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EPIDEMIC DYNAMICS AND WEALTH INEQUALITY UNDER TWO
FEEDBACK CONTROL STRATEGIES∗

LINGLING WANG† AND CHONG LAI‡

Abstract. A multi-agent wealth exchange model, which considers a varying trading propensity
and a control of wealth inequality, is adopted to investigate the wealth distribution under infectious
disease. Using the feedback control method, two saturated nonlinear incidence rates are obtained
to explore the impact of the government contact control measures on epidemic dynamics and wealth
distribution. We find that the contact control measures may reduce the peak of the infected fraction
and make more people remain uninfected, but prolong the duration of the epidemic and increase wealth
inequality. In a closed (an open) economy, the large-time behavior of wealth distribution presents a
Pareto tail, and examples of trading propensity depending on wealth suggest that an increase in the
savings of the wealthy may increase wealth inequality. In addition, our simulation results illustrate
that the government’s tax and redistribution measures can alleviate the wealth inequality caused by
the contact control and improve the wealth of agents at low and middle levels.
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1. Introduction

The spread of an epidemic has a negative impact on personal lives and socio-
economic development [18]. Mathematical models are employed to study the epidemic
dynamics, and the relationship between the potential cost and benefit of various pan-
demic interventions [21, 43], which help the government to take appropriate epidemic
prevention and economic control measures in time. In epidemiology, the rapid outbreaks
of infectious diseases are described by compartment models, in which compartments with
labels M(passively immune), S(susceptible), E(exposed), I(infective), and R(recovered)
represent epidemiological classes, and the choice of compartments in epidemiology mod-
els depends on the characteristics of a particular disease [26].

In recent years, many works employ the theory of rarefied gas dynamics to
study social and economic phenomena (opinion formation, wealth distribution, etc.
[4,7,9,13,22–24,38,40]). The basic idea is that each agent is regarded as a rarefied gas
molecule, and the interaction of traits (such as opinion, wealth, contact number [16],
etc.) between agents is similar to collisions of molecules. To investigate the socio-
economic impact of epidemics, scholars combine the epidemiological models (see [25–27])
with the social-economic phenomena of multi-agent systems by using the theory of rar-
efied gas dynamics [15–17], in which the trait distributions of the agent groups (such as
the susceptible, infected, and recovered group) are described by Boltzmann-type equa-
tions. The trait interactions between agents with the same or different infection status,
and the changes in agents’ infection status, are included in the dynamic model. Dimarco
et al. [16] combine the Susceptible-Infective-Recovered(SIR) model with a population-
based contact dynamical model to discuss the influence of sociality on the spread of
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infectious diseases, and find that the spread of infectious diseases depends on moments
of the contact distribution.

Our study is related to the work in [15], in which the SIR dynamical model with the
wealth exchange Cordier-Pareschi-Toscani(CPT) model in [10] are integrated together
to investigate the impact of infectious diseases on wealth distribution. The research of
Dimarco et al. [15] is based on the framework of the classical SIR model, in which the av-
erage number of contacts is independent of the epidemic’s severity, and assumes that the
wealth exchange behavior between agents follows a binary interaction rule with constant
trading propensity. One contribution of this paper is that we extend the work in [15]
and consider two practical factors: epidemic control and economic regulation. Our
motivation is that the epidemic and economic measures taken by the government have
non-negligible influences on wealth distribution and social equality [18]. In practice, be-
fore the advent and popularization of vaccines, governments took intervention measures
to avoid the deterioration of the epidemic, such as developing vaccines, blocking areas
with a serious epidemic, requiring people to reduce social activities, etc. Meanwhile, in
response to the reduction of the labor force caused by the spread of the epidemic and
the high social and economic costs of contact interventions [28], the government may
take economic measures to alleviate the wealth inequality. In this paper, we investigate
the impact of government contact and economic control measures on wealth distribu-
tion, and find an optimal contact control strategy to curb the epidemic and minimize
economic losses.

In epidemiological models, the contact rate, which is the average number of adequate
contacts per person per unit time [26], has an impact on the threshold quantity (the
basic reproduction number) and the incidence rate of epidemiological models. In early
infectious disease models, Hethcote [25], Kermack and McKendrick [29] assume that the
agents’ contact rate ρ0 is a constant. In recent years, the contact rate is considered as a
function of agents’ trait (e.g., age, commuting [5,6,8]) to discuss the influence of social
structure on epidemics. Before the popularization of vaccines, the government usually
took non-pharmaceutical measures, such as isolation, blockade, and safe distance, to
control the spread of the epidemic disease and prevent the limited health care system
from being overburdened. The essence of these non-pharmaceutical measures is to
reduce people’s social contacts. Therefore, the impact of non-pharmaceutical measures
on the transmission of the disease is mainly reflected in the adjustment of the contact
rate [31,37].

Recently, with the outbreak of the COVID-19 epidemic, many works are dedi-
cated to simulating the non-pharmaceutical containment measures. Based on the micro-
updated model of the number of social contacts in [16], Dimarco et al. [17] introduce a
control term to indicate the selective restriction of social activities to curb the epidemic.
Using a SIR model with a social structure, Albi et al. [6] simulate the government’s
strategy of taking non-pharmacological interventions to reduce the spread of epidemics
through an optimal control problem. Utilizing an age-dependent Susceptible-Exposed-
Infectious-Recovered-Dead(SEIRD) compartment model, Albi et al. [5] consider a multi-
ple optimal control problem depending on specific social activities (such as home, work,
school, etc.), and evaluate the impact of selective relaxation of containment measures.
The objective of the non-pharmacological intervention in the optimal control problem
in [37] is to minimize the mortality associated with the epidemic, and it does not con-
sider the impact of the agent’s social characteristics on the epidemic. The control terms
obtained from the optimal control problem in [5,6,37] are used to appropriately reduce
the contact rate in the epidemic model to characterize the non-drug intervention.
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In [15], the contact rate ρ(w,v) is a function of two exchangers’ wealth (w,v), but
is not affected by the spread of disease. Inspired by the influenza pandemic model with
controls in [31], in which a control term is used to model the effect of the external
isolation control, we introduce a control term usoc to depict the intensity of the contact
control measures taken by the government to curb the epidemic, and couple the contact
rate ρ(w,v) with the control term usoc. The time-dependent control term usoc in this
paper is derived from an optimal control problem by the feedback control method in [5].
Our optimal control problem simulates the government’s intervention strategy with
the goal to minimize the spread of virus, namely, reducing the number of infected
individuals. Cost functions adopted in our work are the generalized form of perception
functions in [5]. The nonlinear incidence rate F(·) (i.e., the average number of new
infected persons per unit time [32]) associated with the new cost function is verified
to satisfy the biologically feasible conditions in [30] and the saturating effect in [32].
Mathematically, the incidence rate F(·) is non-decreasing for the susceptible fraction
and the infected fraction, and is a concave function of the infected fraction. Simulating
and analyzing the dynamics of the contact control SIR model corresponding to the
cost functions under different parameters, we obtain a new contact control strategy.
The strategy is epidemic dependent, time-varying, and performs well in controlling the
epidemic and minimizing economic losses.

Optimal control strategies are also employed in the research of social and economic
dynamics, such as tumor growth, opinion formation, wealth distribution, etc. [1,3,12,39].
Blockade measures reduce social contacts and economic activities, alleviating the risk
of virus transmission, but may also cause economic issues. The extended classical SIR
model in [20] illustrates that the epidemic leads to economic recessions. Therefore,
to avoid the aggravation of the wealth inequality caused by the epidemic, the govern-
ment should take wealth control measures to mitigate the losses suffered by families
and enterprises [20]. In a homogeneous market with multi-agents, Düring et al. [12]
investigate the influence of optimal control strategy on wealth distribution, where each
agents’ wealth evolves according to

ẇi(t)=
1

N

N∑
j=1

Pij(wj−wi)+ui , wi|t=0=wi,0≥0. (1.1)

ẇi(t) is the derivative of wealth wi of agent i about time t. The initial wealth wi,0 of
each agent is nonnegative, and the constant parameter Pij ∈ [0,1) is a measure of the
exchange proportion between agent i and j (i,j=1,2,...,N). Each control ui is achieved
by minimizing the functional

u=argmin
u∈U

1

2

∫ T

0

(
1

N2

N∑
i,j=1

|wi−wj |2+
ν

N

N∑
i=1

|ui|2)dt,

where u=(u1,...,uN). ν >0 is a penalization parameter, U is the controls’ constraint
space. Düring et al. [12] point out that the control term ui in the wealth exchange
model (1.1) depicts the taxation and redistribution strategy via an alternative theoret-
ical method, and illustrate that the control affects the Pareto index of the steady-state
wealth distribution.

In the study of wealth distribution, the interaction rule between agents is described
by a micro wealth exchange model, one of whose typical characteristics is the exchange
propensity of agents. In the Cordier-Pareschi-Toscani(CPT) model [10,33], the exchange



70 EPIDEMIC DYNAMICS AND WEALTH INEQUALITY

propensity is a non-negative constant, namely, all agents in the system have the same
exchange propensity. Düring and Toscani [14] generalize the CPT model to describe the
wealth exchange between different countries or different social groups within a country,
in which agents have different exchange propensities. Considering that the distribution
of wealth is affected by individual characteristics, the exchange propensity in [36] de-
pends on the agent’s knowledge. The results in [36] show that knowledge may enlarge
wealth inequality.

The micro multi-agent wealth exchange model with feedback control used in our
work is a generalization of (1.1). We think that agents are risk conscious, only part of
their wealth is used for market exchange and the rest for savings. We introduce a saving
propensity parameter into (1.1) to reflect the maximum proportion of personal wealth
that agents are willing to exchange in the market, depending on the infection status of
the agent. Assuming that agents’ trading behavior is affected by their status (health
status and subjective consciousness), we generalize the constant exchange propensity
Pij in (1.1) to functions of the infection status and wealth of both traders. In addition,
the cost function in our optimal control problem is set as a weighted sum of the square
of the wealth gap between agents and the square of the distance between individual
wealth and the average wealth, aiming to reduce wealth inequality. Compared with the
CPT model in [15], our multi-agent wealth exchange model contains more information,
which may help us to analyze the impact of government and agents’ decisions on wealth
distribution if the epidemic occurs. An interesting finding is that, in contrast to the
steady-state wealth distribution in [15], where the Pareto index depends on the ratio of
agents’ trading propensity to market risk, the Pareto index obtained in our work also
depends on the susceptible fraction.

Assuming that the number of agents N is relatively large, we adopt the model
predictive control method [2] to solve our optimal control problems. By using an ap-
propriate quasi-invariant limits approximation [22], the Boltzmann-type equations are
transformed into a Fokker-Planck system, which has an explicit steady-state solution in
special cases. Using the steady-state solution of the Fokker-Planck system, we discuss
the large-time behavior about wealth distribution in a closed economy when trading
propensity depends on the wealth of both traders through examples, and analyze the
effect of contact control measures on wealth inequality in a closed (an open) economy.

The rest of the paper is structured as follows. In Section 2, a multi-agent wealth
exchange model with feedback control is introduced and a binary wealth exchange model
with market risk is derived, which is the interaction rule of the collision operator in
the Boltzmann-type equations. In Section 3, using the feedback control method, the
government’s contact control strategy is embedded in the dynamic wealth distribution
model under an epidemic. The SIR epidemic model with feedback control is obtained
and compared with the classical SIR model to verify the effectiveness of contact control
measures in epidemic containment. Section 4 presents a Fokker-Planck asymptotic
analysis of the wealth dynamics in the controlled epidemiologic model, and analyzes the
influences of several parameters (agents’ trading propensity, the government’s control
measures for the epidemic, etc.) on the large-time behavior of the wealth distribution.
Section 5 numerically simulates epidemic dynamics and steady-state wealth distribution
under different contact control measures, and analyzes the impact of government contact
control and economic control measures (such as taxation and redistribution) on wealth
distribution. Conclusions are drawn in Section 6.
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2. Micro description of wealth dynamics

2.1. Multi-agent wealth exchange with feedback control. In this section,
we consider a general form of the wealth exchange model (1.1). Different from the
interaction between agents in one class [12], we consider three types of agents, which
are classified as susceptible, infected, and recovered according to their infection status.
The wealth exchange problem between agents is similar to the physical problem of mixed
rarefied gas [11, 14]. To reflect the differences between agents, we extend the constant
exchange propensity in (1.1) as a function of traders’ wealth and infection status, and
assume that only parts of the agents’ wealth is used for market exchange.

We suppose that each agent’s state is entirely described by the infection status and
the agent’s wealth, meaning that agents are indistinguishable [36,41]. Here, we assume
that there are no debts in the interaction. Hence, the wealth wi=wi(t)≥0 of agent
i∈{1,...,N} evolves as

ẇi=
1

N

N∑
j=1

P (wi,hi;wj ,hj)(γjwj−γiwi)+θ(1−γi)wi+ui, (2.1)

wi(t=0)=wi,0≥0,

where hi∈{S,I,R} represents the infection status of agent i, N is the total number of
agents in the wealth exchange system. The trading propensity P (wi,hi;wj ,hj)∈ [0,1]
of agent j to agent i depends on the wealth and infection status of exchangers. We
assume that agents are rational and always retain certain wealth for survival. Each
agent i only uses part of the personal wealth to participate in market transactions,
which is expressed by a constant parameter γi∈ [0,1], and the rest is used for savings
with interest rate θ. Compared with the wealth exchange model in [15], we take into
account the redistribution effect of the government’s economic strategy on wealth, which
is designed to narrow the wealth gap, and use a control term ui=ui(t) to express it.
The control term ui=ui(t) belongs to an admissible set U and is given by

u=argmin
u∈U

1

2N

∫ T

0

N∑
j=1

[
µ1

N

N∑
k=1

(wj−wk)
2+µ2(wj− w̄)2+ν|uj |2

]
dt, (2.2)

where u=(u1,...,uN), constants µ1≥0 and µ2≥0 satisfy µ1+µ2=1. The penalty pa-
rameter ν >0 indicates the importance of control u (see [3]). In (2.2), the target cost

functional L :=
N∑
j=1

[
N∑

k=1

µ1(wj−wk)
2/N+µ2(wj− w̄)2

]
measures the degree of wealth

inequality, and w̄ is the average wealth.
The method of model predictive control [1,3,12,42] (receding horizon strategy or in-

stantaneous control in engineering [34]) is employed to solve the optimal control problem

(2.1) and (2.2). Let [0,T ]=
⋃NT−1

n=0 [tn,tn+1], where t0=0, tNT =T and tn+1− tn :=∆t.
Using Euler discretization method, we transform the wealth exchange Equation (2.1)
on [0,T ] into discrete equations. Then the control problem is solved in each small time
interval [tn,tn+1] and

wn+1
i =wn

i +
∆t

N

N∑
j=1

Pn
ij(γjw

n
j −γiwn

i )+θ(1−γi)wn
i ∆t+∆tuni , (2.3)

uni =argmin
ui∈U

1

2N

N∑
j=1

[
µ1

N

N∑
k=1

(wn+1
j −wn+1

k )2+µ2(w
n+1
j − w̄n+1)2+ν|unj |2

]
, (2.4)
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where Pn
ij :=P (w

n
i ,h

n
i ;w

n
j ,h

n
j ) and w̄n+1=

N∑
i=1

wn+1
i /N . wn

i , h
n
i and uni represent the

values of variables wi, hi and ui at time tn, respectively.
Employing the Lagrange multiplier method, the instantaneous feedback control

term uni is deduced from the control problems (2.3) and (2.4) in the form

uni =− (1+µ1)∆t

ν
(wn+1

i − w̄n+1). (2.5)

Equation (2.5) leads to
N∑
i=1

uni ≡0, meaning that all taxes are redistributed among agents.

Therefore, from (2.3), we have the relationship

w̄n+1= w̄n+
∆t

N2

N∑
i,j=1

Pn
ij(γjw

n
j −γiwn

i )+
θ∆t

N

N∑
j=1

(1−γj)wn
j . (2.6)

Substituting (2.3) and (2.6) into (2.5), the explicit expression of the control term uni
reads

uni =− (1+µ1)∆t

ν+(1+µ1)∆2t

[
wn

i − w̄n+
∆t

N

N∑
j=1

Pn
ij(γjw

n
j −γiwn

i )

+θ(1−γi)wn
i ∆t−

∆t

N2

N∑
i,j=1

Pn
ij(γjw

n
j −γiwn

i )−
θ∆t

N

N∑
j=1

(1−γj)wn
j

]
. (2.7)

2.2. Binary wealth exchange with control and risk. Based on the multi-
agents wealth exchange model in Section 2.1, we study the interaction between two
agents, namely, N =2. From (2.3) and (2.7), the binary wealth exchange model is
derived in the form

wn+1
i =

[
1+2θα(1−γi)

]
wn

i +α
[
Pn
ij−β(Pn

ij+P
n
ji)−2θβ

]
(γjw

n
j −γiwn

i )

−β(1+2θα)(wn
i −wn

j ), (2.8)

where α=∆t/2, β=∆t/(2(γ+∆t)) and ν=2(1+µ1)γα.
Let (w,v) represent the pre-trade wealth of two agents with infection status H ∈

{S,I,R} and Λ∈{S,I,R}, respectively, and (w∗,v∗) denote their post-trade wealth.
Assuming that agents with the same infection status have a common saving propensity,
and their infection status remains unchanged in a single interaction. According to (2.8)
and taking into account the influence of risks, the microscope binary wealth exchange
model is given by

w∗=[1+2θα(1−γH)]w−β(1+2θα)(w−v)+[THΛ(w,v)−2θαβ](γΛv−γHw)+η1w,

(2.9a)

v∗=[1+2θα(1−γΛ)]v−β(1+2θα)(v−w)+[TΛH(v,w)−2θαβ](γHw−γΛv)+η2v,
(2.9b)

where

THΛ(w,v)=αP (w,H;v,Λ)−αβ[P (v,Λ;w,H)+P (w,H;v,Λ)],

TΛH(v,w)=αP (v,Λ;w,H)−αβ[P (v,Λ;w,H)+P (w,H;v,Λ)].
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The random variables η1 and η2 represent market risks, and their diffusion intensity
are related to the agent’s wealth. Suppose that the random variables η1 and η2 are
independent and identically distributed with mean zero and variance σ2.

Remark 2.1. To ensure the non-negativity of post-trade wealth w∗,v∗, it is necessary
to assume

η1≥β+αγH −1, η2≥β+αγΛ−1

for every fixed α≤1.
In fact, (2.9a) is rewritten as

w∗=

[
1−β−γHTHΛ(w,v)+2θα(1−β)(1−γH)+η1

]
w

+

[
β+γΛTHΛ(w,v)+2θαβ(1−γΛ)

]
v.

Using β=∆t/(2(γ+∆t))<1/2, we have

β+γΛTHΛ(w,v)+2θαβ(1−γΛ)≥β(1−αγΛ)+α(1−β)P (w,H;v,Λ)γΛ>0

and

β+γHTHΛ(w,v)−2θα(1−β)(1−γH)≤β+αγH ≤1. (2.10)

From (2.10), the restrictive condition η1≥β+αγH −1 is sufficient to guarantee that the
post-trade wealth w∗≥0.

From the binary interaction (2.9), we have

⟨w∗+v∗⟩=w+v+α

[
γH(P (v,Λ;w,H)−P (w,H;v,Λ))+2θ(1−γH)

]
w

+α

[
γΛ(P (w,H;v,Λ)−P (v,Λ;w,H))+2θ(1−γΛ)

]
v,

where ⟨·⟩ is the mathematical expectation in terms of η1 and η2. In particular, if trading
propensities P (w,H;v,Λ) and P (v,Λ;w,H) satisfy[

P (w,H;v,Λ)−P (v,Λ;w,H)
]
(γHw−γΛv)=2θ

[
(1−γH)w+(1−γΛ)v

]
, (2.11)

the wealth of the binary interaction system is conserved in statistic, i.e ⟨v∗+w∗⟩=v+w.

3. Wealth dynamics in a controlled SIR epidemiologic model
Similar to the classical SIR model in [25–27], agents are divided into three groups:

susceptible, infected, and recovered. The susceptible group refers to the individuals who
have no immunity and may be infected with the disease, the infected group includes
those who are infectious and can transmit the disease, and the recovered group consists
of those who are healed or with permanent immunity.

Let fΛ(w,t) represent the wealth distribution of agents in class Λ∈{S,I,R} at t≥0.
The change of wealth distributions in the background of the epidemic are due to two
aspects [15]. On one hand, in the course of a market transaction, an agent may change
from one health status to another due to exposure to an infected virus or medical
treatment. On the other hand, binary trading activities lead to changes between gain
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and loss of the agents’ wealth [14]. Then, the time evolution of fΛ(w,t), Λ∈{S,I,R} is
written as a coupling form of transport and collision process, namely,

∂fS(w,t)

∂t
=−Ξ(w,t)fS(w,t)+

∑
Λ∈{S,I,R}

Q(fS ,fΛ)(w,t), (3.1a)

∂fI(w,t)

∂t
=Ξ(w,t)fS(w,t)−r(w)fI(w,t)+

∑
Λ∈{S,I,R}

Q(fI ,fΛ)(w,t), (3.1b)

∂fR(w,t)

∂t
= r(w)fI(w,t)+

∑
Λ∈{S,I,R}

Q(fR,fΛ)(w,t), (3.1c)

where r(w) is the recovery rate, Ξ(w,t) is the rate of susceptible individuals transforming
into infected individuals.

For any test function ψ(w)∈C∞
0 (R+), the weak form of (3.1) is

d

dt

∫
R+

fS(w,t)ψ(w)dw=−
∫
R+

Ξ(w,t)fS(w,t)ψ(w)dw

+
∑

Λ∈{S,I,R}

∫
R+

Q(fS ,fΛ)(w,t)ψ(w)dw, (3.2a)

d

dt

∫
R+

fI(w,t)ψ(w)dw=

∫
R+

Ξ(w,t)fS(w,t)ψ(w)dw−
∫
R+

r(w)fI(w,t)ψ(w)dw

+
∑

Λ∈{S,I,R}

∫
R+

Q(fI ,fΛ)(w,t)ψ(w)dw, (3.2b)

d

dt

∫
R+

fR(w,t)ψ(w)dw=

∫
R+

r(w)fI(w,t)ψ(w)dw

+
∑

Λ∈{S,I,R}

∫
R+

Q(fR,fΛ)(w,t)ψ(w)dw. (3.2c)

Specifically, the weak form of the Boltzmann-type collision operator Q(·, ·) is expressed
as ∫

R+

Q(fH ,fΛ)(w,t)ψ(w)dw

=

〈∫
R2

+

BHΛ ·
(
ψ(w∗)−ψ(w)

)
fH(w,t)fΛ(v,t)dvdw

〉
, H,Λ∈{S,I,R}. (3.3)

The non-negative interaction kernel BHΛ, which is related to the probability of micro-
scopic interaction between agents of classes H and Λ, is considered as

BHΛ= cHΛ ·χ(w∗≥0) ·χ(v∗≥0). (3.4)

The constant cHΛ>0 represents the interaction frequency of agents for classes H and
Λ, and χ(·) is the indicator function. The interaction kernel (3.4) with suitable cHΛ

guarantees that the post-trade wealth is non-negative.

3.1. SIR epidemic model with contact control. Considering the implemen-
tation of government contact control measures, the transformation rate Ξ(w,t) in (3.1)
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is expressed as

Ξ(w,t)=

∫
R+

ρ(w,v)[1−λusoc(t)]fI(v,t)dv, (3.5)

where ρ(w,v) is the contact rate between two agents with wealth w and v without
isolation measures. The control term usoc(t)∈ [0,1] represents the government’s efforts
to reduce contact between agents to prevent the spread of virus, and the constant
λ∈ [0,1] measures the effectiveness of the control strategy’s application.

Let S(t), I(t) and R(t) represent the fraction of agents in the susceptible, infected
and recovered class, respectively. We have H(t)=

∫
R+
fH(w,t)dw, H ∈{S,I,R}. We

introduce an objective functional J to determine the government’s strategy, so as to
reduce the number of infections and the incidence rate in the time interval [0,T ]. Then
the control term usoc(t) is derived from the optimal control problem

usoc(t)=argmin
usoc∈Ũ

J (usoc)

=argmin
usoc∈Ũ

∫ T

0

[
Φ(S(t̃),I(t̃))+

1

2
νsoc|usoc(t̃)|2

]
dt̃,

where Φ(·) is a cost functional, νsoc is a penalty parameter. Ũ is an admissible set, in
which the control term usoc takes values to keep a monotonic decreasing trend of the
number of susceptible individuals.

Similar to the wealth inequality control model in Section 2.1, the feedback control
method (see [5, 6]) is adopted to derive the social contact control term usoc. We have

usoc(t)=argmin
usoc∈Ũ

{
Φ(S(t),I(t+∆t))+

1

2
νsoc|usoc(t)|2

}
. (3.6)

Substituting ψ(w)=1 into (3.2), we get the evolution process of the fractions S(t),
I(t) and R(t).

dS(t)

dt
=−

∫
R2

+

ρ(w,v)[1−λusoc(t)]fS(w,t)fI(v,t)dvdw, (3.7a)

dI(t)

dt
=

∫
R2

+

ρ(w,v)[1−λusoc(t)]fS(w,t)fI(v,t)dvdw−
∫
R+

r(v)fI(v,t)dv, (3.7b)

dR(t)

dt
=

∫
R+

r(v)fI(v,t)dv. (3.7c)

Discretizing (3.7b) with respect to time, then the infected fraction at time t+∆t is
given by

I(t+∆t)= I(t)+∆t

∫
R2

+

ρ(w,v)[1−λusoc(t)]fS(w,t)fI(v,t)dvdw

−∆t

∫
R+

r(v)fI(v,t)dv. (3.8)

Differentiate the objective functional in (3.6) about the control variable usoc, and com-
bine with (3.8) to obtain the control term

usoc(t)=
λ

κ

∂Φ

∂I
·
∫
R2

+

ρ(w,v)fS(w,t)fI(v,t)dvdw, (3.9)
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where νsoc=κ∆t. In the case of λ=0 or κ=∞, the control item usoc(t) is zero and the
transformation rate (3.5) becomes that in [15].

Proposition 3.1. Assuming that the contact rate ρ(w,v)=ρ and the recovery rate
r(w)= r are constant, and let (S(t),I(t)) be a solution of (3.7) in{(

S(t),I(t)
)∣∣∣∣S(t)≥0,I(t)≥0,S(t)+I(t)+R(t)=1

}
.

Then the steady-state solutions S∞= lim
t→∞

S(t) and R∞= lim
t→∞

R(t) exist. The infected

fraction I(t) in the steady state (t→∞) tends to zero.

Proof. From (3.7), the susceptible fraction S(t) decreases with time t and has a
lower bound 0, the recovered fraction R(t) increases with time and has an upper bound
1. By the monotone bounded convergence theorem, the limitation S∞=S(t=∞) and
R∞=R(t=∞) exist.

From (3.7b), we have

dI(t)

dt
≤ [ρS(t)−r]I(t).

If the proportion of susceptible agents at the initial time satisfies S0<r/ρ, then the
infected fraction I(t) decreases monotonically to zero.

In the case of S0>r/ρ, if I
∞ ̸=0, then dR/dt>0 and R∞=∞, which contradicts

R∞≤1. Therefore, the infected fraction I(t) in the steady state tends to zero.

Proposition 3.2. Let ρ(w,v)≤ρ0 and ∂Φ/∂I≥0 be monotonic about the infected
fraction I. Then for all times t>0, solutions to (3.7) are admissible if the penalty
parameter κ satisfies

κ>λ2ρ0S0Imax
∂Φ

∂I

∣∣∣∣
I=I∗

, (3.10)

where

I∗=

{
0, if ∂2Φ

∂I2 <0,

Imax, if ∂2Φ
∂I2 >0.

Imax is the peak of the proportion of the infected.

Proof. To maintain the monotonically decreasing trend of the number of suscep-
tible individuals, λusoc(t)<1 is required in (3.5). Therefore, from (3.9), for any time
t>0, we will prove the inequality

λ2
∂Φ

∂I
·
∫
R2

+

ρ(w,v)fS(w,t)fI(v,t)dvdw<κ. (3.11)

According to Proposition 3.1, the infected fraction in the steady state is 0. There-
fore, when ∂2Φ/∂I2<0, ∂Φ/∂I reaches the maximum at I∗=0. When ∂2Φ/∂I2>0,
∂Φ/∂I reaches the maximum value at I∗= Imax. In addition, the susceptible fraction
S(t) decreases with time t. Then S0≥S(t) for all times t≥0. Thus, (3.10) is a sufficient
condition to guarantee that inequality (3.11) holds.



LINGLING WANG AND CHONG LAI 77

For the feedback control SIR model (3.7), when the contact rate ρ(w,v)=ρ and the
recovery rate r(w)= r are constants, and λ=0 or κ=∞, it becomes the classical SIR
model [27]

dS(t)

dt
=−ρS(t)I(t), (3.12a)

dI(t)

dt
=ρS(t)I(t)−rI(t), (3.12b)

dR(t)

dt
= rI(t). (3.12c)

Before comparing the relationship between quantities of epidemic dynamics (3.7) and
(3.12), such as the steady-state solutions and the peak of infected fraction, we denote
σ0=ρ/r and recall the properties of the classical SIR model (3.12).

Theorem 3.1 ([27]). Assume that (S(t),I(t)) is a solution of (3.12) in{(
S(t),I(t)

)∣∣∣∣S(t)≥0,I(t)≥0,S(t)+I(t)≤1

}
.

If σ0S0≤1, then I(t) decreases to zero as t→∞. If σ0S0>1, then I(t) first increases
up to a maximum value Imax= I0+S0−1/σ0− [ln(σ0S0)]/σ0 and then decreases to zero
as t→∞. The susceptible fraction S(t) is a decreasing function and the limiting value
S∞ is the unique root in (0,1/σ0] of the equation

S0+I0−S∞+
1

σ0
ln
S∞

S0
=0. (3.13)

Proposition 3.3. Suppose ρ(w,v)=ρ, r(w)= r, and the parameters of system (3.7)
satisfy Proposition 3.2. Let (S∞

soc,I
∞
soc,R

∞
soc) and (S∞

∗ ,I∞∗ ,R∞
∗ ) be the steady-state solu-

tions of the system (3.7) and the classical SIR model (3.12), respectively, then

S∞
soc≥S∞

∗ , I∞soc= I
∞
∗ =0, and R∞

soc≤R∞
∗ .

Proof. According to Proposition 3.1 and Theorem 3.1, the steady-state infected
fraction of the system (3.7) and the classical SIR model (3.12) is 0, i.e. I∞soc= I

∞
∗ =0.

Divide (3.7b) by (3.7a), and integrate over [0,∞] with respect to time t to obtain

I∞−I0=S0−S∞+

∫ ∞

0

r

ρS(t)[1−λusoc(t)]
dS(t).

Since S(t) decreases with time t, and ρ[1−λusoc(t)]≤ρ for any time t, the steady-state
solution S∞

soc of (3.7) satisfies the inequality

I0+S0−S∞
soc+

1

σ0
ln
S∞
soc

S0
≥0.

Let g(x)= I0+S0−x+ 1
σ0

ln x
S0

, which is a concave function on [0,1]. We observe that
g(x) possesses a unique maximum point x=1/σ0, and g(1)=0, lim

x→0
g(x)=−∞. In

addition, Theorem 3.1 indicates that S∞
∗ ∈ (0,1/σ0) is a solution of g(x)=0. Thus,

S∞
soc≥S∞

∗ and R∞
soc≤R∞

∗ .
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Proposition 3.3 shows that compared with the classical SIR epidemic model (3.12),
the contact control measures taken by the government enable more agents to stay in a
healthy state.

Proposition 3.4. Suppose ρ(w,v)=ρ, r(w)= r, and the parameters of system (3.7)
satisfy Proposition 3.2. Let Imax

soc and Imax
∗ be the peak of infected fraction of the system

(3.7) and the classical SIR model (3.12), respectively, then

Imax
soc ≤ Imax

∗ .

Proof. If ρ(w,v)=ρ, r(w)= r, and the parameters of system (3.7) satisfy Propo-
sition 3.2, then (3.7b) is rewritten as

dI(t)

dt
=
[
ρ
(
1−λusoc(t)

)
S(t)−r

]
I(t). (3.14)

According to (3.14) and (3.9), if the parameters at the initial time satisfy the inequality(
1−λusoc(0)

)
ρS0>r, the infected fraction I(t) increases with time to reach the peak

Imax
soc , and then decreases to the steady state I∞soc=0.

Suppose that the classical SIR model (3.12) and the feedback control SIR model
(3.7) get their infected fraction’s peak at time t∗ and tsoc, respectively. From (3.14), we
have

S(tsoc)=
r

ρ
[
1−λusoc(tsoc)

] ≥ r

ρ
.

Divide (3.7b) by (3.7a) and integrate on [0,tsoc] with respect to time t to obtain

Imax
soc = I0+S0−S(tsoc)+

∫ tsoc

0

r

ρ
(
1−λusoc(τ)

)
S(τ)

dS(τ).

From Theorem 3.1, for the classical SIR model (3.12), we have

Imax
∗ = I0+S0−S(t∗)+

r

ρ
ln
S(t∗)

S0
and S(t∗)=

r

ρ
.

Thus

Imax
soc −Imax

∗ =S(t∗)−S(tsoc)−
r

ρ
ln
S(t∗)

S0
+

∫ tsoc

0

r

ρ
(
1−λusoc(τ)

)
S(τ)

dS(τ)

≤S(t∗)−S(tsoc)−
r

ρ
ln
S(t∗)

S0
+
r

ρ
ln
S(tsoc)

S0

=
r

ρ

[
ln
S(tsoc)

S(t∗)
− S(tsoc)

S(t∗)
+1

]
.

Because f(x)= lnx−x+1 is a concave function of x, and the maximum value is obtained

at x=1, so f(x)≤f(1)=0. Using S(tsoc)
S(t∗)

≥1, we have Imax
soc ≤ Imax

∗ .

Remark 3.1. The above analysis of epidemic control can be generalized to epidemic
models including more compartments, and may be subject to more complex compu-
tational derivations. Similar to (3.1), we assume that the wealth distributions in an
epidemic model with Susceptible-Exposed-Infected-Asymptomatic-Recovered (SEIAR)
compartments [17] evolve as

∂fS(w,t)

∂t
=−Ξ̃(w,t)fS(w,t)+

∑
Λ∈Ω

Q(fS ,fΛ)(w,t), (3.15a)
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∂fE(w,t)

∂t
=Ξ̃(w,t)fS(w,t)−rEfE(w,t)+

∑
Λ∈Ω

Q(fE ,fΛ)(w,t), (3.15b)

∂fI(w,t)

∂t
= ζrEfE(w,t)−rIfI(w,t)+

∑
Λ∈Ω

Q(fI ,fΛ)(w,t), (3.15c)

∂fA(w,t)

∂t
=(1−ζ)rEfE(w,t)−rAfA(w,t)+

∑
Λ∈Ω

Q(fA,fΛ)(w,t), (3.15d)

∂fR(w,t)

∂t
= rIfI(w,t)+rAfA(w,t)+

∑
Λ∈Ω

Q(fR,fΛ)(w,t), (3.15e)

where Ω={S,E,I,A,R}, rI and rA are the recovery rates of infected and asymptomatic
infected individuals, respectively. ζ ∈ [0,1] represents the proportion of exposed people
who become infected, and rE is the rate of transition from exposed persons to infected
persons. We suppose that the transformation rate of susceptible individuals into infected
or asymptomatic infected individuals is

Ξ̃(w,t)=

∫
R+

ρI(w,v)[1−λusoc,1(t)]fI(v,t)dv+
∫
R+

ρA(w,v)[1−λusoc,2(t)]fA(v,t)dv,

where the control terms usoc,1(t) and usoc,2(t) are derived from the optimal control
problem

(usoc,1(t),usoc,2(t))

=argmin

∫ T

0

{
Φ(S(t̃),I(t̃),A(t̃))+

1

2
νsoc

[
|usoc,1(t̃)|2+ |usoc,2(t̃)|2

]}
dt̃. (3.16)

A(t)=
∫
R+
fA(w,t)dw is the asymptomatic infected fraction at time t.

When the contact rates ρI and ρA are constants, integrating (3.15) with respect to
w on R+ yields

dS(t)

dt
=−ρI [1−λusoc,1(t)]S(t)I(t)−ρA[1−λusoc,2(t)]S(t)A(t), (3.17a)

dE(t)

dt
=ρI [1−λusoc,1(t)]S(t)I(t)+ρA[1−λusoc,2(t)]S(t)A(t)−rEE(t), (3.17b)

dI(t)

dt
= ζrEE(t)−rII(t), (3.17c)

dA(t)

dt
=(1−ζ)rEE(t)−rAA(t), (3.17d)

dR(t)

dt
= rII(t)+rAA(t), (3.17e)

where E(t)=
∫
R+
fE(w,t)dw is the exposed fraction. In the case of ρA =0 and ζ=1,

(3.17) becomes an SEIR epidemic model.
Following the feedback control method in [5] and using (3.16), the control terms in

(3.17) are

usoc,1(t)=
λρIrE
κ̃

[
ζ
∂Φ

∂I
+(1−ζ)∂Φ

∂A

]
·S(t)I(t),

usoc,2(t)=
λρArE
κ̃

[
ζ
∂Φ

∂I
+(1−ζ)∂Φ

∂A

]
·S(t)A(t),
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where κ̃=νsoc/(∆t)
2. According to (3.17), S(t) and R(t) are monotonically bounded,

we have E∞= I∞=A∞=0 in the steady-state.

3.2. Nonlinear incidence rates. When the contact rate ρ(w,v)=ρ is a con-
stant, from (3.7) and (3.9), the incidence rate F(S,I) reads

F(S,I)=ρ

[
1− λ2ρ

κ

∂Φ

∂I
S(t)I(t)

]
S(t)I(t), (3.18)

which is determined by the form of the cost functional Φ(S,I).
In model (3.12), the incidence rate F(S,I)=ρSI is a bilinear function of the sus-

ceptible fraction S(t) and the infected fraction I(t), and excludes the saturation effect.
When the infected fraction is high, agents will be exposed to the disease, so the trans-
mission rate may respond more slowly than those to linear increase in the number of
infected persons [30,32]. Next, we introduce two cost functions to derive two nonlinear
incidence rates, which are examples of saturating incidence rates.

Consider two cost functionals

Φ1(S,I)=
ln(1+cIp1(t))

p1cS(t)
, 0<p1≤1, c=

λ2ρ

κ
(3.19)

and

Φ2(S,I)=
Ip2(t)

p2Sq(t)
, p2≥1, 0≤ q≤1. (3.20)

In particular, the cost functional Φ1(S,I) with p1=1 and the cost functional Φ2(S,I)
with q=0 are introduced in [5] to describe the policy maker’s perception of the epi-
demic’s influences.

For the cost functional (3.19), we get ∂Φ1/∂I >0, ∂2Φ1/∂I
2<0 and Φ1(S,I)≥ I, so

Φ1(S,I) is an increasing concave function of the infected fraction I, overestimating the
number of infected agents. From (3.20), we have ∂Φ2/∂I >0 and ∂2Φ2/∂I

2≥0. Then
Φ2(S,I) is an increasing convex function of the infected fraction I. However, the number
of infected agents is overestimated when p2=1 and underestimated when p2≥2.

Substituting cost functionals (3.19) and (3.20) into (3.18), we obtain the corre-
sponding incidence rates

F1(S,I)=
ρS(t)I(t)

1+cIp1(t)
, (3.21)

F2(S,I)=ρ
[
1−cS1−q(t)Ip2(t)

]
S(t)I(t). (3.22)

In particular, (3.21) is a special case of the nonlinear incidence rate ρIpS/(1+αIq)
(p>0,q >0,α>0) in [30]. The nonlinear incidence rate (3.22) in the case of q=1 is
considered in [19]. Simple calculations verify that the incidence rate (3.21) and (3.22)
satisfy the biologically feasible conditions [30]:

F(0,I)=F(S,0)=0

and

∂F(S,I)

∂I
>0,

∂F(S,I)

∂S
>0, for all S, I >0.
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In addition, we find that nonlinear incidence rates (3.21) and (3.22) are concave about
the infected fraction I, i.e.

∂2F1(S,I)

∂I2
≤0,

∂2F2(S,I)

∂I2
≤0, for all S, I >0,

indicating the saturating effect. Therefore, we infer that cost functionals (3.19) and
(3.20) are reasonable, and their corresponding incidence rate includes the saturating
effect.

4. Fokker-Planck asymptotic analysis
Following the quasi-invariant limit method in [2], the Fokker-Planck equation can

be derived from the Boltzmann-type equation, and the description of the large-time
behavior of wealth distribution is obtained through its steady-state solution.

Here, we introduce a scale parameter 0<ϵ≪1, and set τ = ϵt, g
H
(w,τ)=fH(w,t),

H ∈{S,I,R}. Let α= ϵ, then β= ϵ/(γ+2ϵ). To preserve the main properties of kinetic
Equation (3.1), we employ the scaled quantities

σ2→ ϵσ2, ρ(w,v)→ ϵρ(w,v), κ→ ϵκ, r(w)→ ϵr(w). (4.1)

Then, for any test function ψ(w)∈C∞
0 (R+), the scaled weak form of (3.1) reads

d

dτ

∫
R+

g
S
(w,τ)ψ(w)dw=− 1

ϵ

∫
R+

Ξϵ(w,τ)gS
(w,τ)ψ(w)dw

+
1

ϵ

∑
Λ∈{S,I,R}

∫
R+

Qϵ(gS
,g

Λ
)(w,τ)ψ(w)dw, (4.2a)

d

dτ

∫
R+

g
I
(w,τ)ψ(w)dw=

1

ϵ

∫
R+

[
Ξϵ(w,τ)gS

(w,τ)−rϵ(w)gI
(w,τ)

]
ψ(w)dw

+
1

ϵ

∑
Λ∈{S,I,R}

∫
R+

Qϵ(gI
,gΛ)(w,τ)ψ(w)dw, (4.2b)

d

dτ

∫
R+

g
R
(w,τ)ψ(w)dw=

1

ϵ

∫
R+

rϵ(w)gI
(w,τ)ψ(w)dw

+
1

ϵ

∑
Λ∈{S,I,R}

∫
R+

Qϵ(gR
,g

Λ
)(w,τ)ψ(w)dw. (4.2c)

From (4.1), we have

1

ϵ

∫
R+

Ξϵ(w,τ)gS
(w,τ)ψ(w)dw=

∫
R+

Ξ(w,τ)g
S
(w,τ)ψ(w)dw, (4.3)

1

ϵ

∫
R+

rϵ(w)gI
(w,τ)ψ(w)dw=

∫
R+

r(w)g
I
(w,τ)ψ(w)dw. (4.4)

For the collision integral operator Qϵ in (4.2), which is given by (3.3), we consider the
second-order Taylor expansion of ψ(w∗) around w,

1

ϵ

∫
R+

Qϵ(gH
,g

Λ
)(w,τ)ψ(w)dw

=
cHΛ

ϵ

∫
R2

+

〈
ψ

′
(w)(w∗−w)+ ψ

′′
(w)

2
(w∗−w)2

〉
g
H
(w,τ)g

Λ
(v,τ)dvdw+R(ϵ), (4.5)
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where H,Λ∈{S,I,R}. The residual R(ϵ) describes the higher order of ϵ. In fact, for
any test function ψ(·)∈C2+δ

0 (R+), we have

R(ϵ)=
cHΛ

ϵ

∫
R2

+

〈
ψ

′′
(w̃)−ψ′′

(w)

2
(w∗−w)2

〉
g
H
(w,τ)gΛ(v,τ)dvdw

=O(ϵ1+δ),

where w̃= ξw∗+(1−ξ)w for some ξ∈ (0,1).
From the binary wealth exchange (2.9a), and the scaling α= ϵ, we get

lim
ϵ→0

1

ϵ
⟨w∗−w⟩=

[
2θ(1−γH)−

1

γ
−γHP (w,H;v,Λ)

]
w+

( 1
γ
+γΛP (w,H;v,Λ)

)
v.

Using the scaling σ2→ ϵσ2, the limitation of (4.5) is expressed as

lim
ϵ→0

1

ϵ

∫
R+

Qϵ(gH
,g

Λ
)(w,τ)ψ(w)dw

=cHΛ

∫
R+

{
− ∂

∂w

[
GHΛ(w,τ)gH

(w,τ)
]
+
σ2

2
Λ(t)

∂2

∂w2

[
w2g

H
(w,τ)

]}
ψ(w)dw, (4.6)

where

GHΛ(w,τ)=
mΛ(τ)

γ
+
[
2θ(1−γH)−

1

γ

]
Λ(t)w

+

∫
R+

(γΛ ·v−γH ·w)P (w,H;v,Λ) ·gΛ(v,τ)dv,

and mΛ(τ)=
∫
R+
wgΛ(v,τ)dw denotes the mean wealth of agents in class Λ.

Substituting (4.3) and (4.4) into (4.2), taking ϵ→0 and combining with (4.6), from
(4.2), we obtain the Fokker-Planck equations

∂g
S
(w,τ)

∂τ
=−Ξ(w,τ)g

S
(w,τ)

+
∑

Λ∈{S,I,R}

cSΛ

{
− ∂

∂w

[
GSΛ(w,τ)gS

(w,τ)
]
+
σ2Λ(t)

2

∂2

∂w2

[
w2g

S
(w,τ)

]}
, (4.7a)

∂g
I
(w,τ)

∂τ
=Ξ(w,τ)g

S
(w,τ)−r(w)g

I
(w,τ)

+
∑

Λ∈{S,I,R}

cIΛ

{
− ∂

∂w

[
GIΛ(w,τ)gI

(w,τ)
]
+
σ2Λ(t)

2

∂2

∂w2

[
w2g

I
(w,τ)

]}
, (4.7b)

∂g
R
(w,τ)

∂τ
= r(w)g

I
(w,τ)

+
∑

Λ∈{S,I,R}

cRΛ

{
− ∂

∂w

[
GRΛ(w,τ)gR

(w,τ)
]
+
σ2Λ(t)

2

∂2

∂w2

[
w2g

R
(w,τ)

]}
, (4.7c)

with boundary conditions

GHΛ(w,τ)gH
(w,τ)

∣∣w=∞
w=0

=0
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and

∂

∂w

[
w2g

H
(w,τ)

]∣∣∣∣w=∞

w=0

=0, H,Λ∈{S,I,R}.

From Proposition 3.1, the steady-state infected fraction is I∞=0, so the wealth
distribution and mean wealth of the infected class are zero, i.e. g∞

I
=0 and m∞

I =0. We
have

Ξ∞(w)=

∫
R+

ρ(w,v)
[
1−λu∞soc

]
g∞
I
(v)dv=0.

Therefore, from (4.7a) and (4.7c), the steady-state solution g∞
H
(w)

(
H ∈{S,R}

)
satisfies

the ordinary differential equation(
σ2

2

∑
Λ∈{S,R}

cHΛ ·Λ∞
)
d

dw

[
w2g∞

H
(w)

]
−
( ∑

Λ∈{S,R}

cHΛ ·G∞
HΛ(w)

)
g∞
H
(w)=0, (4.8)

where

G∞
HΛ(w)=

m∞
Λ

γ
+
[
2θ(1−γH)−

1

γ

]
Λ∞w

+

∫
R+

(γΛ ·v−γH ·w)P (w,H;v,Λ)g∞
Λ
(v)dv. (4.9)

Λ∞ and m∞
Λ represent the steady-state fraction and mean wealth of agents in class Λ∈

{S,R}, respectively. Besides, (S∞,R∞) is the steady-state solution of the SIR epidemic
system (3.7).

Substitute ψ(w)=w into (4.2) and take ϵ→0, then the steady-state mean wealth
m∞

H

(
H ∈{S,R}

)
satisfies

( ∑
Λ∈{S,R}

cHΛ ·Λ∞)[
2θ(1−γH)−

1

γ

]
m∞

H +
H∞

γ

( ∑
Λ∈{S,R}

cHΛ ·m∞
Λ

)
+

∑
Λ∈{S,R}

cHΛ

∫
R2

+

(γΛv−γHw)P (w,H;v,Λ)g∞
H
(w)g∞

Λ
(v)dvdw=0. (4.10)

Remark 4.1. In Remark 3.1, (3.15) describes the time evolution of wealth distribution
in an epidemic background with SEIAR compartments. Following the asymptotic limit
method above, for the dynamic Equations (3.15), we have f∞E =f∞I =f∞A =0. f∞S and
f∞R are steady-state solutions of equations∑

Λ∈{S,R}

Q(fS ,fΛ)(w,t)=0,
∑

Λ∈{S,R}

Q(fR,fΛ)(w,t)=0,

which is aligned with the wealth distribution in the SIR compartments model.

Equations (4.9) and (4.10) indicate that the steady-state distribution g∞
H
(w)

(
H ∈

{S,R}
)
depends on the form of the trading propensity P (w,H;v,Λ). Next, we analyze

the expression of the steady-state solution of (4.8) through several examples.
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4.1. Steady state wealth distribution in a closed economy. According
to (2.11), if the trading propensities in (2.9) satisfy P (w,H;v,Λ)=P (v,Λ;w,H), and
saving is not considered, i.e. θ=0, the wealth of the whole agent system is conserved.
In this case, the implicit solution of (4.8) is given by

g∞
H
(w)=CH ·w−2− 2

γσ2 ·exp
{∫ 2

∑
Λ∈{S,R}

cHΛG̃
∞
HΛ(w)

(σ2
∑

Λ∈{S,R}
cHΛ ·Λ∞)w2

dw

}
, H ∈{S,R}, (4.11)

where

G̃∞
HΛ(w)=

m∞
Λ

γ
+

∫
R+

P (w,H;v,Λ)(γΛv−γHw)g
∞
Λ
(v)dv

and the positive constant CH satisfies
∫
R+
g∞
H
(w)dw=H∞. The mean wealth of the

whole agent system m=m∞
S +m∞

R is time invariant.
To study the impact of exchange behavior on wealth inequality, in which trading

propensity is affected by the wealth of both traders, we consider two simple cases,
namely, the trading propensity P (w,H;v,Λ) is a monotonic increasing or decreasing
function of wealth. Let the contact rate ρ(w,v)=ρ and the recover rate r(w)= r be
constants, and cHΛ =1

(
H,Λ∈{S,I,R}

)
.

Example 4.1. If trading propensity P (w,H;v,Λ) is a decreasing function of wealth
w and v, we choose

P (w,H;v,Λ)=PHΛ ·
1

(1+w)(1+v)
,

where the constant PHΛ ∈ (0,1]. Then the agents’ steady-state wealth distribution in
class H ∈{S,R} is

g∞
H
(w)=CH ·w−2− 2

γσ2 ·
(

w

1+w

)−d̂H

e−
b̂H
w , (4.12)

where

b̂H =
2m

γσ2
+

2

σ2
·

∑
Λ∈{S,R}

(
PHΛ ·γΛB

∞
1,Λ

)
, d̂H =

2

σ2
·

∑
Λ∈{S,R}

PHΛ ·
(
γΛB

∞
1,Λ+γHB

∞
0,Λ

)
and

B∞
0,Λ =

∫
R+

1

1+v
g∞
Λ
(v)dv, B∞

1,Λ =

∫
R+

v

1+v
g∞
Λ
(v)dv=Λ∞−B∞

0,Λ.

Example 4.2. If trading propensity P (w,H;v,Λ) is an increasing function of wealth
w and v, we choose

P (w,H;v,Λ)=PHΛ ·
(
1− 1

1+w

)
·
(
1− 1

1+v

)
.

Then the steady-state wealth distribution of agents in class H ∈{S,R} is

g∞
H
(w)=CH ·w−2− 2

γσ2 (1+w)−b̌H ·
(

w

1+w

)ďH

e
− 2m

γσ2 · 1
w , (4.13)
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where

b̌H =
2γH

σ2

∑
Λ∈{S,R}

(
PHΛ ·B∞

1,Λ

)
and ďH =

2

σ2

∑
Λ∈{S,R}

PHΛ ·γΛ(m
∞
Λ −B∞

1,Λ).

The Pareto index of wealth distribution g∞
H
(w) obtained in Examples 4.1 and 4.2

are 1+2/(γσ2) and 1+2/(γσ2)+ b̌H , respectively. Obviously, these two Pareto indexes
decrease with the control parameter γ, because a smaller Pareto index means greater
wealth inequality. Formulas (4.12) and (4.13) indicate that the feedback control in the
form of (2.7), in which the government redistributes all tax revenue, reduces wealth
inequality. In addition, the wealth inequality is improved with the increase of the
government’s control over economic behavior (i.e. γ decreases from ∞ to 0). On the
other hand, we find that the Pareto index of (4.12) is less than that of (4.13). As a
result, if the rich save more, the wealth inequality may not be improved.

From Proposition 3.3, the contact control usoc affects steady-state fractions S∞

and R∞. According to (4.10), the impact of contact control usoc on average wealth m∞
H(

H ∈{S,R}
)
is indirectly reflected by fractions S∞ and R∞. Furthermore, the explicit

expressions of average wealth m∞
H and steady-state distribution g∞

H
are closely related

to the form of trading propensity P (·,·;·,·). Even in Examples 4.1 and 4.2, where their
symmetric trading propensity P (w,H;v,Λ) provides us a rough judgment on the shape
of the stationary distribution, no explicit expression for g∞

H
is obtained. As a special

case, when trading propensity P (·, ·; ·, ·) is a constant, (4.11) provides an explicit form
of the distribution g∞

H
.

Example 4.3. If the trading propensities P (w,H;v,Λ)=PHΛ

(
H,Λ∈{S,I,R}

)
are

constants, then the steady-state wealth distribution of agents in class H ∈{S,R} is
explicitly expressed as

g∞
H
(w)=H∞ baH

H

Γ(aH)
w−aH−1e−

bH
w , (4.14)

where

aH =1+
2

γσ2
+2γH

( ∑
Λ∈{S,R}

cHΛPHΛ ·Λ∞
)/(

σ2
∑

Λ∈{S,R}

cHΛ ·Λ∞
)
,

bH =2

[ ∑
Λ∈{S,R}

(
1

γ
+γΛPHΛ)cHΛ ·m∞

Λ

]/(
σ2

∑
Λ∈{S,R}

cHΛ ·Λ∞
)
,

and the mean wealth m∞
S and m∞

R are given by

m∞
S =

( 1γ +γRPSR)S
∞m

1
γ +(γRS∞+γSR∞)PSR

, m∞
R =

( 1γ +γSPSR)R
∞m

1
γ +(γRS∞+γSR∞)PSR

.

Thus, the steady-state wealth distribution of a closed economy reads

g∞(w)=S∞ baS
S

Γ(aS)
w−aS−1e−

bS
w +R∞ baR

R

Γ(aR)
w−aR−1e−

bR
w . (4.15)

From an economic perspective, the shape parameter aH of the inverse gamma dis-
tribution (4.14) characterizes the Pareto index of the wealth distribution for agents with
infection state H. Let cHΛ =1

(
H,Λ∈{S,I,R}

)
, we get

aS =1+
2

γσ2
+

2γS

σ2
[PSR+(PSS−PSR)S

∞],
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aR =1+
2

γσ2
+

2γR

σ2
[PRR+(PSR−PRR)S

∞].

Considering that the recovered agents have immunity and the susceptible are ex-
posed to have the risk of being infected, we assume that the trading propensity is the
largest when both traders are recovered, and the trading propensity is the smallest when
both traders are susceptible, i.e. PRR ≥PSR ≥PSS. Then, Pareto index aH ,

(
H ∈{S,R}

)
decreases with the susceptible fraction S∞. Additionally, Proposition 3.3 indicates that
the government’s contact control measures usoc makes the steady-state susceptible frac-
tion S∞ greater than that without control. Therefore, the contact control measures
taken by the government to curb the epidemic may aggravate wealth inequality.

Combining with the improving effect of the government’s economic control measures
on wealth inequality, which is verified in Examples 4.1 and 4.2, we think that while
the government takes contact control measures, it is necessary to implement wealth
inequality control measures (taxation and redistribution) to avoid economic recession.

4.2. Quasi-stationary state wealth distribution in an open economy.
The wealth exchange dynamics discussed in Section 4.1 are in a closed economy, in
which the wealth is conserved, and the resulting stationary solution (4.11) describes the
Pareto tail property of wealth distribution. However, in an open economy, the wealth
is not conserved, the stationary solution of the wealth exchange model (3.1) cannot
be obtained. We use the following example, which allows the model (3.1) to have a
self-similar solution, to study the large-time behavior of wealth exchange dynamics in
an open economy.

Example 4.4. Assuming that trading propensity is a symmetric function, i.e.
P (w,H;v,Λ)=P (v,Λ;w,H), agents in different infectious group share a common saving
propensity γS =γI =γR =γ0<1, and savings interest rate θ>0.

Let cHΛ =1 with H,Λ∈{S,I,R}, and denote the mean wealth of the whole agent
system as m(t) :=

∑
H∈{S,I,R}

mH(t). Substituting ψ(w)=w into (3.2), and summing the

Equations (3.2a - 3.2c) yield

dm(t)

dt
=2αθ(1−γ0)m(t),

implying that mean wealth m(t) is not conserved, but increases exponentially with the
rate 2αθ(1−γ0). According to the construction method of self-similar solution in [35],
we set f̃H(w,t)=m(t)fH(m(t)w,t)

(
H ∈{S,I,R}

)
, which provides∫

R+

f̃H(w,t)dw=H(t) and
∑

H∈{S,I,R}

∫
R+

wf̃H(w,t)dw=1.

Using the scaled quantities in (4.1), we can repeat the Fokker-Planck asymptotic
analysis for f̃H(w,t) and obtain the Fokker-Planck system of the evolution process of
g̃
H
(w,τ)= f̃H(w,t). Since the infected fraction I∞=0, we have g̃∞

I
(w)=0. Let trading

propensity P (w,H;v,Λ)=PHΛ be a constant, the steady-state distribution g̃∞
H
(w)

(
H ∈

{S,R}
)
satisfies the equation[(

1
γ +γ0

∑
Λ∈{S,R}

PHΛ ·Λ∞+σ2
)
w−

(
γ0

∑
Λ∈{S,R}

PHΛ ·m̃∞
Λ + 1

γ

)]
g̃∞
H
(w)+ σ2

2 w
2 d
dw g̃

∞
H
(w)=0.
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We get

g̃∞
H
(w)=H∞ b̃ãH

H

Γ(ãH)
w−ãH−1e−

b̃H
w , (4.16)

where

ãH =
2

σ2

( 1
γ
+γ0

∑
Λ∈{S,R}

PHΛ ·Λ∞)
+1, b̃H =

2

σ2

( 1
γ
+γ0

∑
Λ∈{S,R}

PHΛ ·m̃∞
Λ

)
,

and m̃∞
Λ =

∫
R+
wg̃∞

Λ
(w)dw.

The wealth exchange dynamics (3.1) in an open economy has a non-trivial quasi-
stationary state wealth distribution

g̃∞(w)=S∞ b̃ãS
S

Γ(ãS)
w−ãS−1e−

b̃S
w +R∞ b̃ãR

R

Γ(ãR)
w−ãR−1e−

b̃R
w (4.17)

and the large-time behavior of the distribution shows a Pareto tail.
In the form of the Pareto index ãH of the wealth distribution for agents in class H,

it is noted that the impact of the government’s epidemic and economic control measures
on wealth inequality is consistent with the results of wealth exchange dynamics in the
closed economy in Example 4.3. In particular, if γS =γI =γR =γ0 in (4.14), distributions
(4.16) and (4.14) have the same Pareto index, i.e. aH = ãH .

5. Numerical experiments
In the following simulations, if there is no special declaration, we always take the

initial infected fraction I0=0.01 and the susceptible fraction S0=0.99. In addition, it
is assumed that the government’s contact control strategies are fully implemented, i.e.
λ=1.

5.1. Test 1: The impact of contact control on epidemic dynamics. The
spread of the epidemic has a negative impact on people’s lives. Before the popularization
of vaccines, the government usually took non-drug measures to curb the spread of the
virus. Using the feedback control method, we introduce the feedback control SIR model
(3.7) with a general form of contact control (3.9). To verify the results in Section 3.1,
which show the positive impact of government’s contact control measures on curbing
the epidemic, we compare the SIR model (3.7) with the classical SIR model (3.12) in
Figure 5.1.

From (3.21) and (3.22), the saturated incidence rates F1(S,I) and F2(S,I) are
monotonically increasing functions of p1 and p2, respectively. Since F2(S,I) decreases
monotonically with respect to the parameter q, we take q=1/2 in the following simu-
lations. In the first row of Figure 5.1, we take the epidemiological parameters ρ=0.25
and r=0.1, namely, the average recovery time is set to 10 days as in [5, 6]. In the
second row of Figure 5.1, we take ρ=0.3 and r=0.05, which are close to the COVID-19
epidemiological parameters of some European countries, such as Italy, France and Spain
(see [5,16]). In the first column of Figure 5.1, we simulate the dynamics of the suscepti-
ble fraction S(t) and the infected fraction I(t) of the feedback control SIR model (3.7)
when parameters p1=0.5,1 and p2=1,2, and the comparison of corresponding incidence
rates is shown in the second column. The images inserted in Figure 5.1(b) and (d) ver-
ify the non-negativity of ∂F2/∂S and ∂F2/∂I. Figure 5.1(a) and (c) illustrate that the
steady-state susceptible fraction and epidemic duration corresponding to incidence rate
F1(S,I) (F2(S,I)) decrease with respect to parameter p1 (p2), while the peak of the
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Fig. 5.1. (a) and (c): The solid line and double dashed line respectively represent the dynamics
of the susceptible and infected fraction under different contact control measures. (b) and (d): The
incidence rate of epidemic models in (a) and (c), respectively.

infected fraction increases with p1 (p2). Therefore, in terms of the epidemic duration
and the peak of the infected fraction, contact control measures corresponding to p1=1
or p2=1 perform better.

Note that incidence rates (3.21) and (3.22) are time-varying functions related to the
infected fraction. For comparison, we consider the SIR model (3.7) with a fixed contact
control usoc= δ∈ [0,1), which measures the intensity of the fixed control adopted by the
government and is taken as the maximum of the initial control value corresponding to
the incidence rates (3.21) and (3.22) when p1=p2=1, i.e.

δ=max

{
1− 1

1+cI0
, cS1−q

0 I0

}
. (5.1)

The corresponding epidemic dynamics are shown in Figure 5.1.
Figure 5.1 provides results, which are consistent with the Propositions 3.1, 3.3 and

3.4, indicating that the feedback control SIR model (3.7) has a steady-state solution,
and the contact control measures taken by the government can reduce the peak of the
infected fraction and keep more agents in an uninfected state. However, the dynamics
of infected fractions in Figure 5.1(a,c) and the incidence rates in Figure 5.1(b,d) suggest
that the implementation of contact control measures leads to a delay of the epidemic’s
end time. From Figure 5.1, we find that compared with the fixed contact control
(5.1), time-varying contact controls involved in (3.21) and (3.22) have a better effect on
preventing virus transmission.
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Fig. 5.2. (a): The solid line and double dashed line respectively represent the dynamics of the
susceptible and infected fraction under different contact control measures, the inserted image represents
the dynamics of exposed fraction. (b): The incidence rate of epidemic models in (a).

In a SEIR epidemic model (3.17) with contact control (3.6) and cost functionals
(3.19) and (3.20), the time evolution of susceptible, exposed and infected fractions and
the corresponding incidence rate are depicted in Figure 5.2. Take I0=E0=0.01, S0=
0.98 and rE =0.3012, which means the incubation period is 3.32 days [5,17]. Figure 5.2
shows that the steady-state exposed fraction E∞ and infected fraction I∞ are zero, and
the impact of contact control on SIER epidemic dynamics is the same as that of SIR
model.

In (4.15), the steady-state wealth distribution is affected by the stationary suscep-
tible fraction S∞. To qualitatively analyze the impact of epidemic control on wealth
distribution more clearly, and to obtain the possible bimodal wealth distribution that
may occur when multiple groups of agents exist (see [14,15]), we use ρ=0.25 and r=0.1
in the following simulations.
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Fig. 5.3. Influence of contact control parameter κ on epidemic dynamics under contact control
measures Φ1 and Φ2.

The expressions of incidence rates (3.21) and (3.22) state that the parameter κ
takes a key role in the government’s decision of contact control measures. In Figure 5.3,
we simulate the epidemic model (3.7) when the incidence rate is F1(S,I) and F2(S,I),
respectively, where p1=p2=1 and κ∈{10, 1, 0.2, 0.1, 0.04}. The image inserted in Fig-
ure 5.3(b) verifies the non-negativity of ∂F2/∂S and ∂F2/∂I. Figure 5.3 states that with
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the increase of the government’s contact control, i.e. the control parameter κ decreases
from 10 to 0.04, the steady-state susceptible fraction S∞ gradually increases, and the
peak of the infected fraction decreases. However, the duration of the epidemic extends
with the increase of the contact control. In addition, as can be seen from Figure 5.3,
when the control degree is large, such as κ=0.04, the control measures corresponding to
the incidence rate F2(S,I) have a more obvious containment effect on the epidemic. For
example, when κ=0.04, the epidemic duration and the stationary susceptible fraction
under both control strategies are similar. However, in the case of the incidence rate
F2(S,I), the peak of infected fraction is lower and the number of susceptible persons
declines more slowly during the epidemic.

5.2. Test 2: The impact of feedback controls on wealth distribution.
In Figure 5.4, using the Monte Carlo method, we verify that the equilibrium solution
(4.15) of the Fokker-Planck Equations (4.7) asymptotically approximates the solution of
the Boltzmann Equation (3.1) at final time T when the scale parameter ϵ is sufficiently
small. In the simulation, the number of the whole agent system is 105. We take p1=1,
γR =0.3, γS =0.075, PRR =1, PSR =0.7, PSS =0.5 and γ=∞. These values of saving
propensities and exchange propensities are due to the fact that susceptible agents have
a higher risk of infection than the recovered individuals who have been immunized, so
they are more careful in the transaction.
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Fig. 5.4. Comparison between the equilibrium solution (4.15) of the Fokker-Planck Equations
(4.7) and the solution of the Boltzmann Equation (3.1) at time T with scale parameters ϵ=1,0.1,0.01.
(a): σ2=0.1 and κ=0.1. (b): σ2=0.02 and κ=0.04.

In Section 4.1, the steady-state (self-similar) solutions (4.15) and (4.17) of the wealth
exchange dynamics (3.7) show that the Pareto index decreases with the strengthening
of the government’s contact control measures, suggesting the aggravation of wealth
inequality. Gini coefficient and Palma ratio are important parameters to measure the
wealth inequality. The Gini coefficient belongs to [0,1], and a larger Gini coefficient
indicates a more unequal distribution of wealth. The Parma ratio is the ratio of the
wealth of the richest 10% of the population to the wealth of the poorest 40%. Define
the Lorenz curve as [15]

L(F (w))=

∫ w

0

vg∞(v)dv, F (w)=

∫ w

0

g∞(v)dv,
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then the Gini coefficient is

Gini=1−2

∫ 1

0

L(F (w))dF (w)

and the Parma ratio is equal to [1−L(F (w)=0.9)]/L(F (w)=0.4).
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Fig. 5.5. The variation of wealth inequality index of distribution (4.15), such as Gini coefficient
and Parma ratio, with parameters κ and γ. (a): γ=∞. (b): κ=0.04.

Under different contact controlling measures in Figure 5.1(a), Figure 5.5 shows the
influence of contact control parameter κ and economic control parameter γ on wealth
inequality, where p1=p2=1, q=1/2, σ2=0.1, and the other parameters are the same
as in Figure 5.4. κ=∞ and γ=∞ correspond to the situations without contact control
and economic regulation, respectively. The larger 1/κ or 1/γ, the stronger the control
intensity. In Figure 5.5(a), compared with the situation without contact control, the
Palma ratio under the three contact controls almost increases with respect to 1/κ,
and the Gini coefficient increases monotonically with respect to 1/κ. This suggests that
increased contact control may exacerbate wealth inequality. In Figure 5.5(b), the Palma
ratio and Gini coefficient under different contact control measures are monotonically
decreasing about 1/γ, indicating that the increase of economic regulation intensity may
improve the inequality of wealth distribution. In addition, for any fixed parameter κ or
γ, the Parma ratio and Gini coefficient corresponding to Φ2 are almost less than that
of Φ1. Therefore, from the comprehensive consideration of economic perspective and
epidemic containment level, we think that the contact control measure corresponding
to Φ2 (i.e., the incidence rate F2(S,I)) with p2=1 is better than that corresponding to
Φ1.

Figure 5.6 depicts the effects of parameters γ and κ on the wealth distribution
(4.15), where we take Φ2 with p2=1, and the other parameter values are the same
as Figure 5.4. In Figure 5.6, for each fixed risk parameter σ2, with the enhancement
of contact control (i.e., the decrease of κ), the wealth distribution curve shifts to the
left and the Lorentz curve deviates from the equality line. The number of poor peo-
ple increases and the wealth of the middle and lower classes decreases, indicating the
worsening of wealth inequality. As the intensity of economic regulation increases (i.e.,
γ decreases), the wealth distribution curve shifts to the right, the Lorentz curve ap-
proaches the equality line. The number of agents at both low and high wealth levels
has decreased, and the wealth of the middle and lower classes increased, indicating
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Fig. 5.6. Steady-state wealth distribution (4.15) and Lorentz curve for different values of pa-
rameters κ and γ.

an improvement in wealth inequality. Therefore, to avoid the negative impact of con-
tact control measures on wealth distribution, appropriate economic measures, such as
taxation and redistribution, should be considered simultaneously by the government.
In addition, under appropriate parameters, the wealth distribution of the whole agent
system presents a bimodal distribution. When σ2=0.02, Figure 5.6(b) shows that the
increase of contact control intensity promotes the emergence of a bimodal distribution
curve, and the bimodal distribution gradually becomes a unimodal distribution with
the strengthening of economic regulation.

6. Conclusions
Inspired by the study of wealth distribution under infectious spread in [15], we intro-

duce and discuss a multi-agent wealth exchange model with controls for infectious dis-
eases and wealth inequality. Before the popularization of vaccines, non-pharmaceutical
interventions, which reduce contact between individuals, played a significant role in con-
trolling the epidemic. Our analysis illustrates that comparing with the situation without
control, the implementation of contact control measures reduces the peak of infected
fraction, and makes more agents remain uninfected. Unfortunately, the implementation
of contact control and the increase of control intensity may prolong the epidemic’s du-
ration, and may aggravate wealth inequality. In particular, the wealth status of most
agents at middle and low levels becomes worse.

With two introduced cost functions, which are the increasing concave function and
the increasing convex function of the infected fraction, respectively, we obtain two non-
linear incidence rates F1(S,I) and F2(S,I) of the feedback control SIR model, and
verify that these two incidence rates satisfy the biologically feasible conditions and in-
clude the saturating effect. Considering the economic benefits and the containment
effect of the epidemic (such as the duration of epidemic and the peak of the infected
fraction), numerical experiments show that the contact control strategy corresponding
to the incidence rate F2(S,I), p2=1 performs well.

In the multi-agent wealth exchange model, the trading propensity relies on the
infection status and the wealth of the two trading agents. The government’s economic
measure (such as taxation and redistribution), which is implemented to narrow the
wealth gap, is also considered. Via the quasi invariant limit method, the Boltzmann-type
system describing the wealth dynamics is transformed into Fokker-Planck equations,
whose steady-state (self-similar) solution for a closed (an open) economy presents the
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Pareto tail of wealth distribution. Examples of a closed economy, in which an agent’s
trading propensity depends on the wealth of both traders, suggest that if the rich
allocate more wealth in savings, the degree of wealth inequality may increase. Numerical
experiments show that economic control measures can alleviate wealth inequality caused
by contact control. With the enhancement of government economic control, the wealth
status of agents at low and middle levels is improved obviously.

It is worth noting that our work verifies the views of Dosi et al. [18] from the
perspective of mathematical models. For example, the prevalence of COVID-19 may
aggravate wealth inequality, and redistribution policies are needed to avoid the outbreak
of social inequality.
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