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A NEW PRIORI ERROR ESTIMATION OF NONCONFORMING
ELEMENT FOR TWO-DIMENSIONAL LINEARLY ELASTIC

SHALLOW SHELL EQUATIONS∗

RONGFANG WU† , XIAOQIN SHEN‡ , QIAN YANG§ , AND SHENGFENG ZHU¶

Abstract. In this paper, we mainly propose a new priori error estimation for the two-dimensional
linearly elastic shallow shell equations, which rely on a family of Kirchhoff-Love theories. As the
displacement components of the points on the middle surface have different regularities, the non-
conforming element for the discretization shallow shell equations is analysed. Then, relying on the
enriching operator, a new error estimate of energy norm is given under the regularity assumption
ζ⃗H ×ζ3∈ (H1+m(ω))2×H2+m(ω) with any m>0. Compared with the classic error analysis in other
shell literature, convergence order of numerical solution can be controlled by its corresponding approx-
imation error with an arbitrarily high order term, which fills the gap in the computational shell theory.
Finally, numerical results for the saddle shell and cylindrical shell confirm the theoretical prediction.
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1. Introduction
The shallow shell is a thin elastic shell with very small thickness and belongs to the

family of Kirchhoff-Love theories. Moreover, the equations describing such shells are
generally fourth-order partial differential equations with variable coefficients. The finite
element method is an effective numerical method for solving these kinds of equations.
For a conforming element, it requires piecewise polynomials to be C1 continuous, which
can be difficult to construct in discrete space, particularly in more than two-dimensional
space.

In contrast to the conforming elements [1, 2, 3, 4], the continuity requirements of the
nonconforming finite element were lower than those of their conforming counterparts.
Consequently, nonconforming finite element method has become an important numerical
scheme to solve high order elliptic problems, such as Stokes problem, Reissner-Mindlin
plate bending problem, and shell problem. Since approximate spaces of nonconforming
elements are not subspaces of the original problem solution, the second Strang lemma
[5] is needed to be analysed in error estimation, rather than the Céa lemma of the
conforming elements. However, in the second Strang lemma, there is another error
term in addition to the approximation error, which is often known as a consistency
error or nonconforming error.

In the analysis of consistency error estimates, most of the literature relied on the
Green formulation and trace theorem, and the regularity of the solution required ζ3∈
H2+m(ω), m> 1

2 . If the integral region or boundary conditions were complex, or the
equation has discontinuous coefficients [6] and singular perturbation problems [7], the
classical method may have the potential difficulty for low regularity of solutions. For
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instance, in the fourth-order problem, if solution ζ3∈H2+m(ω), 0<m≤ 1
2 , the trace

of the second-order derivative on the element boundary does not necessarily belong
to L2 space. To avoid such regularity, Gudi [8] conducted a posteriori error analysis
of the elliptic boundary value problem by the discontinuous Galerkin method, as well
as [9, 10] and [11] analyzed a priori error of the nonconforming Morley and Crouzeix-
Raviart elements, where the regularity of the solution was claimed to be Hm.

In this paper, we prove a new error estimate of the nonconforming Morley element
method for two-dimensional linearly elastic shallow shell equations. The highlight of
this paper is that the bilinear form of the equation is different from that of biharmonic
equation. And, motivated by the literature [12], when the solution ζ3∈Hm(ω) with
m≥3, the standard error estimate holds if the region is convex, while this postulate
is usually invalid if the region is non-convex [13]. Therefore, we will use an enriching
operator to prove that the error order of the solution of the shallow shell equations can
be of arbitrary order.

The rest of this paper is arranged as follows. In Section 2, the boundary value
problem of shallow shell equations and its variational problem are introduced, and
the nonconforming Morley element is employed to discretize the third displacement
variable. In Section 3, the consistency error of nonconforming element is proved bounded
with respect to the energy norm by the enriching operator, which is controlled by the
oscillation of L. In Section 4, we have carried out some numerical experiments, and the
results verify the convergence order of the energy norm under the minimum assumption.

2. Equations and nonconforming element approximation
To begin with, we introduce some notations [17]. Throughout this paper, Latin

indices i, j, k,... take their values in the set {1,2,3} while Greek indices α,β,ρ take
their values in the set {1,2}. The notation δαβ designates the Kronecker symbol,

∂αβ =
∂2

∂xα∂xβ
, ∆=∂αα and ∇ denote the Laplacian operator and gradient operator,

respectively. We adopt the standard conventions for Sobolev spaces Hm(ω), where the
corresponding norms and semi-norms of a function v are defined on an open set ω [15]:

∥v∥2Hm =

m∑
k=0

|v|2Hk , |v|2Hk =

∫
ω

∑
|α|=k

|∇αv|2dx.

In particular, the convention H0=L2 is adopted. The notation Pl designates Lagrange
triangular element (the space of all polynomials of degree ≤ l on each element). The
positive constant C is independent of the diameter hT .

Define the space

V⃗H(ω)=
{
η⃗H =(η1,η2)∈H1(ω)×H1(ω); η⃗H =0⃗ on γ0

}
,

V3(ω)=
{
η3∈H2(ω); η3=∂νη3=0 on γ0

}
,

where ∂ν :=
2∑

i=1

νi∂xi denotes the normal derivative of η3 along γ0 (γ0 is measurable

subset of γ with length γ0≥0, γ is boundary of the set ω).
Let ω be a bounded open subset of R2 with a Lipschitz-continuous boundary γ.

Now, we consider the boundary value problem of two-dimensional shallow shell equations
[16, 14] as follows:

−∂αβmαβ−∂β(n
θ
αβ∂αθ)=p3+∂αsα in ω,
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−∂βn
θ
αβ =pα in ω,

ζα=0 and ζ3=∂νζ3=0 on γ0,

(∂αmαβ)νβ+∂τ (mαβνατβ)+nθ
αβ(∂αζ3)νβ =−sανα on γ1=γ−γ0,

mαβνανβ =0 on γ1,

nθ
αβνβ =0 on γ1,

where θ∈C3(ω), να and τα=νβ+
π
2 represent the shape of the middle surface of the

shallow shell, the direction of normal and tangential derivatives along γ, respectively,

mαβ :=−
{

4λµ

3(λ+2µ)
∆ζ3δαβ+

4

3
µ∂αβζ3

}
,

nθ
αβ :=

{
4λµ

λ+2µ
eθρρ(ζ⃗)δαβ+4µeθαβ(ζ⃗)

}
,

eθαβ(ζ⃗) :=
1

2
(∂αζβ+∂βζα+∂αθ∂βζ3+∂βθ∂αζ3),

pi :=

∫ 1

−1

fidy3+g+i +g−i , fi∈L2(ω×(−1,1)), gi∈L2((ω×1)∪(ω×−1)),

sα :=

∫ 1

−1

y3fαdy3+g+α −g−α .

By Green’s formulas, the variational problem of shallow shell equations is to find ζ⃗=
(ζ⃗H ,ζ3)∈ V⃗ (ω) :=(V⃗H(ω),V3(ω)) such that

B(ζ⃗, η⃗)=(L,η⃗), ∀η⃗∈ V⃗ (ω), (2.1)

where B(·, ·) is a bilinear form, and (·, ·) denotes the L2 inner product,

B(ζ⃗, η⃗) :=

∫
ω

(
−mαβζ3∂αβη3+nθ

αβ(ζ⃗)∂αθ∂βη3+nθ
αβ(ζ⃗)∂βηα

)
dω

=

∫
ω

(
4λµ

λ+2µ

(
1

3
(∆ζ3∆η3+eθρρ(ζ⃗)e

θ
σσ(ζ⃗))

)
+ 4µ

(
1

3
∂αβ(ζ3)∂αβ(η3)+eθαβ(ζ⃗)e

θ
αβ(η⃗)

))
dω,

(L,η⃗) :=

∫
ω

(piηi−sα∂αη3)dω.

We assume that the bilinear form is bounded and elliptic so that the system of Equations
(2.1) has a unique solution (Ref. [16, 18]).

Then, let ω̄ be a polygon domain, Th be a family of shape-regular partitions with the
mesh size h→0. For a given T ∈Th, T is a triangle element, hT =diam(T ), h=max

T∈Th

hT ,

ρT =superior
S⊂T

diam(S), where S is a ball contained in T . A triangular partition Th
satisfies the regular assumption that there exists a constant σ>0 which does not depend
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on h such that for all T ∈Th, hT

ρT
<σ. Moreover, a triangular partition Th satisfies the

inverse assumption that there exists a constant κ>0 such that for all T ∈Th, h
hT

≤κ.

Because the displacement components (ζ⃗H ,ζ3) belong to different Sobolev spaces,
we use the linear triangular element

Vαh={ηh∈C0(ω) :ηh|T ∈P1(T ),∀T ∈Th,ηh=0 on γ0}, α=1,2,

to discretize “horizontal” components, and use the nonconforming element to discretize
“vertical” component. The definition of the associated nonconforming finite element
space V3h over Th is as follows:

The Morley element [19, 20]. Space is defined as ∀e, Ai∈ηh, i=1,2,3, T ∈Th,

V3h=

{
ηh∈L2(ω) :ηh|T ∈P2(T ),ηh is continuous at Ai,ηh(Ai)=

∫
e

[
∂ηh
∂ν

]
e

(p)ds=0

}
,

and the interpolant Π3h :H
2(ω)→V3h is defined by Π3h|T =ΠT with

ΠT ζ3(Ai)= ζ3(Ai),∫
e

∂ΠT ζ3
∂ν

(p)ds=

∫
e

∂ζ3
∂ν

(p)ds, ∀e∈∂T,

where e is all edges, Ai and p are internal vertices and midpoints of Th here and in the
rest of the article.

And the nonconforming element meets the following conditions [21, 22]:

• Function ηh∈V3h is continuous at vertices Ai of T and vanishes lying on γ0;

• For every polynomial q∈P2, the integral
∫
ω
pηhdω is continuous over each inter-

element side F and vanishes when F ∈γ0;

• For every q∈P2, the integral
∫
ω
p ηh

∂νdω is continuous at the midpoints of each
inter-element side F and vanishes at the midpoints when F ∈γ0.

We set norm on the discretization space V⃗h(ω) :=(Vαh(ω))
2×V3h(ω),α=1,2 as

∥η⃗h∥h :=
∑
α

∥ηαh∥H1 +∥η3h∥H2 ,

where

∥·∥Hα =

(∑
T∈Th

∥·∥2α,T

) 1
2

.

Through the interpolation theory [5, 23], the error of Morley element is, for any
ζ3∈H2+m(ω) with m≥1, there exists C such that

∥ζ3−Πζ3∥L2 +h∥ζ3−Πζ3∥H1 +h2∥ζ3−Πζ3∥H2 ≤Ch2+m∥ζ3∥H2+m .

Now, let’s consider that the nonconforming approximation form of Equations (2.1)

is finding η⃗h=(η1h,η2h,η3h)∈ V⃗h(ω) such that

Bh(ζ⃗h, η⃗h)=(L,η⃗h), ∀η⃗h∈ V⃗h(ω), (2.2)
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where

Bh(ζ⃗h,ηαh)=
∑
T∈Th

∫
T

nθ
αβ(ζ⃗h)∂βηαhdx, ∀ηαh∈Vαh(ω),

Bh(ζ⃗h,η3h)=
∑
T∈Th

∫
T

(
−mαβζ3h∂αβη3h+nθ

αβ(ζ⃗h)∂αθ∂βη3h

)
dx, ∀η3h∈V3h(ω).

It is easy to show that the discrete bilinear form Bh(·,·) satisfies the boundedness
and coercivity conditions with respect to the norm ∥·∥h, i.e., there exist constants
C1>0, C2>0 such that

Bh(ζ⃗h, η⃗h)≤C1∥ζ⃗h∥h∥η⃗h∥h, ∀ζ⃗h, η⃗h∈ V⃗h(ω),

Bh(η⃗h, η⃗h)≥C2∥η⃗h∥2h, ∀η⃗h∈ V⃗h(ω).

3. A priori error estimation
By the Céa lemma and Strang’s lemma [5, 24], we have the following error estimate

for the discretization problem (2.2)

∥ζα−ζαh∥H1 ≤ inf
ηαh∈Vαh

||ζα−ηαh||H1 , (3.1a)

∥ζ3−ζ3h∥H2 ≤C

(
inf

η3h∈V3h

∥ζ3−η3h∥H2 + sup
w3h∈V3h

|Bh(ζ3,w3h)−(L,w3h)|
||w3h||H2

)
, (3.1b)

where w3h= ζ3h−η3h ̸=0.

We make a detailed analysis for the nonconforming error of (3.1b). If we use the
traditional way of proof [25, 26], integration by parts, the well known result is as follows

|Bh(ζ3,w3h)−(L,w3h)|≤Ch(|ζ3|+h∥f∥0,ω)∥w3h∥H2 , ∀ζ3∈H2(ω)∩H3(ω).

To improve the priori error estimates for the convergence of the numerical schemes
presented in Section 2, we use the enriching operators. Enriching operators occupy an
important position in the study of obstacle problems for clamped plates [27], which is
also exploited to study the convergence properties in [8, 28, 29, 30].

Thus, we define the enriching operator Eh :V3h→W3h on the triangular finite ele-
ment space

[∇n(Ehη3h)](Ai)

=
1

|Tp|
∑
T∈Tp

(∇nη3h|T )(Ai), ∀Ai be a vertex, n=0,1,2, i=1,2,3, (3.2a)

∀e∈Fh,

∫
e

Ehη3hqds=

∫
e

η3hqds, ∀q∈Pl−6, (3.2b)

∀e∈Fh,

∫
e

∂Ehη3h
∂ν

qds=

∫
e

∂η3h
∂ν

qds, ∀q∈Pl−5, (3.2c)

[3mm]∀T ∈Th,
∫
T

Ehη3hqdx=

∫
T

η3hqdx, ∀q∈Pl−6, (3.2d)



172 A NEW PRIORI ESTIMATION OF SHALLOW SHELL

where W3h be the associated l≥5 order conforming Argyris (Pl) finite element space, it
is corresponding (l−4) order nonconforming triangular element, Tp is the set of triangles
that share common vertices p. The case l=6 matches the sextic (P6) Argyris element,
refer to Figure 3.1, where solid dot • denotes the value of the vertex, the value of the
midpoint along the edge and the average value of the function over the element T ; the
small circle ◦ and larger circle ⃝ represent the values of the first order and second
order derivatives at the vertex, respectively; arrow ↑ denotes the value of the normal
derivative along the edge. The case l=7 matches the septic (P7) Argyris element, refer
to Figure 3.2.

Fig. 3.1: P6 Argyris element Fig. 3.2: P7 Argyris element

In addition, the enriching operators of the Morley element can also be the HCT
macro-element (values of the vertex, values of the first-order partial derivatives at ver-
tices, and the values of the outer normal derivative at the midpoint of the edge of the
element) [31]. However, this macro element can only be used for quadratic and cubic
Lagrange elements in two dimensions.

Then, for ∀η3h∈V3h, we have

∥η3h−Ehη3h∥L2 +h∥η3h−Ehη3h∥H1 +h2∥η3h−Ehη3h∥H2 ≤Ch2∥η3h∥H2 . (3.3)

Lemma 3.1. Let ζ3 and ζ3h be the solution and numerical solution for the third
component of the displacement, respectively. Suppose that ζ3∈H2+m(ω)∩H2(ω), m≥0,
pi∈L2(ω), sα∈L2(ω), L∈L2(ω), the function θ∈C3(ω), then we have

|Bh(ζ3,w3h)−(L,w3h)|≤C

{
inf

η3h∈V3h

∥ζ3−η3h∥H2 +∥η⃗h∥G⃗+Osc(L)

}
∥w3h∥H2 (3.4)

and

∥ζ3−ζ3h∥H2 ≤Chm∥ζ3∥H2+m +∥ζ⃗∥G⃗+Osc(L), (3.5)

where

G⃗=H2(ω)×H2(ω)×H3(ω),
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Osc(L)=

(∑
T∈Th

h4 inf
q∈Pl−6

∥L−q∥20,T

) 1
2

, T is a triangular element.

Proof. By the nonconforming discretization problem (2.2) and the variational
problem (2.1) of two-dimensional linearly elastic shallow shell equations, for ∀η3h∈V3h,
∀Ehw3h∈H2(ω) and Bh(ζ3,Ehw3h)−(L,Ehw3h)=0, we can derive

Bh(ζ3,w3h)−(L,w3h)=Bh(ζ3,w3h−Ehw3h)−(L,w3h−Ehw3h)

=Bh(ζ3−η3h,w3h−Ehw3h)+Bh(η3h,w3h−Ehw3h)

−(L,w3h−Ehw3h)

=I1+I2+I3.

First, we can get by Cauchy-Schwarz inequality

I1≤∥ζ3−η3h∥H2∥w3h−Ehw3h∥H2 ≤C∥ζ3−η3h∥H2∥w3h∥H2 .

Next, using Green’s formula and for any T ∈Th, η3h|T ∈P2(T ), we can obtain

I2=
∑
T∈Th

∫
T

(
−mαβ∂αβ(w3h−Ehw3h)+nθ

αβ∂αθ∂β(w3h−Ehw3h)
)
dx1dx2

=
∑
T∈Th

∫
T

(
4λµ

3(λ+2µ)
∆η3h∆(w3h−Ehw3h)+

4µ

3
∂αβη3h∂αβ(w3h−Ehw3h)

)
dx1dx2

+
∑
T∈Th

∫
T

nθ
αβ∂αθ∂β(w3h−Ehw3h)dx1dx2

=
∑
T∈Th

∫
T

4λµ

3(λ+2µ)
∆2η3h(w3h−Ehw3h)dx1dx2

−
∑
T∈Th

∫
T

∂β(n
θ
αβ∂αθ)(w3h−Ehw3h)dx1dx2

−
∑
T∈Th

∫
∂T

(w3h−Ehw3h)

(
4λµ

3(λ+2µ)

∂∆η3h
∂ν

− 4µ

3

∂2η3h
∂ν∂τ

∂τ

)
ds

+
∑
T∈Th

∫
∂T

∂(w3h−Ehw3h)

∂ν

(
4λµ

3(λ+2µ)
∆η3h+

4µ

3

∂2η3h
∂ν2

)
ds

+
∑
T∈Th

∫
∂T

nθ
αβ∂αθ(w3h−Ehw3h)νβds,

since ∆2η3h=0, we get

I2=−
∑
T∈Th

∫
T

∂β(n
θ
αβ∂αθ)(w3h−Ehw3h)dx1dx2+

∑
T∈Th

∫
∂T

nθ
αβ∂αθ(w3h−Ehw3h)νβds

−
∑
T∈Th

∫
∂T

(w3h−Ehw3h)

(
4λµ

3(λ+2µ)

∂∆η3h
∂ν

− 4µ

3

∂2η3h
∂ν∂τ

∂τ

)
ds

+
∑
T∈Th

∫
∂T

∂(w3h−Ehw3h)

∂ν

(
4λµ

3(λ+2µ)
∆η3h+

4µ

3

∂2η3h
∂ν2

)
ds
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=−
∑
T∈Th

∫
T

∂β(n
θ
αβ∂αθ)(w3h−Ehw3h)dx1dx2+

∑
T∈Th

∫
∂T

nθ
αβ∂αθ(w3h−Ehw3h)νβds

−
∑
T∈Th

∫
∂T

[(w3h−Ehw3h)]

{(
4λµ

3(λ+2µ)

∂∆η3h
∂ν

− 4µ

3

∂2η3h
∂ν∂τ

∂τ

)}
ds

−
∑
T∈Th

∫
∂T

{(w3h−Ehw3h)}
[(

4λµ

3(λ+2µ)

∂∆η3h
∂ν

− 4µ

3

∂2η3h
∂ν∂τ

∂τ

)]
ds

+
∑
T∈Th

∫
∂T

[
∂(w3h−Ehw3h)

∂ν

]{(
4λµ

3(λ+2µ)
∆η3h+

4µ

3

∂2η3h
∂ν2

)}
ds

+
∑
T∈Th

∫
∂T

{
∂(w3h−Ehw3h)

∂ν

}[(
4λµ

3(λ+2µ)
∆η3h+

4µ

3

∂2η3h
∂ν2

)]
ds,

where [η]=η|T1
−η|T2

and {η}|F = 1
2 (η|T1

+η|T2
) denote the jumps and averages of func-

tion, respectively. When V3h denotes Morley element, we know

∂∆η3h
∂ν

=0,
∂2η3h
∂ν∂τ

=0,

and ∆η3h,
∂2η3h

∂ν2 are constant. By the constraint (3.2c), we obtain

∑
T∈Th

∫
∂T

∂(w3h−Ehw3h)

∂ν

[(
4λµ

3(λ+2µ)
∆η3h+

4µ

3

∂2η3h
∂ν2

)]
ds=0.

Thus,

I2=−
∑
T∈Th

∫
T

∂β(n
θ
αβ∂αθ)(w3h−Ehw3h)dx1dx2+

∑
T∈Th

∫
∂T

nθ
αβ∂αθ(w3h−Ehw3h)νβds

≤∥nθ
αβ∂αθ∥H1 ·∥w3h−Ehw3h∥L2 +∥nθ

αβ∂αθ∥L2(e) ·∥(w3h−Ehw3h)νβ∥L2(e)

≤∥nθ
αβ(η⃗h)∂αθ−nθ

αβ(ζ⃗)∂αθ∥H1 ·∥w3h−Ehw3h∥L2

+∥nθ
αβ(ζ⃗)∂αθ∥H1 ·∥w3h−Ehw3h∥L2

+∥nθ
αβ(η⃗h)∂αθ−nθ

αβ(ζ⃗)∂αθ∥L2(e) ·∥w3h−Ehw3h∥L2(e)

+∥nθ
αβ(ζ⃗)∂αθ∥L2(e) ·∥w3h−Ehw3h∥L2(e)

≤Ch∥ζ⃗∥G⃗∥w3h∥H2 .

In this inequality we used the Cauchy-Schwarz inequality, the trace theorem with scaling,
triangle inequality, standard interpolation and inverse estimates and (3.3).

Finally, we obtain by (3.2d)

I3=
∑
T∈Th

∫
T

(L,w3h−Ehw3h)dx

=
∑
T∈Th

∫
T

(L−q)(w3h−Ehw3h)dx

≤

(∑
T∈Th

h4∥L−q∥20,T

) 1
2
(∑

T∈Th

h−4∥w3h−Ehw3h∥20,T

) 1
2
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≤C

(∑
T∈Th

h4∥L−q∥20,T

) 1
2

∥w3h∥H2 , ∀q∈Pl−6(T ).

A combination of I1, I2, I3 yields (3.4).
Based on Céa lemma and interpolation error estimation [5], we have

inf
η3h∈V3h

∥ζ3−η3h∥H2 ≤∥ζ3−Πζ3∥H2 ≤Chm∥ζ3∥H2+m , ζ3∈H2+m(ω),

which, together with (3.4), gives (3.5).

Theorem 3.1. Let ζ⃗ and ζ⃗h be the solutions of equation(2.1) and equation(2.2),
respectively. Suppose that pi∈L2(ω), sα∈L2(ω), L∈L2(ω) be Lipschitz continuous, θ∈
C3(ω). If ζ⃗ ∈ (H1+m(ω)×H1+m(ω)×H2+m(ω))∩(H1(ω)×H1(ω)×H2(ω)), then there
hold

∥ζ⃗− ζ⃗h∥h≤Chm (∥ζα∥H1+m +2∥ζ3∥H2+m)+∥ζ⃗∥G⃗+Osc(L).

Proof. Based on Céa lemma and interpolation error estimation, for the first two
components of the displacement we have

inf
ηαh∈Vαh

∥ζα−ηαh∥H1 ≤∥ζα−Πζαh∥H1 ≤Chm∥ζα∥H1+m , ζα∈H1+m(ω),

which, together with the estimation (3.5) of the third component of the displacement,
gives the expected result.

4. Numerical experiments
In this section, we mainly conduct numerical experiments on saddle shell and cylin-

drical shell to verify the theoretical results.

4.1. Saddle shell. The equation of the saddle shell S at the point (x1,x2) is as
follows:

θ(x1,x2)=−0.8

(
x2
1

4
− x1

2

)
+0.8

(
x2
2

4
− x2

2

)
.

The domain ω on S is defined by

ω :=
{
(x1,x2)∈R2; 0≤x1≤2, 0≤x2≤2

}
,

and

γ0=
{
(x1,x2)∈R2; x1=0, x1=2, 0≤x2≤2

}
is the clamped boundary.

On the basis of Ref. [32, 33], we take the Young’s modulus E=2×1011Pa and the
Poisson ratio ν=0.3. Then, combined with the following calculation formula of Lamé
constant,

λ=
Eν

(1+ν)(1−2ν)
, µ=

E

2(1+ν)
, λ≥0, µ≥0, (4.1)

we get

λ=1.15×1011Pa, µ=7.69×1010Pa.
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Suppose that the applied force at the saddle shell be p1=p2=0, and p3=20Pa.
Due to the lack of an exact solution, we use the extremely fine mesh (96800) calculated
under the minimum assumption m=1, H2(ω)×H2(ω)×H3(ω) as the exact solution, as
shown in Figure 4.1. And Figure 4.2 shows the extremely fine mesh (57800) under the
minimum assumption of the solution m=2, H3(ω)×H3(ω)×H4(ω), we use its finite
element solution [34] as the exact solution.

(a) Mesh dividing

2.0e-12

3.9e-12

5.9e-12

7.8e-12

5.7e-16

XYZ Magnitude

(b) Deformation

Fig. 4.1: Numerical result of exact solution: the mesh is 96800.

(a) Mesh dividing

2.0e-12

3.9e-12

5.9e-12

7.8e-12

4.1e-16

XYZ Magnitude

(b) Deformation

Fig. 4.2: Numerical result of exact solution: the mesh is 57800.

Then, the result under the P1, P1, Morley elements as the numerical solution, and
the error under the energy norm is calculated, as shown in Table 4.1.

Table 4.1: The convergence results for the saddle shell on four different meshes.

Error 1/2 1/4 1/8 1/16

m=1
∥ζ⃗− ζ⃗h∥h 1.7687e-10 1.0057e-10 5.3643e-11 2.8070e-11

Convergence order 0.81 0.91 0.93 \

m=2
∥ζ⃗− ζ⃗h∥h 5.7666e-11 1.7933e-11 4.2453e-12 8.6999e-13

Convergence order 1.69 2.08 2.29 \

4.2. Cylindrical shell. The equation of the cylindrical shell S at the point
(x1,x2) is as follows:

θ⃗(x1,x2)=
√
102−x2.

The domain ω on S is defined by

ω :=
{
(x1,x2)∈R2; −π≤x1≤π, −1≤x2≤1

}
,
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and

γ0=
{
(x1,x2)∈R2; −π≤x1≤π, x2=−1, x2=1

}
is the clamped boundary.

On the basis of [35], we take the Young’s modulus E=9×1010Pa and the Poisson
ratio ν=0.3. According to (4.1), it can be calculated λ=5.19×1010Pa, µ=3.46×
1010Pa, similar to the force we applied in Section 4.1. In Figure 4.3, the extremely fine
mesh (110060) under the minimum assumption of the solution H2(ω)×H2(ω)×H3(ω),
m=1 is used as the exact solution. And in Figure 4.4, we show the extremely fine
mesh (62546) under the minimum assumption of the solution isH3(ω)×H3(ω)×H4(ω),
m=2, which is used as the exact solution.

(a) Mesh dividing

5.0e-12

9.9e-12

1.5e-11

3.1e-14

2.0e-11
XYZ Magnitude

(b) Deformation

Fig. 4.3: Numerical result of exact solution: the mesh is 101400.

(a) Mesh dividing

4.9e-12

9.8e-12

1.5e-11

2.0e-11

6.1e-14

XYZ Magnitude

(b) Deformation

Fig. 4.4: Numerical result of exact solution: the mesh is 60000.

Then, we adopt the solution of the nonconforming element (P1, P1, Morley elements)
as the numerical solution, and the error under the energy norm is calculated, as shown
in Table 4.2.

Table 4.2: The convergence results for the cylindrical shell on four different meshes.

Error 1/6 1/12 1/24 1/48

m=1
∥ζ⃗− ζ⃗h∥h 5.1802e-10 2.3709e-10 1.1089e-10 5.3974e-11

Convergence order 1.13 1.10 1.04 \

m=2
∥ζ⃗− ζ⃗h∥h 2.5315e-10 7.1923e-011 1.7540e-11 3.4784e-12

Convergence order 1.82 2.04 2.33 \

In Figure 4.5, we report the convergence rate of the Morley element in the energy
norm. Under the least regularity assumption H2×H2×H3 and H3×H3×H4, we can
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find that the convergence rate of the hyperbolic paraboloid shell and cylindrical shell
are 1 and 2, respectively, which is consistent with the theoretical analysis.

h
10-2 10-1 100

er
ro

r

10-11

10-10

10-9

Saddle shell
Cylindrical shell

1

1

(a) m=1

h
10-2 10-1 100

er
ro

r
10-13

10-12

10-11

10-10

10-9

Saddle shell
Cylindrical shell

1

2

(b) m=2

Fig. 4.5: Order of convergence with ∥ζ⃗− ζ⃗h∥h.

5. Conclusion
In this paper, we have proved a new error estimate for two-dimensional linearly

elastic shallow shell equations. On the basis that the displacement components be-
longed to different Sobolev spaces, we analyzed the nonconforming element to discrete
displacement variables. Particularly, in the energy norm error estimation, consistency
error of these nonconforming elements can be limited to arbitrary order by enriching
operator.
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