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ON THE PROPERTIES OF AFFINE SOLUTIONS OF
COLD PLASMA EQUATIONS∗

OLGA S. ROZANOVA† AND MARKO K. TURZYNSKY‡

Abstract. We study the affine solutions of the equations of plane oscillations of cold plasma, which,
under the assumption of electrostaticity, correspond to the Euler-Poisson equations in the repulsive case.
It is proved that the zero equilibrium state of the cold plasma equations, both with and without the
assumption of electrostaticity, is unstable in the class of all affine solutions. It is also shown that an
arbitrary perturbation of an axially symmetric electrostatic solution leads to a finite time blow-up.
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1. Introduction

The models used to describe plasma are diverse and very complex. They are non-
linear and characterized by waves of different types, which propagate in different di-
rections, interact with each other and have a tendency to break. Many textbooks and
monographs are devoted to plasma models, we mention, without pretending to be com-
plete, e.g. [1, 2, 13, 21]. To study plasma under certain regimes, physicists typically use
different assumptions to highlight the most important features. Very often, linearization
of equations and various kinds of expansions in terms of a parameter that can be consid-
ered small are used. The most difficult is the description of the nonlinear nature of the
medium. Due to the nonlinearity, the study of the model, even numerically, especially
in the multidimensional case is a very difficult task.

One of the most popular models is the “cold” plasma model, in which the plasma is
considered as a relativistic electron fluid, neglecting collision and recombination effects,
as well as the motion of ions [5, 9]. Even within this assumption, further simplification
and adaptation to a specific practical problem is possible, as well as the use of hydro-
dynamic or kinetic approaches, as a result of which models can differ greatly from a
mathematical point of view, for example, [3, 10, 14, 15, 17]. In this article, we will focus
on the hydrodynamic non-relativistic model of cold plasma, namely, on the problem of
instability of stationary states and destruction of solutions.

At present, attention to the model of “cold” plasma is due to the study of the
propagation high-power short laser pulses, e.g. [12]. The pulse excites a wake plasma
wave, which is used in laser accelerators, where electrons can be accelerated to high
energies at much shorter distances than in conventional devices. The wake wave also
tends to break down, transferring its energy to plasma particles. From a technical point
of view, it is important to find conditions under which the wake wave keeps smoothness
for as long as possible.

For the hydrodynamic non-relativistic cold plasma model, both in relativistic and
non-relativistic cases, significant progress can be made if we assume that the solution
depends only on one spatial coordinate or (to a lesser extent) on the distance to the
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origin (see [8, 19, 20] and references therein). In this paper, we consider the essentially
multidimensional case and obtain some results by assuming an affine structure for the
solution. Such solutions, of course, cannot be considered physical because of their
unboundedness at infinity, but they shed some light on the nature of the instability
of the stationary state (the instability turns out to be very weak), as well as on the
connection with quadratically nonlinear systems of ordinary differential equations.

The equations that describe the non-relativistic cold plasma oscillations in the Euler
coordinates have the form [1,13]:

∂tn+div(nV)=0, ∂tV+(V ·∇)V=−(E+[V×B]), (1.1)

∂tE=nV+curlB, ∂tB=−curlE, divB=0, (1.2)

where V(t,x), n(t,x)>0 are the speed and density of electrons, E(t,x) and B(t,x) are
electrical and magnetic fields, x∈R3, t≥0, ∇, div, curl are the gradient, divergence
and vorticity with respect to the spatial variables.

System (1.1), (1.2) has a class of solutions

V=Q(t)x, E=R(t)x, (1.3)

where Q and R are 3×3 matrices with coefficients depending on t, and x is the radius
vector of the point x∈R3. These solutions are called affine. Affine solutions have been
known since the time of Kirchhoff and Dirichlet. They play an important role in various
models of continuous media [6]. Our interest in such solutions is associated primarily
with the fact that it provides a rare opportunity to construct solutions to cold plasma
equations, which are very complex even from a computational point of view.

It follows from (1.3) that n=n(t) and B=B(t). Since curlB(t)=0, then from
the first equation of (1.1) and the first equation of (1.2), under the assumption that
the solution is sufficiently smooth and the steady-state density equals 1, we get n=
1−divE>0. Thus, we can exclude n from the system and obtain

∂tV+(V ·∇)V=−(E+[V×B(t)]), ∂tE+VdivE=V, Ḃ(t)+curlE=0. (1.4)

We will consider system (1.4) together with the initial data

(V,E,B)|t=0=(Q0x,R0x,B0),

with constant matrices Q0 and R0.
Further, we assume that oscillations occur in a plane perpendicular to the coordinate

vector e3. Thus, we restrict the class of solutions under consideration to

V=Qx=

a(t) b(t) 0
c(t) d(t) 0
0 0 0

x,E=Rx=

A(t) B(t) 0
C(t) D(t) 0
0 0 0

x,B=(0,0,B(t)). (1.5)

System (1.4) for solutions of the form (1.5) reduces to a matrix system of differential
equations for the matrices Q and R and the scalar function B:

Q̇+Q2−B(t)LQ+R=0, Ṙ−(1−trR)Q=0, Ḃ(t)−tr(LR)=0, (1.6)

which consists of 9 differential equations, here L=

 0 −1 0
1 0 0
0 0 0

. The initial data for (1.6)

are

(Q,R,B)|t=0=(Q0,R0,B0).
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An important class of oscillations is distinguished by the condition

curlE=0, (1.7)

such oscillations are called electrostatic. Under this condition, the magnetic field does
not change with time and has the form B=(0,0,B0). Another consequence of this
assumption is the condition curlV=0. Thus, system (1.4) can be rewritten as

∂tn+div(nV)=0, ∂tV+(V ·∇)V=−(E+[V×B0]), (1.8)

∂tE=nV, curlE=0.

It is easy to check that this situation is realized only in the case B0=0, b= c, B=C,
the number of equations in system (1.6) is reduced to six.

If we introduce a potential Φ such that ∇Φ=−E, then (1.8) can be rewritten as a
system of Euler-Poisson equations (e.g. [11])

∂n

∂t
+div(nV)=0,

∂V

∂t
+(V ·∇)V= k∇Φ, ∆Φ=n−n0, (1.9)

for k=n0=1. Thus, the results obtained for system (1.8) in the electrostatic case can
be reformulated in terms of solutions of the Euler-Poisson equations.

Solutions of the form (1.5) have also a subclass of solutions with the radial symmetry
in the plane x3=0, for which

V=ar+cr⊥, E=Ar+C r⊥, r=(x1,x2,0), r⊥=(x2,−x1,0). (1.10)

For such solutions, the number of equations in system (1.6) is reduced to five. Such
solutions are electrostatic only if c=C=B=0, i.e. the radially symmetric electrostatic
solution is axisymmetric.

It was recently proved [18] that affine solutions play an exceptional role in the class
of axisymmetric solutions of multidimensional Euler-Poisson equations (1.9) depending
on (t,r), where r=

√
x2
1+x2

2. Namely, if some solution preserves global smoothness
in time, then it is either affine or tends to affine as t→∞ uniformly on each interval
in r. In addition, the zero equilibrium state turns out to be unstable with respect
to axisymmetric perturbations of an arbitrary form, but stable with respect to affine
axisymmetric perturbations. As shown above, the axisymmetric solutions of the Euler-
Poisson equations correspond to the axisymmetric solutions of the cold plasma equations
with the condition of electrostaticity. In this regard, a natural question arises: will the
zero equilibrium of the cold plasma equations be stable in the class of affine solutions
without the assumption of axial symmetry or electrostaticity?

We show that the answer to this question is negative. Moreover, it turns out that a
general perturbation from the affine axially symmetric solution leads to a blow-up of the
solution in a finite time. Since plane oscillations are a subclass of spatial oscillations,
the result on the instability of the zero equilibrium state is also valid for the three-
dimensional case.

The paper has the following structure. In Section 2 for the electrostatic case (1.7),
B0=0 we construct a globally smooth solution of system (1.6). The assumption of
symmetry (1.10) and (1.7) imply c=C=0, so system (1.6) takes the form

ȧ=−A−a2, Ȧ=a−2Aa. (1.11)

System (1.11) describes the solutions with axial symmetry. We show that every solution
of (1.11) is globally smooth and Lyapunov stable in the class of electrostatic solutions
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(1.5) with axial symmetry. In particular, the equilibrium V=E=0 of system (1.11) is
stable. Then we consider system (1.6) in the case of B≡0 without the axial symmetry.
In this case it has the form

Ȧ=(1−A−D)a, Ḋ=(1−A−D)d,

ȧ+a2+b2+A=0, ḋ+b2+d2+D=0, (1.12)

ḃ=−(a+d)b−B, Ḃ=(1−A−D)b.

First, relying on the Floquet theory, we show that the equilibrium V=E=0 is unstable
with respect to small perturbations in the class of affine electrostatic solutions (it is
enough to consider the case b=B=0), and thus also in the class of arbitrary affine
perturbations. Moreover, we show that in the general case (without a special choice of
initial data) such a perturbation grows with time and leads to a blow-up of the solution
in a finite time. Further, by numerical computation of the characteristic multipliers
of the system of ordinary differential equations, we show that a similar result is valid
for an arbitrary deviation from the globally smooth solution with axial symmetry (the
solution of (1.11)).

In Section 3 we consider the non-electrostatic case and show that the zero equi-
librium V=E=B0=0 is unstable. It is enough to prove this for the class of radially
symmetric non-electrostatic solutions (1.10), where A=D, a=d, C=−B, c=−b. Thus,
system (1.6) takes the form

Ȧ−(1−2A)a=0, Ċ−(1−2A)c=0,

ȧ+a2−c2+A−Bc=0, ċ+2ca+C+Ba=0, (1.13)

Ḃ−2C=0.

Then we show that a general perturbation of a globally smooth axisymmetric
electrostatic solution (the solution of (1.11)) in the class of radially symmetric non-
electrostatic solutions also leads to a blow-up of the solution in a finite time. Fur-
ther in Section 3 we discuss the difference between deviations from zero equilibrium
V=E=B0=0 and equilibrium V=E=0, B0 ̸=0 and hypothesize stability in the latter
case.

2. Electrostatic oscillations

2.1. Solution with axial symmetry. In the case (1.10), under the electrostatic
condition c=C=B0=0, the system (1.6) takes the form (1.11). The equilibrium of the
a=A=0 system is the center, since the eigenvalues of the linear approximation matrix
in it are equal to λ1,2=±i, and the phase curves are symmetric when a is replaced by
−a.

Let us find the first integrals of system (1.11). It implies ada
dA − a2

2A−1 =
A

2A−1 , after

replacing a2=u we obtain a linear equation, the solution is

a=±
√
( 12 ln|2A−1|+K)(2A−1)− 1

2 , K=const. (2.1)

This integral was also obtained in [18]. The curve on the phase plane given by the
expression (2.1) is bounded for all values ofK satisfying the condition A(0)< 1

2 (see [18]),
so the derivatives of solution, a and A, remain bounded for all t>0. The explicit form of
the bounded phase curve (2.1) also implies that the equilibrium a=A=0, corresponding
to the zero rest state, is Lyapunov stable. The solutions corresponding to any fixed



O.S. ROZANOVA AND M.K. TURZYNSKY 219

phase curve (2.1) are also Lyapunov stable if the perturbation occurs in the class of
affine solutions given by system (1.11).

In this way, a(t), A(t) are periodic with period

T =2

A+∫
A−

dη

(1−2η)a(η)
,

a is set to (2.1), A−<0 and A+>0 are the smaller and larger roots of the equation

a(A)=0. Besides,
T∫
0

a(τ)dτ =0.

The period T was studied in [18]. It depends on A(0)=ε, ε∈ (0, 12 ) decreasing

monotonically from 2π to
√
2π, and the asymptotic formula

T =2π(1− 1

12
ε2+o(ε2)), ε→0, (2.2)

holds, see [18], Lemma 4.

2.2. Arbitrary electrostatic oscillations of form (1.5). We formulate two
similar theorems, the first of which will be proved analytically, while the second is a
semi-analytical result, for the proof we use numerical methods.

The proof of all theorems is based on the Floquet theory for systems of linear
equations with periodic coefficients (for example, [7], Section 2.4). According to this
theory, for the fundamental matrix Ψ(t) (Ψ(0)=E, where E is the identity matrix) there
exists a constant matrix M , possibly with complex coefficients, such that Ψ(T )=eTM ,
where T is the period of the coefficients. The eigenvalues of the monodromy matrix
eTM are called the characteristic multipliers of the system. If the absolute value of any
of the characteristic multipliers is greater than one, then the zero solution of the studied
linear system is unstable in the sense of Lyapunov ([7], Theorem 2.53).

Theorem 2.1.

(1) The zero equilibrium of system (1.6) in the class B(t)≡0 (corresponding to electro-
static oscillations) is Lyapunov unstable.

(2) A general small non-axisymmetric perturbation of the equilibrium blows up in a
finite time.

Proof. The system (1.6) in the case of B≡0 has the form (1.12). To prove
instability, it suffices to restrict ourselves to the case b=B=0.

We want to study the effect of deviation from symmetry, for which we make the
substitution d=a+σ, D=A+δ, which corresponds to the axisymmetric case for σ=
δ=0. Then (1.12) reduces to

Ȧ=(1−2A)a−δa, ȧ=−a2−A, δ̇=(1−2A−δ)σ, σ̇=−σ2−2aσ−δ.

We choose a small parameter ε and set

A(t)=A0(t)+ε2A1(t)+o(ε2), a(t)=a0(t)+ε2a1(t)+o(ε2),

δ(t)=ε2δ1(t)+o(ε2), σ(t)=ε2σ1(t)+o(ε2).

For ε=0 we obtain a globally smooth solution A0(t),a0(t), which is a solution to system
(1.11). For the functions A1, a1, δ1, σ1, discarding terms of the order of smallness o(ε2),
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we obtain the linear system

Ȧ1=−2a0A1+(1−2A0)a1−a0δ1, ȧ1=−2a0a1−A1, (2.3)

δ̇1=(1−2A0)σ1, σ̇1=−2a0σ1−δ1. (2.4)

Let us show that the zero solution of system (2.3), (2.4) is unstable.
Note that if δ1(0)=σ1(0)=0, then system (2.3), (2.4) reduces to two equations

(2.3), δ1≡0, and then the equilibrium A1=a1=0 turns out to be stable. This follows
from the fact that the perturbed solution remains axisymmetric and the integral (2.1)
holds for it. Thus, we will consider a perturbation of the solution A0(t),a0(t), for which
δ1(0)σ1(0) ̸=0.

(1) Let A0(t),a0(t) itself be a small deviation from the zero equilibrium position. We
take A0(0)=ε as a small parameter. Then

A0(t)=εcost+A01(t)ε
2+o(ε2), a0(t)=−εsint+a01(t)ε

2+o(ε2), (2.5)

all subsequent expansion terms are found sequentially from (1.11).
To obtain an asymptotic representation of the components of the fundamental ma-

trix, we set

A1(t)=A10(t)+A11(t)ε+A12(t)ε
2+o(ε2), (2.6)

a1(t)=a10(t)+a11(t)ε+a12(t)ε
2+o(ε2),

δ1(t)= δ10(t)+δ11(t)ε+δ12(t)ε
2+o(ε2),

σ1(t)=σ10(t)+σ11(t)ε+σ12(t)ε
2+o(ε2). (2.7)

The fundamental matrix has the form Ψ(t)=Ψ0(t)+Ψ1(t)ε+Ψ2(t)ε
2+o(ε2),Ψ0(0)=E,

Ψi(0)=0, i∈N. The calculations that need to be done to find the matrices Ψi(t)
are cumbersome, but standard: we substitute (2.5), (2.6) – (2.7) into (2.3), (2.4) and
equate the coefficients at the same powers of ε. At each stage, one has to solve a linear
inhomogeneous system with constant coefficients.

Denote the eigenvalues of the matrix Ψ(T ) as λi, and the eigenvalues of the matrix
Ψk(T )=Ψ0(T0)+Ψ1(T1)ε+ ·· ·+Ψk(Tk)ε

k, k∈N as λ̄ki, i=1,. ..,4. Further, we denote
as Tj , j=0,. ..,k, the period T (see (2.2)) calculated in the approximation O(εj), and
the eigenvalues of the matrix Ψj(Tj) as λji. To prove the instability, we have to find
an expansion up to such an order k in ε that among λ̄ki there is one eigenvalue that is
greater than one in terms of the absolute value.

As follows from (2.2), T0=T1=2π, T2=2π− π
6 ε

2. Calculations performed using
the computer algebra package MAPLE show that λ̄0i= λ̄1i=1, i=1,. ..,4,

λ̄2i=1±
√
3π

6
ε2+o(ε2), i=1,2, λ̄2i=1±

√
3π

2
ε2+o(ε2), i=3,4, (2.8)

and further terms of the expansion cannot change the coefficients of ε to a power less
than two. Thus, already for k=2 we can conclude that there is a pair of eigenvalues
such that |λ|>1. Thus, the instability of the zero equilibrium is proved.

Note that according to the Liouville theorem on the conservation of the phase
volume

detΨ(T )=exp

 T∫
0

trM(τ)dτ

 detΨ(0),
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where M is the matrix corresponding to the linear system (2.3), (2.4). It is easy to

see that trM=6a0(t), and since
T∫
0

a0(τ)dτ =0. Therefore
4∏

i=1

|λi|=1. However
4∏

i=1

|λ̄ki|

must be equal to one only up to terms o(εk), which we see from (2.8).

(2) The fact that the linear system (2.3), (2.4) has at least one characteristic multiplier
whose absolute value is greater than one indicates that any component of its solution,
including A1(t), contains a term CP (t)exp(µt), with characteristic exponent µ>0, P (t)
is a bounded periodic function, C is a constant , depending on the initial data. With
some special choice of initial data, one can make the constant C equal to zero. This
will certainly be the case if σ(0)= δ(0)=0, that is, when the initial perturbation is
axisymmetric. However, if the perturbation is chosen arbitrarily, then an exponentially
growing term is necessarily present. Therefore, if we assume the boundedness of A(t),
and hence A1(t), for all finite times t, then there exists a point t∗ for which A(t∗)=

1
2 .

Since A(t)= 1
2 is a part of solution to system (1.6), this would contradict the uniqueness

theorem. Therefore, there is a finite time tc<t∗ at which A(t) becomes infinite, which
corresponds to a blow-up of the solution.

Theorem 2.2. A globally smooth axisymmetric solution of system (1.6) is Lyapunov
unstable in the class B(t)≡0, and any general non-axisymmetric perturbation of it blows
up in a finite time.

Proof. It is completely analogous to the proof of the previous theorem, but
in order to investigate the stability of the perturbation from the equilibrium of the
solution A0(t),a0(t), one has to apply numerical methods. This is not surprising, since
even for a much simpler situation the Mathieu equations the stability region can only
be found numerically without the assumption that the periodic coefficient is small [16].
Therefore, for each fixed A0(0)=A∗, we solve system (1.11), (2.3), (2.4) numerically
using the Runge-Kutta-Felberg method of the fourth-fifth order (RKF45), and then
find the absolute values of the eigenvalues at the point T (A∗).

Figure 2.1 shows the dependence |λi(A∗)| for different ranges of A∗. It is easy to
see that the maximum of the eigenvalues is greater than 1 in absolute values, which
indicates instability.

If we introduce the measure of instability as S(A∗)=max
i

|λi(A∗)|−1, then we

see that this value on the interval (0, 12 ) varies nonmonotonically, remaining positive.
Namely, it initially increases for small A∗, which is indicated by the asymptotic represen-
tation of the eigenvalues (2.8), but sharply decreases at the point A∗≈0.125, remaining
very small up to the point A∗≈0.32, after which it sharply increases, approaching the
boundary value A∗≈0.5. This, in particular, indicates that it is very difficult to detect
instability by direct numerical methods without resorting to the Floquet theory, since
the deviation from the stationary solution A0(t),a0(t) grows very slowly. Indeed, for
example, in the region of the point A∗=0.25 we have S(A∗)∼10−7.

We also note the properties of the eigenvalues themselves. On the interval A∗∈
(0,≈0.125) there are a pair of complex conjugate and a pair of real eigenvalues, one of
which is greater than one. On the interval A∗∈ (≈0.125,≈0.32), there are two pairs of
complex conjugate eigenvalues, which also indicates a softer loss of stability. On the
interval A∗∈ (≈0.32,0.5), a pair of real eigenvalues again arises, one of which is positive
and rapidly grows as one approaches the right boundary of the interval.

The blow-up of an arbitrary non-axisymmetric perturbation of a globally smooth
axisymmetric solution is proved in the same way as in Theorem 2.1.
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Figure 2.1. Values of characteristic multipliers for the case of electrostatic non-axisymmetric
oscillations depending on A(0). The figure in the center shows that the curves that appear to match
in the figure on the left are actually different.

Corollary 2.1. The zero equilibrium of system (1.4) is Lyapunov unstable in the
class of all affine solutions (1.3).

Proof. It follows directly from the observation that plane deviations from the
equilibrium in the class (1.5) with B(t)≡0 form a subclass among all possible affine
deviations.

Corollary 2.2.
(1) The zero equilibrium state of the Euler-Poisson equations is unstable in the class of

affine solutions.

(2) A general small non-axisymmetric affine perturbation of a globally smooth axisym-
metric affine solution of the Euler-Poisson equations (1.9) blows up in a finite time.

Proof. Corollary 2.2 is a reformulation of Theorem 2.1 for the case of the Euler-
Poisson equations.

Remark 2.1. The electrostatic solutions of the cold plasma equations, generally
speaking, blow up in a finite time, this time can be estimated from below, see [19].

3. Non-electrostatic oscillations
The equilibrium of system (1.6) corresponding to nonzero density have the form

Q=R=0 (a matrix with zero components), B=B0=const.
The linearization matrix at this equilibrium has the following eigenvalues

λ=±1

2

√
−4−2B2

0±2
√
B4
0+4B2

0,

double multiplicity, and λ=0. It is easy to check that (−4−2B2
0+2

√
B4
0+4B2

0)<0 for
all real B0. Hence, the real part of all eigenvalues is zero, and the theory of linear
approximation to study the stability of equilibrium is not applicable.

Since we are interested in the deviation from the electrostatic condition when B0=0,
we will study the stability of the equilibrium with B0=0 in the class of non-electrostatic
perturbations.

Theorem 3.1.
(1) The zero equilibrium of system (1.6) is unstable in the sense of Lyapunov in the

class of affine non-electrostatic solutions.
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(2) A general small radially symmetric affine non-electrostatic perturbation of a globally
smooth axisymmetric affine solution of system (1.6) blows up in a finite time.

Proof.
(1) The proof is completely analogous to the proof of Theorem 2.1 and is based on the
Floquet theory described above. It suffices to show that the zero equilibrium is unstable
in the class of affine solutions with radial symmetry (1.10). System (1.6) in this case
has the form (1.13).

Let us set

A(t)=A0(t)+A1(t)ε
2+o(ε), a(t)=a0(t)+a1(t)ε

2+o(ε2),

c(t)= c1(t)ε
2+o(ε2), C(t)=C1(t)ε

2+o(ε2), (3.1)

B(t)=B1(t)ε
2+o(ε2),

where ε is some small parameter. Substituting these series into (1.13), we get the
following system:

ȧ0+A0+a20=0, Ȧ0−(1−2A0)a0=0,

ȧ1+A1+2a0a1=0, Ȧ1−(1−2A0)a1+2a0A1=0, (3.2)

Ċ1−(1−2A0)c1=0, ċ1+a0B1+2a0c1+C1=0, Ḃ1−2C1=0. (3.3)

We see that the zero term of the series, A0(t), a0(t), is a solution of (1.11). For the
next terms of expansion, we obtain a linear system of equations (3.2), (3.3) with known
periodic coefficients. The equations (3.2) for A1(t), a1(t) is split off and three equations
(3.3) can be considered separately.

We choose A0(0)=ε≪1, a0(0)=0, so the zero terms of the series themselves turn
out to be small, and the expansion (2.5) is valid.

To obtain an asymptotic representation of the components of the fundamental ma-
trix, we set

c1(t)= c10(t)+c11(t)ε+c12(t)ε
2+o(ε2),

C1(t)=C10(t)+C11(t)ε+C12(t)ε
2+o(ε2),

B1(t)=B10(t)+B11(t)ε+B12(t)ε
2+o(ε2).

We use the same notation and methods as in the proof of Theorem 2.1. Computations
show that λ̄0i= λ̄1i=1, i=1,2,3,

λ̄2i=1±
√
5

3
πε2+o(ε2), i=1,2, λ̄23=1,

and further terms of the expansion cannot change the coefficients of ε to a power less
than two. Thus, there is a pair of eigenvalues such that |λ|>1 and the instability of the
zero equilibrium is proved.

(2) In order to prove the blow-up of an arbitrary non-electrostatic perturbation of a
globally smooth axisymmetric solution, we cannot directly use the arguments of Theo-
rem 2.1. Indeed, our conclusions concern the components C,c,B, while the restriction on
the component A led to a contradiction. Therefore, we note that the terms of expansion
(3.1) for a and A in ε starting from the fourth power, that is, A3 and a3, are no longer
separated from C,c,B. Namely, as follows from (1.13), they are subject to the following
inhomogeneous system of linear equations

Ȧ3−a3=−2A0a2−2A1a1−2a0A2, ȧ3+A4=−2a0a2+a21+B1c1−c21.
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Moreover, A0,A1,A2, a0,a1,a2, are periodic and bounded (which follows from (2.1),
since only the previous components a and A are used to calculate the first expansion
components), while B1 and c1 generally contain the term CP (t)exp(µt), with charac-
teristic exponent µ>0, where P (t) is a bounded periodic function, C is a constant
depending on the initial data. With some special choice of initial data, it is possible to
ensure that the constant C turns out to be zero, but for an arbitrary non-electrostatic
perturbation of the zero state of rest, an exponentially growing component of the solu-
tion is necessarily present.

Therefore, as follows from the standard formula for representing the solution of a
linear inhomogeneous equation, A3 and a3 also have this property, so if we assume that
the solution is defined for all t>0, we get a contradiction with the condition A< 1

2 .

Theorem 3.2. A globally smooth axisymmetric solution of system (1.6) is unstable
in the sense of Lyapunov in the class of affine non-electrostatic solutions with radial
symmetry (1.10), and any general radially symmetric non-electrostatic perturbation of
it blows up in a finite time.

Proof. We repeat the procedure similar to the proof of Theorem 2.2. For each
fixed A0(0)=A∗, we solve system (1.11), (3.3) numerically using the fourth-fifth order
Runge-Kutta-Felberg method (RKF45), and then find the absolute values of eigenvalues
at the point T (A∗).

Figure 3.1 shows the dependence |λi(A∗)| for different ranges of A∗. It is easy to
see that the maximum of the eigenvalues exceeds 1 in absolute value, which indicates
instability. We see that the quantity max

i
|λi(A∗)|−1, which can be called the measure of

instability, changes nonmonotonically on the interval (0,0.5). However, up to the value
of A∗≈0.15, it is approximately at the same level, being, nevertheless, significantly
(two orders of magnitude) larger than the analogous value in the electrostatic case, and
then it increases, but not as sharply as in electrostatic case. Among the eigenvalues
λi, i=1,2,3, there are necessarily a pair of complex conjugate ones, and first the real
eigenvalue is greater than one in absolute value, then complex conjugate one is greater
in absolute value (for A∗∈ (≈0.07,≈0.14)), and then the real eigenvalue again becomes
larger in absolute value.

The result on the blow-up of a radially symmetric non-electrostatic perturbation of
a general form follows from the same reasoning as in Theorem 3.1.

Figure 3.1. Values of the characteristic multipliers for the case of non-electrostatic radially
symmetric oscillations as a function of A(0), the figure on the left shows the details of the change in
the characteristic multipliers with high resolution.
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Remark 3.1. The proof that a general perturbation of the electrostatic axisymmetric
solution in the class of arbitrary affine non-electrostatic solutions (not radially symmet-
ric) collapses in a finite time is carried out in exactly the same way as in Theorems
2.2 and 3.2, but is more cumbersome, since it requires solving a system of equations of
the ninth order and examining 9 eigenvalues. We do not present the results of these
calculations.

Figure 3.2. The difference in the behavior of the solution upon deviation from the equilibrium
at B0=0 and B0 ̸=0. Initial deviation is chosen as a(0)= c(0)=0,A(0)=0.1,C(0)=0.1, B0=0 (left)
and B0=0.04 (right). The calculations are done for t=220. For B0=0 the solution goes to infinity
in finite time.

Remark 3.2. The deviation from the equilibrium with B0 ̸=0 behaves quite differ-
ently. Indeed, if in (3.1) we replace the representation for B with B(t)=B0+B1(t)ε

2+
o(ε2), then we get A0(t)=a0(t)=0, and the next terms of expansion are subject to a
linear homogeneous system of equations with constant coefficients with a matrix having

purely imaginary eigenvalues ± 1
2 i
√
4+2B2

0±2
√

B4
0+4B2

0 and zero. Thus, in the first

approximation in ε, the solution is a superposition of two periodic motions with dif-
ferent periods. In order to construct the next approximation, one has to solve a linear
inhomogeneous equation with constant coefficients. When solving, secular terms arise,
but this does not mean that the equilibrium position is unstable (see an example in [4]).
Moreover, the numerical results indicate that small deviations from the equilibrium at
B0 ̸=0 are bounded. However, we do not know an analytical proof of this fact. In this
case, it is not possible to apply the method used in the proof of the previous theorems.

The hypothesis is that the larger B0, the wider the neighborhood of the equilibrium,
starting from which, the solution remains bounded and globally smooth.

Note that the magnetic field also plays a stabilizing role in other problems related
to the description of cold plasma [20].

Figure 3.2 illustrates the difference in the behavior of the magnetic field component
for B0=0 and B0 ̸=0 for the same initial data for the remaining components of the
solution.

Remark 3.3. The fact that, for some choice of initial data, the time-dependent
coefficients at the second and lower powers of ε remain bounded for all t>0 does not
mean that all other coefficients in the expansion of the solution in ε have the same
property. The Floquet theory can be successfully used to prove instability, but it is
difficult to apply it to prove stability.

Acknowledgements. Supported by the Moscow Center for Fundamental and Ap-
plied Mathematics. The authors thanks V.V. Bykov and A.V. Borovskikh for discus-



226 AFFINE SOLUTIONS OF COLD PLASMA

sions.

REFERENCES

[1] A.F. Alexandrov, L.S. Bogdankevich, and A.A. Rukhadze, Principles of Plasma Electrodynamics,
Springer Series in Electronics and Photonics, Springer: Berlin Heidelberg, 9, 1984. 1

[2] P.M. Bellan, Fundamentals of Plasma Physics, Cambridge University Press, Cambridge, 2006. 1
[3] J. Ben-Artzi, S. Pankavich, and J. Zhang, A toy model for the relativistic Vlasov-Maxwell system,

Kinet. Relat. Models, 15(3):341–354, 2022. 1
[4] N.N. Bogoliubov and Y.A. Mitropolski, Asymptotic Methods in the Theory of Nonlinear Oscilla-

tions, Gordon and Breach: New York, 1961. 3.2
[5] H.G. Booker, Cold Plasma Waves, Springer-Verlag, Berlin, 2004. 1
[6] A.V. Borlsov, I.S. Mamaev, and A.A. Kilin, Hamiltonian dynamics of liquid and gas self-

gravitating ellipsoids, Rus. J. Nonlin. Dyn., 4(4):363–407, 2008. 1
[7] C. Chicone, Ordinary Differential Equations with Applications, Springer-Verlag: New York, 1999.

2.2
[8] E.V. Chizhonkov, Mathematical Aspects of Modelling Oscillations and Wake Waves in Plasma,

CRC Press, 2019. 1
[9] R.C. Davidson, Methods in Nonlinear Plasma Theory, New York: Academic Press, 1972. 1

[10] B. Després, L.-M. Imbert-Gérard, and O. Lafitte, Solutions to the cold plasma model at reso-
nances, J. Ec. Polytech. - Math., 4:177–222, 2017. 1

[11] S. Engelberg, H. Liu, and E. Tadmor, Critical thresholds in Euler-Poisson equations, Indiana
Univ. Math. J., 50:109–157, 2001. 1

[12] E. Esarey, C.B. Schroeder, and W.P. Leemans, Physics of laser-driven plasma-based electron
accelerators, Rev. Mod. Phys., 81:1229, 2009. 1

[13] V.L. Ginzburg, Propagation of Electromagnetic Waves in Plasma, Pergamon: New York, 1970.
1

[14] R.T. Glassey and W.A. Strauss, Remarks on collisionless plasmas, in J.E. Marsden (ed.), Fluids
and Plasmas: Geometry and Dynamics, Amer. Math. Soc., 28:269–279, 1984. 1

[15] S. Iordanski, The Cauchy problem for the kinetic equation of plasma, Transl. Amer. Math. Soc.,
35(2):351–363, 1964. 1

[16] N.W. McLachlan, Theory and Applications of Mathieu Functions, Oxford University Press, 1947.
2.2

[17] T.H. Otway, The cold plasma model, The Dirichlet Problem for Elliptic-Hyperbolic Equations
of Keldysh Type, Lecture Notes in Mathematics, Springer, Berlin, Heidelberg, 2043:87–120,
2012. 1

[18] O.S. Rozanova, On the behaviour of multidimensional radially symmetric solutions of the repul-
sive Euler-Poisson equations, Phys. D, 443:133578, 2023. 1, 2.1, 2.1

[19] O.S. Rozanova, On the properties of multidimensional electrostatic oscillations of an electron
plasma, Math. Meth. Appl. Sci., 46(6):7557–7571, 2023. 1, 2.1

[20] O.S. Rozanova and E.V. Chizhonkov, The influence of an external magnetic field on cold plasma
oscillations, Z. Angew. Math. Phys., 73:249, 2022. 1, 3.2

[21] D.G. Swanson, Plasma Waves, Academic Press, Boston, MA 2003. 1

https://link.springer.com/book/9783642692499
https://doi.org/10.1017/CBO9780511807183
https://doi.org/10.48550/arXiv.2106.11399
https://ui.adsabs.harvard.edu/abs/1961amtn.book.....B/abstract
https://link.springer.com/book/10.1007/978-94-009-6170-8
https://doi.org/10.20537/ND0804001
https://link.springer.com/book/10.1007/b97645
https://doi.org/10.1201/9780429288289
https://doi.org/10.1109/TPS.1973.4316080
https://doi.org/10.5802/jep.41
https://doi.org/10.48550/arXiv.math/0112014
https://doi.org/10.1103/RevModPhys.81.1229
https://ui.adsabs.harvard.edu/abs/1970pewp.book.....G/abstract
https://mathscinet.ams.org/mathscinet/relay-station?mr=751989
https://www.researchgate.net/publication/266215858_The_Cauchy_problem_for_the_kinetic_equation_of_plasma
https://mathscinet.ams.org/mathscinet/article?mr=174808
https://link.springer.com/chapter/10.1007/978-3-642-24415-5_4
https://link.springer.com/chapter/10.1007/978-3-642-24415-5_4
https://doi.org/10.1016/j.physd.2022.133578
https://doi.org/10.1002/mma.8984
https://link.springer.com/article/10.1007/s00033-022-01885-8
https://ui.adsabs.harvard.edu/abs/1989plwa.book.....S/abstract

