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GLOBAL MILD SOLUTIONS OF THE NON-CUTOFF
VLASOV-POISSON-BOLTZMANN SYSTEM∗

HAO WANG† AND GUANGQING WANG‡

Abstract. This paper is concerned with the Cauchy problem on the Vlasov-Poisson-Boltzmann
system in the torus domain. The Boltzmann collision kernel is assumed to be angular non-cutoff with
0≤γ <1 and 1/2≤ s<1, where γ,s are two parameters describing the kinetic and angular singularities,
respectively. We obtain the global-in-time unique mild solutions, and prove that the solutions converge
to the global Maxwellian with the large-time decay rate of O(e−λt) in the L1

kL
2
v-norm for some λ>0.

Furthermore, we justify the property of propagation of regularity of solutions in the spatial variable.
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1. Introduction
The Vlasov-Poisson-Boltzmann system is a physical model describing the time evo-

lution of dilute charged particles (e.g. electrons) in the absence of an external magnetic
field [6]. When the constant background charge density is normalized to be unity, the
Vlasov-Poisson-Boltzmann system reads

∂tF +v ·∇xF +∇xϕ ·∇vF =Q(F,F ), (1.1)

∆xϕ=

∫
R3

Fdv−1 (1.2)

with prescribed initial data

F (0,x,v)=F0(x,v). (1.3)

Here, F (t,x,v)≥0 represents the density function at time t≥0, with spatial coordinate
x=(x1,x2,x3)∈T3 and velocity v=(v1,v2,v3)∈R3. The electric potential ϕ=ϕ(t,x)
generating the self-consistent electric field ∇xϕ in (1.1) is coupled with F (t,x,v) through
the Poisson Equation (1.2). The bilinear collision operator Q(F,G) on the right-hand
side of (1.1) is defined by

Q(F,G)(v)=

∫
R3

∫
S2
B(v−u,σ)[F (u′)G(v′)−F (u)G(v)]dσdu,

where (v,u) and (v′,u′), denoting velocities of two particles before and after their coll-
sions respectively, satisfy

v′=
v+u

2
+

|v−u|
2

σ, u′=
v+u

2
− |v−u|

2
σ.
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The non-negative Boltzmann collision kernel B(v−u,σ) depends only on the ralative
velocity |v−u| and on the deviation angle θ given by cosθ= ⟨σ,(v−u)/|v−u|⟩, where
⟨·,·⟩ is the usual dot product in R3. Without loss of generality, we suppose that B(v−
u,σ) is supported on cosθ≥0, c.f. [22]. Throughout the paper we further assume that
the collision kernel B(v−u,σ) takes the product form as follows:

B(v−u,σ)=CB |v−u|γb(cosθ),

for a constant CB >0, where |v−u|γ is called the kinetic factor with γ>−3, and b(cosθ)
is called the angular part satisfying that there are Cb>0, 0<s<1 such that

1

Cbθ1+2s
≤ sinθb(cosθ)≤ Cb

θ1+2s
, ∀ θ∈ (0,

π

2
].

Recall γ=0 is the Maxwellian molecules case and meanwhile the case of −3<γ<0 and
0<γ<1 are called, respectively, soft potential and hard potential. In the rest of this
paper we are concerned about the case of Maxwellian molecules and hard potential, i.e.,
0≤γ <1.

We will consider the Cauchy problem (1.1)–(1.3) around a normalized global
Maxwellian

µ(v)=(2π)−3/2e−|v|2/2.

Set the perturbation f =f(t,x,v) by

F =µ+
√
µf.

Then f and ϕ satisfy the perturbed system:

∂tf+v ·∇xf+∇xϕ ·∇vf−
1

2
v ·∇xϕf−∇xϕ ·v

√
µ+Lf =Γ(f,f), (1.4)

∆xϕ=

∫
R3

√
µfdv, (1.5)

f(0,x,v)=f0(x,v). (1.6)

Here, the linearized collision operator L and the nonlinear collision operator Γ are
respectively given by

Lf =−µ−1/2Q(µ,
√
µf)−µ−1/2Q(

√
µf,µ),

Γ(f,g)=µ−1/2Q(
√
µf,

√
µg).

Recalling (1.5), we can rewrite ϕ(t,x) in terms of f(t,x,v) as

ϕ(t,x)=− 1

4π|x|
∗x

∫
R3

µ1/2fdv, (1.7)

where ∗x denotes the convolution with respect to the x variable.
Now we start to state the main results of this paper. As in [14], we introduce the

function space XT with 0<T ≤∞. Define

XT :=L1
kL

∞
T L2

v
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with corresponding norm

∥f∥XT
:=

∫
Z3

sup
0≤t≤T

|f̂(t,k,·)|L2
v
dΣ(k)<+∞.

Here, the Fourier transform of f(t,x,v) with respect to x∈T3 is defined by

f̂(t,k,v)=Fxf(t,k,v)=

∫
T3

e−ix·kf(t,x,v)dx, x ·k=
3∑

j=1

xjkj ,

for k∈Z3, where i=
√
−1∈C. For any given t≥0, we define the following norms in x

and v:

∥f(t)∥L1
kL

2
v
=

∫
Z3

|f̂(t,k)|L2
v
dΣ(k),

and

∥∇xϕ(t)∥L1
k
=

∫
Z3

|∇̂xϕ(t,k)|dΣ(k).

For any integer m≥0, the corresponding high-order norms are defined by

∥f(t)∥L1
k,mL2

v
=

∫
Z3

⟨k⟩m|f̂(t,k)|L2
v
dΣ(k),

and

∥∇xϕ(t)∥L1
k,m

=

∫
Z3

⟨k⟩m|∇̂xϕ(t,k)|dΣ(k).

As in [2], we define

|f |2D=

∫ ∫ ∫
B(v−u,σ)µ(u)(f(v′)−f(v)) (f(v′)−f(v))

+

∫ ∫ ∫
B(v−u,σ)f(u) f(u) (

√
µ′−√

µ)2, (1.8)

where the integration is over R3
v×R3

v∗ ×S2σ. Here, we use f to denote the standard
complex conjugate of f . We can also refer to the work of Gressman-Strain [22] for
another equivalent definition of this norm.

For given function f(t,x,v) with corresponding ϕ(t,x) in (1.7), we define the energy
functional and energy dissipation rate functional respectively as

ET (f)=∥f∥L1
kL

∞
T L2

v
+∥∇xϕ∥L1

kL
∞
T

=

∫
Z3

sup
0≤t≤T

|f̂(t,k,·)|L2
v
dΣ(k)+

∫
Z3

sup
0≤t≤T

|∇̂xϕ(t,k)|dΣ(k) (1.9)

and

DT (f)=∥f∥L1
kL

2
TL2

v,D
=

∫
Z3

(∫ T

0

|f̂(t,k,·)|2D dt

)1/2

dΣ(k). (1.10)
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Theorem 1.1. Let 0≤γ<1, 1/2≤s<1. Assume that F0(x,v)=µ+µ1/2f0(x,v)≥0.
If

ϵ0=∥f0∥L1
kL

2
v
+∥∇xϕ0∥L1

k
,

is sufficiently small, by the Poisson Equation (1.5),

∇xϕ0(x)=∇xϕ(0,x)=∇x∆
−1
x (

√
µ,f)L2

v
,

then there exists a unique global mild solution f(t,x,v) to the Cauchy problem (1.4)–
(1.6) of the Vlasov-Poisson-Boltzmann system such that F (t,x,v)=µ+

√
µf(t,x,v)≥0

and

∥f(t)∥L1
kL

2
v
+∥∇xϕ(t)∥L1

k
≲e−λtϵ0, (1.11)

for some λ>0, and any t≥0.

Theorem 1.2. Under the assumptions of Theorem 1.1, for any integer m≥0, if

ε0=∥f0∥L1
k,mL2

v
+∥∇xϕ0∥L1

k,m
,

is sufficiently small, then the solution f(t,x,v) to the Cauchy problem (1.4)–(1.6) estab-
lished in Theorem 1.1 satisfies∫

Z3

⟨k⟩m sup
0≤t≤T

|f̂(t,k)|L2
v
dΣ(k)+

∫
Z3

⟨k⟩m sup
0≤t≤T

|∇̂xϕ(t,k)|dΣ(k)

+

∫
Z3

⟨k⟩m
(∫ T

0

|f̂(t,k)|2D dt

)1/2

dΣ(k)≲∥f0∥L1
k,mL2

v
+∥∇xϕ0∥L1

k,m
, (1.12)

for any T >0.

First of all, we recall some known results on the Boltzmann equations. For global
solutions to the renormalized equation with large initial data, we mention the classical
works by Diperna and Lions [8], Lions [32], Desvillettes-Villani [13], Alexandre-Villani
[1]. When considering the Boltzmann equation with cutoff either in the whole space or
a torus domain, we mention Guo [24,25], Liu-Yang-Yu [30,31]. For the non-cutoff cases,
the global-in-time existence theory in the perturbation framework for the Boltzmann
equation has been well established in smooth Sobolev space. Gressman-Strain [22]
first constructed the global small-amplitude classical solution in a periodic box for hard
potential case γ+2s≥0 and for the general soft potential case γ+2s<0, then Strain [35]
extended these results to the whole space. Similar results were also independently
obtained by AMUXY in their series of works [2–5] in the whole space. A key point
in those well-known works is to characterize the dissipation property in the L2 norm
in v for the linearized Boltzmann collision operator and further carry out the energy
estimates by controlling the trilinear term in an appropriate way. Recently, Duan-Liu-
Sakamoto-Strain [14] proved the existence of small-amplitude global-in-time unique mild
solutions to both the Landau equation and the Boltzmann equation without angular
cutoff, they created a new function space with low regularity in the spatial variable to
treat the problem for the case when the spatial domain is either a torus, or a finite
channel with boundary, and they also obtained the large-time behavior of solutions for
both hard and soft potentials. When considering the Cauchy problem for the non-
cutoff Boltzmann equation on the torus, Duan-Li-Liu [15] established the global-in-
time Gevrey smoothness in velocity and space variables for a class of low-regularity
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mild solutions near Maxwellians with the Gevrey index depending only on the angular
singularity. Readers are referred to [7, 9–11,28,29,34] for more information.

Back to the Vlasov-Poisson-Boltzmann system, there have been some investigations
about the dynamical problems. Global-in-time renormalized solutions with large initial
data to the Vlasov-Poisson-Boltzmann system were constructed by Lions [32] and this
result was later extended to the case with boundary in [33]. On the other hand, the
global classical solutions to the Vlasov-Poisson-Boltzmann system near Maxwellian was
firstly established in [26] in periodic box. Since then, there have been extensive works
on the global solutions to this system in the whole space R3

x. For the hard-sphere
model, the global existence of solutions to the Vlasov-Poisson-Boltzmann system was
proved in [38] and [17] in different function spaces, and the corresponding large-time
behavior of solutions was obtained in [39] and [16], respectively. For the case of hard
potentials and soft pontentials, the authors obtained the global classical solutions and
the optimal time rate in [18] and [21]. These works listed above are all under Grad’s
angular cut-off assumption, we can refer to [12, 19, 23, 27] for more information. For
the Vlasov-Poisson-Boltzmann systen with non-cutoff case, when initial data is near
Maxwellians, Duan-Liu [20] established the global existence and convergence rates of
classical solutions to the Cauchy problem without angular cutoff for soft potentials
−3<γ<−2s with strong angular singularity 1/2≤s<1. And Xiao-Xiong-Zhao [37]
obtained the globally smooth solutions near a given global Maxwellian to the Cauchy
problem for hard potentials γ+2s≥0 with weak angular singularity 0<s<1/2.

Finally we sketch the main ideas used in deducing our results. Our main ideas
are inspired by the work by Duan-Liu-Sakamoto-Strain [14], they use the L1

k norm
to replace the L∞

x norm when studying the non-cutoff Boltzmann equation, since L1
k

norm has the Banach algebra property. In our paper, we consider the Cauchy problem
of the Vlasov-Poisson-Boltzmann system for hard potentials γ≥0 with strong angular

singularity 1/2≤s<1 because of the existence of the nonlinear terms ̂∇xϕ ·∇vf, v ·
∇̂xϕf in (2.5). In fact, when making estimates for the nonlinear terms above, due to
the Fourier transform in x, the following L2

v inner product

( ̂∇xϕ ·∇vf,f̂)L2
v

(1.13)

does not disappear. We can regard the first-order velocity differentiation as ∇v =
(∇v)

1/2(∇v)
1/2 in a rough way, so that (1.13) can be bounded by∫

Z3

|∇̂xϕ(k− l)| |⟨v⟩γ/2(1−∆v)
s/2f̂(l)|L2

v
|⟨v⟩γ/2(1−∆v)

s/2f̂(k)|L2
v
dΣ(l),

where s≥1/2 and γ≥0 are used. Notice that

|⟨v⟩γ/2(1−∆v)
s/2f̂ |2L2

v
+ |f̂ |2L2

s+γ/2
≲ |f̂ |2D.

Thus (1.13) can be bounded by the dissipation norm∫
Z3

|∇̂xϕ(k− l)| |f̂(l)|D|f̂(k)|DdΣ(l).

For the term (v · ∇̂xϕf,f̂)L2
v
, we use the following inequality, for 2s+γ≥1,

|v|≤ ⟨v⟩s+γ/2⟨v⟩s+γ/2
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to make an estimate for it. For more specific details, one can refer to Lemmas 2.5 and
2.6 in the next section. When making macroscopic estimates, we construct a time-
frequency interactive functional to deduce the desired estimates, which is different from
Duan-Liu-Sakamoto-Strain [14], by using dual argument. And finally we point out that,
throughout the paper we do not need the conservation laws:∫

T3

∫
R3

√
µf(t,x,v)dvdx=0,

∫
T3

∫
R3

vi
√
µf(t,x,v)dvdx=0, i=1,2,3,

∫
T3

∫
R3

(
|v|2√µf(t,x,v)+ |∇xϕ|2

)
dvdx=0.

The rest of the paper will be arranged as follows. In Section 2, we list basic lemmas
concerning the properties of L and Γ, and give the estimates on all the nonlinear terms
in Section 3. Section 4 is concerned with the estimates on the macroscopic dissipation.
In Section 5, we complete the proof of Theorems 1.1 and 1.2.

Notations. In this paper, we let C stand for some positive (generally large) inessential
constant and λ denote some positive (generally small) inessential constant, where both
C and λ may change values from line to line. Furthermore A≲B means A≤CB, and
A≳B means B≲A. In addition, A∼B means A≲B and B≲A.

2. Preliminaries
In this section, we need to make some preparations for the rest of this paper. Firstly,

we introduce the following macro-micro decomposition. As we know, the null space of
the operator L is given by

N =KerL=span{√µ,v1
√
µ,v2

√
µ,v3

√
µ,|v|2√µ}.

We further define P the orthogonal projection from L2(R3
v) to N , then for any given

function f , one can write

Pf ={a(t,x)+b(t,x) ·v+c(t,x)(|v|2−3)}µ1/2,

a=

∫
R3

µ1/2fdv,

b=

∫
R3

vµ1/2fdv,

c=
1

6

∫
R3

(|v|2−3)µ1/2fdv.

(2.1)

Thus, we have the macro-micro decomposition introduced in [25],

f(t,x,v)=Pf(t,x,v)+{I−P}f(t,x,v),

where Pf and {I−P}f are called the macroscopic component and the microscopic
component of f(t,x,v), respectively.

On the other hand, we are concerned about the estimate on the linearized Boltz-
mann operator L, that is the following lemma:

Lemma 2.1 (Proposition 2.1 in [2]). Let 0<s<1 and γ>−3. It holds that

(Lf,f)L2
v
≳ |{I−P}f |2D. (2.2)
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For this term |f |D above, we refer to [2] to obtain that,

Lemma 2.2. Let 0<s<1 and γ>−3. Then there exist two generic constants C1,C2>
0 such that

C1{|f |2Hs
γ/2

+ |f |2L2
s+γ/2

}≤ |f |2D≤C2|f |2Hs
s+γ/2

. (2.3)

Here the weighted fractional Sobolev norm |f(v)|2Hs
ℓ
= |⟨v⟩ℓf(v)|2Hs is given by

|f |2Hs
ℓ
= |⟨v⟩ℓf |2L2

v
+

∫
R3

dv

∫
R3

du
[⟨v⟩ℓf(v)−⟨u⟩ℓf(u)]2

|v−u|3+2s
X|v−u|≤1.

The following lemma concerns on the estimate on the nonlinear Boltzmann collision
operator Γ, which can be found in [5, Theorem 1.2].

Lemma 2.3. Let 0<s<1 and γ>max{−3,− 3
2 −2s}. It holds that

|(Γ(f,g),h)L2
v
|≲ |f |L2

v
|g|D|h|D. (2.4)

Now we will make the estimates for the nonlinear terms in the following Equation
(2.5), wherein the Fourier transform has been taken in variable x. Let f =f(t,x,v), 0≤
t≤T, x∈T3, v∈R3, be a smooth solution to

∂tf+v ·∇xf+∇xϕ ·∇vf−
1

2
v ·∇xϕf−∇xϕ ·v

√
µ+Lf =Γ(f,f).

Taking the Fourier transform in x, we conclude

∂tf̂(t,k,v)+ iv ·kf̂(t,k,v)−√
µv · ∇̂xϕ(t,k)+Lf̂(t,k,v)

=Γ̂(f,f)(t,k,v)− ̂∇xϕ ·∇vf(t,k,v)+
1

2
v · ∇̂xϕf(t,k,v). (2.5)

To the end we always use the notation

Γ̂(f,g)(k,v)=

∫
R3

∫
S2
B(v−u,σ)µ1/2(u)

(
[f̂(u′)∗ ĝ(v′)](k)− [f̂(u)∗ ĝ(v)](k)

)
dσdu,

where the convolutions are taken with respect to k:

[f̂(u′)∗ ĝ(v′)](k)=
∫
Z3

f̂(k− l,u′)ĝ(l,v′)dΣ(l),

[f̂(u)∗ ĝ(v)](k)=
∫
Z3

f̂(k− l,u)ĝ(l,v)dΣ(l).

For the other two terms, we have

̂∇xϕ ·∇vf(k,v)=

∫
Z3

∇̂xϕ(k− l) ·∇v f̂(l,v)dΣ(l),

v · ∇̂xϕf(k,v)=v ·
∫
Z3

∇̂xϕ(k− l)f̂(l,v)dΣ(l).

With the above information provided, we first give the estimate on the nonlinear

term Γ̂(f,g) in the following lemma whose proof can be found in [14].



120 THE VLASOV-POISSON-BOLTZMANN SYSTEM

Lemma 2.4. Let γ>max{−3,−2s− 3
2}. Then we have

∣∣∣∣(Γ̂(f,g)(k),ĥ(k))
L2

v

∣∣∣∣≲∫
Z3

|f̂(k− l)|L2
v
|ĝ(l)|D |ĥ(k)|D dΣ(l). (2.6)

The following lemma concerns the estimate on ̂∇xϕ ·∇vf .

Lemma 2.5. Let 0≤γ <1, 1/2<s<1. It holds that

∣∣∣∣( ̂∇xϕ ·∇vf,ĥ
)
L2

v

∣∣∣∣≲∫
Z3

|∇̂xϕ(k− l)| |f̂(l)|D |ĥ(k)|D dΣ(l). (2.7)

Proof. Noticing 1/2<s<1, by Fubini’s theorem and Parseval indentity, one has

∣∣∣∣( ̂∇xϕ ·∇vf,ĥ
)
L2

v

∣∣∣∣= ∣∣∣∣∫
R3

∫
Z3

∇̂xϕ(k− l) ·∇v f̂(l,v) ĥ(k,v)dΣ(l)dv

∣∣∣∣
=

∣∣∣∣∫
Z3

∫
R3

∇̂xϕ(k− l) ·∇v f̂(l,v) ĥ(k,v)dvdΣ(l)

∣∣∣∣
=

∣∣∣∣∫
Z3

∇̂xϕ(k− l) ·
∫
R3

iξ Fv[f̂(l)] Fv[ĥ(k)] dξdl

∣∣∣∣
≤
∫
Z3

|∇̂xϕ(k− l)|
∣∣⟨ξ⟩1/2Fv[f̂(l)]

∣∣
L2

ξ

∣∣⟨ξ⟩1/2Fv[ĥ(k)]
∣∣
L2

ξ

dΣ(l)

≤
∫
Z3

|∇̂xϕ(k− l)| |f̂(l)|Hs |ĥ(k)|HsdΣ(l)

≤
∫
Z3

|∇̂xϕ(k− l)| |f̂(l)|Hs
γ/2

|ĥ(k)|Hs
γ/2

dΣ(l)

≤
∫
Z3

|∇̂xϕ(k− l)| |f̂(l)|D |ĥ(k)|D dΣ(l)

where Fv is the Fourier transform with respect to v-variable, ξ denotes the correspond-
ing frequency variable. Here we have used (2.3) and the fact that: for γ≥0 and suitable
function g,

|g|Hs ≤|g|Hs
γ/2

.

This completes the proof of Lemma 2.5.

The following lemma concerns the estimate on v · ∇̂xϕf .

Lemma 2.6. Let 0≤γ <1, 1/2<s<1. It holds that

∣∣∣∣(v · ∇̂xϕf,ĥ
)
L2

v

∣∣∣∣≲∫
Z3

|∇̂xϕ(k− l)| |f̂(l)|D |ĥ(k)|D dΣ(l). (2.8)
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Proof. We use Fubini’s theorem and Cauchy-Schwarz inequality to obtain∣∣∣∣(v · ∇̂xϕf,ĥ
)
L2

v

∣∣∣∣= ∣∣∣∣∫
R3

∫
Z3

v · ∇̂xϕ(k− l)f̂(l,v) ĥ(k,v)dΣ(l)dv

∣∣∣∣
=

∣∣∣∣∫
Z3

∫
R3

v · ∇̂xϕ(k− l)f̂(l,v) ĥ(k,v)dvdΣ(l)

∣∣∣∣
≤
∫
Z3

|∇̂xϕ(k− l)|
(∫

R3

|⟨v⟩1/2f̂(l,v)| |⟨v⟩1/2ĥ(k,v)| dv
)
dΣ(l)

≤
∫
Z3

|∇̂xϕ(k− l)| |⟨v⟩1/2f̂(l,v)|L2
v
|⟨v⟩1/2ĥ(k,v)|L2

v
dΣ(l)

≤
∫
Z3

|∇̂xϕ(k− l)| |f̂(l,v)|L2
s+γ/2

|ĥ(k,v)|L2
s+γ/2

dΣ(l)

≤
∫
Z3

|∇̂xϕ(k− l)| |f̂(l)|D |ĥ(k)|D dΣ(l).

Here, we have used the fact that: Since γ≥0,1/2<s<1, we have s+γ/2≥1/2, and by
Lemma 2.2, one has

|⟨v⟩1/2g|L2
v
≤|g|L2

s+γ/2
≲ |g|D,

for suitable function g. And this completes the proof of Lemma 2.6.

3. Nonlinear estimates
The goal of this section is to make the energy estimates on those nonlinear terms in

(2.5). We always suppose 0≤γ<1, 1/2≤s<1 in the sequel. The first lemma concerns

the estimates on the nonlinear term Γ̂(f,f), the proof of the estimate (2.6) will be used,
which has been proved in [14].

Lemma 3.1. It holds that∫
Z3

(∫ T

0

∣∣∣∣(Γ̂(f,g),ĥ)L2
v

∣∣∣∣dt)1/2

dΣ(k)

≤η∥h∥L1
kL

2
TL2

v,D
+Cη∥f∥L1

kL
∞
T L2

v
∥g∥L1

kL
2
TL2

v,D
, (3.1)

where η>0 is an arbitrary small constant, and Cη is a universal large constant depending
only on η.

For the estimate on ̂∇xϕ ·∇vf , we have:

Lemma 3.2. It holds that∫
Z3

(∫ T

0

∣∣∣∣( ̂∇xϕ ·∇vf,ĥ
)
L2

v

∣∣∣∣dt)1/2

dΣ(k)

≤η∥h∥L1
kL

2
TL2

v,D
+Cη∥∇xϕ∥L1

kL
∞
T
∥f∥L1

kL
2
TL2

v,D
, (3.2)

where η>0 is an arbitrary small constant, and Cη is a universal large constant depending
only on η.

Proof. Firstly, we use (2.7) to yield∣∣∣∣( ̂∇xϕ ·∇vf,ĥ
)
L2

v

∣∣∣∣≤∫
Z3

|∇̂xϕ(k− l)| |f̂(l)|D |ĥ(k)|D dΣ(l).
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Then, as in [14], we apply Cauchy-Schwarz inequality with respect to
∫ T

0
(·)dt and further

use Young inequality to yield∫
Z3

(∫ T

0

∣∣∣∣( ̂∇xϕ ·∇vf,ĥ
)
L2

v

∣∣∣∣dt)1/2

dΣ(k)

≤
∫
Z3

(∫ T

0

∫
Z3

|∇̂xϕ(t,k− l)| |f̂(t,l)|D |ĥ(t,k)|D dΣ(l) dt

)1/2

dΣ(k)

≤
∫
Z3

(∫ T

0

(∫
Z3

|∇̂xϕ(t,k− l)| |f̂(t,l)|D dΣ(l)
)2
dt

)1/4

×
(∫ T

0

|ĥ(t,k)|2Ddt
)1/4

dΣ(k)

≤η

∫
Z3

(∫ T

0

|ĥ(t,k)|2D dt
)1/2

dΣ(k)

+Cη

∫
Z3

(∫ T

0

(∫
Z3

|∇̂xϕ(t,k− l)| |f̂(t,l)|D dΣ(l)
)2
dt

)1/2

dΣ(k),

where η>0 is an arbitrary small constant. For the second term on the right-hand side
of the above estimate, by using Minkowski inequality, one has(∫ T

0

(∫
Z3

|∇̂xϕ(t,k− l)| |f̂(t,l)|D dΣ(l)
)2
dt

)1/2

≤
∫
Z3

(∫ T

0

|∇̂xϕ(t,k− l)|2 |f̂(t,l)|2D dt
)1/2

dΣ(l).

Therefore we can get∫
Z3

(∫ T

0

(∫
Z3

|∇̂xϕ(t,k− l)| |f̂(t,l)|D dΣ(l)
)2
dt

)1/2

dk

≤
∫
Z3

∫
Z3

sup
0≤t≤T

|∇̂xϕ(t,k− l)|
(∫ T

0

|f̂(t,l)|2D dt

)1/2

dΣ(l)dΣ(k).

Subsequently, we use Fubini’s theorem and translation invariance to compute∫
Z3

∫
Z3

sup
0≤t≤T

|∇̂xϕ(t,k− l)|
(∫ T

0

|f̂(t,l)|2D dt

)1/2

dΣ(l)dΣ(k)

=

∫
Z3

(∫ T

0

|f̂(t,l)|2D dt

)1/2(∫
Z3

sup
0≤t≤T

|∇̂xϕ(t,k− l)|dΣ(k)
)
dΣ(l)

=∥∇xϕ∥L1
kL

∞
T

∫
Z3

(∫ T

0

|f̂(t,l)|2D dt

)1/2

dΣ(l).

By collecting all the estimates above, we can get the desired estimate (3.2).

For the estimate on v · ∇̂xϕf , we have:

Lemma 3.3. It holds that∫
Z3

(∫ T

0

∣∣∣∣(v · ∇̂xϕf,ĥ
)
L2

v

∣∣∣∣dt)1/2

dΣ(k)

≤η∥h∥L1
kL

2
TL2

v,D
+Cη∥∇xϕ∥L1

kL
∞
T
∥f∥L1

kL
2
TL2

v,D
,

(3.3)
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where η>0 is an arbitrary small constant, and Cη is a universal large constant depending
only on η.

Proof. We use (2.8) to obtain∫
Z3

(∫ T

0

∣∣∣∣(v · ∇̂xϕf,ĥ
)
L2

v

∣∣∣∣dt)1/2

dk

≤
∫
Z3

(∫ T

0

∫
Z3

|∇̂xϕ(k− l)| |f̂(l)|D |ĥ(k)|D dΣ(l)dt

)1/2

dΣ(k).

The remaining process of the proof is similar to that of Lemma 3.2 above, we omit it
for brevity of presentation.

The following lemmas will be useful for dealing with the nonlinear terms arising
from the macroscopic estimates in the next section.

Lemma 3.4 ([14] Lemma 4.4). Assume that ζ(v) depends only on v and decays rapidly
at infinity. Then we have∫

Z3

(∫ T

0

∣∣∣∣(Γ̂(f,f),ζ(v))L2
v

∣∣∣∣2dt)1/2

dΣ(k)≲∥f∥L1
kL

∞
T L2

v
∥f∥L1

kL
2
TL2

v,D
. (3.4)

Lemma 3.5. Assume that ζ(v) depends only on v and decays rapidly at infinity. Then
we have∫

Z3

(∫ T

0

∣∣∣∣( ̂∇xϕ ·∇vf,ζ(v)
)
L2

v

∣∣∣∣2dt)1/2

dΣ(k)≲∥∇xϕ∥L1
kL

∞
T
∥f∥L1

kL
2
TL2

v,D
(3.5)

and ∫
Z3

(∫ T

0

∣∣∣∣(v · ∇̂xϕf,ζ(v)
)
L2

v

∣∣∣∣2dt)1/2

dΣ(k)≲∥∇xϕ∥L1
kL

∞
T
∥f∥L1

kL
2
TL2

v,D
. (3.6)

Proof. We just need to prove (3.5), since the proof of (3.6) is similar. By using
Lemma 2.5, one has(∫ T

0

∣∣∣∣( ̂∇xϕ ·∇vf,ζ(v)
)
L2

v

∣∣∣∣2dt)1/2

≲

(∫ T

0

(∫
Z3

|∇̂xϕ(t,k− l)| |f̂(t,l)|D dΣ(l)

)2

dt

)1/2

.

Then we use the Minkowski inequality∣∣∣∣∥·∥L1
l

∣∣∣∣
L2

t
≤
∣∣∣∣∥·∥L2

t

∣∣∣∣
L1

l

to obtain (∫ T

0

(∫
Z3

|∇̂xϕ(t,k− l)| |f̂(t,l)|D dΣ(l)

)2

dt

)1/2

≲
∫
Z3

(∫ T

0

|∇̂xϕ(t,k− l)|2 |f̂(t,l)|2D dt

)1/2

dΣ(l).
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We further apply Fubini’s theorem and translation invariance to get∫
Z3

∫
Z3

(∫ T

0

|∇̂xϕ(t,k− l)|2 |f̂(t,l)|2D dt

)1/2

dΣ(l)dΣ(k)

≲
∫
Z3

∫
Z3

sup
0≤t≤T

|∇̂xϕ(t,k− l)|
(∫ T

0

|f̂(t,l)|2D dt

)1/2

dΣ(l)dΣ(k)

≲
∫
Z3

(∫ T

0

|f̂(t,l)|2D dt

)1/2(∫
Z3

sup
0≤t≤T

|∇̂xϕ(t,k− l)|dΣ(k)
)
dΣ(l)

≲∥∇xϕ∥L1
kL

∞
T
∥f∥L1

kL
2
TL2

v,D
.

This completes the proof of Lemma 3.5.

4. Macroscopic estimates

In this section we shall derive the uniform a priori estimates for the macroscopic
part of a solution to the linearized system with a nonhomogeneous source h(t,x,v):

∂tf+v ·∇xf−∇xϕ ·v
√
µ+Lf =h,

∆xϕ=

∫
R3

√
µfdv,

f(0,x,v)=f0(x,v).

(4.1)

Notice that for the nonlinear Vlasov-Poisson-Boltzmann system (1.4) and (1.5), the
nonhomogeneous source takes the form of

h=−∇xϕ ·∇vf+
1

2
v ·∇xϕf+Γ(f,f),

which satisfies the mass conservation law

(h,
√
µ)L2

v
=0. (4.2)

Here we emphasize that: throughout this section, T >0 is an arbitrary fixed con-
stant, and the universal constant C>0 is independent of T .

Theorem 4.1. Let f be a solution to the linearized system (4.1). If h satisfies (4.2),
then we have

∥[a,b,c]∥L1
kL

2
T
≲∥{I−P}f∥L1

kL
2
TL2

v,D
+∥f∥L1

kL
∞
T L2

v
+∥f0∥L1

kL
2
v

+

∫
Z3

(∫ T

0

∣∣∣∣(ĥ(t,k),µ1/4
)
L2

v

∣∣∣∣2dt)1/2

dΣ(k), (4.3)

where [·, ·, ·] represents a vector.

The rest of this section is devoted to the proof of Theorem 4.1. Firstly, we give
the macroscopic equations of the linearized system (4.1). Define the moment functions
Θ=(Θjm(·))3×3 and Λ=(Λj(·))1≤j≤3 by

Θjm(f)=

∫
R3

(vjvm−1)µ1/2fdv, Λj(f)=
1

10

∫
R3

(|v|2−5)vjµ
1/2fdv.
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Then, as in [20], we can deduce a fluid-type system of equations

∂ta+∇x ·b=0,

∂tbj+∂j(a+2c)+

3∑
m=1

∂mΘjm({I−P}f)−∂jϕ=(h,vj
√
µ)L2

v
,

∂tc+
1

3
∇x ·b+

5

3

3∑
j=1

∂jΛj({I−P}f)= 1

6
(h,(|v|2−3)

√
µ)L2

v
,

∆xϕ=a,

∂tΛj({I−P}f)+∂jc=Λj(r+h),

∂t{Θjm({I−P}f)+2cδjm}+∂jbm+∂mbj =Θjm(r+h),

(4.4)

with

r=−v ·∇x{I−P}f+Lf.

As in [36], we construct a time-frequency interactive functional to deduce the fol-
lowing estimate. In order to express clearly, some notations are given as follows. For
two complex vectors z1, z2∈C3, (z1|z2)=z1 ·z2 denotes the dot product in the complex
field C3, where z2 is the complex conjugate of z2. And we usually use R to denote the
real part of a complex number.

Lemma 4.1. For any t≥0 and k∈T3, there are two suitable constants 0<κ2≪κ1

such that the time-frequency interactive functional Eint(f̂)(t,k) defined by

Eint(f̂)(t,k)=
1

1+ |k|2
3∑

j=1

(
ikj ĉ|Λj({I−P}f̂)

)
+

κ1

1+ |k|2
3∑

j,m=1

(
ikj b̂m+ ikmb̂j

∣∣Θjm({I−P}f̂)+2ĉδjm

)

+
κ2

1+ |k|2
3∑

j=1

(
ikj â|b̂j

)
(4.5)

and

∂tREint(f̂)(t,k)+
λ|k|2

1+ |k|2
(|b̂|2+ |ĉ|2)+λ|â|2

≲|{I−P}f̂ |2D+ |(ĥ,µ1/4)L2
v
|2. (4.6)

Proof. We shall make estimates on b̂, ĉ, â individually and then take the proper
linear combination to deduce the desired energy inequality (4.6).

Estimate of b̂. For any 0<η<1, one has

∂tR
3∑

j,m=1

(
ikj b̂m+ ikmb̂j

∣∣{Θjm({I−P}f̂)+2ĉδjm}
)
+ |k|2|b̂|2

≤η(1+ |k|2)|â|2+Cη|k|2|ĉ|2+Cη(1+ |k|2)|{I−P}f̂ |2D+C|(ĥ,µ1/4)L2
v
|2. (4.7)
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In fact, observe the identity

3∑
j,m=1

|ikj b̂m+ ikmb̂j |2=2|k|2|b̂|2+2|k · b̂|2.

On the other hand, compute from (4.4)6 that

3∑
j,m=1

|ikj b̂m+ ikmb̂j |2

=

3∑
j,m=1

(
ikj b̂m+ ikmb̂j

∣∣−∂t{Θjm({I−P}f̂)+2ĉδjm}+Θjm(r̂+ ĥ)

)

=−∂t

3∑
j,m=1

(
ikj b̂m+ ikmb̂j

∣∣{Θjm({I−P}f̂)+2ĉδjm}
)

+

3∑
j,m=1

(
ikj∂tb̂m+ ikm∂tb̂j

∣∣Θjm({I−P}f̂)+2ĉδjm

)

+

3∑
j,m=1

(
ikj b̂m+ ikmb̂j

∣∣Θjm(r̂+ ĥ)

)
.

We further have

∂t

3∑
j,m=1

(
ikj b̂m+ ikmb̂j

∣∣{Θjm({I−P}f̂)+2ĉδjm}
)
+2|k|2|b̂|2+2|k · b̂|2

=

3∑
j,m=1

(
ikj∂tb̂m+ ikm∂tb̂j

∣∣Θjm({I−P}f̂)+2ĉδjm

)

+

3∑
j,m=1

(
ikj b̂m+ ikmb̂j

∣∣Θjm(r̂+ ĥ)

)
=S1+S2. (4.8)

For S1, we decompose it as

S1=

3∑
j,m=1

(
−∂tb̂m

∣∣ikjΘjm({I−P}f̂)+2ikj ĉδjm

)

+

3∑
j,m=1

(
−∂tb̂j

∣∣ikmΘjm({I−P}f̂)+2ikmĉδjm

)
.

One can use the Fourier transform of (4.4)2 and (4.4)4:

∂tb̂m+ ikm(â+2ĉ)+

3∑
j=1

ikjΘmj({I−P}f̂)− ikmϕ̂=(ĥ,vm
√
µ)L2

v
. (4.9)

−|k|2ϕ̂= â (4.10)
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to estimate it as

S1≤η|k|2(|â|2+ |ĉ|2)+η|â|2+Cη|k|2|ĉ|2+Cη|k|2
∑
j,m

|Θj,m{I−P}f̂ |2+C|(ĥ,µ1/4)L2
v
|2

≤η(1+ |k|2)|â|2+Cη|k|2|ĉ|2+Cη|k|2|{I−P}f̂ |2D+C|(ĥ,µ1/4)L2
v
|2. (4.11)

For S2, notice that

r=−v ·∇x{I−P}f+Lf.

We then use (2.4) to obtain

|Θjm(r̂)|2≲ (1+ |k|2)|{I−P}f̂ |2D.

Therefore, S2 is bounded by

S2≤η|k|2|b̂m|2+Cη

∑
jm

(|Θjm(r̂)|2+ |Θjm(ĥ)|2)

≤η|k|2|b̂m|2+Cη(1+ |k|2)|{I−P}f̂ |2D+C|(ĥ,µ1/4)L2
v
|2. (4.12)

Thus, with η>0 suitably small, (4.7) follows by taking the real part of (4.8), plugging
(4.11) and (4.12) into it.
Estimate of ĉ. For any 0<η<1, one has

∂tR
3∑

j=1

(Λj({I−P}f̂)|ikj ĉ)+(1−η)|k|2|ĉ|2

≤η|k|2|b̂|2+Cη(1+ |k|2)|{I−P}f̂ |2D+C|(ĥ,µ1/4)L2
v
|2. (4.13)

In fact, the Fourier transform of (4.4)5 gives

∂tΛj({I−P}f̂)+ ikj ĉ=Λj(r̂+ ĥ),

we then take the complex dot product with ikj ĉ to derive

∂t(Λj({I−P}f̂)|ikj ĉ)+ |kj |2|ĉ|2

=(Λj(r̂+ ĥ)|ikj ĉ)+(Λj({I−P}f̂)|ikj∂tĉ)
=S3+S4. (4.14)

S3 is bounded by

S3≤η|kj |2|ĉ|2+Cη(|Λj(r̂)|2+ |Λj(ĥ)|2

≤η|kj |2|ĉ|2+Cη(1+ |k|2)|{I−P}f̂ |2D+Cη|(ĥ,µ1/4)L2
v
|2. (4.15)

For S4, taking the Fourier transform of (4.4)3

∂tĉ+
1

3
k · b̂+ 5

3

3∑
j=1

ikjΛj({I−P}f̂)= 1

6
(ĥ,(|v|2−3)

√
µ)L2

v

to replace ∂tĉ, one has

S4≤η|k|2|b̂|2+Cη|k|2|{I−P}f̂ |2D+C|(ĥ,µ1/4)L2
v
|2. (4.16)
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Hence, one can take the real part of (4.14) and apply (4.15) and (4.16), and then take
the summation over {j=1,2,3} to deduce (4.13).

Estimate on â. For any 0<η<1, one has

∂tR
3∑

j=1

(b̂j |ikj â)+(1−η)(1+ |k|2)|â|2

≤|k|2|b̂|2+Cη|k|2(|ĉ|2+ |{I−P}f̂ |2D)+C|(ĥ,µ1/4)L2
v
|2. (4.17)

Indeed, we take the complex inner product with ikj â and (4.9), and then take the
summation over {j=1,2,3} to get

∂t
∑
j

(b̂j |ikj â)+ |k|2|â|2−
∑
j

(ikj ϕ̂|ikj â)

=−2
∑
j

(ikj ĉ|ikj â)−
∑
j,m

(ikmΘjm({I−P}f̂)|ikj â)

+
∑
j

(
(ĥ,vj

√
µ)L2

v
|ikj â

)
+
∑
j

(b̂j |ikj∂tâ). (4.18)

Using (4.10), one has

−
∑
j

(ikj ϕ̂|ikj â)=
∑
j

(
k2j

â

|k|2
∣∣â)= |â|2.

The first two terms on the right-hand side of (4.18) are bounded by

η|k|2|â|2+Cη|k|2(|ĉ|2+ |{I−P}ĝ|2D),

the third term is bounded by

η|k|2|â|2+Cη|(ĥ,µ1/4)L2
v
|2,

while for the last term, we have∑
j

(b̂j |ikj∂tâ)=
∑
j

(b̂j |ikj(−ik · b̂))= |k · b̂|2≤|k|2|b̂|2.

Here we have used the Fourier transform of (4.4)1

∂tâ+ ik · b̂=0.

Then, putting the above estimates into (4.18) and taking the real part yields (4.17) .
Finally, (4.6) follows from the proper linear combination of (4.7), (4.13) and (4.17)

by taking 0<η<1 small enough and choosing two suitable constants 0<κ2≪κ1. This
completes the proof of Lemma 4.1.

Proof. (Proof of Theorem 4.1.) By using (4.10), one has

|k|2

1+ |k|2
(|b̂|2+ |ĉ|2)+ |â|2

≥ |k|2

1+ |k|2

(
|â|2+ |b̂|2+ |ĉ|2+ 1

|k|2
|â|2

)
≥ |k|2

1+ |k|2
(
|â|2+ |b̂|2+ |ĉ|2+ |∇̂xϕ|2

)
.
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We apply the result in Lemma 4.1 to give

∂tREint(f̂)(t,k)+
λ|k|2

1+ |k|2
(
|â|2+ |b̂|2+ |ĉ|2+ |∇̂xϕ|2

)
≲|{I−P}f̂ |2D+ |(ĥ,µ1/4)L2

v
|2.

Due to k∈Z3 it holds that

∂tREint(f̂)(t,k)+λ
(
|â|2+ |b̂|2+ |ĉ|2+ |∇̂xϕ|2

)
≲|{I−P}f̂ |2D+ |(ĥ,µ1/4)L2

v
|2,

we then integrate it over [0,T ] to yield

REint(f̂)(T,k)−REint(f̂)(0,k)+λ

∫ T

0

(|â|2+ |b̂|2+ |ĉ|2+ |∇̂xϕ|2
)
dt

≲
∫ T

0

|{I−P}f̂ |2Ddt+

∫ T

0

|(ĥ,µ1/4)L2
v
|2dt.

From (4.5), one has

|Eint(f̂)(t,k)|≲ (|â|2+ |b̂|2+ |ĉ|2)+
3∑

j,m=1

(|Θjm({I−P}f̂)|2+ |Λj({I−P}f̂)|2)

≲ |Pf̂ |2L2
v
+ |{I−P}f̂ |2L2

v
≲ |f̂(t,k)|2L2

v
.

We further have∫ T

0

(|â|2+ |b̂|2+ |ĉ|2+ |∇̂xϕ|2
)
dt

≲|f̂(T,k)|2L2
v
+ |f̂(0,k)|2L2

v
+

∫ T

0

|{I−P}f̂ |2Ddt+

∫ T

0

|(ĥ,µ1/4)L2
v
|2dt.

Thus, we can use the above inequality to yield the desired estimate (4.3). This completes
the proof of Theorem 4.1.

5. Proof of the main results
In this section we give the proof of Theorems 1.1 and 1.2. Recall (1.9) and (1.10)

for ET (f) and DT (f), respectively.

Proof. (Proof of Theorem 1.1.) Firstly, we will deduce the uniform a priori
estimate on the solution to the Cauchy problem (1.4)-(1.6). The Fourier transform in
x of (1.4) gives

∂tf̂(t,k,v)+ iv ·kf̂(t,k,v)−√
µv · ∇̂xϕ(t,k)+Lf̂(t,k,v)

=Γ̂(f,f)(t,k,v)− ̂∇xϕ ·∇vf(t,k,v)+
1

2
v · ∇̂xϕf(t,k,v)=

3∑
j=1

Hj . (5.1)

Taking the product of (5.1) with the complex conjugate of f̂(t,k,v) and further taking
the real part of the resulting equation, one has

1

2

d

dt
|f̂(t,k,v)|2−R(ik ·vϕ̂√µ|f̂)+R(Lf̂ |f̂)=

3∑
j=1

R(Ĥj |f̂),
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where (·|·) denotes the complex inner product over the complex field. Integrating the
above identity with respect to v, one has

1

2

d

dt
|f̂(t,k)|2L2

v
−R(ik ·vϕ̂√µ,f̂)L2

v
+R(Lf̂,f̂)L2

v
=

3∑
j=1

R(Ĥj , f̂)L2
v
, (5.2)

Notice that by (2.2),

R(Lf̂,f̂)L2
v
≥λ|{I−P}f̂ |2D.

Applying (2.1)3, (4.4)1 and (4.4)4, one has

−R(ik ·vϕ̂√µ,f̂)L2
v
=−R(iϕ̂|k · b̂)=−R(iϕ̂|i∂tâ)

=−R(iϕ̂|− i|k|2ϕ̂)= 1

2

d

dt
|∇̂xϕ(t,k)|2.

With the above estimatess, we now integrate the identity (5.2) with respect to t to yield

1

2
|f̂(t,k)|2L2

v
+

1

2
|∇̂xϕ(t,k)|2+λ

∫ t

0

|{I−P}f̂ |2Ddτ

=
1

2
|f̂0(k)|2L2

v
+

1

2
|∇̂xϕ0(k)|2+

3∑
j=1

∫ t

0

R(Ĥj , f̂)L2
v
dτ.

We further have

|f̂(t,k)|L2
v
+ |∇̂xϕ(t,k)|+

(∫ t

0

|{I−P}f̂ |2Ddτ

)1/2

≤C0

{
|f̂0(k)|L2

v
+ |∇̂xϕ0(k)|+

3∑
j=1

(∫ t

0

∣∣(Ĥj , f̂)L2
v

∣∣dτ)1/2}
,

where C0>0 is a suitable constant. Moreover, we take sup0≤t≤T on both sides of the
above estimate, and then integrate the resulting inequality with respect to k to deduce∫

Z3

sup
0≤t≤T

|f̂(t,k)|L2
v
dΣ(k)+

∫
Z3

sup
0≤t≤T

|∇̂xϕ(t,k)|dΣ(k)

+

∫
Z3

(∫ T

0

|{I−P}f̂(t,k)|2Ddt

)1/2

dΣ(k)

≤C0

{
∥f0∥L1

kL
2
v
+∥∇xϕ0∥L1

k
+

3∑
j=1

∫
Z3

(∫ T

0

∣∣(Ĥj , f̂)L2
v

∣∣dt)1/2

dΣ(k)

}
. (5.3)

Recall that

ET (f)=∥f∥L1
kL

∞
T L2

v
+∥∇xϕ∥L1

kL
∞
T

and

DT (f)=∥f∥L1
kL

2
TL2

v,D
, ϵ0=∥f0∥L1

kL
2
v
+∥∇xϕ0∥L1

k
.
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We then apply (3.1), (3.2), (3.3) and (5.3) to deduce

ET (f)+

∫
Z3

(∫ T

0

|{I−P}f̂(t,k)|2Ddt

)1/2

dΣ(k)

≤C0ϵ0+η∥f∥L1
kL

2
TL2

v,D
+Cη

{
∥∇xϕ∥L1

kL
∞
T
+∥f∥L1

kL
∞
T L2

v

}
∥f∥L1

kL
2
TL2

v,D

≤C0ϵ0+η∥f∥L1
kL

2
TL2

v,D
+CηET (f)DT (f). (5.4)

By using Theorem 4.1 and (3.4)–(3.6), one has the following macroscopic dissipation
estimate:

∥[a,b,c]∥L1
kL

2
T
≲∥{I−P}f∥L1

kL
2
TL2

v,D
+∥f∥L1

kL
∞
T L2

v
+∥f0∥L1

kL
2
v

+
{
∥∇xϕ∥L1

kL
∞
T
+∥f∥L1

kL
∞
T L2

v

}
∥f∥L1

kL
2
TL2

v,D
. (5.5)

Consequently, a suitable linear combination of the estimate (5.4) and the above
estimate (5.5) gives

ET (f)+DT (f)≲ ϵ0+ET (f)DT (f), (5.6)

for suitably small η>0. Therefore, under the smallness assumption on ϵ0, we can obtain
the uniform a priori estimate:

ET (f)+DT (f)≲ ϵ0.

The rest is to prove the local existence and uniqueness of solutions and the non-
negativity of F =µ+

√
µf , and the details of the proof are omitted for brevity; see

also [14] and [4]. Therefore, the global existence of mild solutions follows with the help
of the continuity argument.

Next, we consider the rate of convergence of the obtained solutions. Set

w=eλtf, φ=eλtϕ (5.7)

with λ>0 determined later. Since f and ϕ satisfy (1.4), then

∂tŵ+iv ·kŵ−√
µv · ∇̂xφ+Lŵ

=e−λtΓ̂(w,w)−e−λt ̂∇xφ ·∇vw+
1

2
e−λtv · ∇̂xφw+λŵ,

∆̂xφ=

∫
R3

√
µŵdv,

with initial data

ŵ(0,k,v)= ŵ0(k,v).

Then we repeat the procesess used to derive (5.6) to deduce∫
Z3

sup
0≤t≤T

|ŵ(t,k)|L2
v
dΣ(k)+

∫
Z3

sup
0≤t≤T

|∇̂xφ(t,k)|dΣ(k)

+

∫
Z3

(∫ T

0

|ŵ(t,k)|2Ddt

)1/2

dΣ(k)

≲∥f0∥L1
kL

2
v
+∥∇xϕ0∥L1

k
+
√
λ

∫
Z3

(∫ T

0

|ŵ|2L2
v
dt

)1/2

dΣ(k).
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Since r+2s≥1, we use (2.3) to get

|ŵ|L2
v
≤|ŵ|D.

By choosing λ>0 sufficiently small, one then has∫
Z3

sup
0≤t≤T

|ŵ(t,k)|L2
v
dΣ(k)+

∫
Z3

sup
0≤t≤T

|∇̂xφ(t,k)|dΣ(k)

+

∫
Z3

(∫ T

0

|ŵ(t,k)|2Ddt

)1/2

dΣ(k)

≲∥f0∥L1
kL

2
v
+∥∇xϕ0∥L1

k
.

Subsequently, we use the Minkowski inequality∣∣∣∣∥·∥L1
k

∣∣∣∣
L∞

T

≤
∣∣∣∣∥·∥L∞

T

∣∣∣∣
L1

k

and (5.7) to obtain the time decay estimate (1.11). This completes the proof of Theorem
1.1.

Now let’s give the proof of Theorem 1.2.

Proof. (Proof of Theorem 1.2.) As in [14], we can use similar arguments as
those in Lemma 3.2 to deduce,∫

Z3

(∫ T

0

∣∣∣∣(Γ̂(f,f),⟨k⟩2mf̂
)
L2

v

∣∣∣∣dt)1/2

dΣ(k)

≤η∥f∥L1
k,mL2

TL2
v,D

+Cη∥f∥L1
k,mL∞

T L2
v
∥f∥L1

k,mL2
TL2

v,D
, (5.8)

and ∫
Z3

(∫ T

0

∣∣∣∣( ̂∇xϕ ·∇vf,⟨k⟩2mf̂
)
L2

v

∣∣∣∣dt)1/2

dΣ(k)

≤η∥f∥L1
k,mL2

TL2
v,D

+Cη∥∇xϕ∥L1
k,mL∞

T
∥f∥L1

k,mL2
TL2

v,D
, (5.9)

and ∫
Z3

(∫ T

0

∣∣∣∣(v · ∇̂xϕf,⟨k⟩2mf̂
)
L2

v

∣∣∣∣dt)1/2

dΣ(k)

≤η∥f∥L1
k,mL2

TL2
v,D

+Cη∥∇xϕ∥L1
k,mL∞

T
∥f∥L1

k,mL2
TL2

v,D
. (5.10)

We can also use similar arguments as those in Theorem 4.1 to deduce

∥[a,b,c]∥L1
k,mL2

T
≲∥{I−P}f∥L1

k,mL2
TL2

v,D
+∥f∥L1

k,mL∞
T L2

v
+∥f0∥L1

k,mL2
v

+

∫
Z3

(∫ T

0

∣∣∣∣(⟨k⟩mĥ(t,k),µ1/4
)
L2

v

∣∣∣∣2dt)1/2

dΣ(k). (5.11)

Note that

ĥ(t,k)=− ̂∇xϕ ·∇vf+
1

2
v · ∇̂xϕf+Γ̂(f,f).
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By using similar arguments as those in Lemma 3.5, we further deduce that∫
Z3

(∫ T

0

∣∣∣∣(⟨k⟩mĥ(t,k),µ1/4
)
L2

v

∣∣∣∣2dt)1/2

dΣ(k)

≲
{
∥f∥L1

k,mL∞
T L2

v
+∥∇xϕ∥L1

k,mL∞
T

}
∥f∥L1

k,mL2
TL2

v,D
. (5.12)

We take the L2
v inner product of the Fourier transform in x of (1.4) and ⟨k⟩2mf̂ to yield

(∂tf̂ ,⟨k⟩2mf̂)L2
v
+(iv ·kf̂ ,⟨k⟩2mf̂)L2

v
−(

√
µv · ∇̂xϕ,⟨k⟩2mf̂)L2

v
+(Lf̂,⟨k⟩2mf̂)L2

v

=(Γ̂(f,f),⟨k⟩2mf̂)L2
v
−( ̂∇xϕ ·∇vf,⟨k⟩2mf̂)L2

v
+

1

2
(v · ∇̂xϕf,⟨k⟩2mf̂)L2

v
.

Then by using the same arguments that were used to derive (5.3), we have∫
Z3

sup
0≤t≤T

|⟨k⟩mf̂(t,k)|L2
v
dk+

∫
Z3

sup
0≤t≤T

|⟨k⟩m∇̂xϕ(t,k)|dΣ(k)

+

∫
Z3

(∫ T

0

|⟨k⟩m{I−P}f̂(t,k)|2Ddt

)1/2

dΣ(k)

≤C0

{
∥f0∥L1

k,mL2
v
+∥∇xϕ0∥L1

k,m
+

∫
Z3

(∫ T

0

∣∣(Γ̂(f,f),⟨k⟩2mf̂)L2
v

∣∣dt)1/2

dΣ(k)

+

∫
Z3

(∫ T

0

∣∣( ̂∇xϕ ·∇vf,⟨k⟩2mf̂)L2
v

∣∣dt)1/2

dΣ(k)

+

∫
Z3

(∫ T

0

∣∣(v · ∇̂xϕf,⟨k⟩2mf̂)L2
v

∣∣dt)1/2

dΣ(k)

}
. (5.13)

Thus, under the smallness assumption on ε0, a combination of the estimates (5.8), (5.9),
(5.10), (5.11), (5.12) and (5.13) gives∫

Z3

⟨k⟩m sup
0≤t≤T

∥f̂(t,k,·)∥L2
v
dΣ(k)+

∫
Z3

⟨k⟩m sup
0≤t≤T

|∇̂xϕ(t,k)|dΣ(k)

+

∫
Z3

(∫ T

0

|⟨k⟩mf̂ |2D dt

)1/2

dΣ(k)≲∥f0∥L1
k,mL2

v
+∥∇xϕ0∥L1

k,m
,

which implies (1.12). This completes the proof of Theorem 1.2.
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