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ENERGY METHOD FOR THE BOLTZMANN EQUATION
OF MONATOMIC GASEOUS MIXTURES∗
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Abstract. In this paper, we present an energy method for the system of Boltzmann equations in the
multicomponent mixture case, based on a micro-macro decomposition. More precisely, the perturbation
of a solution to the Boltzmann equation around a global equilibrium is decomposed into the sum of a
macroscopic and a microscopic part, for which we obtain a priori estimates at both lower and higher
orders. These estimates are obtained under a suitable smallness assumption. The assumption can be
justified a posteriori in the higher-order case, leading to the closure of the corresponding estimate.
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1. Introduction
In the last decade or so, the Boltzmann equation for mixtures, which was already

mentioned in [11], attracted the attention of many works. The modelling issue, for
both monatomic and polyatomic gases, was for instance discussed in [2, 15, 34] (see
also the references therein). Many works focused on the analysis of the monatomic
case, like [4,7,10,13], which were dedicated to compactness, hypocoercivity-related and
stability results. Well-posedness and regularity were investigated in [1,9,10,14,19], and
asymptotics questions were tackled in [5, 6, 8, 23].

Some of the previous papers, for instance [10], rely on the so-called micro-macro
decomposition. In the present work, we aim to provide a more detailed insight on that
decomposition in the mixture case. Indeed, the micro-macro decomposition of a solution
of the linearized Boltzmann equation has a key role in the study of both mathematical
and numerical properties of that solution. It was introduced for the monospecies Boltz-
mann equation in [21, 22] on the one hand, and in [28, 30, 35] on the other hand. The
method consists in considering the equilibrium perturbation as the sum of a macro-
scopic part and a microscopic one. The macroscopic part can be decomposed on a
finite-dimensional subspace, where the associate coordinates solve some conservation
laws of fluid type, whereas the microscopic one still solves a kinetic equation. Never-
theless, the microscopic part is incorporated in macroscopic conservation laws and fills
the gap between the usual Navier-Stokes approximation and the complete kinetic equa-
tion [28]. In fact, it brings information which is essential to provide proper estimates of
the perturbed solutions of the kinetic equation.

In the monospecies case, the micro-macro decomposition and the underlying energy
method were used for hypocoercivity estimates, see [17], for large-time behaviour stud-
ies [26, 29, 33] (see also [27] for a binary mixture), for propagation of one-dimensional
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‡MAP5, CNRS UMR 8145, Université Paris Cité, F-75006 Paris, France (berenice.grec@u-paris.fr).
§Corresponding author. Department of Mathematics and Informatics, Faculty of Sciences, Univer-
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waves [31], or to obtain Green’s function for the Boltzmann equation [32]. In numer-
ical analysis, this decomposition is a major tool to build asymptotic-preserving (AP)
schemes, allowing to pass, for instance, from the Boltzmann equation to the Navier-
Stokes equations [3], to exactly conserve some physical quantities [18], or to quantify
uncertainty in kinetic equations [16]. As far as the mixture case is concerned, note that
several attempts relying on a micro-macro decomposition were already performed, with
a BGK approximation [24,25], in the two-species case [12], and in the general case with
partial results [10].

In this paper, we study the micro-macro decomposition and the corresponding en-
ergy method in the multicomponent mixture case, by following the strategy of [30]. More
precisely, we start from an equilibrium not depending on the time and space variables.
The perturbation of this equilibrium is then decomposed into the sum of microscopic
and macroscopic parts, for which we obtain lower and higher order estimates, first using
relevant smallness assumptions, and exhibiting closure in the one-dimensional (in space)
setting.

It is peculiar for the mixture, in contrast to the monospecies case, that the micro-
scopic part contributes to macroscopic equations not only in the momentum and energy
conservation laws, but also in the mass conservation law. This effect is crossed with the
perturbation of the energy variable, which altogether makes the procedure of finding
proper estimates much more involved. This problem is solved by means of introducing
a suitable fluid quantity.

The paper is structured as follows. In the next section, we give a preliminary
overview describing the framework for the subsequent analysis. Then, in Section 3,
we discuss the methodology and main ideas relying on the micro-macro decomposition,
and state our main results. They are a priori estimates on the perturbation based on
the decomposition, whose proofs are exposed in Sections 4 and 5. In particular, we
provide very detailed explanations for the lower-order estimate, knowing that, for the
higher-order one, the same kind of computations and ideas are developed.

2. Preliminaries
We consider an ideal gas mixture constituted with I≥2 monatomic species. Each

species, indexed by 1≤ i≤ I, is described thanks to a distribution function Fi, which is
nonnegative, and depends on time t∈ [0,T ], T >0, space position x∈R and microscopic
velocity v∈R3. We denote by mi the atomic mass of species i. We emphasize that we
choose to work here in a one-dimensional setting for the space variable x, not only for the
sake of simplicity. Indeed, if most computations and results remain true in dimensions
2 and 3, the estimates are closed in this work by introducing the antiderivative of
the macroscopic part of the decomposition, which can only be performed in a one-
dimensional setting.

To consider the species altogether, we introduce the vector distribution function of
the mixture, denoted by F =(Fi)1≤i≤I . It satisfies the system of Boltzmann equations,
also written in a vector form,

∂tF +v1∂xF =Q(F ,F ), (2.1)

where v1 is the coordinate of velocity v in a direction of the space variable x, and Q
is the vector collision operator, which only acts on the velocity variable v. The vector
collision operator Q can be defined component-wise. To this end, we first need to recall
the microscopic context of the collisions.

We assume that the mixture only involves elastic collisions, without chemical reac-
tions. Consider two colliding molecules, one of species i and another one of species j,
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with respective pre-collisional velocities v′ and v′∗. Those velocities change after colli-
sion into post-collisional velocities v and v∗, with both momentum and kinetic energy
conserved, i.e.

miv
′+mjv

′
∗=miv+mjv∗,

1

2
miv

′2+
1

2
mjv

′
∗
2
=

1

2
miv

2+
1

2
mjv∗

2. (2.2)

The previous equalities allow to introduce a parameter ω∈S2, enabling to write v′ and
v′∗ in terms of v and v∗ as

v′=
miv+mjv∗
mi+mj

+
mj

mi+mj
Tω(v−v∗), v′∗=

miv+mjv∗
mi+mj

− mi

mi+mj
Tω(v−v∗), (2.3)

denoting Tωz=z−2(ω ·z)ω for any z∈R3.
Then, for any i, j, we can define the operator Qij describing the atomic interactions

of species i with species j. It only acts on the velocity variable and is given by

Qij(fi,gj)(v)=

∫∫
R3×S2

[fi(v
′)gj(v

′
∗)−fi(v)gj(v∗)]Bij(v,v∗,ω)dωdv∗,

for any species-related real-valued functions fi, gj of the velocity variable. The cross-
section Bij allows to classify the way species i and j interact and must satisfy the
micro-reversibility property

Bij(v
′,v′∗,ω)=Bji(v∗,v,ω)=Bij(v,v∗,ω)≥0.

Moreover, in this work, we make the hard-sphere assumption, for any i, j,

Bij(v,v∗,ω)=βij |(v−v∗) ·ω| , (2.4)

where βij>0 is given. The assumption is required to ensure needed properties of the
collision frequency and to deal with the nonlinearity.

Eventually, we can define the i-th component of Q, with f =(fj)1≤j≤I , g=
(gj)1≤j≤I , by

Qi(f ,g)=

I∑
j=1

Qij(fi,gj).

Before recalling the main properties of the solutions to (2.1), let us introduce some
very convenient notations. First, we define a component-wise product of two vectors
A=(Ai)1≤i≤I , B=(Bi)1≤i≤I and a vector-valued function of A, for Φ :R→R, by

AB=


A1B1

A2B2

...
AIBI

, Φ(A)=


Φ(A1)
Φ(A2)

...
Φ(AI)

.
This way, we can write, for instance, A1/2=(Ai

1/2)1≤i≤I , when Ai≥0. Finally, L2(R3)I

is endowed with its natural scalar product and norm, i.e. we set, for any vector functions
f =(fi)1≤i≤I , g=(gi)1≤i≤I ∈L2(R3)I ,

⟨f ,g⟩I =
I∑

i=1

∫
R3

figidv, ∥f∥I = ⟨f ,f⟩I1/2.
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Conservative properties of the Boltzmann equations are obtained thanks to the
weak form of the collision operator that uses some symmetries built in the model. In
the mixture setting, the weak form is carefully described, for example, in [6, 8, 15]. We
only mention here the final formula. For any functions G and ψ for which it makes
sense, we have

⟨Q(G,G),ψ⟩I =−1

4

I∑
i,j=1

∫∫∫
R3×R3×S2

[Gi(v
′)Gj(v

′
∗)−Gi(v)Gj(v∗)]

× [ψi(v
′)+ψj(v

′
∗)−ψi(v)−ψj(v∗)]Bij(v,v∗,ω)dωdv∗dv.

In this paper, we work in a perturbative setting, around a global equilibrium dis-
tribution function. Its notion is introduced in the so-called H-theorem, see [15] for
instance. Let us first define the entropy production functional

D(G)= ⟨Q(G,G),logG⟩I .

The H-theorem reads

Proposition 2.1. Assume that all the cross sections are positive almost everywhere
and that G is such that both Q(G,G) and D(G) are well defined. Then

(a) The entropy production is non-positive, i.e. D(G)≤0.
(b) Moreover, the three following properties are equivalent:

i. for any 1≤ i,j≤ I, Qij(Gi,Gj)=0;
ii. the entropy production vanishes, that is D(G)=0;
iii. there exist T >0 and u∈R3 such that, for any i, there exists ni≥0 such

that

Gi(v)=ni

( mi

2πkT

)3/2
e−

mi
2kT |v−u|2 .

Choosing kT =1, u=0, n as a nonnegative constant vector, we obtain the normal-
ized centered Maxwell vector function M as

Mi(v)=
(mi

2π

)3/2
e−

mi
2 |v|2 , 1≤ i≤ I.

Let us then recall the collision invariants in the gas mixtures setting which can be
found in [10], for instance. The collision invariants are the velocity-depending functions
which make the previous weak form of Q vanish. They are moreover chosen one-to-one
orthogonal and normalized with respect to a L2 scalar product weighted in terms of
nM (remembering the component-wise multiplication defined above). More precisely,
we set

χ1= 1√
n1


1
0
...
0

, χ2= 1√
n2


0
1
...
0

, . . ., χI = 1√
nI


0
0
...
1

,

χI+1= 1√∑I
j=1njmj


m1v1
m2v1

...
mIv1

 , . . ., χI+3= 1√∑I
j=1njmj


m1v3
m2v3

...
mIv3

,

χI+4= 1√
6
∑I

j=1nj


m1|v|2−3
m2|v|2−3

...
mI |v|2−3

 .

(2.5)
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Then the family (χk)1≤k≤I+4 satisfies, for any G,〈
Q(G,G),χk

〉
I
=0, 1≤k≤ I+4,〈

(nM)1/2χk,(nM)1/2χℓ
〉
I
= δkℓ, 1≤k,ℓ≤ I+4. (2.6)

In this paper, we focus on a perturbation of the global equilibrium distribution
function nM . More precisely, we consider a perturbation carried by a vector-valued
function f , which implies that F takes the form

F =nM+(nM)1/2f . (2.7)

Since nM does not depend on t and x, we shall carefully study the macroscopic part of
the perturbation, which contains the time and space variations of f and subsequently of
F , as in [30], bringing at the same time some more details about the estimates to handle
the mixture case. Note that another possibility would have been to follow [28], in which
F is decomposed into the sum of a local Maxwellian, containing the whole macroscopic
part of the distribution function, and the microscopic part. This decomposition induces
other difficulties, such as the dependence of kerL on x and t.

3. Main ideas and results
Let us now focus our attention on the micro-macro decomposition of the perturba-

tion f . Straightforwardly, (2.1) implies that f satisfies

∂tf+v1∂xf−Lf =N (f), (3.1)

where L and N are respectively the linearized Boltzmann operator and a quadratic
operator defined by

Lf =(nM)−1/2
(
Q(nM ,(nM)1/2f)+Q((nM)1/2f ,nM)

)
,

N (f)=(nM)−1/2Q((nM)1/2f ,(nM)1/2f).

In the remainder of the paper, we shall denote by D the domain of L in L2(R3)I .
It is easy to see [7, 10] that the operator L is a non-positive self-adjoint operator,

i.e. for any f ,g∈D,

⟨Lf ,g⟩I = ⟨f ,Lg⟩I , ⟨Lf ,f⟩I ≤0.

The collision invariants allow to characterize the elements of P0=kerL, i.e.

P0=kerL=Span
{
(nM)1/2χk | 1≤k≤ I+4

}
, (3.2)

which is a finite-dimensional subspace of D with dimP0= I+4. Let us denote by P1

its orthogonal complement in D with respect to the ⟨·, ·⟩I scalar product, i.e. P1=
(kerL)⊥=(P0)⊥.

If we naively proceed by multiplying (3.1) by f and integrate with respect to t, x
and v, the only term we can hope to upper-bound comes from a spectral gap estimate
for L: it is a square norm of the projection of f onto P1, which we denote f1. That
implies that we fail to control the norm of the projection f0 of f onto P0. To control
f0, we use the so-called micro-macro decomposition of f , as f is uniquely written as

f =f0+f1.
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We shall get back to it later, but f0 is called the macroscopic part of f , and f1 its
microscopic part.

The statements below will be accurately justified in the upcoming sections. The
projections of f satisfy, as in [30],

∂tf
0+P 0(v1∂xf

0)+P 0(v1∂xf
1)=0,

∂tf
1+P 1(v1∂xf

0)+P 1(v1∂xf
1)−Lf1=N (f).

As we shall see, L̄=L|P1 is invertible, thus we get, from the previous equation on f1,

f1= L̄−1(
∂tf

1+P 1(v1∂xf
0)+P 1(v1∂xf

1)−N (f)
)
.

We now plug this expression of f1 in the previous equation on f0, which ensures

∂tf
0+P 0(v1∂xf

0)+P 0
(
v1∂xL̄

−1(
∂tf

1+P 1(v1∂xf
0)+P 1(v1∂xf

1)−N (f)
))

=0.

We immediately observe that, when scalarily multiplying by f0, there is no way to
exhibit an estimate on a norm of f0 itself. There may only be hope to find an estimate
of the norm ∥∂xf0∥2I . Indeed, we recall that P0 is a finite-dimensional space, and
P 1(v1∂xf

0) can be expressed in terms of the space derivatives of the coordinates of f0

in the orthonormal basis of P0. Then a subtle combination of arguments, some new
and specific to the mixture case, some others coming from [28,30], leads to an estimate
involving ∥∂xf0∥2I on the left-hand side. We still do not have any control on ∥f0∥2I , but
such a control is needed, since the nonlinear term involves f , and not only f1 (this is
due to the fact that N (f0) ̸=0), and derivatives of the quadratic term N (f) involve
the derivatives of f and f itself. We can see that it is possible to do so by introducing
the antiderivative W 0 of f0 with respect to x, which justifies the fact that we are
working in a one-dimensional setting. Without loss of generality, as we shall explain in
Subsection 4.9, we assume that∫

R
f0(0,x,v)dx=0, v∈R3, (3.3)

so that

W 0 : (t,x,v) 7→
∫ x

−∞
f0(t,y,v)dy

can be treated within a L2-framework with respect to both variables x and v. This
allows to derive an estimate on ∂xW

0=f0, roughly as we did for ∂xf
0. Eventually,

our global estimate requires the control of norms of the time and space derivatives of
f1, which can be obtained after differentiation of the equation on f1 with respect to
t or x, thanks to the spectral gap of L. This whole process also requires a mandatory
assumption to deal with the nonlinear term N (f), which implies that W 0 and f must
remain small in the ∥·∥I norm, pointwise in time and space.

Let us first make the following smallness assumption, where ε>0 will be chosen
afterwards.

Assumption. The perturbation f must satisfy

sup
t≥0
x∈R

(
∥W 0∥I +∥f0∥I +∥(1+ |v|)1/2f1∥I

)
≤ε. (3.4)
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This assumption is stronger than the one used in [30], where the term ∥f0∥2I was not
involved, but also allows to obtain an estimate on the full macroscopic part, which was
not the case previously. More precisely, our first main result is an a priori estimate
on norms of f , its partial derivatives, and the antiderivative of f0. The generic term
denoted by I(0) which appears below must be understood as a linear combination of
square norms of initial data of the pointwise in time integrals of the left-hand side of
the estimates, with coefficients only depending on the problem data.

Proposition 3.1. There exists ε0>0 such that, for any ε∈ (0,ε0], we can find
positive constants α0, α1, Ĉ1, Ĉ2, Ĉ3 such that, for any solution f to (3.1) satisfying
the smallness assumption (3.4), the following lower-order a priori estimate holds

1

4

∫
R
∥W 0∥2I dx

∣∣∣
t=T

+
1

4

∫
R
∥f0∥2I dx

∣∣∣
t=T

+α0

∫
R
∥f∥2I dx

∣∣∣
t=T

+
α1

2

∫
R
∥∂xf∥2I dx

∣∣∣
t=T

+
α1

2

∫
R
∥∂tf∥2I dx

∣∣∣
t=T

+ Ĉ1

∫ T

0

∫
R
∥f0∥2I dxdt+ Ĉ1

∫ T

0

∫
R

∥∥∂xf0
∥∥2
I
dxdt

+ Ĉ2

∫ T

0

∫
R

∥∥∥(1+ |v|)1/2f1
∥∥∥2
I
dxdt+2Ĉ3

∫ T

0

∫
R

∥∥∥(1+ |v|)1/2∂xf1
∥∥∥2
I
dxdt

+2Ĉ3

∫ T

0

∫
R

∥∥∥(1+ |v|)1/2∂tf1
∥∥∥2
I
dxdt≤I(0). (3.5)

Unfortunately, estimate (3.5) is not closed. For the latter property to hold, choosing
the initial data such that I(0) is of order ε2 would have to imply (3.4). However,
∥(1+ |v|)1/2f1∥I would only lie in H1

t,x, which does not continuously inject in L∞
t,x. We

thus need a higher-order estimate involving more derivatives with respect to t and x. In
order to obtain it, we differentiate the equations satisfied by f0 and f as many times as
necessary. To this aim, we introduce the following notation. For any p=(p1,p2)∈N2,
we set |p|=p1+p2, and, for any function g of t, x and v,

∂pg=∂p1

t ∂p2
x g.

We emphasize that the multi-index notation does not imply any derivative with respect
to v.

At this point, we make the following smallness assumption, where ε>0 will be
chosen afterwards.

Assumption. The perturbation f must satisfy

sup
t≥0
x∈R

[
∥W 0∥I +max

|p|≤2

(
∥∂pf0∥I +∥(1+ |v|)1/2∂pf1∥I

)]
≤ε. (3.6)

Under Assumption (3.6), we obtain the next theorem. This time, as we explain
below, the smallness assumption can be dropped, provided that we assume instead that
I(0) is small.

Theorem 3.1. There exists ε1>0 such that, for any ε∈ (0,ε1], and any solution f to
(3.1) such that the corresponding I(0) is at most of order ε2, the following higher-order
a priori estimate holds∫

R
∥W 0∥2I dx

∣∣∣
t=T

+

∫
R
∥f0∥2I dx

∣∣∣
t=T

+
∑

1≤|r|≤4

∫
R
∥∂rf0∥2I dx

∣∣∣
t=T



144 ENERGY METHOD FOR THE BOLTZMANN EQUATION OF GASEOUS MIXTURES

+

∫
R
∥f∥2I dx

∣∣∣
t=T

+
∑

1≤|p|≤5

∫
R
∥∂pf∥2I dx

∣∣∣
t=T

+

∫ T

0

∫
R
∥f0∥2I dxdt+

∫ T

0

∫
R

∥∥∂xf0
∥∥2
I
dxdt+

∑
1≤|r|≤4

∫ T

0

∫
R

∥∥∂x∂rf0
∥∥2
I
dxdt

+

∫ T

0

∫
R

∥∥∥(1+ |v|)1/2f1
∥∥∥2
I
dxdt+

∑
1≤|p|≤5

∫ T

0

∫
R

∥∥∥(1+ |v|)1/2∂pf1
∥∥∥2
I
dxdt≤I(0). (3.7)

Estimate (3.7) is closed because, this time, ∥(1+ |v|)1/2f1∥I lies in H5
t,x ↪→W 2,∞

t,x , and

∥f0∥I lies in H4
t,x ↪→W 2,∞

t,x . Estimate (3.7) implies that Assumption (3.6) is automat-
ically satisfied when I(0) is of order ε2. The latter closed estimate (3.7) appears as a
very useful tool. For instance, it allows to obtain the stability of the global Maxwellian
function (nM) in large time, provided that the perturbation at initial time is chosen
small enough in the Hs(L2

v) norm, for s≥5.

Let us now focus on the proofs of Proposition 3.1 and Theorem 3.1, starting with
the lower-order estimate.

4. Proof of the lower-order estimate

4.1. Estimates on L and N . The linearized operator L can be written as
L=K−ν, whereK is compact [7] and ν is a multiplicative operator, called the collision
frequency, given by

νi(v)=

I∑
j=1

nj

(mj

2π

)3/2∫∫
R3×S2

e−
mj
2 |v∗|2Bij(v,v∗,ω)dωdv∗, v∈R3, 1≤ i≤ I.

Note that, thanks to the hard-sphere assumption (2.4) on the cross sections, as in [28],
ν satisfies a growth estimate. More precisely, there exist positive constants ν0 and ν̄0,
such that

0<ν0≤ν0(1+ |v|)≤νi(v)≤ ν̄0(1+ |v|), v∈R3, 1≤ i≤ I. (4.1)

Besides, in [10], a constructive spectral gap estimate on L is proved. In our notation,
it means that there exists λ>0 such that, for any h∈ (kerL)⊥,

⟨Lh,h⟩I ≤−λ∥ν1/2h∥2I . (4.2)

The spectral gap estimate (4.2) on L and the lower bound ν0 on ν from (4.1), together
with the Cauchy-Schwarz inequality, yield

ν0∥g∥2I ≤∥ν1/2g∥2I ≤− 1

λ
⟨Lg,g⟩I ≤

1

λ
∥g∥I∥Lg∥I .

Since P1=(kerL)⊥ and L is self-adjoint, it is clear that L(P1)=P1, hence L̄=L|P1

is an invertible operator on P1. Now, for any h∈P1, writing g= L̄−1
h and setting

Cinv=(ν0λ)
−1>0, the previous inequality implies that

∥L̄−1
h∥I ≤Cinv∥h∥I , (4.3)

which ensures the boundedness of L̄−1
on P1.
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Eventually, we write an estimate on the nonlinear operator N . Its i-th component,
1≤ i≤ I, is given by

Ni(f)=M
−1/2
i

I∑
j=1

n
1/2
j Qij(M

1/2
i fi,M

1/2
j fj).

Thanks to Lemma A.1 stated in Appendix A, we immediately have∥∥∥(1+ |v|)−1/2N (f)
∥∥∥
I
≤Cβ

∥∥∥(1+ |v|)1/2f
∥∥∥2
I
, (4.4)∥∥∥(1+ |v|)−1/2∂⋆N (f)

∥∥∥
I
≤2Cβ

∥∥∥(1+ |v|)1/2f
∥∥∥
I

∥∥∥(1+ |v|)1/2∂⋆f
∥∥∥
I
, (4.5)

where ∂⋆ denotes either time or space partial differentiation.

4.2. Micro-macro decomposition. The micro-macro decomposition method
lies on the orthogonal decomposition of D onto P0=kerL and P1=(kerL)⊥=imL. In
order to perform it, let P 0 and P 1 respectively denote the orthogonal projections on
P0 and P1. It is clear that

LP 0=P 0L=0, LP 1=P 1L.

Moreover, thanks to (3.2), we can write, for any g∈D,

P 0g=

I+4∑
k=1

〈
(nM)1/2χk,g

〉
I
(nM)1/2χk. (4.6)

We decompose the perturbation f following the direct orthogonal sum P0⊕P1.
Then, f0=P 0f and f1=P 1f satisfy

f =P 0f+P 1f =f0+f1, ⟨f0,f1⟩I =0.

Functions f0 and f1 are respectively referred to as the macroscopic (or fluid) and
microscopic (or non-fluid) components of f .

The coordinates of f0 in the orthonormal basis
(
(nM)1/2χk

)
1≤k≤I+4

of P0, also

known as the fluid quantities, are given by

ρi(t,x)=
〈
(nM)1/2χi,f

〉
I
, 1≤ i≤ I,

qk(t,x)=
〈
(nM)1/2χI+k,f

〉
I
, k=1,2,3,

e(t,x)=
〈
(nM)1/2χI+4,f

〉
I
,

so that

f0=

I∑
i=1

ρi(nM)1/2χi+

3∑
k=1

qk(nM)1/2χI+k+e(nM)1/2χI+4. (4.7)

Note that (4.7) is a very convenient form of f0, as it is written as a sum of tensorized
functions with respect to t and x on the one hand, and v on the other hand.
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If we project the Equation (3.1) on the perturbation f onto P0 and P1, respectively,
we obtain the following equations respectively satisfied by f0 and f1, i.e.

∂tf
0+P 0(v1∂xf

0)+P 0(v1∂xf
1)=0, (4.8)

∂tf
1+P 1(v1∂xf

0)+P 1(v1∂xf
1)−Lf1=N (f). (4.9)

The nonlinear term P 0N (f) vanished in (4.8) by combining the representation (4.6) of
elements of P0, the definition of N , and the one (2.6) of the collision invariants. This
means that N (f) lies in P1, which we take into account, together with the commutation
of P 1 and L to rewrite (4.9) as an equality regarding f1, that is

f1= L̄−1(
∂tf

1+P 1(v1∂xf
0)+P 1(v1∂xf

1)−N (f)
)
. (4.10)

Of course, (4.10) does not provide a direct expression of f1, since its right-hand side
still depends on the nonlinear term N (f)=N (f0+f1) and first-order derivatives of
f0 and f1. Nevertheless, this equality is crucial for the rest of the paper. Let us also
emphasize here that time or space differentiations commute with L, P 0 and P 1, since
these three operators only act on the velocity variable.

Let us now state a result on the fluid quantities, which is important for the further
analysis. It comes from the Equation (4.8) satisfied by f0 and provides conservation
laws for (ρi)1≤i≤I , (q

k)k∈{1,2,3} and e.

Proposition 4.1. The fluid quantities of f0 satisfy the following conservation laws

∂tρi+
ni√∑
njmj

∂xq
1+
〈
P 0(v1∂xf

1),χi(nM)1/2
〉
I
=0, 1≤ i≤ I, (4.11)

∂tq
1+

1√∑
njmj

∂x

(∑
i

√
niρi+

√
6
∑
nj

3
e

)
+
〈
P 0(v1∂xf

1),χI+1(nM)1/2
〉
I
=0,

(4.12)

∂tq
k+
〈
P 0(v1∂xf

1),χI+k(nM)1/2
〉
I
=0, k=2, 3, (4.13)

∂te+
1

3

√
6
∑
nj∑

njmj
∂xq

1+
〈
P 0(v1∂xf

1),χI+4(nM)1/2
〉
I
=0. (4.14)

The principle of the proof is very simple (checking the equations), but the com-
putations inside are tedious. The proof is provided in Appendix B for the sake of
completeness. Note that the term with f1 in (4.11) is peculiar to the mixture and does
not appear in the monospecies case.

In the following, we shall also need to introduce the fluid quantity appearing in
(4.12) with its space derivative, that is

ℓ=
1√∑
njmj

(∑
i

√
niρi+

2
√∑

nj√
6

e

)
. (4.15)

Using (4.11) and (4.14), ℓ clearly satisfies

∂tℓ+

∑
nj

3/2+
2

3

∑
nj∑

njmj

∂xq
1

+
1√∑
njmj

〈
P 0(v1∂xf

1),

(∑
i

√
niχ

i+
1

3

√
6
∑

njχ
I+4

)
(nM)1/2

〉
I

=0,

(4.16)
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so that q1 and ℓ can easily be linked through (4.12) and (4.16).
Note that, thanks to (3.3), the perturbation f has zero total macroscopic quantities

at initial time, i.e.∫
R
ρidx

∣∣∣
t=0

=0, 1≤ i≤ I,
∫
R
qkdx

∣∣∣
t=0

=0, 1≤k≤3,

∫
R
edx

∣∣∣
t=0

=0.

Integrating the conservation laws (4.11)–(4.14) with respect to x∈R obviously ensures
that ∫

R
ρi(t,x)dx=

∫
R
ρi(0,x)dx, 0≤ t≤T, 1≤ i≤ I, (4.17)∫

R
qk(t,x)dx=

∫
R
qk(0,x)dx, 0≤ t≤T, 1≤k≤3, (4.18)∫

R
e(t,x)dx=

∫
R
e(0,x)dx, 0≤ t≤T. (4.19)

That allows to define, for any t, the antiderivatives (Ri), (Q
k) and E of (ρi), (q

k) and
e with respect to x, which are also the coordinates of W 0 in the basis (χk(nM)1/2) of
P0. Denote by L the antiderivative of ℓ, then we have the straightforward corollary of
Proposition 4.1.

Corollary 4.1. The fluid quantities in W 0 satisfy

∂tQ
1+ℓ+

〈
P 0(v1f

1),χI+1(nM)1/2
〉
I
=0, (4.20)

∂tL+

∑
nj

3/2+
2

3

∑
nj∑

njmj

q1

+
1√∑
njmj

〈
P 0(v1f

1),

(∑
i

√
niχ

i+
1

3

√
6
∑

njχ
I+4

)
(nM)1/2

〉
I

=0. (4.21)

We conclude this subsection by the following lemma, which is useful in the proofs
of the upcoming a priori estimates. It relies on the fact that P0 is finite-dimensional.

Lemma 4.1. The norms ∥·∥I , ∥v1 ·∥I and ∥(1+ |v|)1/2 ·∥I are equivalent on P0. Hence,
there exists a constant Ceq>0, depending on n and m, such that for any g∈P0,

∥v1g∥I ≤Ceq∥g∥I and ∥(1+ |v|)1/2g∥I ≤Ceq∥g∥I . (4.22)

Moreover, from (4.6), we can deduce that there exists a constant Cχ>0 only depending
on n and m, such that for any f ∈D,∥∥P 0(v1f)

∥∥2
I
=

I+4∑
k=1

∣∣∣〈v1(nM)1/2χk,f
〉
I

∣∣∣2≤Cχ∥f∥2I . (4.23)

4.3. Handling the lower-order estimate on f1 through f . Since we deal
with f0 estimates separately, it is equivalent to treat f or f1 to obtain an estimate on
the microscopic part. We choose to proceed with f . Let us scalarily multiply (3.1) by
f , integrate with respect to t∈ [0,T ] and x∈R to obtain

1

2

∫
R
∥f∥2I dx

∣∣∣∣∣
T

0

+

∫ T

0

∫
R
⟨v1∂xf ,f⟩I dxdt−

∫ T

0

∫
R
⟨Lf ,f⟩I dxdt≤

∫ T

0

∫
R
⟨N (f),f⟩I dxdt.

(4.24)
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The second term on the left-hand side of this equation vanishes by conservativity with
respect to the x variable, since∫ T

0

∫
R
⟨v1∂xf ,f⟩I dxdt=

1

2

∫ T

0

∫
R

∂

∂x

(
I∑

i=1

∫
R3

v1f
2
i dv

)
dxdt.

The term with L can be lower-bounded thanks to the L spectral gap estimate (4.2) and
to (4.1) in the following way

λν0∥(1+ |v|)1/2f1∥2I ≤λ∥ν1/2f1∥2I ≤−⟨Lf1,f1⟩I =−⟨Lf ,f⟩I .

Eventually, we deal with the term involving N . We first notice that

⟨N (f),f⟩I = ⟨N (f),f1⟩I = ⟨(1+ |v|)−1/2N (f),(1+ |v|)1/2f1⟩I ,

since P 0N (f)=0. Then, using (4.4), we have

|⟨N (f),f⟩I |≤Cβ

∥∥∥(1+ |v|)1/2f
∥∥∥2
I

∥∥∥(1+ |v|)1/2f1
∥∥∥
I

≤2Cβ

(∥∥∥(1+ |v|)1/2f0
∥∥∥2
I
+
∥∥∥(1+ |v|)1/2f1

∥∥∥2
I

)∥∥∥(1+ |v|)1/2f1
∥∥∥
I
. (4.25)

Using the equivalence of norms (4.22) on P0, we can find a constant Keq>0, depending
on m, n, the cross sections and L through its null space, such that (4.24) becomes

1

2

∫
R
∥f∥2I dx

∣∣∣∣∣
T

0

+λν0

∫ T

0

∫
R
∥(1+ |v|)1/2f1∥2I dxdt

≤Keq

∫ T

0

∫
R

(∥∥f0
∥∥2
I
+
∥∥∥(1+ |v|)1/2f1

∥∥∥2
I

)∥∥∥(1+ |v|)1/2f1
∥∥∥
I
dxdt. (4.26)

Of course, we can see that, if we choose ε small enough in assumption (3.4), there will
only remain a nonnegative contribution of a norm of f0 on the right-hand side of (4.26).
This is why we have to focus now on an estimate on f0.

4.4. Lower-order estimate on f0: first steps. In order to deal with the
estimate on f0, we plug the expression (4.10) of f1 into the Equation (4.8) satisfied by
f0, then scalarily multiply the new equation by f0, and integrate with respect to t and
x, to obtain

1

2

∫
R
∥f0∥2I dx

∣∣∣T
0
+L1+L2+L3+L4=0, (4.27)

where the term with ⟨P 0(v1∂xf
0),f0⟩I vanishes, again by conservativity in x, and where

we set

L1=

∫ T

0

∫
R

〈
v1∂xL̄

−1
∂tf

1,f0
〉
I
dxdt=−

∫ T

0

∫
R

〈
L̄−1

∂tf
1,P 1(v1∂xf

0)
〉
I
dxdt,

L2=

∫ T

0

∫
R

〈
v1∂xL̄

−1
P 1(v1∂xf

0),f0
〉
I
dxdt

=−
∫ T

0

∫
R

〈
L̄−1

P 1(v1∂xf
0),P 1(v1∂xf

0)
〉
I
dxdt,
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L3=

∫ T

0

∫
R

〈
v1∂xL̄

−1
P 1(v1∂xf

1),f0
〉
I
dxdt

=−
∫ T

0

∫
R

〈
∂xf

1,v1L̄
−1
P 1(v1∂xf

0)
〉
I
dxdt,

L4=−
∫ T

0

∫
R

〈
v1∂xL̄

−1N (f),f0
〉
I
dxdt=

∫ T

0

∫
R

〈
N (f),L̄−1

P 1(v1∂xf
0)
〉
I
dxdt.

Let us show how to handle these terms by performing the following preliminary com-
putations on L1, L2, L3, L4.

4.4.1. Term L1. Combining the equivalence of norms (4.22) on P0 with the

boundedness of L̄−1
, and setting K1=CinvCeq>0, we obtain

|L1|≤K1

∫ T

0

∫
R

∥∥∂tf1
∥∥
I

∥∥∂xf0
∥∥
I
dxdt. (4.28)

4.4.2. Term L2. It is clear that V =P 1(v1P0) is a finite-dimensional subspace

of P1. Consequently, L̄−1
|V is a bounded invertible operator, as well as its inverse. Hence,

there exists a constant CV >0, only depending on L, such that, for any g∈P0,∥∥P 1(v1g)
∥∥
I
≤CV

∥∥∥L̄−1
P 1(v1g)

∥∥∥
I
.

Thus, thanks to the previous inequality and to the spectral gap estimate (4.2) on L, we
get

L2=−
∫ T

0

∫
R

〈
L̄−1

P 1(v1∂xf
0),LL̄−1

P 1(v1∂xf
0)
〉
I
dxdt

≥λ
∫ T

0

∫
R

∥∥∥ν1/2L̄−1
P 1(v1∂xf

0)
∥∥∥2
I
dxdt

≥λ2
∫ T

0

∫
R

∥∥P 1(v1∂xf
0)
∥∥2
I
dxdt, (4.29)

where we chose λ2=λν0/CV >0.

4.4.3. Term L3. We apply the Cauchy-Schwarz inequality to yield

|L3|≤
∫ T

0

∫
R

∥∥∂xf1
∥∥
I

∥∥∥v1L̄−1
P 1(v1∂xf

0)
∥∥∥
I
dxdt.

Then, introducing CK >0 as the boundedness constant of the compact operator K=
L+ν, we notice that∥∥∥v1L̄−1

P 1(v1∂xf
0)
∥∥∥
I
≤ 1

ν0

∥∥∥νL̄−1
P 1(v1∂xf

0)
∥∥∥
I

≤ 1

ν0

(∥∥∥KL̄−1
P 1(v1∂xf

0)
∥∥∥
I
+
∥∥∥LL̄−1

P 1(v1∂xf
0)
∥∥∥
I

)
≤ Ceq

ν0
(CKCinv+1)∥∂xf0∥I ,

where we also used the boundedness of L̄−1
and P 1 (as a projector), and the norm

equivalence argument on P0, involving the constant Ceq. Setting K3=Ceq(CKCinv+
1)/ν0>0, we obtain

|L3|≤K3

∫ T

0

∫
R

∥∥∂xf0
∥∥
I

∥∥∂xf1
∥∥
I
dxdt, (4.30)
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4.4.4. Term L4. We first have to estimate〈
N (f),L̄−1

P 1(v1∂xf
0)
〉
I
=
〈
(1+ |v|)−1/2N (f),(1+ |v|)1/2L̄−1

P 1(v1∂xf
0)
〉
I

≤
∥∥∥(1+ |v|)−1/2N (f)

∥∥∥
I

∥∥∥(1+ |v|)1/2L̄−1
P 1(v1∂xf

0)
∥∥∥
I
.

We treat the norm with N using (4.4) and the same kind of argument as in (4.25),
including norm equivalence on P0. It ensures that∥∥∥(1+ |v|)−1/2N (f)

∥∥∥
I
≤Ceq

(
∥f0∥2I +∥(1+ |v|)1/2f1∥2I

)
.

Besides, the norm with L̄−1
is treated in the same way as for L3, i.e.∥∥∥(1+ |v|)1/2L̄−1

P 1(v1∂xf
0)
∥∥∥
I
≤
∥∥∥(1+ |v|)L̄−1

P 1(v1∂xf
0)
∥∥∥
I
≤K3∥∂xf0∥I .

Therefore, setting K4=CeqK3>0, we can write

|L4|≤K4

∫ T

0

∫
R

(
∥f0∥2I +∥(1+ |v|)1/2f1∥2I

)
∥∂xf0∥Idxdt. (4.31)

4.4.5. Before we proceed. Let us explain what the current situation on f0 is.
Applying Young’s inequality in (4.28) and (4.30) with a parameter δ0>0 to be chosen
later, and plugging (4.28)–(4.31) in (4.27), we get

1

2

∫
R
∥f0∥2I dx

∣∣∣T
0
+λ2

∫ T

0

∫
R

∥∥P 1(v1∂xf
0)
∥∥2
I
dxdt

≤K1

∫ T

0

∫
R

(
1

2δ0

∥∥∂tf1
∥∥2
I
+
δ0
2

∥∥∂xf0
∥∥2
I

)
dxdt

+K3

∫ T

0

∫
R

(
δ0
2

∥∥∂xf0
∥∥2
I
+

1

2δ0

∥∥∂xf1
∥∥2
I

)
dxdt

+K4

∫ T

0

∫
R

∥∥∂xf0
∥∥
I

(∥∥f0
∥∥2
I
+
∥∥∥(1+ |v|)1/2f1

∥∥∥2
I

)
dxdt. (4.32)

We intend afterwards to combine (4.32) with the estimate (4.26) for f1. All the
terms are product of exactly two norms, apart from the ones coming from the nonlinear
operator. This is why, in order to proceed, we shall need the same kind of smallness
assumption as in [30], namely (3.4).

The term ∥(1+ |v|)1/2f1∥2I appears in the left-hand side of (4.26), and in the right-
hand side of both estimates in the terms coming from N , with a multiplication by the
arbitrary small parameter ε when using the smallness assumption. So they can be put
on the left-hand side to obtain a still positive coefficient for ∥(1+ |v|)1/2f1∥2I . On the
contrary, the time and space derivatives of f1 only appear in the right-hand sides of
our estimates, and so does ∥f0∥2I . We have no way to control them for the time being.
Last, the space derivative of f0 appears on the right-hand side of (4.32) as its I-norm,
and on the left-hand side in ∥P 1(v1∂xf

0)∥I , which will provide a helpful contribution.

Consequently, our next two steps are natural: deal with the norms of the time and
space derivatives of f1, and ∥P 1(v1∂xf

0)∥I .
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4.5. Handling the derivatives of f1. We proceed in the same way as in Sub-
section 4.3. We denote by ∂⋆ any time or space partial differentiation. We differentiate
(3.1) accordingly, scalarily multiply it by ∂⋆f and integrate with respect to t and x.
Then, using the spectral gap (4.2) of L, the growth property (4.1) of ν and the estimate
(4.5) on ∂⋆N (f), we obtain, similarly to (4.26), the existence of C⋆>0, depending on
m, n and β and L through its null space, such that

1

2

∫
R
∥∂⋆f∥2I dx

∣∣∣∣∣
T

0

+λν0

∫ T

0

∫
R
∥(1+ |v|)1/2∂⋆f1∥2I dxdt

≤C⋆

∫ T

0

∫
R

∥∥∥(1+ |v|)1/2f
∥∥∥
I

∥∥∥(1+ |v|)1/2∂⋆f1
∥∥∥
I

×
(∥∥∂⋆f0

∥∥
I
+
∥∥∥(1+ |v|)1/2∂⋆f1

∥∥∥
I

)
dxdt. (4.33)

Let us deal with the time derivative, since no other term involving ∂tf
0 will appear in

our estimates. In fact, using (4.8) and (4.23), we get, using again the Cauchy-Schwarz
inequality, ∥∥∂tf0

∥∥2
I
=
∥∥P 0(v1∂xf)

∥∥2
I
≤Cχ∥∂xf∥2I .

Consequently, (4.33) becomes, for the time derivative,

1

2

∫
R
∥∂tf∥2I dx

∣∣∣∣∣
T

0

+λν0

∫ T

0

∫
R
∥(1+ |v|)1/2∂tf1∥2I dxdt

≤C ′
⋆

∫ T

0

∫
R

∥∥∥(1+ |v|)1/2f
∥∥∥
I

∥∥∥(1+ |v|)1/2∂tf1
∥∥∥
I

(∥∥∂xf0
∥∥
I
+
∥∥∥(1+ |v|)1/2∂tf1

∥∥∥
I

)
dxdt,

(4.34)

where C ′
⋆=C⋆max(Cχ,1).

We can thus observe that (4.33) and (4.34) have exactly the same structure and
can be rewritten, for some constant K5>0 only depending on n, m and β, as

1

2

∫
R
∥∂⋆f∥2I dx

∣∣∣∣∣
T

0

+C0

∫ T

0

∫
R
∥(1+ |v|)1/2∂⋆f1∥2I dxdt

≤K5

∫ T

0

∫
R

∥∥∥(1+ |v|)1/2f
∥∥∥
I

∥∥∥(1+ |v|)1/2∂⋆f1
∥∥∥
I

×
(∥∥∂xf0

∥∥
I
+
∥∥∥(1+ |v|)1/2∂⋆f1

∥∥∥
I

)
dxdt, (4.35)

where we set C0=λν0>0.

4.6. Lower bound for ∥P 1(v1∂xf
0)∥I . Let us now focus on the term with

∥P 1(v1∂xf
0)∥I . The following lemma allows to estimate the L2-norm of P 1(v1∂xf

0) in
terms of ∂xf

0, up to a contribution in ∂xf
1 which can be as small as desired. We must

emphasize that this result is the main improvement in the mixture case, compared to its
monospecies counterparts from [28, estimate (2.22) p.185] and [30, Lemma 3.1 p.139].
Indeed, in the monospecies case, the lower bound of the term ∥P 1(v1∂xf

0)∥I did not
give any ∂xρ contribution, only ∂xq and ∂xe parts of ∥∂xf0∥I .
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Lemma 4.2. There exists θ0∈ (0,1] such that, for any f ∈D and any 0<θ<θ0,∫ T

0

∫
R
∥P 1(v1∂xf

0)∥2I dxdt

≥γθ
∫ T

0

∫
R
∥∂xf0∥2I dxdt−θC2

∫ T

0

∫
R
∥∂xf1∥2I dxdt+2θ

∫
R
q∂xℓdx

∣∣∣T
0

(4.36)

where γθ>0 only depends on n, m and θ, C2>0 on n and m.

Proof. By orthogonality, we first have

∥P 1(v1∂xf
0)∥2I =∥v1∂xf0∥2I −∥P 0(v1∂xf

0)∥2I .

The first term of the right-hand side writes

∥v1∂xf0∥2I =
∑
i

1

mi
(∂xρi)

2+
4√

6
∑
nj

∑
i

√
ni
mi

(∂xρi)(∂xe)

+
7

3

1∑
nj

∑
i

ni
mi

(∂xe)
2+

∑
nj∑
njmj

[
3
(
∂xq

1
)2

+
(
∂xq

2
)2

+
(
∂xq

3
)2]

.

It can become a sum of square quantities, as

∥v1∂xf0∥2I =
∑
i

1

mi

(
∂xρi+

2
√
ni√

6
∑
nj
∂xe

)2

+
5

3

1∑
nj

∑
i

ni
mi

(∂xe)
2

+

∑
nj∑
njmj

[
3
(
∂xq

1
)2

+
(
∂xq

2
)2

+
(
∂xq

3
)2]

. (4.37)

The term with P 0 decomposes on our basis of P0 into

P 0(v1∂xf
0)=∂xq

1
∑
i

√
ni√∑
njmj

χi(nM)1/2+∂xq
1 2

√∑
nj√

6
∑
njmj

χI+4(nM)1/2

+
1√∑
njmj

(∑
i

√
ni∂xρi+

2
√∑

nj√
6

∂xe

)
χI+1(nM)1/2.

It is thus easy to check that

∥P 0(v1∂xf
0)∥2I =(∂xℓ)

2+
5

3

∑
nj∑
njmj

(∂xq
1)2. (4.38)

Therefore, we immediately get

∥P 1(v1∂xf
0)∥2I =

∑
i

1

mi

(
∂xρi+

2
√
ni√

6
∑
nj
∂xe

)2

+
5

3

1∑
nj

(∑ nj
mj

)
(∂xe)

2

+

∑
nj∑
njmj

[
4

3

(
∂xq

1
)2

+
(
∂xq

2
)2

+
(
∂xq

3
)2]−(∂xℓ)

2. (4.39)
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Thanks to the Cauchy-Schwarz inequality, we have(∑
i

√
ni∂xρi+

2
√∑

nj√
6

∂xe

)2

=

[∑
i

(
√
ni∂xρi+

2ni√
6
∑
nj
∂xe

)]2

≤

∑
j

njmj

∑
i

1

mi

(
∂xρi+

2
√
ni√

6
∑
nj
∂xe

)2

,

which implies that

(∂xℓ)
2≤
∑
i

1

mi

(
∂xρi+

2
√
ni√

6
∑
nj
∂xe

)2

.

Let θ∈ (0,1). Then we split (∂xℓ)
2 in (4.39) into the sums of itself respectively multiplied

by θ and (1−θ). Applying the previous Cauchy-Schwarz inequality, it follows from
(4.39) that

∥P 1(v1∂xf
0)∥2I ≥θ

∑
i

1

mi

(
∂xρi+

2
√
ni√

6
∑
nj
∂xe

)2

+
5

3

1∑
nj

(∑ nj
mj

)
(∂xe)

2

+

∑
nj∑
njmj

[
4

3

(
∂xq

1
)2

+
(
∂xq

2
)2

+
(
∂xq

3
)2]−θ(∂xℓ)2. (4.40)

The term −θ|∂xℓ|2 appearing in (4.40) is absorbed thanks to the conservation laws.
More precisely, multiplying (4.12) by ∂xℓ and integrating with respect to t and x gives∫ T

0

∫
R
|∂xℓ|2dxdt=−

∫ T

0

∫
R
∂tq

1∂xℓdxdt−
∫ T

0

∫
R

〈
∂xf

1,v1χ
I+1(nM)1/2

〉
I
∂xℓ.

Then, using integrations by parts, one with respect to t, one for x, for the first term
on the right-hand side, and Cauchy-Schwarz and Young’s inequalities, we obtain with
(4.23) that∫ T

0

∫
R
|∂xℓ|2dxdt≤−

∫ T

0

∫
R
∂tℓ∂xq

1dxdt−
∫
R
q1∂xℓdx

∣∣∣T
0

+
1

2

∫ T

0

∫
R
|∂xℓ|2dxdt+

Cχ

2

∫ T

0

∫
R
∥∂xf1∥2I dxdt,

ensuring that

1

2

∫ T

0

∫
R
|∂xℓ|2dxdt+

∫
R
q1∂xℓdx

∣∣∣T
0

≤

∣∣∣∣∣
∫ T

0

∫
R
∂tℓ∂xq

1dxdt

∣∣∣∣∣+ Cχ

2

∫ T

0

∫
R
∥∂xf1∥2I dxdt. (4.41)

Further, we multiply (4.16) by ∂xq
1, integrate with respect to x and t and use again

Cauchy-Schwarz and Young’s inequalities as well as (4.23), to get that there exists some
constant Kχ>0 depending only on n and m such that
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0

∫
R
∂tℓ∂xq

1dxdt=
1∑
njmj

(∑
n
3/2
j +

2

3

∑
nj

)∫ T

0

∫
R
|∂xq1|2dxdt

+
1

2

∫ T

0

∫
R
|∂xq1|2dxdt+

Kχ

2

∫ T

0

∫
R
∥∂xf1∥2I dxdt.

This estimate, combined with (4.41), gives, after multiplication by 2θ,

θ

∫ T

0

∫
R
|∂xℓ|2dxdt+2θ

∫
R
q1∂xℓdx

∣∣∣T
0

≤2θ

(∑
n
3/2
j + 2

3

∑
nj∑

njmj
+

1

2

)∫ T

0

∫
R
|∂xq1|2dxdt+θ(Cχ+Kχ)

∫ T

0

∫
R
∥∂xf1∥2I dxdt.

(4.42)

Setting

θ0=min

{
1,

∑
nj

3
∑
njmj+6

∑
n
3/2
j +4

∑
nj

}
∈ (0,1], (4.43)

we can come back to (4.40) with a fixed 0<θ<θ0, so that the term in ∥∂xq1∥2 in (4.42)
can be absorbed by the following term, taken in (4.40),∑

nj∑
njmj

∫ T

0

∫
R

1

3
(∂xq

1)2dxdt.

Let us now introduce G :P0→R+,

f0 7→θ
∑
i

1

mi

(
ρi+

2
√
ni√

6
∑
nj
e

)2

+
5

3

1∑
nj

(∑ nj
mj

)
e2

+

∑
nj∑
njmj

[(
q1
)2

+
(
q2
)2

+
(
q3
)2]

,

which defines a positive definite quadratic form on the finite-dimensional subspace P0,
thus equivalent to ∥·∥2I on P0. Therefore, there exists a constant γθ>0, only depending
on n, m and θ, such that, for any f0∈P0,

G(f0)≥γθ∥f0∥2I .

All the previous considerations lead to the following estimate∫ T

0

∫
R
∥P 1(v1∂xf

0)∥2I dxdt≥γθ
∫ T

0

∫
R
∥∂xf0∥2I dxdt

−θ(Cχ+Kχ)

∫ T

0

∫
R
∥∂xf1∥2I dxdt+2θ

∫
R
q1∂xℓ

∣∣∣T
0
. (4.44)

We obtain the required estimate (4.36) by setting C2=(Cχ+Kχ).

Remark 4.1. Let us emphasize that the previous lemma holds in higher dimensions.
We explain in Appendix C how to handle the proof of Lemma 4.2 in a three-dimensional
setting.
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4.7. Estimate using an antiderivative of f0. As we already pointed out
at the end of Subsection 4.4, we still fail to control ∥f0∥I . Since we work in a one-
dimensional space setting, following the strategy of [30], we write an estimate on the
antiderivative W 0 of f0.

We first integrate (4.8) with respect to the space variable between −∞ and x∈R,
so that

∂tW
0+P 0

(
v1∂xW

0
)
+P 0

(
v1f

1
)
=0. (4.45)

We then scalarily multiply (4.45) by W 0 and integrate with respect to t and x. Since
the second term has a conservative form in x and using the expression (4.10) of f1, we
get

1

2

∫
R
∥W 0∥2I dx

∣∣∣T
0
+ L̂1+ L̂2+ L̂3+ L̂4=0, (4.46)

where we set

L̂1=

∫ T

0

∫
R

〈
P 0(v1L̄

−1
∂tf

1),W 0
〉
I
dxdt

L̂2=−
∫ T

0

∫
R

〈
L̄−1

P 1(v1f
0),P 1(v1f

0)
〉
I
dxdt

L̂3=−
∫ T

0

∫
R

〈
P 1(v1f

1),L̄−1
P 1(v1f

0)
〉
I
dxdt

L̂4=

∫ T

0

∫
R

〈
N (f),L̄−1

P 1(v1W
0)
〉
I
dxdt.

The term L̂2 in (4.46) is treated in the same way as the corresponding term L2 in
Subsections 4.4.2 and 4.6. Indeed, we can prove a result of the same kind as Lemma 4.2
involving f0 instead of ∂xf

0, by using, among others properties, (4.20)–(4.21). Hence,
we can write, for any θ∈ (0,θ0),

L̂2≥λ2γθ
∫ T

0

∫
R
∥f0∥2I dxdt−λ2θC2

∫ T

0

∫
R
∥f1∥2I dxdt+2λ2θ

∫
R
Q1 ℓdx

∣∣∣T
0
.

The term L̂3 has the same structure as L3 in 4.4.3. Consequently, involving the same
constant K3 as in (4.30), we have

|L̂3|≤K3

∫ T

0

∫
R

∥∥f0
∥∥
I

∥∥f1
∥∥
I
dxdt.

The term L̂4 with the nonlinear operator is also treated as L4 in 4.4.4 to yield

|L̂4|≤K4

∫ T

0

∫
R

∥∥W 0
∥∥
I

(
∥f0∥2I +

∥∥∥(1+ |v|)1/2f1
∥∥∥2
I

)
dxdt.

The main difference with Subsection 4.4 comes from the treatment of L̂1. Integrating
by parts with respect to t, and then replacing ∂tW

0 by its expression in (4.45), yields

|L̂1|≤
∫ T

0

∫
R

∥∥f1
∥∥
I

∥∥∥L̄−1
P 1
(
v1P

0(v1f)
)∥∥∥

I
dxdt+

∣∣∣∣∫
R

〈
L̄−1

f1,v1W
0
〉
I
dx
∣∣∣T
0

∣∣∣∣ .
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Thanks to the boundedness of L̄−1
and the norm equivalence argument on P0 (4.22),

and computing directly P 0(v1f) as in (4.23), we obtain∥∥∥L̄−1
P 1
(
v1P

0(v1f)
)∥∥∥

I
≤CinvCeqCχ∥f∥I .

Setting K̂1=CinvCeqCχ>0, we get

|L̂1|≤ K̂1

∫ T

0

∫
R

∥∥f1
∥∥
I
∥f∥I dxdt+

∣∣∣∣∫
R

〈
L̄−1

f1,v1W
0
〉
I
dx
∣∣∣T
0

∣∣∣∣ .
Let us sum up the situation on W 0. Taking into account the estimates on L̂1, L̂2, L̂3,
L̂4 in (4.46), and applying Young’s inequality in the estimates on L̂1 and L̂3 with a
parameter δ1>0 to be chosen later, we get

1

2

∫
R
∥W 0∥2I dx

∣∣∣T
0
+λ2γθ

∫ T

0

∫
R
∥f0∥2I dxdt

−θλ2C2

∫ T

0

∫
R
∥f1∥2I dxdt+2λ2θ

∫
R
Q1 ℓdx

∣∣∣T
0

≤K̂1

∫ T

0

∫
R
(
1

2δ1

∥∥f1
∥∥2
I
+
δ1
2
∥f∥2I)dxdt+K3

∫ T

0

∫
R
(
δ1
2

∥∥f0
∥∥2
I
+

1

2δ1

∥∥f1
∥∥2
I
)dxdt

+K4

∫ T

0

∫
R
∥∥W 0

∥∥
I

(
∥f0∥2I +

∥∥(1+ |v|)1/2f1
∥∥2
I

)
dxdt+

∣∣∣∣∫R〈L̄−1
f1,v1W

0
〉
I
dx
∣∣∣T
0

∣∣∣∣ . (4.47)

4.8. Proof of the global lower-order estimate. We now carefully mix all
the estimates we got so far, starting with the use of the smallness assumption (3.4).
We also have to treat pointwise in time integrals. Recall that all terms at initial time
are put in a generic term denoted by I(0). Terms at time T must be handled more
shrewdly.

First, imposing ε≤C0/(2Keq), (4.26) becomes

1

2

∫
R
∥f∥2I dx

∣∣∣
t=T

+
C0

2

∫ T

0

∫
R
∥(1+ |v|)1/2f1∥2I dxdt≤εKeq

∫ T

0

∫
R

∥∥f0
∥∥2
I
dxdt+I(0).

(4.48)
In the same way, if ε≤C0/(3K5), (4.35) can be rewritten as

1

2

∫
R
∥∂⋆f∥2I dx

∣∣∣
t=T

+
C0

2

∫ T

0

∫
R
∥(1+ |v|)1/2∂⋆f1∥2I dxdt

≤εK5

2

∫ T

0

∫
R

∥∥∂xf0
∥∥2
I
dxdt+I(0). (4.49)

Let us now deal with the estimates on elements of P0. In (4.47), we can find three
terms at time T , which are

1

2

∫
R
∥W 0∥2I dx+2λ2θ

∫
R
Q1 ℓdx−

∫
R

∣∣∣〈L̄−1
f1,v1W

0
〉
I

∣∣∣ dx.
We then notice that, if we set δ2=(CinvCeq)

2,∫
R

∣∣∣〈L̄−1
f1,v1W

0
〉
I

∣∣∣ dx≤CinvCeq

∫
R
∥f1∥I∥W 0∥I dx≤

1

4

∫
R
∥W 0∥2I dx+δ2

∫
R
∥f1∥2I dx.
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Moreover, we can write

−2

∫
R
Q1 ℓdx≤

∫
R
(Q1)2dx+

∫
R
ℓ2dx≤

∫
R
∥W 0∥2I dx+

∫
R
ℓ2dx.

Hence, for θ≤ (8λ2)
−1, we get

−2θλ2

∫
R
Q1 ℓdx≤ 1

8

∫
R
∥W 0∥2I dx+θλ2

∫
R
ℓ2dx.

All in all, the terms at time T in (4.47) satisfy, for any 0<θ≤ (8λ2)
−1,

1

2

∫
R
∥W 0∥2I dx+2λ2θ

∫
R
Q1 ℓdx−

∫
R

∣∣∣〈L̄−1
f1,v1W

0
〉
I

∣∣∣ dx
≥1

8

∫
R
∥W 0∥2I dx−δ2

∫
R
∥f1∥2I dx−θλ2

∫
R
|ℓ|2dx.

Let us set Ĉ1=λ2γθ, δ1= Ĉ1(K̂1+K3)
−1/2, Ĉ2=θ0λ2C2+K̂1+

K̂1+K3

2δ1
+K4. Using

that ∥f∥2I =∥f0∥2I +∥f1∥2I and the previous inequality in (4.47), we obtain

1

8

∫
R
∥W 0∥2I dx

∣∣∣
t=T

+
Ĉ1

2

∫ T

0

∫
R
∥f0∥2I dxdt

≤Ĉ2

∫ T

0

∫
R

∥∥∥(1+ |v|)1/2f1
∥∥∥2
I
dxdt+θλ2

∫
R
|ℓ|2dx

∣∣∣
t=T

+δ2

∫
R
∥f1∥2I dx

∣∣∣
t=T

+I(0),

(4.50)

where we imposed ε≤min(Ĉ1/(4K4),1).

Eventually, we similarly tackle the estimate (4.32). We apply (4.36), and choose
δ0= Ĉ1(K1+K3)

−1/2, Ĉ3=max(θ0C2+K3/(2δ0),K1/(2δ0)), to obtain

1

4

∫
R
∥f0∥2I dx

∣∣∣
t=T

+
Ĉ1

2

∫ T

0

∫
R

∥∥∂xf0
∥∥2
I
dxdt

≤Ĉ3

∫ T

0

∫
R

∥∥∥(1+ |v|)1/2∂xf1
∥∥∥2
I
dxdt+ Ĉ3

∫ T

0

∫
R

∥∥∥(1+ |v|)1/2∂tf1
∥∥∥2
I
dxdt

+εK4

∫ T

0

∫
R

∥∥∥(1+ |v|)1/2f1
∥∥∥2
I
dxdt+θλ2

∫
R
|∂xℓ|2dx

∣∣∣
t=T

+I(0), (4.51)

with ε≤ Ĉ1/4.

Now, let us set

α0=max

(
2δ2,

4Ĉ2

C0

)
>0, α1=

4Ĉ3

C0
>0.

The remaining pointwise in time terms are handled by choosing θ small enough, say
θ≤θ1, where θ1>0 only depends on the problem data, so that

θλ2

∫
R
|ℓ|2dx

∣∣∣
t=T

≤ 1

8

∫
R
∥f0∥2I dx

∣∣∣
t=T

, θλ2

∫
R
|∂xℓ|2dx

∣∣∣
t=T

≤ α1

4

∫
R
∥∂xf∥2I dx

∣∣∣
t=T

.
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We then multiply (4.48) by α0 and both estimates (4.49) (for derivatives in t and x) by
α1, to jointly add them to (4.50)–(4.51). Assuming moreover that

ε≤min

(
Ĉ2

2K4
,

Ĉ1

2α1K5
,

Ĉ1

4α0Keq

)
,

we can finally write

1

8

∫
R
∥W 0∥2I dx

∣∣∣
t=T

+
1

8

∫
R
∥f0∥2I dx

∣∣∣
t=T

+
α0

4

∫
R
∥f∥2I dx

∣∣∣
t=T

+
α1

4

∫
R
∥∂xf∥2I dx

∣∣∣
t=T

+
α1

2

∫
R
∥∂tf∥2I dx

∣∣∣
t=T

+
Ĉ1

4

∫ T

0

∫
R
∥f0∥2I dxdt+

Ĉ1

4

∫ T

0

∫
R

∥∥∂xf0
∥∥2
I
dxdt

+
Ĉ2

2

∫ T

0

∫
R

∥∥∥(1+ |v|)1/2f1
∥∥∥2
I
dxdt+ Ĉ3

∫ T

0

∫
R

∥∥∥(1+ |v|)1/2∂xf1
∥∥∥2
I
dxdt

+ Ĉ3

∫ T

0

∫
R

∥∥∥(1+ |v|)1/2∂tf1
∥∥∥2
I
dxdt≤I(0),

which yields (3.5). To summarize on ε, we set

ε0=min

(
Ĉ2

2K4
,

Ĉ1

2α1K5
,

Ĉ1

4α0Keq
,
Ĉ1

4
,
Ĉ1

4K4
,
C0

3K5
,
C0

2Keq
,1

)
.

The previous inequality holds as soon as ε≤ε0. This concludes the proof of Proposi-
tion 3.1.

4.9. Comments on Assumption (3.3) on f0. Let us explain how to handle the
computations when Assumption (3.3) does not hold. In this case, we know from (4.17)–
(4.19) that

∫
Rρidx,

∫
Rq

kdx and
∫
Redx remain constants with respect to t, one of them,

at least, then being nonzero. Consequently, one of the antiderivatives of the macroscopic
perturbation would not lie in L2(R). To deal with that issue, we consider a nonnegative
C∞-compactly supported function ψ in the variable x satisfying

∫
Rψ(y)dy=1, and set

Ψ(x)=

∫ x

−∞
ψ(y)dy, F 0

in(v)=

∫
R
f0(0,y,v)dy,

W̃
0
(t,x,v)=W 0(t,x,v)−Ψ(x)F 0

in(v).

As a function of v, W̃
0
clearly belongs to P0. And now W̃

0
must replace W 0 in any

computations involving its L2 norm. We just have to track the changes implied by this

replacement in Subsection 4.7. Since ∂tW̃
0
=∂tW

0, (4.46) becomes, using integration
by parts,

1

2

∫
R
∥W̃

0
∥2I dx

∣∣∣T
0
+ L̃1+ L̂2+ L̂3+ L̃4+

∫ T

0

∫
R
ψ
〈
L̄−1

P 1(v1f),P
1(v1F

0
in)
〉
I
dxdt

−
∫ T

0

∫
R
Ψ
〈
P 0(v1F

0
in),f

0
〉
I
dxdt+

∫ T

0

∫
R
ψΨ
〈
P 0(v1F

0
in),F

0
in

〉
I
dxdt=0, (4.52)

where L̃1 and L̃4 have the same expressions as L̂1 and L̂4 with W̃
0
instead ofW 0, and

L̂2 and L̂3 remain unchanged, and all are treated in the same way as in Subsection 4.7.
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The change then only lies in the terms involving F 0
in. The last one does not depend on

f and its absolute value equals

T

2

∣∣〈P 0(v1F
0
in),F

0
in

〉
I

∣∣≤C∥F 0
in∥2I ,

which can be considered as a contribution to I(0). Since ψ∈L2(R), the remaining term
involving it is easily upper-bounded using Young’s inequality by

κ

∫ T

0

∫
R
∥f∥2I dxdt+C∥F

0
in∥2I ,

where κ can be chosen as small as needed. The last remaining term (the one with Ψ)
is handled by writing the equation satisfied by

∫
RΨf

0dx. It is obtained by multiplying
(4.8) by Ψ and integrating with respect to x∈R and s∈ [0,t]:∫

R
Ψf0(t,x,v)dx=

∫
R
Ψf0(0,x,v)dx+

∫ t

0

∫
R
ψP 0(v1f)dxds.

It implies that, for some constant K>0 depending on ψ and T ,∥∥∥∥∫
R
Ψf0(t,x, ·)dx

∥∥∥∥2
I

≤K

[∥∥∥∥∫
R
Ψf0(0,x, ·)dx

∥∥∥∥2
I

+

∫ T

0

∫
R
∥P 0(v1f)∥2I dxdt

]
.

The first term on the right-hand side of the previous estimate is again a contribution
to I(0). Consequently, using Young’s inequality, we have∣∣∣∣∣

∫ T

0

∫
R
Ψ
〈
P 0(v1F

0
in),f

0
〉
I
dxdt

∣∣∣∣∣=
∣∣∣∣∣
∫ T

0

〈
P 0(v1F

0
in),

∫
R
Ψf0dx

〉
I

dt

∣∣∣∣∣
≤I(0)+κ

∫ T

0

∫
R
∥f∥2I dxdt,

where κ can again be chosen as small as needed. Both contributions upper-bounded
by κ-multiplied terms in (4.52) can then be absorbed by similar counterparts on the
left-hand side of (3.5).

5. Elements of proof for the higher-order estimate
Unlike what we did in the previous section about the lower-order estimate, for the

sake of simplicity, we shall now use the corresponding smallness assumption (3.6) as
soon as possible in our computations for the higher-order estimate.

Estimate involving ∂pf1, 1≤|p|≤5. We take the ∂p derivative of the linearized
Boltzmann Equation (3.1), scalarily multiply it by ∂pf and integrate with respect to t
and x, to obtain

1

2

∫
R
∥∂pf∥2I dx

∣∣∣T
0
−
∫ T

0

∫
R
⟨L∂pf ,∂pf⟩I dxdt=

∫ T

0

∫
R
⟨∂pN (f),∂pf⟩I dxdt. (5.1)

In the second integral, we use the spectral gap property (4.2) of L, so that

−
∫ T

0

∫
R
⟨L∂pf ,∂pf⟩I dxdt≥C0

∫ T

0

∫
R

∥∥∥(1+ |v|)1/2∂pf1
∥∥∥2
I
dxdt.



160 ENERGY METHOD FOR THE BOLTZMANN EQUATION OF GASEOUS MIXTURES

Let us focus on the term with the nonlinear operator N . We first notice that

∂pN (f)=(nM)−1/2
∑

0≤|p′|≤|p|

(
|p|
|p′|

)
Q
(
(nM)1/2∂p

′
f ,(nM)1/2∂p−p′

f
)
.

Thanks to Lemma A.1, we get∥∥∥(1+ |v|)−1/2∂pN (f)
∥∥∥
I
≤Cβ

∑
0≤|p′|≤|p|

(
|p|
|p′|

)∥∥∥(1+ |v|)1/2∂p
′
f
∥∥∥
I

∥∥∥(1+ |v|)1/2∂p−p′
f
∥∥∥
I
.

(5.2)
For 3≤|p|≤5, if the sub-index p′ of p satisfies |p′|≤2, the smallness assumption (3.6)
can be used for the term ∥(1+ |v|)1/2∂p′

f∥I , and if 3≤|p′|≤5, then |p−p′|≤2, and
the term ∥(1+ |v|)1/2∂p−p′

f∥I can be handled through (3.6). Hence, in any case (when
|p|≤2, it is straightforward), we can write, for some constant Cp>0 only depending on
m, n, β and p,∥∥∥(1+ |v|)−1/2∂pN (f)

∥∥∥
I
≤Cpε

∑
|p′|≤|p|

∥∥∥(1+ |v|)1/2∂p
′
f
∥∥∥
I
.

Consequently, we have, for any p, 1≤|p|≤5,∫ T

0

∫
R
|⟨∂pN (f),∂pf⟩I |dxdt

≤Cpε

∫ T

0

∫
R

∑
|p′|≤|p|

∥∥∥(1+ |v|)1/2∂p
′
f
∥∥∥
I

∥∥∥(1+ |v|)1/2∂pf
∥∥∥
I
dxdt.

All in all, summing (5.1) for all indices p, 1≤|p|≤5, we get, for ε small enough,

1

2

∑
1≤|p|≤5

∫
R
∥∂pf∥2I dx

∣∣∣
t=T

+
C0

2

∑
1≤|p|≤5

∫ T

0

∫
R

∥∥∥(1+ |v|)1/2∂pf1
∥∥∥2
I
dxdt

≤Cε
∑

1≤|p|≤5

∫ T

0

∫
R

∥∥∂pf0
∥∥2
I
dxdt+I(0), (5.3)

where C>0 only depends on the data of the problem.

Estimate involving ∂rf0, 1≤|r|≤4. We take the ∂r derivative of (4.8) and
observe that ∂rf0 satisfies exactly the same kind of equation as f0 itself. Consequently,
(4.32) also holds for ∂rf0 instead of f0, with some changes only on the nonlinear term
L̂r
4,

1

2

∫
R
∥∂rf0∥2I dx

∣∣∣T
0
+λ2

∫ T

0

∫
R

∥∥P 1(v1∂x∂
rf0)

∥∥2
I
dxdt

≤K1

∫ T

0

∫
R
(
1

2δ0

∥∥∂t∂rf1
∥∥2
I
+
δ0
2

∥∥∂x∂rf0
∥∥2
I
)dxdt

+K3

∫ T

0

∫
R
(
δ0
2

∥∥∂x∂rf0
∥∥2
I
+

1

2δ0

∥∥∂x∂rf1
∥∥2
I
)dxdt+ |L̂r

4|, (5.4)

where

L̂r
4=−

∫ T

0

∫
R

〈
v1∂xL̄−1

∂rN (f),∂rf0
〉
I
dxdt=

∫ T

0

∫
R

〈
∂rN (f),L̄−1

P 1(v1∂x∂
rf0)

〉
I
dxdt.
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Using the smallness assumption (3.6) and (5.2), we get

|L̂r
4|≤CrK3ε

 ∑
|p′|≤|r|

∥∥∥(1+ |v|)1/2∂p
′
f
∥∥∥
I

∥∥∂x∂rf0
∥∥
I
. (5.5)

The second term in (5.4) is handled thanks to Lemma 4.2, leading to∫ T

0

∫
R
∥P 1(v1∂x∂

rf0)∥2I dxdt

≥γθ
∫ T

0

∫
R
∥∂x∂rf0∥2I dxdt−θC2

∫ T

0

∫
R
∥∂x∂rf1∥2I dxdt+2θ

∫
R
∂rq∂x∂

rℓdx
∣∣∣T
0
. (5.6)

Proof of Theorem 3.1. Following the same reasoning as in the previous section,
we combine the low er-order estimate (3.5), the estimate (5.3) on the derivatives of f1,
and the estimate on the derivatives of ∂xf

0 obtained from (5.4)–(5.6). In the right-
hand side of estimate (5.3), the treatment of the pure time derivatives ∂pt f

0 is done as
in Subsection 4.5. They are thus controlled by terms which involve at least one space
derivative ∂x∂

p−1
t f , still multiplied by ε. In the end, choosing θ and ε small enough,

the estimate (3.7) is proved.
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Appendix A. Estimate on Q. In order to deal with the terms involving N (f),
we need the following result. It requires the hard-sphere assumption (2.4) and its proof
is provided here, despite its similarity to the one in [20, Lemma A.1] (see also [30, Lemma
B.1]), for the sake of completeness.

Lemma A.1. Assuming that all the cross sections satisfy the hard-sphere assumption
(2.4), there exists Cβ>0, only depending on m, n and the cross sections, such that, for
any f , g∈D, ∥∥∥(1+ |v|)−1/2(nM)−1/2Q

(
(nM)1/2f ,(nM)1/2g

)∥∥∥
I

≤Cβ

∥∥∥(1+ |v|)1/2f
∥∥∥
I

∥∥∥(1+ |v|)1/2g
∥∥∥
I
. (A.1)

Proof. Denote by A the left-hand side of (A.1). We can write, thanks to the
Cauchy-Schwarz inequality and the hard-sphere assumption (2.4) on the cross sections,

A2=
∑
i

∫
R3

(1+ |v|)−1(niMi)
−1Qi

(
(nM)1/2f ,(nM)1/2g

)2
dv

≤ I
∑

i,jnj
∫
R3(1+ |v|)−1

[∫∫
R3×S2Mj(v∗)

1/2 (fi(v
′)gj(v

′
∗)−fi(v)gj(v∗))Bij dωdv∗

]2
dv

≤2I
∑
i,j

nj

∫
R3

βij
1+ |v|

[(∫∫
R3×S2

Mj(v∗)
1/2fi(v

′)gj(v
′
∗)|(v−v∗) ·ω|dωdv∗

)2

+

(∫∫
R3×S2

Mj(v∗)
1/2fi(v)gj(v∗)|(v−v∗) ·ω|dωdv∗

)2
]
dv.
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Denote β=maxβij>0. Noticing that

|(v−v∗) ·ω|≤ (|v|+ |v∗|),

and that v∗ 7→Mj(v∗)
1/2|v∗| is a bounded function on R3, there exists a constant Cn,β>

0, only depending on n and β, such that A is upper-bounded by

Cn,β

∑
i,j

[∫∫∫
R3×R3×S2

fi(v
′)2gj(v

′
∗)

2(1+ |v|)dωdv∗dv

+

∫∫
R3×R3

fi(v)
2gj(v∗)

2(1+ |v|)dv∗dv
]
.

Let us focus on the first addend, since the second one clearly equals

Cn,β

∥∥(1+ |v|)1/2f
∥∥2
I
∥g∥2I thanks to the Fubini theorem. We perform the change of

variables (v,v∗,ω) 7→ (v′,v′∗,ω) in the integral, which becomes∫∫∫
R3×R3×S2

fi(v)
2gj(v∗)

2(1+ |v′|)dωdv∗dv.

The collision rules (2.3) then ensure that, for some constant Cm>0 only depending on
m (uniform with respect to the indices i and j),

|v′|≤ |v|+ 2mj

mi+mj
|v∗|≤Cm(|v′|+ |v′∗|), ∀v,v∗∈R3,

so that, up to a value change of Cm>0, still only depending on m,

1+ |v′|≤Cm(2+ |v|+ |v∗|), ∀v,v∗∈R3.

The previous inequality allows to upper-bound the first addend in the same way as the
second one thanks to the Fubini theorem, which concludes the proof.

Appendix B. Conservation laws. In this section, we provide the proof of Propo-
sition 4.1. We take the projected Boltzmann Equation (4.8) satisfied by f0 and scalarily
multiply it by each χi(nM)1/2, 1≤ i≤ I+4.

We first choose 1≤ i≤ I to obtain the conservation law for ρi, that is

∂t

〈
f0,(nM)1/2χi

〉
I
+
〈
P 0(v1∂xf

0),(nM)1/2χi
〉
I
+
〈
P 0(v1∂xf

1),(nM)1/2χi
〉
I
=0.

The first term obviously gives ∂tρi. The second term can of course be rewritten as〈
P 0(v1∂xf

0),(nM)1/2χi
〉
I
=
〈
v1∂xf

0,(nM)1/2χi
〉
I
,

which we can explicitly compute, helped by parity arguments,〈
v1∂xf

0,(nM)1/2χi
〉
I
=∂x

[∫
R3

v1f
0
i (niMi)

1/2dv

]
=

ni∂xq
1√∑

njmj

∫
R3

miv
2
1Midv=

ni∂xq
1√∑

njmj

.

The third term being unchanged, we recover (4.11).
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To obtain the conservation law on q1, we can write

∂tq
1+
〈
P 0(v1∂xf

0),(nM)1/2χI+1
〉
I
+
〈
P 0(v1∂xf

1),(nM)1/2χI+1
〉
I
=0.

The second term also simplifies thanks to parity arguments〈
v1∂xf

0,(nM)1/2χI+1
〉
I

=
∑
i

∂x

[∫
R3

v1f
0
i (niMi)

1/2χI+1
i dv

]

=
∑
i

mi√∑
njmj

∂x

∫
R3

(
ρiv1

2√niMi+
e√

6
∑
nj

(mi|v|2−3)v1
2niMi

)
dv

=
1√∑
njmj

(∑
i

√
ni∂xρi+

√
6
∑
nj

3
∂xe

)
.

This finishes the derivation of the conservation law (4.12) for q1. The one for q2 and q3

(4.13), is then straightforward.

Finally, the conservation law (4.14) for e reads

∂te+
〈
P 0(v1∂xf

0),(nM)1/2χI+4
〉
I
+
〈
P 0(v1∂xf

1),(nM)1/2χI+4
〉
I
=0.

Let us compute the second term of the above equation, which gives

〈
v1∂xf

0,(nM)1/2χI+4
〉
I
=

I∑
i=1

∫
R3

v1∂xf
0
i (niMi)

1/2χI+4
i dv

=
1√

6
∑
nj

∑
i

ni∂x

[∫
R3

(
mi|v|2−3

)( q1√∑
njmj

miv1

)
v1Midv

]

=
∑
i

2ni√
6
∑
nj

∂xq
1√∑
njmj

=
1

3

√
6
∑
nj∑

njmj
∂xq

1.

Summarizing, the conservation law (4.14) for e is obtained.

Appendix C. Proof of Lemma 4.2 in three dimensions. In what follows,
the one-dimensional notations are straightforwardly extended in three dimensions. The
only significant difference with respect to the one-dimensional case is the treatment of
∇xq, which requires the use of the Korn inequality to conclude. Let us rewrite the
main equalities and estimates in the three-dimensional setting. We first note that the
conservation laws on the fluid quantities in f0 still hold, i.e.

∂tρi+
ni√∑
njmj

∇x ·q+
〈
P 0(v ·∇xf

1),χi(nM)1/2
〉
I
=0, 1≤ i≤ I,

∂tq
k+∇xℓ+

〈
P 0(v ·∇xf

1),χI+1(nM)1/2
〉
I
=0, k=1, 2, 3,

∂te+
1

3

√
6
∑
nj∑

njmj
∇x ·q+

〈
P 0(v ·∇xf

1),χI+4(nM)1/2
〉
I
=0,
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∂tℓ+

∑
nj

3/2+
2

3

∑
nj∑

njmj

∇x ·q

+
1√∑
njmj

〈
P 0(v ·∇xf

1),

(∑
i

√
niχ

i+
1

3

√
6
∑

njχ
I+4

)
(nM)1/2

〉
I

=0,

where ℓ is still defined by (4.15). Of course, we follow the strategy of Section 4.6. We
first compute

∥v ·∇xf
0∥2I =

∑
i

1

mi

∣∣∣∣∣∇xρi+
2
√
ni√

6
∑
nj

∇xe

∣∣∣∣∣
2

+
5

3

1∑
nj

∑
i

ni
mi

|∇xe|2

+

∑
nj∑
njmj

(∇x ·q)2+
∑
l,m

(
(∂xl

qm)2+∂xl
qm∂xmq

l
).

In the same way, as in (4.38), we can write

∥P 0(v ·∇xf
0)∥2I = |∇xℓ|2+

5

3

∑
nj∑
njmj

(∇x ·q)2.

Then, for some θ∈ (0,1), (4.40) becomes

∥P 1(v ·∇xf
0)∥2I ≥θ

∑
i

1

mi

∣∣∣∣∣∇xρi+
2
√
ni√

6
∑
nj

∇xe

∣∣∣∣∣
2

+
5

3

1∑
nj

(∑ nj
mj

)
|∇xe|2

+

∑
nj∑
njmj

−2

3
(∇x ·q)2+

∑
l,m

(
(∂xl

qm)2+∂xl
qm∂xm

ql
)−θ|∇xℓ|2.

Besides, using the three-dimensional laws on qk and ℓ, (4.42) can be rewritten into

θ

∫ T

0

∫
R3

|∇xℓ|2dxdt+2θ

∫
R3

q ·∇xℓdx
∣∣∣T
0

≤2θ

(∑
n
3/2
j + 2

3

∑
nj∑

njmj
+

1

2

)∫ T

0

∫
R3

(∇x ·q)2dxdt+θCχ

∫ T

0

∫
R3

∥∇xf
1∥2I dxdt.

Thanks to the Korn inequality, for θ small enough, there exists Cθ>0, only depending
on θ, such that

−
(
2

3
+θ

)∫
R3

(∇x ·q)2 dx+
∑
l,m

∫
R3

(
(∂xl

qm)2+∂xl
qm∂xmq

l
)
dx≥Cθ

∫
R3

|∇xq|2dx.

Eventually, in the same way as in Subsection 4.6, the norm equivalence argument on P0

(4.22) allows to obtain∫ T

0

∫
R3

∥P 1(v ·∇xf
0)∥2I dxdt≥γθ

∫ T

0

∫
R3

∥∇xf
0∥2I dxdt

−θC2

∫ T

0

∫
R3

∥∇xf
1∥2I dxdt+2θ

∫
R3

q ·∇xℓdx
∣∣∣T
0
,

for some constants γθ>0 depending on n, m and θ, and C2>0 depending on n and
m.
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REFERENCES
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regularity for solutions of Boltzmann equations systems for monatomic gas mixtures, in C.
Bernardin, F. Golse, P. Goncalves, V. Ricci, and A.J. Soares (eds.), From Particle Systems
to Partial Differential Equations, Springer Proc. Math. Stat., Springer, Cham, 352:99–121,
2021. 1

[15] L. Desvillettes, R. Monaco, and F. Salvarani, A kinetic model allowing to obtain the energy law of
polytropic gases in the presence of chemical reactions, Eur. J. Mech. B Fluids, 24(2):219–236,
2005. 1, 2

[16] G. Dimarco and L. Pareschi, Multi-scale control variate methods for uncertainty quantification
in kinetic equations, J. Comput. Phys., 388:63–89, 2019. 1

[17] J. Dolbeault, C.Mouhot, and C. Schmeiser, Hypocoercivity for linear kinetic equations conserving
mass, Trans. Amer. Math. Soc., 367(6):3807–3828, 2015. 1

[18] I.M. Gamba, S. Jin, and L. Liu, Micro-macro decomposition based asymptotic-preserving numeri-
cal schemes and numerical moments conservation for collisional nonlinear kinetic equations,
J. Comput. Phys., 382:264–290, 2019. 1
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