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STABILITY OF PLANAR RAREFACTION WAVE FOR
VISCOUS VASCULOGENESIS MODEL*

QINGQING LIUT AND YUXIU TIAN#

Abstract. In this paper, we are concerned with a two-dimensional quasi-linear hyperbolic-
parabolic-elliptic system modelling vasculogenesis. We first derive a two-dimensional inviscid system as
the asymptotic equations in large time by ignoring all the viscous terms. Then we show that this invis-
cid system admits a planar rarefaction wave when the pressure function satisfies some suitable structure
conditions. By using elaborate energy estimates, we further prove that the solution of the concerned
system will asymptotically converge to this planar rarefaction wave under the same assumptions on
pressure function.
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1. Introduction and main result

The term vasculogenesis refers to the formation of the first blood vessels by en-
dothelial cells or their precursors, angioblasts. In order to describe the formation of the
vascular network, Gamba et al. in [1] proposed a viscous vasculogenesis model,

pe+div(pu) =0,
(pu): +div(pu®u)+Vp(p) = AAu+ppVe, (1.1)
cg=DAc+ap—be.

Here the model describes the cell population as a continuous density field p and velocity
u; it also assumes the presence of a concentration field ¢ of soluble factor. p(p) is
density dependent pressure function. a and b are positive constants, representing the
rate of release and the reciprocal of characteristic degradation time of the chemotactic
factor. D >0 and A >0 denote the diffusivity of the chemoattractant and the velocity,
respectively. The parameter p >0 measures the strength of the cell response.

When the small velocity diffusion A (or the fast signal diffusion D) is involved, we
may denote

€= E
by the ratio between the diffusivity of the velocity and of the chemoattractant, and
make the following transformation:

n * * 1 * (7 * * 1
P=x P ()= plte), w(fw) = ult), () =c(t.e), p"(0") = 550(0), (12)
and denote the new parameters by

. . a -~ b
,U/:%, G,:B, b:B, (13)
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then the original Equations (1.1) become (dropping the asterisks and circumflexes for
algebraic simplicity),
pe+div(pu) =0,
(pu): +div(pu®@wu)+Vp(p) = Au+ppVe, (1.4)
ect =Ac+ap—be.
Corresponding to a fast relaxation of the chemical substance ¢, i.e., e =0, system (1.4)
is formally reduced to the following hyperbolic-parabolic-elliptic system,
pt +div(pu) =0,
(pu)+div(pu®@u)+ Vp(p) = Au+ppVe, (1.5)
0=Ac+ap—bc.
In this paper, we are concerned with the above viscous vasculogenesis model (1.5) in
two-dimensional space, that is = (x,y), with 2 € R being the real line and y e T:=R/Z

being a one-dimensional unit flat torus. Here the pressure function p(p) is assumed to
satisfy

a a
p(p) €CHRXT), p(p)=Lp>0 and p'(p)=" >0 (1.6)

for any p>0. The initial data to (1.5) is given by
() (0,2,9) = (p,u,v)(0,2,y) = (po, u0,v0) (2,y), (1.7)
with the far field conditions in the z-direction,
(po,uo,vo)(x,y) = (p+,us,0), as  x— too. (1.8)
The far field data of ¢(¢,x,y) in the z-direction are given by
c(t,z,y) = cq, as x— too. (1.9)

Here p+ >0,u4+ and c4 are prescribed constants, and the periodic boundary conditions
are imposed on y € T for the solution (p,u,c)(t,z,y). From the third equation of (1.5),
we have the following compatible condition

a
CiZEpi. (1.10)

Understanding how blood vessels form in the organism has been a central issue in
biomedical research during the last decades. Besides the viscous vasculogenesis model
(1.1) where cell adhesion is considered, another typical model, which is referred as
the PEC model (Persistence and Endogenous Chemotaxis model), has been proposed in
[2,3]. The only difference between the PEC model and (1.1) is that the viscous term AAw
in (1.1) is replaced by the damping term —apu to explain the drag between cells and the
substrate material. We also mention a model proposed in [13], where the viscous term
and damping term are both considered. Although the diffusive structure of these models
for velocity are different, the coupling between concentration ¢ and the fluid quantity
p, u is the same. Hence, the analysis results for PEC model can give us some hints.
In [32,33], the authors proved the global-in-time existence and the large-time behavior of
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solutions to the PEC model if the initial data is a small perturbation of a small enough
constant equilibrium, where the smallness of the equilibrium plays a crucial role to deal
with the coupling. Later, instead of small assumption on the constant equilibrium for
density as in [32,33], under the restriction on the coefficients that bP’(p) —aup >0, the
authors obtained the asymptotic stability of linear and nonlinear diffusion waves for
the PEC model in [25,26] respectively, where the nonlinear diffusion wave can connect
distinct far field states. And the stability of transition layer solutions of the PEC model
on R} =[0,400) was established in [10] under the same restriction on the coefficients.

The large-time behaviors of the PEC model motivate us to consider similar things
for the viscous vasculogenesis model (1.1) or the simplified model (1.5), especially when
the far field states are different. Inviscid Euler equation should be a good choice based
on the similarity of (1.1) or (1.5) and Navier-Stokes equations or Navier-Stokes-Poisson
equations. But the parabolic structure with damping terms for ¢ in (1.1) makes it
difficult to construct an approximate conservation law as the large-time behavior. Then
it is necessary to seek a proper profile to connect distinct far field states for (1.1), we
will leave it for study in the future. Fortunately, this has been realized for the simplified
model (1.5) in one-dimensional space in [27]. They showed that the rarefaction wave of
the corresponding inviscid Euler equation, where the dissipation effects are neglected,
can describe the large-time behavior of (1.5). In this paper, we hope this asymptotic
stability of rarefaction wave can be generalized to high-dimensional system (1.5).

The stability of three basic wave patterns, shock wave, rarefaction wave, and contact
discontinuity for the high-dimensional viscous scalar conservation laws, Navier-Stokes
equations or other Navier-Stokes type equations has been extensively studied. For the
viscous scalar conservation laws, one can refer to [11,30,39] for the stability of planar
rarefaction wave and its extended results, and refer to [7] for the stability of planar shock
front solutions. For the Navier-Stokes equations, Li and Wang [18] proved the asymp-
totic stability of the planar rarefaction wave in the two-dimensional region R x T. Later,
they generalized this result to three-dimensional full equations in R x T? (cf. [19]) and
three-dimensional isentropic equations in half space with Navier boundary conditions
(cf. [37]). For the superposition of a planar boundary layer and a planar rarefaction wave
for compressible Navier-Stokes system with outflow boundary condition, one can refer
to [34]. For the stability of other wave patterns, such as planar contact discontinuity, one
can refer to [12]. For the other models, such as three-dimensional Boltzmann equation, 3-
D bipolar Vlasov-Poisson-Boltzmann (VPB) system, Navier-Stokes-Korteweg equations,
viscous compressible two-phase flow etc., one can refer to [8,14,16,17,21,23,35, 36, 38].
Multi-dimensional vanishing dissipation limit to the planar rarefaction wave is another
interesting problem, please refer to [9,15,20,22]. All the stability results of wave pat-
terns for high-dimensional Navier-Stokes equations are based on the existence results
for the multi-dimensional Riemann problem of inviscid Euler system and stability re-
sults of three basic wave patterns for Navier-Stokes in one dimensional space. We only
mention the works that are most related to our topic in this paper. The 1-D rarefaction
wave solutions were shown to be unique in the class of bounded entropy solutions to
the multidimensional compressible isentropic Euler system [5], complete Euler system
without vacuum [6], and complete Euler system with vacuum [4]. The stability results
of rarefaction waves for Navier-Stokes equations in one dimensional space can be found
in [24,28,29,31].

Inspired by the work in [18], we anticipate that the solution to (1.5)-(1.9) in
large time may behave as the solution to the Riemann problem of the following two-
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dimensional equations

pt+(pu)z+(pv)y =0,  (2,y) ERXT, t>0,
(pu)i+ (pu® +p(p))a + (puv)y — ppeg, =0,

(1.11)
()i + (puv), +(pv* +p(p))y — ppey =0,
ap—>bc=0.
Riemann initial data is given by
_ ror T _ (p*7u7a0)7 $<O7
(peust)0s) = o)) ={ (ot TS (112

Plugging c= ¢ p into the second and the third equation of (1.11) and introducing a new
pressure function

pi(p)=p(p)—5-p", (1.13)

then according to the condition on p in (1.6), we have p}(p) >0, p/(p) >0, and inviscid
system (1.11) is reduced to two-dimensional Euler equations,

pt+(pu)m+(pv)y:07 (z,y) ERXT, t>0,
(pu), + (pu® +p1(p)),, + (puv), =0, (1.14)
(pv), + (puv), + (pv* +p1(p)), =0,

with Riemann initial data

(p—au—70)a .’II<0,

(p+7u+70)7 .I‘>O, (115)

<pauvv><0,x,y>=<ps,u57v5><x7y>={

which admits a unique planar rarefaction wave [5], and the planar rarefaction wave
solution to (1.14)-(1.15) is defined in the following way,

pasttean=[r (2) (2.

with (p",u")(%) being the rarefaction wave for the following one-dimensional Euler sys-

tem,

{pt+(pu)1:0, z€R, t>0, (1.16)
(pu),+ (pu® +p1(p)), =0, '
with the Riemann initial data
ror _ (p—au—), .’£<0,
hapa)={ 25D (1)

Now we discuss the rarefaction wave solution (p”,u")(§) to (1.16)-(1.17) and state
our main theorem in this paper. It’s widely known that for p>0, the inviscid Euler
system (1.16) is strictly hyperbolic and has two different eigenvalues

[ aph (WP
p1 - — p, =u-+ p1 —u+ p
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under the constriction p’(p) — % p>0in (1.6). For two distinct eigenvalues, respectively,
we have two right eigenvectors r1(p,u) and r2(p,u), and both characteristic fields are
genuinely nonlinear. Moreover, the i-Riemann invariant z;(p,u)(i=1,2) is determined
by

+(=1)"*! /p VP T p/(si — ds,

zi(p,u)=u

which satisfies V(, ,)2i(p,u) -ri(p,u) =0 (i=1,2) for all p, u. Without loss of generality,
in this paper we only consider the case of 2-rarefaction wave for simplicity. Similarly,
one can prove the cases of 1-rarefaction wave and the superposition of two rarefaction
waves. If the end states (pi,uy) satisfy

P+ /p/(s)f afgsds:
S

p—

Ut — U—, )\2(p+,U+)>)\2(p,,U,), (118)

that is to say, 2-Riemann invariant za(p,u) is constant and the second eigenvalue A2 (p,u)
is expanding along the 2-rarefaction wave curve, then a self-similar wave fan (p",u")(%)
would be admitted to the Riemann problem (1.16)-(1.17). After that, the planar rar-
efaction wave solution to (1.11)-(1.12) is defined by

punctinn =l ()t (20 (5)] = 5)or () oo ()

where (p",u",c")(F) satisfies the following equations,

pi+(pu)=0,  z€R, t>0,
(pu)s + (pu? +p(p))e — ppcz =0, (1.19)
ap—bc=0,

with the Riemann initial data

(pS,UE)(w)={EZ:Z;§: iigf (1.20)

To formulate our main result, we assume that

(po —/)QT,U,()—UQT,U()) ELQ(RX T),

) (1.21)
(Vpo,VU07VUQ) cH (R X T),

and we set
0F = [ (po — poy> o — ug,v0) |I* +11(V po, Vo, Voo) I +1 (o —p—yur —u_) . (1.22)

Here the notations will be introduced at the end of this section. Our main theorem is
stated as follows.

THEOREM 1.1.  Let the conditions on pressure p in (1.6) hold, and (p",u",0,c")(%)
be the planar 2-rarefaction wave to (1.11)-(1.12) which connects the constant states
(p+,u+,0,ct) satisfying (1.18) with p1 >0 and cx = §p+. There exists a positive con-
stant €g such that if the initial perturbation around the planar rarefaction wave and the
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wave strength satisfy g <eg, then the initial value problem (1.5)-(1.9) admits a unique
global smooth solution (p,u,c)=(p,u,v,c) satisfying

(p—p"u—u",v,c—c",Ve)eC® (O,+oo;L2(R xT)),
(Vp,Vu,Vv)€C®(0,400;H' (RxT)),
(V?p,V?c) € L? (0,400; L*(Rx T)),

V2ue L? (0,+00; H' (Rx T)),

(1.23)

and the time-asymptotic stability of the planar 2-rarefaction wave holds true in the sense
that

x
lim sup ‘ p,u,v,¢)(t,x,y)—(p,u",0,c" (7>’:0. 1.24
s [t~ (5 (1.21)

We now give some remarks on the above theorem. The first remark is about the exis-
tence of rarefaction wave. At the first glance, inviscid system (1.11) is not a conservation
law. But the linear relationship between c¢"(%) and p"(%) in (1.11), helps us to rewrite
system (1.11) into a conservative law. Thanks to the two constraints p’(p) — % p>0 and
p"(p) — 4 >0, the system (1.11) is strictly hyperbolic and its both characteristic fields
are genuinely nonlinear for p>0. Then we can construct the rarefaction wave solution
with the help of Euler system.

The second remark is about energy estimates. Since the simplified viscous vascu-
logenesis model (1.5) can be viewed as the Navier-Stokes equation with a chemotactic
body force upVe, then our proof of the theorem enters in the framework proposed by Li
and Wang in [18]. The difficulties are still the propagation of rarefaction waves in the
y-direction and the interactions between x and y directions. That’s the reason why we
consider the same case y € T as the classical Navier-Stokes equation without any external
force. However, on the one hand, we need to treat the estimates on those terms related to
the chemoattractant c. As mentioned above, the constraint p’(p) — % p >0 plays an im-
portant role in dealing with the linear terms produced by the source term ppVein (1.5),
and ap in (1.5);. Then the linear terms will be absorbed or eliminated in the energy
estimates. On the other hand, the presence of non-trivial approximated smooth rarefac-
tion wave u still poses some new challenges. It is hard to control fot fT fR Uy dxdydt on
the right-hand side since the perturbed chemoattractant ¢ itself is not time-space inte-
grable. If it is placed on the left-hand side, it enjoys the negative sign, so it is still hard
to control it. We explore the structure of the system, especially the coupling between
the perturbed density ¢ and perturbed chemoattractant ¢, to rewrite the trouble term
into a “good” term under another constraint p”(p) — % >0 and other terms which can
be dealt with (see details in Lemma 4.1). Here, we emphasize that the conditions on
the pressure p are only sufficient conditions for the existence of rarefaction wave and
the stability of the perturbed system.

The rest of this paper is organized as follows. In Section 2, we construct a smooth
approximate rarefaction wave which tends to the rarefaction wave fan uniformly as the
time ¢ goes to infinity. In Section 3, we reformulate a perturbed system around the
approximate rarefaction wave and state the global-in-time existence of the solutions to
the perturbed equations. In the last section, the a priori estimates for the perturbed
system are established by using an elementary L? energy method.

At the end of this section, we introduce some notations that appear frequently
throughout the paper.
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Notations: The notation (-, -)* means the transpose of the vector (-, -) . The
differential operator divf:=0, f1 + 0, f with f=(f1,f2)!, V:=(0,,9,)" and A:=5%+
az. HE(Rx T)(k>0,k€Z) denotes the usual Sobolev space with the norm |- || .We
denote L2 (RxT)=H°(RxT) and set ||-|| =] ||o for convenience. C' denotes a generic
positive constant where C' may vary in the context. For scalar f and g, we denote

Vf-Vg:= (fx fy) (gz) :fxgz+fygy7

and

For two vectors a = (a1,az2) and b= (b1,b2), we denote

[ a1 _ a1b1 a1b2
a®b— <a2) (bl bg) = <a261 (12[)2) .
2. Smooth approximate rarefaction wave
Since the rarefaction wave solution is only Lipschitz continuous, we need to construct
a smooth approximate rarefaction wave to study the asymptotic stability. In the same

way as in [18], we start with the following Riemann problem of the inviscid Burgers
equation (refer to [28] and [39]):

wy +ww, =0,

w(0,2) =wq (x) = {

w_, =<0, (2.1)
W4, IL’>O,

with w_ <wy. Then it is well known that (2.1) has the rarefaction wave fan w”(x/t)
which is given by

w_, xr<w-_t,
x

wr(t,x)zwr(%)z - wot<e<wy, (2.2)
W, T > w4t

Moreover, w" (x/t) can be approximated by the smooth solution of the following Burgers’
equation

{wt—&—wwm:O, (2.3)

w (0,2) =wp (v) = L= 4 L2 = tanha,
then the solution w(t,z) to the Cauchy problem (2.3) enjoys the following properties
and their proofs can be found in [28].

LEMMA 2.1.  Letw=w4 —w_ >0, then the problem (2.3) has a unique smooth solution
w(t,x) which satisfies the following properties:

(1) we <w(t,z) <ws, wy >0 for xR and t >0;

(2) For any 1 <p<+o0, there exists a constant C' such that for all t>0,

wa(t,)|| e < Cmin(|b], @]t +7),
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[wea (t, )| e < Cmin(|w],¢7),

[waao (t, )| Lr < Cmin(|],t~);

. (| —
(3) t—lgnooiléyw(t’x) w (t)‘ 0.

We now turn to the approximate rarefaction wave for the inviscid system (1.19)-
(1.20). Throughout this paper, we consider the case that the constant states (p+,u+,c4)
are connected by the 2-rarefaction wave. Here, we let w_ = Xa(p—,u_), wiy = Aa(p4,u4),
and set the rarefaction wave strength a:=|p; —p_|+|uy —u_|. As to the Riemann
problem (1.19)-(1.20), the 2-rarefaction wave (p",u")(t,z)=(p",u")(z/t) is given im-
plicitly by using Implicit Function Theorem through the following relationship

Ao (p" u")(t,x) =w" (t,x),
z2(p"u")(tx) = 22(px, us),

and ¢"(x/t) is determined linearly by p"(z/t) through
a
c"(z/t)= 0" (z/t).

Correspondingly, the 2-rarefaction wave fan (p”,u”,c¢")(¢,z) can be approximated by a
smooth rarefaction wave (p,,¢)(¢,«) which is constructed by

X2 (p,0)(t, ) =w(1+t,x),

(2.4)

zo(p,0)(t,x) = z2(pt,us), (2.5)
c=3P

where w(t,z) is the smooth solution in (2.3). Moreover, one can easily check that the
smooth approximate rarefaction wave (p,u,c)(t,z) satisfies the following system

pe+(pu), =0, zER, t>0,
(pu), + (pu* +p(p)), — ppcs =0,

2.6
ap—bc=0, 26)

(pa’mé) (O,Z‘) = (ﬁ07a0a %ﬁo)(x)
Then the smooth approximate profile (p,@,¢)(t,x) enjoys the following properties ac-
cording to Lemma 2.1 and Implicit Function Theorem.

LEMMA 2.2.  The smooth approzimate rarefaction wave (p,u,c)(t,x) given by (2.6)
satisfies the following properties:
(1) p—<p<ps+.
_ 2p4/p1(P) _ _ a=
(2) pm:mwz>0, Uy = 2 >0, and ¢, = $p >0 for x€R, t>0, where
p1 is defined in (1.13) and satisfies that p)(p) >0 and p{(p)>0.
(3) For any 1<p<oo, there exists a constant C' such that for all t >0,

P (P) ~
VIS

(P t,20) | 0 < Cminf{ev,an (146) 717},
[(Pas Ty Caa) || e < Cmin{er, (144) 71},
”(ﬁxwxvﬂa:xxaaxmc) ”LP < Cmin{a, (1 +t)71}~

() Jim_sup|(p,,0)(t,) = (o) ()] =0.
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3. Reformulation of the problem
Now we are in a position to reformulate the original problem around the approxi-
mate rarefaction wave (p,4,0,¢). Define the perturbation by

¢(ta$>y) Zp(t,,’L‘,y) —ﬁ(t,$)7
\I’(trr’y) = (gp,’(/))t(t7x,y) = (uav)t(trxvy) - (ﬂ70)t(t,x)’
e(t,z,y) =c(t,z,y) —c(t,z),

with (p,u,v,c)(t,x,y) being the solution to the problem (1.5)-(1.9). Direct calculations
show that (¢, ¥,¢) satisfies the perturbation system:

¢+ pdivVl + py b+ Uy + prp+ =0,

pUs+ puWs+ pP Wy + (ptiz,0)" +p' (p) Vo + (1 (p) — 51/ () Pz, 0)" (3.1)
=AU+ upVe+ (tlige,0)?,
A&+ Cyy +ag—be=0,

with the initial data

(¢,‘I’)(O,.’E,y) = (¢07\IJ0)($ay) = (¢07§0071/J0)(-T7y)
= (po — po, o — o, vo) (z,y) € H*(R X T), (3:2)

and the far field data for ¢(¢,x,y) in the z-direction is given by
é(t,x,y)—0, as x— +oo. (3.3)

It can be noted that the condition (1.21) assures (3.2) holds true.
We first choose a positive constant Fy such that

1
sup |f(x,y)|§§p, for any f€H2(R><T), [ fll2 < Ep. (3.4)
(z,y) ERXT

By virtue of the two-dimensional Sobolev’s inequality,

sup | F@ )| SC(IFIRILNE + 1S fal?), for any fe H2®XT),  (3.5)
(z,y)ERXT

(3.4) is obviously true if Fy is suitably small. Then the solution to (3.1)-(3.3) can be
sought in a functional space X (0,+00), and for given 0 <7 <400, we define

X(0,T) :{(gb,\I/,E) ‘ (6, 0) € CO(0,T:H?), ¢ C(0,T:H), (Vé,Ve) e L2 (0,T:H"),

VU eL?(0,T;H?), and sup [[(¢,9)]2+ sup ||é|\1§EO}.
0<t<T 0<t<T

Combining the condition supy<,<r||(¢,¥)(t)||2 < Eo with (3.4), we know that |¢], [¥|<
3p— and |u|=|(u,v)| < C, where C is a positive constant which only depends on p_ and
u+. What’s more, the density function p(t,z,y):=p(t,z)+ ¢(t,z,y) satisfies that

1 1
0<5p-Sp<5p—+p+, (3.6)

since 0<p_ <p<p;. Thanks to the uniform positive upper and lower boundedness
of the density function p(t,z,y) in (3.6), the momentum equation (1.5), is strictly
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parabolic, which is crucial for the local and global-in-time existence of the classical
solution to the system (1.5).

ProrosITION 3.1.  Suppose that all the conditions in Theorem 1.1 hold. There exist
positive constants €9 and C such that if

[[(¢0,Wo)ll2 +a <eo,

then the reformulated problem (3.1)-(3.3) admits a unique global solution (¢,¥,¢)€
X (0,+00) satisfying

+oo 1 ~
II(¢,\II)II§+||5II?+/O 143 (9, 6,80, G0, Vo, Vo) [ *dt

+oo +oo
+ / (Yo, V0,V8)|2dt + / VR0 2dt < C(l(0, W) B +ad).  (3.7)
0 0

The local-in-time existence and uniqueness of the classical solutions of (3.1)-(3.3)
can be established by the standard iteration argument. The existence of global solution
follows from the standard continuity argument based on the local existence and the a
priori estimate in Proposition 3.2. In this article, for the proof of Proposition 3.1, we
only devote ourselves to showing the following a priori estimates.

PROPOSITION 3.2 (A priori estimate).  Assume that the reformulated problem (3.1)-
(3.3) has a solution (¢,¥,¢) € X(0,T) for some T(>0). Then there exist positive con-
stants €1 and C which are independent of T such that if

sup ‘|(¢7q/)‘|2+ sup ||é||1+a§517
0<t<T 0<t<T

then it holds

T 1
sup [(6.9)3+ sup I+ [k (p.0.0,60, 02, V) Pl
0<t<T 0<t<T 0
T T N
+ [ 1o eV s [ [90uPa<C (60 ol +at). 39
0 0

4. Stability of the planar rarefaction wave

In this section, we will show the stability of the planar rarefaction wave. We divide
this section into two subsections. First, we prove the a priori estimate in Proposition 3.2,
and then we prove the large-time behavior of the solution in Theorem 1.1. Throughout
this section, we assume that (pi,us) satisfies (1.18) with pg >0, ug € R being fixed
and for some T'(>0), the problem (3.1)-(3.3) has a solution (¢,¥,é) € X(0,T). We set

E= sup [[(¢,¥)(@®)[2+ sup [[c(t)]s-
0<t<T 0<t<T

4.1. A priori estimates. The first lemma is about zero-order energy estimate.

LEMMA 4.1. There exists a positive constant C such that for 0<t<T,
T T
swp (6. IO+ sup b0+ [ IVOIdee [ k(o) P
0<t<T 0<t<T 0 0

T
<C (|0, o) ||* + [lol|?) +C(B+a%) / [(Vo,Ve)||2dt+Cat. (4.1)
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Proof. Define the potential energy by

o _
~ pis)—pp
®(p,p) =/ wd&
s s
Through direct calculation, we get

(p®@): +div[pu® +(p(p) —p(p)) U]+t [p(p) —p(p) —1' ()]

P -
—p'(p)Ve- ¥ — <p’(p)—pp’(p)> prp=0. (4.2)
Multiplying the second equation of (3.1) by ¥, we have
]_ 2 ]. . 2 . — 2 /
PP )+ 5div(pu|UF) —div(eVe+ 9 V) +piep® +p'(p) V- ¥
t
(100200 pao [V UP = ¥ =0, (43)

where the last term —upVeé- U on the left-hand side can be rewritten by using equation
(3.1), as follows,

—ppVe- ¥ =—div(upe¥) + pcdiv(pW)
= —div(upc¥V) — pédy — pé(ug)s
=—div(pupe¥) — p(Cg)t + pcrd — p(Cud), + pé, te. (4.4)

Multiplying the third equation of (3.1) by —£¢;, one has

b
W Bive2 1 e, | - Ldiv(e,Ve) — L(6y)s — Lovtn — peip=0,  (4.5)
2a 2a a ., a a a

and multiplying the third equation of (3.1) again by —£¢,a, one has
b
Lave?+La2| - Laiv(@e,ve) - La,|\ve? + La,é2
2a 2a . @ 2a a
b
P 6,80 — pirao— Ba,é =0, (4.6)
a 2a
ie.,

b
B;mvw + ';Laﬁéﬂ - gdiv(ﬂérVE) - 2%%53 + %ﬂméi

xT

b
— P e, — pésap— a2 =0. (4.7)
a 2a

Substituting (4.4) into (4.3), taking summation of (4.2), (4.3), (4.5), and (4.7), and
noticing that

. (p(o) = p(p)~ 1 (p)0) — 1,2

—u, (2 - )t (= ) s () - 0) - - P67

2
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we arrive at the following equality after integrating the resulting equation over [0,t] x
T xR,

//[ p|¥ 1+ pd — ,uc<b+fc +|V6|2+55zcw}(t)dmdy
t
+/ //|V\I/\2da:dydt+/ //(Zﬁaaza§+pam¢2)dxdydt
0 T R 0 T R
t /(=
_(p"(p) _Hay 9
+/O //ua:( : 2b)¢ dedydt
T R
1 b
Z//|:p|\112+p‘1)—,u&¢+'u52+ﬂ|V5|2+u5$Cz:|
2 2a 2a a t=
T R
" m Yfn
0 0
///umgpdxdydt /// ﬂa(bQ——ac )dmdydt
- / / / B <p(p)—p(ﬁ)—p/(ﬁ)¢—p2(p)¢2>dxdydt~ (4.9)
0
T R

Firstly, we estimate each term on the left-hand side of (4.9). It follows from the
condition on p in (1.6) that p'(p) > % p, which implies that the following matrix is
positive definite

dxdy
0

PP _p

2 (4.10)
_popb
2 2a
Then
// [pCI);LCQSJr 02]dxdy
T R
.
T R T R
>C||(¢,9)[*(t) - CE[6]*(t), (4.11)
and the condition on p in (1.6) that e (p) > b2 implies
t /1 t 1
///ax(p (p) &)&dzdydtzc/ a2 | *dt. (4.12)
0 2b 0
T R

Due to the uniform lower and upper boundedness of the density function p(¢,z,y), one
has

[ [ [5otv+ geive| @rasay = cie.vo) (413)
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By Cauchy’s inequality and Lemma 2.2, we have

//%Exéwdxdyz—EHEZHQ—C’EOF. (4.14)
T R
Similarly to (4.13), we have

t t 1
///(\W|2+paw<p2+ﬂawei)dmydtgc/ (||V\I/||2+||a§(<p,éw)\|2>dt. (4.15)
0 2a 0
T R

Furthermore, we estimate each term on the right-hand side of (4.9). It follows from
Cauchy’s inequality and Lemma 2.2 that

1 b

// Sol U4 p — pip+ o2+ L vet + Loy, || dwdy
2 2a 2a a t=0

T R

<C|[(Po, 0,0, Veo)||* +Ca’. (4.16)

By Cauchy’s inequality and Lemma 2.2, we have

t t
///ﬂazéjdxdydtgca/ V&) 2dt, (4.17)
0 2a 0
T R

ol
/ //*51 (Cot + UCyy ) daxdydt
0 a
T R
¢ _ i _ 2 _ 1, _ 2 ~
<C (1t at]® + el 0B ) 10| dadyat
0
T R

t R R t
gc:a%/ /<||Ezt||34+|Em||‘°’4>dydt+6’a§/ (vt
0 4 L3 L3 0

t
gca%+ca%/ Ve 2dt. (4.18)
0

and

As in [18], by the one-dimensional Sobolev’s inequality, Holder’s inequality, Young’s
inequality and Lemma 2.2, we have,

t t
/ / / tawpdrdydt] < C / / el ol e dydt
0 T R 0 T

t N N
<O [ [ lacalls ol ool e
0
T

1/t t 4 2
<1 [ NealPatc [ [l lol v
0 0 T v N

1/t t 2 3
<2 2 i |12, 2
< / lpalPdi+C / ( / lesl3 ) ( / lell32dy) " dt
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1 , o,
SZ |z ||“dt +C Hum||3||90\|3dt
2 1 1. %
||%H dt+C JSup H<PH as(1+t) %) dt

<1 / lioaldt+ 5 sup \|¢H2+Oa%. (4.19)
4/, 3o<t<r

With (3.1), and integration by parts, the fifth term on the right-hand side of (4.9) can
be rewritten as three terms,

/ / / ¢>2 2a )d:r,dydt
- / / / (ad— b)(ad+ bd)dedydt

Qab/ //um ap+bé)(A¢+ Cpy )dxdydt

= 2ab/ //ug; qub—i—ch)Vcdxdydt——/ // Uy (ad+bE) e drdydt
0
Iz
2ab/ //uz a¢+bc Crxdxdydt

I3

Then we estimate I; for 1<j <3. For I;, by Holder’s inequality, Cauchy’s inequality
and Lemma 2.2, it holds that

t t
L|<c / ol (IV ]2 + | VE|2)dt < Ca / (IVoIPHVa|?)yd.  (4.20)

By Holder’s inequality, interpolation inequality, Cauchy’s inequality, and Lemma 2.2,
one has

t
10 [ [ [ (et + atts])dsdyat
0
T R

t t
<C [ Nawal polollpalealdt+C [ sl ool
0 0
to P 1 1 1
< [ Mol sl Il FN D00 e
w19, [
+C/0 [tae || Fa el 74l F2 [ VEI 2 [|Ex | dt
t t t
< [NcaluslealPat+C [ Naalbudi+ [ (10131901 + el 12l3) e

t
< C(a—i—E)/ (VE, Vo) |Pdt+Cat. (4.21)
0
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For I3, we obtain

t
TARSe / / / (0 9|+ [T00e ) dadydt
0
T R

t
<c / (eaalP + 1 8l + [a281)de
t
— 2 4 ~114 — 4
<c / wlP+ 16 L + 112 L + 1 L0 )de

t
gca%+0E/ (V. VE)|2dt+Ca (4.22)
0

The last term can be estimated by using Taylor expansion,

/Ot//uz [p(P)—p(P)—p/(PW—pNQ(p)(bQ]dxdydtSC/ot//|uI¢3|dmdydt
T R TR

t 1
<C / 6]l |22 6| 2dt
0

t 1
gCE/ a2 ¢||dt. (4.23)
0

Substituting the estimates of (4.11)-(4.23) into (4.9), and taking E and « suitably small,
we can prove (4.1) in Lemma 4.1. o

LEMMA 4.2. There exists a positive constant C such that for 0<t<T,

t | t
||(<25,‘I/75)||2(7f)+||(V¢>,V5)||2(t)+/0 ||ﬂ§(<ﬂ7¢,5x,¢z)||2dt+/0 (V¥,V¢,Ve)|?dt

t
+/ Iv2el2dt < C (1| (6o, Wo,e0) |2+ 1| (Yoo, Véo) [P+t ). (4.24)
0
Proof. We apply the operator V to the first equation of (3.1) and then multiply
the resulting equation by % to give
2 2 _ 2 .
20* ), 2p? p? p
_ ¢:Vo-NVo 9, VO- Vb pNG-Vo o pro,divl
- P2 o 02 - 02 o 02
d. qj 2 _ZE 2 _.’I)I _CL‘.’I) xT
4 div |Vl LB VoI (Pratp+Ussd)du (4.25)
2p2 2[)2 p2

In order to deal with the last term on the left-hand side of (4.25), we multiply the
second equation of (3.1) by % to get

(8- 90), ~div(6)— (w6 )+ (wa), + L (V0 — 2 A0V

=p(divl)? + pppdivl + (VE- Ve + %am% . (p/;p) ~ p/<_p)> Pue
+¢(¢yww - %%) ‘Hﬂ(%% - (bw@y) +ﬂm(¢<px - 30¢ac)
(4.26)
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In order to deal with the cross term pVeé- Ve in (4.26), we multiply (3.1); by ZA¢ to
get

b
g(Ae)2+ %b|Vé|2+div (wv&— Z&v&) uVé-Vo—E cmAc (4.27)

Similar to [18], the last term M on the left-hand side of (4.25) has an equivalent
form,

p
:V¢~A\I/+<(by<py) +(¢mw) _(%%) _(be) I DR

Now substituting the equivalent form (4.28) into (4.25), adding (4.25), (4.26) and
(4.27) together, and then integrating the final equality over [0,¢] x T x R lead to

T/ﬂ!(%v&w-w) (t)da:dy—i—/OtT//p12ux¢f;da:dydt+/0tT/R/Z(AE)Qda:dydt

/// \2) P ol —2uv- v+ 2 IVCI }d:rdydt

:// R 2|V¢|2—|—\I/ V¢ dxdy /// Crx Aédxdydt

+ / / / p(div\I/)2dxdydt+ZGi+ZHi, (4.29)
0 i=1 i=1
T R

where
8 t
S-Gi= [ [ [ [#0v0au0s) + 1al0r — 06.) + pasiiv
i=1 7 R
/ /(= 1
(p(p) p(p)>px¢z+ g e — —5 o (Prop +lzed)
p p p?
1
—7ﬁxv¢-V¢—7¢xV¢-V¢ dzdydt, (4.30)
p p
and

i=1

: ¢ 1 1

S H, - /O [ oo = et~ 55020, 0y = 02) = bt adivy

R

+2i :,;|V¢|277¢yv¢ Vit dwqf|v¢|}dxdydt. (4.31)

Furthermore, by Lemma 4.1, we get

t t t 1
Vol + [ 1vo. v Pdr+ [ jacars [ ko
0 0 0
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t
¢ (Ioneo)lt w0l +at) ~ [ [ [ Lo, acdnayar
0
T R

t 8 6
+/ //p(div\I!)Qd:EdydtJr E G+ E H;. (4.32)
0 i=1 i=1
T R

Here we have used the fact that the matrix (4.10) is positive definite. The combination
of (4.1) and (4.32) leads to

1(6.2.8) |2+ | (V6. 98) |2 + / (V6,98 V)| 2dt + / 2 (0,6, 0) |2l

+ [1aaraso (el + 1wl vat) - [ [ [Eonaway
0 0
T R

t 8 6
+ / / / p(div0)dzdydt+ > Gi+> H,. (4.33)
0 i=1 i=1
T R

In the following part, we estimate each term on the right-hand side of (4.33). By
Young’s inequality and Lemma 2.2, one has

t 1 ft t
_/ //ﬁamAédxdydt s—/ IIA6||2dt+C/ 12ac|*dt
0 a 80 Jo 0
T R

_80/ |AE|2dt+Cas. (4.34)

It follows from Lemma 4.1 that

t t
/ / / p(div®)dadydt| < C / / / |V | dzdydt
0 0
T R

<C (160, W)+ ol +at ) +C(E+at) / I(Ve.vo)2de.  (435)

Next we estimate G;(i=1,---,8). And H;(i=1,---,6) can be estimated similarly and
the details will be omitted for brevity. By Young’s inequality and the interpolation
inequality, one has

=] [ / / U(6ys — Guip,dadyd

1

< g5 [ WwoPare [ (Wl el honlt
1

< —

— 80
1

< g0 [ v WP+ 0B [ (19012 oul + 60l . (4.36)

t
[ 1@, eppa+c / (KIS0 + e P Ve P+ o 12117
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H, can be estimated in the same way. By Young’s inequality and Lemma 2.2, one has

G2|=‘/Ot//uz(@pm—tp%)dmdydt‘
<o [ Nomoararsc [ / / (0,6 + (1)) dodyds

_80/ 1(Vo,vw)| dt—i—Ca/ ik (6, 0)]1%dt. (4.37)

By Young’s inequality, the interpolation inequality and Lemma 2.2, one has

t t
Gl =| [ [ [oeparvvastyir|< [ [ [ (1puooul+ipaon,|)asdyat
0 0
R T R

T
1 t t
< 2 2 ~ 4 4
<@ | sl eionl?)arec [ (1ol +lolts )
1 t t N s 4 t
<g | Qec+iwl?)aere [ (adasn 1) dec [l IvelPa
30 0 0 0
1 t t
< | (el + 1) at+CakcE [ [90l2at, (4.39
80 Jo 0

and

IG4\—\/// p/,ip 4 ”)pmxdxdydt\
<c /0 / / (6pabaldudydt

< g5 [ NoulParec [ (11t + 11t ar

_80/ e dt+Ca+CE/ V| %dt. (4.39)

By Young’s inequality and Lemma 2.2, one has

Gs1=| /0 t / / fs oyt

<5 [ NoalPar+c [ e

2
,80/ ||¢z\|2dt+C’/ as (1+1) *%) dt

_80/ || ||2dt +Car5 . (4.40)

By Young’s inequality, the interpolation inequality and Lemma 2.2, one has

t 1 t ~
Gol=| [ [ [ telperiottrat)indyat| <C [ (16aperil +1000ns0))dodyi
0 0
T R
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< g5 [ WoalPar+C [ (et Wiaalte+ Il 61 )
<o [Morase [ (abavi ) ave [ (lorP19el +loriwer)a

*80/ | pe||?dt +Ca? +CE/ [(Vep,V)||dt. (4.41)

By Young’s inequality and Lemma 2.2, one has

t
1
G| =| / / / ?ﬁxVQS'VSDdxdydt‘
0

dt+C - dt
<o [ Ivalrar+c [ Ip.vel?

_80/ \|V¢||2dt+ca/ V||?dt. (4.42)

H,, H; and H, can be estimated in the same way. By Young’s inequality and the
interpolation inequality, one has

t
1
|G8|:‘/0 //p—zqﬁngb-Vgodxdydt‘

2
<5 [ oalPat+c [ (196lL. +IVelL Ja
< g5 [ VoalPar+c [ (1N + [VAPIV21)

<5 [ NoaParcn [ (w64 1wl (143)

Hs and Hg can be estimated in the same way. Substituting the estimates of (4.34)-(4.43)
and the estimates of H;(i=1,---,6) into (4.33), and taking F and « suitably small, we
can prove (4.24) in Lemma 4.2. 0

LEMMA 4.3. There exists a positive constant C such that for 0<t<T,
t
l ~ ~
020+ [ 15 (060000 ) Pat [ 507,70
0

/ H VZ V2\I’ || dt<C(H(¢0,‘I’0,CQ)H1 +a4> (444)
Proof. We multiply the second equation of (3.1) by —AW¥/p to give
2 2

v . U U Uy 1
<|2|> _dlv(¢tv@+¢tv¢)+<§W§_*\pi)m_(quw\yy)y+ \DQ"';(A‘I’)Q
t

1 1
***%\If%r %(W o) - cpyzbzi/zﬁ L9024 p, - AT+ Ty pAp

/ / /(=
—|-pI(O)V¢-A\I'+ (E)p)—p(p)>pr<p—uVE-A\I/—;umA<p. (4.45)



2280 STABILITY FOR VISCOUS VASCULOGENESIS MODEL

Integrating the above equation over [0,¢] x T x R yields
10

v+ [ e [ svPascivePe L @)
i=1
where
10 + 1
ZM:A//KQ%Q (W2~ 60)| +loytarsy
i=1
\1/2 e )w A\p‘
/ /(= 1
+‘<p E}p) —pﬁf’)> prgo‘ +|uV6-A\IJ|+‘pumAngda:dydt. (4.47)

We estimate I; (i=1,...,10) term by term as follows. By Cauchy’s inequality, the
interpolation inequality, and Lemma 2.2, one has

t
1
|Il\:0///§<pz\1:§dxdydt
0 T R

t t
sc/H%Wﬁ+0/HWAbﬁ

0 0

t t
SCAH%Wﬁ+CAHWMWV@M%t

t t
<¢ [ lelPatrcE [ uPat (4.48)
0 0

L|=C J/ jfjf o (12— 02) drdydt
SC/ //(IsoxwilJrlwwaI)dIdydt
0
T R

t t
<C [ lalPat+CE [ (Inl+ e, ). (4.9

t t t
|Ig\:C///gaywmwydxdydt gc/ \|<py|\2dt+CE/ V|2 dt, (4.50)
0 0 0
T R

|14 = / // =2 dadydt <Ca/ |, |2dt, (4.51)
t 1 t t
|I5|:C’///w\11y~A\Ildmdydt g—/ \|A\If||2dt+CE/ (191 + 1w, 1)t
0 TR 30 0 0

(4.52)
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|Is| = ///uxapAgodacdydt

A
<o [ 1aettaree [ it

780/ ™ dt+0a/ Jak pl2dt, (4.53)

e (p) Lt !
|17\:c/// Vo AUdzdydt g—/ \|A\I'||2dt+0/ IVol2dt,  (4.54)
0 - P 80 Jo 0

[Is|=C ///( p ,0) » Apdrdydt
¢

SC///qbﬁmA(pdxdydt
0

< [ Ialparse [ ||pm||L4+H¢||L4)

/||A¢|| dt+Ca+CE ||V¢||2dt, (4.55)

_80

|Io| = / //,ch AUdadydt <7/ 1A dt+0/ 1Vé||2dt, (4.56)

and

t
1
\—710|:C///;ﬂmAcpdmdydt
0

A
<o [ Ietaree [ it

_80/ |Ag|2dt+Cas. (4.57)

Substituting the above estimates for I; (i=1,...,10) into (4.46), using the elliptic esti-
mate |AV|| ~ | V2P|, and taking E and « suitably small, we have
t 1 ¢ 2
Ivoiz+ [ ate, s [ veia<e (IveoP+at)
0 0
t 1
+c/ (Nad ol +11(V6, Ve, V) |12 dt. (4.58)
0

Combining (4.24) and (4.58), we complete the proof of Lemma 4.3. O
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LEMMA 4.4. There exists a positive constant C such that for 0<t<T,
to t
(&, @, Q)1 (1) + 11Vl (t) + /0 12 (0,6, 62,8, W, Vo) | Pt + /0 1(Ve, V¥, Ve)|idt

t
<C(I(én Vo a0+ V26| +at ) +CE [ 7wt (4.59)
0

Proof.  Before giving the proof of Lemma 4.4, we will introduce some basic cal-
culations for the quick understanding of the proof. For the scalar functions f, g, and
h,

(1) V2(fg)=gV2f+Vf@Vg+VgaVf+ Vi,
2) (Vf®&Vg) V2h+(Vga V) -V2h=2(Vf®Vg)- V2h,

(3) (Vf®Vg)-V2h=f,Vg-Vhe+ [,Vg-Vhy =gV [-Vhe+g,Vf Vhy.

We apply the operator V2 on the first equation of (3.1) and then multiply the
resulting equation by V2¢/p? to give

2 2
(52 (S5 5252 (252 (5
), 2p p - p Y p -

B <v¢m-wy> N 2y | V| N V2¢- VAU
Yy

5 =K(t,z,y)+L(t,z,y), (4.60)

P P p
where
div\I/\V2¢|2 20, Vo, - Vo, 2dive, Ve -Vo, 0.V2p-V2¢
K(tax7y) = 9 2 - 2 - 2 - 2
14 P P P
_ 2 2 . _ . _ _
202 02 02 02
and
2 Ve P 20.[Vea 20,Ve. Ve, 2divi,Ve-Ve,
Litz,y) =~ 2 - 2 o 2 o 2
P 14 14 P
_ ¢yv2'¢} : v2¢ + ¢xv¢z V¢y + (byv‘py ) V¢m o ¢1V90y : v¢y
2 2 2 2
14 P P P
B Py Vg -V _ 2divWy oy Puy B ﬁxv%-v% Pz Vipz -V,
p? p? p? p?
p? p? p? p?
— T (4.62)

The fact that
V2¢-V3divl _V2¢-VA\I/ n (V¢y-V<py> . <V¢x~v¢x>
T y

P P P
. (V(bvaac) _ (V(bxv‘ﬂy) _ ¢yv<pyv¢:r _ (bacvd}xvd)y
p . p ” p? p?
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Y ™
was used in the derivation of (4.60). In order to deal with the last term on the left-hand

side of (4.60), we divide the second equation of (3.1) by p, apply the operator V to the
resulting equation, and then multiply the final equation by V2¢ to get

(4.63)

/
(V-9%0), — v (T4 0,076) ~ (16 Wy ) 4 (w060, + L 202
- %v% VAU =pVdivl - AV + pV2E- V2 + M (t,z,y) + N(t,z,y), (4.64)

where VU -V2¢=Vp-V¢,+ V-V, since ¢, corresponds to ¢, and ¢, corresponds
to ¢ from the equation (3.1),. And, M(t,z,y) and N(t,z,y) are defined as follows,
M(t,z,y) ~divIVe- AV + Ve, - AV — VT, - V2 + p,diviAp
(p'(p) _P'(p)
P

- S%l_tx%z +ﬁzz§0A§0 - ﬁ > ﬁmz¢xm - ¢(ﬁx)2¢mg

1 _ 1 1 1_
- 72A(pr¢zm - 72A80V¢ Vi — ﬁumwpx(bxz + —UpgzrPra
P P P P
1_
_ Eumv¢.v¢m (4.65)

and

N(t,z,y) ~¢:Vo- AV +¢,V)- AV -, V- Vo, -1, V- Vo,
—0aVO-Vyy+py V- Vo —, V-V, -1, Vip- Vo,
—¢aVO- Vo —pyVo- Vo, + Uy Ap+psVip- AV
+ U Vo AV — il ppy — U V- Wy — U Vo -V
= P2V PNy — Gz prboz — Pypaday + Uz pAP — PlizzPon

1 1
— AUy — 5 AUV V. (4.66)

Now combining (4.60) and (4.64) together, and then integrating the final equation

over [0,¢] x T xR lead to
///{ 0196, 2+ P 92 dndy

{/ [ (517202 + ve-v2) dmdy]

t
:/ //[deiv\I/-A\II+MV26-V2¢+K(t,x7y)—i—L(t,x,y)
0
T R

+M(t,z,y)+ N(t,x,y)} dxdydt. (4.67)

Furthermore, the combination of (4.67) and (4.44) in Lemma 4.3 leads to
t 1
H((ZZ‘I’,@)Hf(tH||V2¢H2+/0 142 (0,0, Ve, Gy, Vo) [Pt

t
+ [ 176, 90.90) [ <C (60, W) [} + 760 + )
0
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t
+C/ // [|deiV\I/-A\I/|+ Ve V2| +|K(t,z,y)|
0
T R

LGt ) |+ M () |+ N (¢,2,9) ] dedydt. (4.68)

We now estimate the terms on the right-hand side of (4.68). By Cauchy’s inequality,
one has

t t t
c/ //\deiv\Il-A\I/|dmdydt§C/ (||Vdiv\1/\|2+HA\I/||2)dt§C/ V2|2t
0 0 0
T R

(4.69)
Young’s inequality guarantees

t t t
C/ //|uV2é~V2¢\dmdydt§5/ ||V2¢>||2dt+c/ |V2é|2dt. (4.70)
0 0 0
T R

We denote the items in K (t,z,y) as

C/Ot//K(t,x,yNdacdydt
<[]

dlv\Il|V2¢|

‘wxwy Voo

+‘2div@xv2¢wm +‘¢N2¢2-V2¢‘ . axlvzcbf +‘2div%2ﬁx¢m
p 2p p
. _ _ 8
div¥
+| z;”% “P””ngd’” ]dxdydt::ZKi. (4.71)
=1

17
Similarly, we get > L;. We estimate each term in (4.71) as follows. The terms in

i=1
L(t,z,y) can be handled similarly and the details will be omitted. By Holder’s inequality,
Sobolev’s inequality and Cauchy’s inequality, it holds that

///d”\y'v%' dedydt

<c / | div ||~ [ V28] [V de
0

t t
<CE [ |V, [V0lldt <CE | 992 V2]t
0 0
t
<CE [ (IVW1+1v29] + 170 720l
t
<O [ (VW + 720+ [T+ [720])at, (172
0

and

Ko = dxdydt

02
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t
<c / el [ Vby 11V 6
t
<CE / IV 2 | V20 d
t
<CE / (I70l+19%] + 9% 176 at

t
<CE / (IV12 + 120112 + V261 + [ 7211 dt. (4.73)

Lq,Ls and L3 can be estimated in the same way. By Young’s inequality and the inter-
polation inequality, one has

K3=

2div¥, Ve Vo,
ijdmydt

<o / IVoular+ [ (et Vol
<5 [ I+ [ (javw i vae + VoIV ol

,80/ IV el dt+CE/ ||dex11 12+ (12| )dt (4.74)

and

2 2
/ Mdmydt
p

< / IVolPat+C [ (I6aldet V21t
<g5 [ 192 alatC [ (16219612 + 1926219l

<5 [ IV olrar+cm [ (16,17 +19l) . (1.75)

L;(i=4,...,9) can be estimated in the same way. It follows from Lemma 2.2 and Young’s
inequality that

“’WZ‘M Y21V P grdydt

<c / 2| V20 2dt
0

t
gca/ V26| 2dt, (4.76)
0

¢ 2divl
/// div mpwqud dydt
0

T

and
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<o || WouelPar+c [ paive P

< 80/ |6ual dt+0a/ |divi, | 2dt. (4.77)
L;(i=10,...,13) can be estimated in the same way. By Young’s inequality, the interpo-
lation inequality and Lemma 2.2, one has

diV\IJﬁzz ¢acx
2

K;= dxdydt

W / fowalat -0 [ (Jaive i+ el )

=30
1 1 114

g—/ 6 dt+0/ A 2| Vdiv | dt+C’/ ot ()73 ar

,80/ [E| dt+CE/ |Vdiv®||?dt+ Ca?. (4.78)

L;(i=14,...,16) can be estimated in the same way. By Young’s inequality, the interpo-
lation inequality and Lemma 2.2, one has

PlozePas mg% dadydt
P

2
_80/ fowalat+C [ (Il sl )
< g5 | Woueliarec [ loliweltarc [ ot ]
_80/ ||¢MH2dt+CE/ IVg|2dt+Ca?. (4.79)

Ly7 can be estimated in the same way. Next, we will estimate M (¢,z,y) and N(t,z,y)
and we only show the estimate of M (¢,z,y) for brevity. The terms in M (¢,z,y) can be
denoted as

t t
C/ //|M(t,x,y)\dxdydtgc/ //[\div\l’V¢~A\II|+|¢V¢y~A\P|
0 0
T R T R

/ /(=
FEVT,, - V20| + | divIAG| + |00 labre| + | Prap Ap| + ‘ (pﬁ)p ) _#p) )) Prabua

1
+[6(Pa)? Pl + 7

1
+| APV Vo, |+
P

13
} dedydt:=>" M,. (4.80)

i=1

+

1
V-V,
p

23
Similarly, we get > N;. We estimate the right-hand side of (4.80) term by term. By
i=1
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Young’s inequality and the interpolation inequality, one has

t
M1:C/ //|div\IJqu~A\IJ\dxdydt
0

_80/ INT dt+0/ (IV6lL -+ w3 )dr
o [ 18wRa [ (1961219260 + e P Vaive)a
_80/ A dt+CE/ ||V2¢\\2+|\Vd1v\11|| )dt (4.81)

N;(i=1,...,10) can be estimated in the same way. By Young’s inequality and the inter-
polation inequality, one has

t
MQZC/ //|¢V¢y-A\I/|dxdydt
0

<5 [ I, aree [ (ot jaui Ja
<g5 [ I, aee [ (1P Ivel+ jawivar?)a

_80/ V6, dt+CE/ (IV12+ v aw)|?)d, (4.82)

t
M3:C/ //\1/1V\I/y~vz¢|d:z:dydt
0

<o [ v alar-c [ (1ote+ 19wt Ja

and

<5 [ IVl [ (IPIvol + 190, 21920, 1)
_80/ el dt+CE/ ||V1/JH2+HV2\I/ [ )dt (4.83)

By Young’s inequality, the interpolation inequality and Lemma 2.2, one has

t
M4:C/ //\ﬁxdiv\PAcp\dxdydt
0

780/ ||A<pH2dt+C/ I\szm+||dqu||L4)dt
3

_80/ ||A<pH2dt+C/ ok (141)1] dt+C/ div 2| Vv | 2dt
0

780/ ||A<pH2dt+Ca+CE/ |Vdiv¥ || 2dt, (4.84)
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t
MSZC/ //l@wawd)a:mld‘rdydt
0

<5 | Vol caron [ |vola (1.85)

and

N;(i=11,...,19) can be estimated in the same way. By Young’s inequality, the interpo-
lation inequality and Lemma 2.2, one has

t
mo=c | / / Preatp Dpldrdydt
0

<5 [ 1l [ (Il +lette)ar
,80/ ||Ag0||2dt+C’/ o? (141)” dt+C/ [ERAEREE

/ | Ap|2dt + Ca? +CE/ IVl 2dt, (4.86)

M7—C/ //‘( )>pm¢m

<5 [ WonalPaee [ (1paaltect 112 )

780/ | puell?dt +Ca? +CE/ V| ?dt. (4.87)

_80

and

dxdydt

Ny and Ny; can be estimated in the same way. It follows from Young’s inequality and

Lemma 2.2 that
t
Mng’/ //|¢(ﬁr)2¢m|dxdydt
0
T R

t t
<CE [ 6wl e+ CE [ palbuc
0 0
t
gOE/ | pue||2dt + Car. (4.88)
0

By Young’s inequality, the interpolation inequality and Lemma 2.2, one has

t
1
0 p

<o / fowclat+C [ (17l + 151 )

/II%H dt+Ca+CE/ 1V Ap|2dt. (4.89)

dxdydt

_80
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Nay can be estimated in the same way. By Young’s inequality and the interpolation
inequality, one has

Mm:C’/Ot//‘:?A@VqS-V%

_80/ 1962 dt+C’E/ (172611 + 1V A]?) . (4.90)

dxdydt

N3 can be estimated in the same way. By Young’s inequality, the interpolation in-
equality and Lemma 2.2, one has

¢ 1
M11:C/ //‘7ﬂxmﬁx¢zz
0 p

<5 [ WoualPats [ auelfua v [ lpulbeat

_80/ | peel|?dt+Ca? + Ca. (4.91)

dxdydt

It follows from Young’s inequality and Lemma 2.2 that

K 1
M12:O/ //‘7ﬂzmx¢$m
0 p

<5 [ WonalPat 4 [ ree

<o | WowlParscad. (192

dxdydt

By Young’s inequality, the interpolation inequality and Lemma 2.2, one has

t
1
M13:C/ //]—Qamw-wz
0 P

< [ Iararre [ faiae [ Vol

dxdydt

_80/ |Vo|2dt +Ca? +C’E/ V26| %dt. (4.93)

Substituting the estimates of (4.69)-(4.93), L(¢,z,y) and N(t,x,y) into (4.68), using the
elliptic estimates ||AW|| ~||V2¥|| and ||[VAU||~|[V3¥||, taking £ and « suitably small,
and using (4.44) in Lemma 4.3, we end the proof of Lemma 4.4. |

LEMMA 4.5. There exists a positive constant C such that for 0<t<T,
3 2 ! 2
(62 30) + 3¢ / 185016 60,82, 02, V6) P+ [ (V6,70 96)
0

+ [ Ivwiar< (160wl + ol +a¥). (499
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Proof.  We divide the second equation of (3.1) by p, apply the operator V to the
resulting equation and then multiply the final equation by —VAW to give

2\112
('V2|) —div(VgotV230+V1/JtV2w
t
1
FuVip g+ uVihe M) + (GIAUP) 4 [vAwP

=—uV?E- VAU + ; )v2¢ VAU +Q(t,2,y)+ R(t,2,y), (4.95)

where

Q(t,2,y) ~0e V- VAP + ¢V o-VAQ+ 0t Ap, + 1, V- VA
xT — IELI
—ApVp -V, + %(Aw)z — llaPaa Ap+ (Ap)? +9pVp, - VAp
P’ P'(p) - _ 1
+ (Ef)) — ?) Poa DNz + ()’ Apy + ?AWW- VAp
1 1 1 1
+ ?pa:ASOA(Px - ;uwawA(p:c p u;ch(b VASO +— P uampr(paa (496)

and

R(t,z,y) ~; Vo -VAY+¢, V- VAp+1), V- VAY+ ¢,V -VAY

~ AUV T + () — gt A+ (Aw

F PV, - VAP + Ol A, + ?mpw VA + ? Do AYAY,.  (4.97)

Integrating (4.95) over [0,¢] x T xR leads to

V2wt /||VA\II|| dt < C|| V2, |2 +o/ //w% VAW dedydt

+O v2¢ VAU

dxdydtJrC’/ // Q(t,x y)|+|R(t,x,y)|)dmdydt.
(4.98)

We are now in a position to estimate the terms on the right-hand side of (4.98). First,
by Young’s inequality, one has

t 1 t t
c/ //\MVQE-VA\I'\dxdydtS%/ ||VA\IJH2dt—|—C/ IV22d, (4.99)
0 0 0
T R

an

V26 VAT

p'(p)
p

drdydi < o / IVAY[2dt+C / IV2l1%dt.  (4.100)

COL/R/



QINGQING LIU AND YUXIU TIAN 2291

In the following, since the estimate for R(¢,z,y) is similar to Q(¢,x,y), we only show the
estimate of Q(t,z,y) for brevity. The terms in Q(¢,z,y) can be denoted simplicitly as

C/OtT/R/@(t»w,y)dwdydtSC/OtT/R/(l%V@~VA<p|+|¢mV¢-VA<PI

+P2tie Ape |+ |1 Vo - VAQ|+|ApVe- Vo, |+ ‘ %(Aw)z‘ + |tz Pra A

+|¢(ﬁm)2AS@z|

—I(AW\ #1090, Vgl ] (T -2 5,

1 1 1
| Awwﬁ VAp|+ pgﬁxAsoA% +’pumch<P1‘ + p2umv¢~VA<p‘
1 16
+ ?ﬂmﬁgﬁA@m )dxdydt::ZQi. (4.101)

i=1

Similarly, we get Z R;. Each term in (4.101) will be estimated as follows. By Young’s

inequality and the mterpolatlon inequality, we can obtain

t
Q1=C/ //|<pIVap-VAap|dxdydt
0

t
<o [ 198+ [ (oalits +I9lL:Yat
<5 [ Ivagiarte [ 1ot
_80/ IV A dt+CE/ V20| 2dt, (4.102)

and

QQ:C/OtT/HZWquS-VA@dxdydt

I t
5 | 1vaelaec [ Vol
_80/ HVAw\PdHCE/ IV72 || dt. (4.103)

R;(i=1,...,4) can be estimated in the same way. By Young’s inequality, the interpolation
inequality and Lemma 2.2, one has

t
Qs=C / / / (Guiis A, |drdydt
0

t
<go [ 18ealPar+c [ (1ealho Il Ja

L 4
—80/ [ A dt+0/ 2|21V e dt+0/ at(14t) ﬂ dt
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780/ ||A<pIH2dt+CE/ |V |?dt+Ca, (4.104)

and

t
Q4=C/ //|ﬁzV<p~VA<p|d:Edydt
0
T R

1/t t B
< | IvalRaC [ (19lhe+ )
,80/ HVA@Hth—kCE/ IV2¢||2dt +Ca. (4.105)

R;(i=5,...,8) can be estimated in the same way. By Young’s inequality, the interpolation
inequality, Holder’s inequality and Sobolev’s inequality, one has

t
Qs =C [ [ [ 180V Vepsldadyi
0
T R

t t
<C [IverlPar+C [ (Iagli+I9elLs)a
t t
<c / IVeal2dt+C / (1AGIPIVAQI + [Tl at

t t
go/ ||V<px||2dt+CE/ (1926l + 92|, (4.106)
0 0

t
Q6:C/ //’%(Ago)z‘dxdydt
0
T R

t
<C / l0all 1 Al Ao dt

and

t
<CE / lpall 2l At
t
<CE / (loall + Vs |+ 1172 021) | Aplldt

t
<CE [ (leslP +19: 1P+ IV 0rl+ | Agl) (4.107)

Rg and R;( can be estimated in the same way. By Young’s inequality, the interpolation
inequality and Lemma 2.2, one has

t t t
@ =C [ [ [1nprtssldsiyar=C [ NpulPdtrc [ (180l + L) de
0 0 0
T R

t t
<C [ NpwalPitC [ 101V ApIdt+Ca

t t
gc/ ||apm||2dt+CE/ [VAp|?dt+Ca, (4.108)
0 0
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el [

t
<c / s | Ap]2dt < Ca / | A2t (4.109)

and

= (D) ‘ dedydt

R11 and Rpo can be estimated in the same way. It follows from Young’s inequality and
the interpolation inequality that

t
Q=c [ / / 6V, -V Agldudydt
0

<5 [ 1vBelat-0 [ (Iwli+19e, 1L )
<g0 [ 198elat+C [ (IIPITIP-+ 196, 177, 1)

_80/ VA dt+CE/ |V¢||2—|—||V290y|| )dt (4.110)

Ry3 can be estimated in the same way. By Young’s inequality, the interpolation in-
equality and Lemma 2.2, one has

auc [ [ (48405,

<5 [ Nenlare [ (1ot Ipealt)ar

_80/ | Ap.|[2dt+Ca? +CE/ V6|2 (4.111)

dxdydt

R14 can be estimated in the same way. By Young’s inequality, Sobolev’s inequality and
Lemma 2.2, one has

t t t
On—C / / / 16(p2)* Aoy |dadydt <CE / A, |2dt + CE / 12t
0 0 0
T R

t
gCE/ | A, |?dt+ Ca. (4.112)
0

It follows from Young’s inequality and the interpolation inequality that

t
1
Q12=C / / / ];Asow-mso]dxdydt
0
T R

1 t t
< | IVAlPaC [ (1alt+ Vo)

,80/ IVAg]| dt+CE/ IVA@|* + (V|| )dt. (4.113)
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R15 can be estimated in the same way. By Young’s inequality, the interpolation in-
equality and Lemma 2.2, one has

t
1
Q13:C/ //‘751A¢A¢z
0 P

<o [ Ienlarec [ (1ol it

dxdydt

_80/ | A, || dt+CE/ |VAp|?dt+Ca. (4.114)

R16 can be estimated in the same way. By Young’s inequality and Lemma 2.2, one has

¢ 1
C214:C’/ //‘7awa:a:A50w
0 p

<o [ 18P+ [ e

/ | Ag,||2dt+Cars. (4.115)

dxdydt

_80

By Young’s inequality, the interpolation inequality and Lemma 2.2, one has

t
1
Q15:C/ //‘pﬁﬂngb'VAgo‘d:rdydt
0
<5 [ V860 [ (Jaaliteo+ 1961 Ja

_80

K 1
QIGZC/ //‘?ama:ﬁwA(Pa:
0 p

t
<5 [ 1aeularec [ (Iaalior 11t

/ 1Ag,|2dt+Ca? + Ca. (4.117)

/ IVAg||?dt+Ca? +OE/ V20| dt, (4.116)

and

dxdydt

- 80
Substituting the estimates of (4.99), (4.100), Q(t,x,y) and R(t,z,y) into (4.98) and
using the elliptic estimates |AU|| ~ ||[V2¥|| and |[VAY| ~[|V3¥| give
t t
IV PO+ [ 90 a < (9wl +ad) € [ (92,926 V0 s
0 0

+C(E+a) /t (||(v¢,v\1/)||§+||v3\p||2)dt. (4.118)
0

Taking F and « suitably small, combining (4.59) and (4.118), we end the proof of
Lemma 4.5. ]
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Multiplying (3.1), by —¢, we have
—div(eVe) + |VE|? +b|¢|? = €8+ adi.
It follows from integration over T x R and Cauchy’s inequality that
1€ < CUSDN + lleza (OIP) < C(D0)]*+a),
and hence in particular,
1E(0)[[72 < C(I6(0)II* +a?).

Thus the proof of Proposition 3.2 is completed, which implies that (3.8) holds true.

4.2. Proof of Theorem 1.1. The global existence follows from Proposition
3.1. Therefore, it suffices to show the large-time behavior of the solution as t— +oo,
that is to prove (1.24). For this, by the two-dimensional Sobolev’s inequality, it holds
that

sup 6] <C(0l1F 1612 + 10,1102, 7). (4.119)

(z,y)€ERX

According to (¢,¥)€ H*(Rx T) and the third equation of (3.1), we can deduce that
¢€ H?>(R x T). Then we need to prove

(Vé, VI, VE)|| =0, (4.120)

lim ||
t—+o0

which can be guaranteed by the following claim,

+o00 d
/ {n(w,vw,ven% ‘dt [(Ve, VI, Ve) | ] dt < +oc. (4.121)
0
In fact, owing to Proposition 3.1, we get
“+o0
/ [(Vg, V¥, VE)|?dt < +o0. (4.122)
0
Next we only need to show
+oo d 5

/ ’dtH(VqS,V\Il,Vé)H dt < 4o0. (4.123)

0

By (3.1), Cauchy’s inequality, Lemma 2.2 and (3.7), one has

too ) g 9 +oo
/ ‘|V¢| dt:/ ’//QV(b-VqStdxdy‘dt
0 dt 0
T R

) /0 m‘ T/ R/ div(gtiqS)—gbtAgbdxdy‘dt

:2/0+w‘//¢tA¢dxdy‘dt
T R
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+oo
2 / ‘ / / (PdiV‘I’+7/1¢y+u¢m+ﬁzs0+ﬂx¢)A¢dxdy’dt
0
T R

IN

“+oo
C/ //(‘Pi+¢§+¢y2+¢x2+ﬁx@2+ﬂm¢2+(A¢)2)dmdydt
0
T R

<C( (60, Wo)[3+at ) < +oc, (4.124)

+oo
d 2
2 \ve
[ g
—+00
=/ ‘//ZV\II-V\I/tdxdy‘dt
0 T R

“+oo
=2/ ‘//div(\I/tV\I/)—\Ilt-A\I/dxdy‘dt
0
T R

“+o00
:2/ ‘//\Ilt~A\I!da;dy‘dt
0 T R

“+o00
SC/ ‘//(|vw|2+ﬂx902+|V¢|2+ﬁz¢2+|v2\11|2+\VE|2+ﬂix)dmdy dt
0
T R

and

dt

<O(ll(60, wo)l3+at +ad ) <+oc, (4.125)

+oo
d,_ .2
/ \dtnw

too “+o0o
:2/ ’//V&«Vétdxdy’dtg/ (||V5||2+||V6t||2>dt. (4.126)
0 0
T R

Referring to (3.7), we know that | Vé||? is time-integrable. It suffices to prove [|[Vé]? is
time-integrable. Taking derivative on the third equation of (3.1) with respect to t, one
has

and

dt

Aét—i-émt—i—acﬁt —bét =0. (4127)

Multiplying (4.127) by —¢é and then integrating the resulting equation over T x R, we
have

—//5tA5tdxdy—//amétdxdy—a//¢tetdxdy+b//5fdxdy:0. (4.128)
T R T R T R

T R

It follows from integration by parts and Cauchy’s inequality that
IV&l|* +l1él* < nllél® + Cylles|* + Cyll oI, (4.129)

which implies that

IV ? <C (el +liel?) (4.130)
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By Lemma 2.2, we have
+o0o +oo
/ ||am||2dtgc/ (141)%dt < +00. (4.131)
0 0
As to 0+°° ¢ ||*dt, by the first equation of (3.1), we have
+o0o 5 +o0 5
[ Nodae= [ v+ v, 4wty + po+ w0
0 0
“+oo
<o [ [ [lemn 402 0. w4 0,0 dudyde
° TR
gC(||(¢O,\1/0)\|§+a%) <+o0. (4.132)

Combining (4.130), (4.131) and (4.132), we obtain that

+00d 2
[ |5

Now we get (4.123). Furthermore, we end the proof of (4.120). So we have

+oo
dtg/ (||Vé||2+||Vét||2) dt < +oo. (4.133)
0

lim sup o, U, ¢)||=0. 4.134
H+OO(I’y)@MTII( )l (4.134)

Thus, combining (4.134) and Lemma 2.2(3), we obtain the desired time-asymptotic
behavior of the solution that

x
lim sup p,u,v,¢)(t,x,y)—(p,u",0,c" (7>’:0. 4.135
Jim s [ —( (2 (4135)
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