dyadic contributions
of (4.2), (4.3) and (4.4) must satisfy

Γkl=−Γlk, Dkl=−Dlk, Ψkl=−Ψlk. (4.5)
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Those from (4.4) give

vklDkl=−vlkDlk,

which impose vkl=vlk, thanks to the independence of the Dkl. Similarly, we have
Hkl=Hlk.

Now we can regroup the contributions according to their nature

RHSσ =RHSΦ
σ +RHSΓ

σ +RHSD
σ +RHSΨ

σ . (4.6)

In order to ensure the entropy growth, each of these four terms must be positive.

• Admissible mechanical contribution Φ

RHSΦ
σ =

∑
k∈K

ak

(∑
l ̸=k

Pk,lΦl+ρ2k
∂ek
∂ρk

Φk

)
−ρ2k

∂sk
∂ρk

Φk

=
∑
k∈K

ak

(∑
l ̸=k

Pk,lΦl+pkΦk

)
=
∑
k∈K

ak

( ∑
l≤N−1

(Kk,l+χk,lpk)Φl

)

=

N−1∑
l=1

( M∑
k=1

ak(Kk,l+χk,lpk)
)
Φl.

We obtain the condition, for all l=1,...,N−1

( M∑
k=1

ak(Kk,l+χk,lpk)
)
Φl≥0. (4.7)

• Admissible mass transfer contribution Γ

By using the relation µk=ek−Tksk+pk/τk, we have

RHSΓ
σ =

∑
k

ak
∑
l ̸=k

(Hkl+
v2k
2
−vkvkl)Γkl−

∑
k

∑
l ̸=k

akµkΓkl.

By setting Hkl=
vkvl
2 and vkl=

vk+vl
2 , the first sum is null. Hence, it imposes

∀k ̸= l, (akµk−alµl)Γkl≥0, (4.8)

that is equivalent to

∀k ̸= l, (
Tl

µl
− Tk

µk
)Γkl≥0. (4.9)

• Admissible drag effects contribution

RHSD
σ =

∑
k∈K

ak

(∑
l ̸=k

vklDkl−vk
∑
l ̸=k

Dkl

)
.

We assume the following form for vkl to comply with the Galilean invariance
principle

vkl=βklvk+(1−βkl)vl, with βkl+βlk=1 and βkl∈ [0;1].
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Then we impose for k ̸= l

ak(1−βkl+al(1−βlk))(vl−vk)Dkl≥0

⇐⇒ ak(βlk+al(1−βlk))(vl−vk)Dkl≥0.

Knowing that ak(βlk+al(1−βlk))>0, the final condition is

(vl−vk)Dkl≥0. (4.10)

• Admissible thermal transfer contribution

RHSΨ
σ =

∑
k∈K

∑
l>k

Ψkl(ak−al),

and so the constraint is that for k ̸= l,

Ψkl(Tl−Tk)≥0. (4.11)

Finally, these classes of source terms comply with the second principle of thermo-
dynamics. In practical cases, see [11, 12] for instance, the condition on the mechanical
contribution Φl can be given more precisely, and we refer to these papers for more
details.

5. Conclusion
We have addressed in this paper the study of a Baer-Nunziato-like model for a

compressible N -phase flow with miscibility conditions. The main result concerns the
closure laws of the interfacial pressure terms. We demonstrate that under classic con-
ditions on the interfacial velocity, the interfacial pressure terms are uniquely defined.
Explicit expressions of these terms can be given in practical situations for given values
of M and N , see for instance [11,12].

Then, the hyperbolicity and symmetrization of the convective system have been
investigated. The system is hyperbolic under the classical non-resonance condition.
The symmetrization gives the local-in-time existence of a smooth solution.

Finally, we have determined constraints on the source terms in order to satisfy the
second principle of thermodynamics. Results are the same as in practical models where
M and N are given. The missing explicit expressions of the interfacial terms Φk may
be overcome in practical situations, see [11,12].

If we turn to the approximation of solutions of system (2.8)-(2.9), recent works
investigated relaxation schemes dedicated to the two-phase Baer-Nunziato model with
strong properties, see [5], as well as the three-phase immiscible barotropic case [24].
It would be interesting to extend these works to the two-phase three-field case and to
begin a numerical study.
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