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A VARIATIONAL APPROACH FOR
PRICE FORMATION MODELS IN ONE DIMENSION∗

YURI ASHRAFYAN† , TIGRAN BAKARYAN‡ , DIOGO GOMES§ , AND

JULIAN GUTIERREZ¶

Abstract. In this paper, we study a class of first-order mean-field games (MFGs) that model
price formation. Using Poincaré lemma, we eliminate one of the equations of the MFGs system and
obtain a variational problem for a single function. We prove the uniqueness of the solutions to the
variational problem and address the existence of solutions by applying relaxation arguments. Moreover,
we establish a correspondence between solutions of the MFGs system and the variational problem.
Based on this correspondence, we introduce an alternative numerical approach for the solution of the
original MFGs problem. We end the paper with numerical results for a linear-quadratic model.
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1. Introduction

Here, we consider the numerical solution of the first-order mean-field games (MFGs)
system introduced in [34] to model price formation. The solution to this system deter-
mines the price ϖ of a commodity with supply Q when a large group of rational agents
trades that commodity. The original price problem reads as follows:

Problem 1.1. Suppose that m0∈P(R), H ∈C1(R), and Q, V , and uT are continuous.
Assume further that H is uniformly convex. Find u,m : [0,T ]×R→R and ϖ : [0,T ]→R
satisfying m⩾0, 

−ut+H(ϖ+ux)+V (x)=0 [0,T ]×R,
mt−(H ′(ϖ+ux)m)x=0 [0,T ]×R,
−
∫
RH

′(ϖ+ux)mdx=Q(t) [0,T ],

(1.1)

and {
m(0,x)=m0(x)

u(T,x)=uT (x)
x∈R. (1.2)

We work under assumptions similar to the ones introduced in [34] to guarantee the
existence and uniqueness of (u,m,ϖ) solving (1.1) and (1.2). The first two assumptions
require standard growth and convexity properties for H.
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Assumption 1.1. There exist constants c>0 and p>1, such that the Legendre-
Fenchel transform of H, the function L in (1.3), satisfies

L(v)⩾ c|v|p.

Assumption 1.2. For all x∈R, the map p 7→H(p) is uniformly convex; that is,
there exists a constant κ>0 such that H ′′(p)⩾κ for all p∈R. Moreover, there exists a
positive constant, C, such that |H ′′′|⩽C.

For the supply, to simplify, we assume it is a smooth function of time.

Assumption 1.3. The supply function, Q, is C∞([0,T ]).

The following assumption is technical and was used in [34] to get bounds for the
price.

Assumption 1.4. The potential V , the terminal cost uT , and the initial density
function m0 are C2(R), and V , uT are globally Lipschitz. Furthermore, there exists a
constant C>0 such that

|V ′′|⩽C, |u′′T |⩽C, |m′′
0 |⩽C.

The following condition guarantees the uniqueness of solutions of (1.1) and (1.2).

Assumption 1.5. The potential V and the terminal cost uT are convex.

Finally, because we are interested in problems where the agent’s assets are bounded,
we require the following assumption on m0. This assumption further simplifies some
technical points in the presentation.

Assumption 1.6. The initial density function m0 has compact support; that is, there
exists R0>0 such that supp(m0)⊂ [−R0,R0].

The existence of solutions (u,m,ϖ) to Problem 1.1 under Assumptions 1.2, 1.1, 1.4,
and 1.5 was proved in [34]. The first equation is solved in the viscosity sense by the
value function of a typical player u∈C([0,T ]×R). The second equation is solved in the
distributional sense by the probability distribution of the agents m∈C([0,T ],P(R)).
The price ϖ is a continuous function on [0,T ].

Problem 1.1 is derived by considering price formation on a market where agents
interact through the price function alone. Based on the price, they optimize the cost
criteria ∫ T

0

(L(v(s))+ϖ(s)v(s)−V (x(s)))dt+uT (x(T ))

by choosing v to control their dynamics x′(s)=v(s). The optimal selection is charac-
terized by the first equation in (1.1). The Hamiltonian H is the Legendre transform
of a Lagrangian L, as we introduce below. Under the optimal selection, the evolution
of m0 in (1.2) is determined by the second equation in (1.1), while the third equation
imposes an equilibrium condition between the aggregated trading rate and the supply
Q. The price arises as the Lagrange multiplier of the equilibrium constraint, being
the only function for which agents minimize their costs while satisfying the equilibrium
constraint. Remarkably, in our approach, we obtain the rate of change of the price, ϖ̇,
as the Lagrange multiplier of a constraint imposed on a new variational problem (see
(4.20)).
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Price formation models offer a load-adaptive pricing strategy relevant in energy
markets. For instance, [6] and [7] modeled intraday electricity markets, obtaining a
price from the solution of forward-backward equations. In [27] and [31] authors studied
the effects of a major player in the market. The latest paper considered N -agent setting.
A deterministic N -agent price model was studied in [8]. A MFG model of homogeneous
agents for the electricity markets was considered in [28]. In [4], the price equilibrium
is obtained for a finite number of agents who optimally control their production and
trading rates to satisfy a demand subjected to common noise. Stackelberg games for
price formation under revenue optimization were proposed in [13] and [43], and Cournot
models in [23]. A MFG of optimal switching was presented in [5] to model the transi-
tion to renewable energies. [24] studied the convergence of a finite-population game to
a MFG. In their model, a market clearing condition matched an aggregated inventory
trade with noise to a demand/supply rate. Other works incorporating market-clearing
conditions are [44] and [30], the former specializing in Solar Renewable Energy Cer-
tificate Markets and the latter in exchange markets. The stochastic supply case was
studied in [32], where authors obtained a price from a Lagrange multiplier rule for the
balance constraint.

The standard MFG system exhibits a coupling of two partial differential equations
with initial and terminal conditions (see for example [16]). Several numerical methods
have been proposed to solve these MFG systems. Finite difference schemes and Newton-
based methods were introduced in [1] and [2]. A recent survey can be found in [3].
Optimization methods and Fourier series approximations were proposed in [38]. Machine
learning methods have been studied in [17,18,42], and [37]. However, the MFG system
(1.1)-(1.2) not only couples a forward equation form with a backward equation for u but
also determines the coupling term ϖ through an integral constraint, which is the third
equation in (1.1). Therefore, the numerical approximation of the solution (u,m,ϖ) of
Problem 1.1 is challenging, and the main application of our methods is a novel numerical
scheme for Problem 1.1.

The word Potential in MFGs is used in two unrelated contexts. Potential MFGs
([16, 36, 39]) are MFG systems given by the first-order optimality conditions of a min-
imization problem. Previously, standard optimization techniques were used for its nu-
merical solution ([14]). In contrast, our potential approach relies on the structure of the
continuity equation and Poincaré lemma ([19], Theorem 1.22). We introduce a potential
functional that integrates the transport equation in (1.1).

Poincaré lemma was used for the continuity equation in [12] for the MFG plan-
ning problem. The authors obtained a variational problem for a potential function by
eliminating one of the equations in the MFG system. Moreover, the solution (u,m) of
the planning MFG can be recovered using only the solution of the variational problem.
The structure of the MFG planning problem differs from that in Problem 1.1 in two
critical aspects: the initial-terminal conditions and the way the constraint couples the
equations.

In Section 2, we use the existence result for Problem 1.1 provided in [34] to formally
obtain a potential function, φ. In Proposition 2.1, we show that (1.1) corresponds to
the Euler-Lagrange equation of a constrained variational problem depending on φ. To
introduce this problem, let L be the Legendre transform of H; that is,

L(y)=sup
p∈R

[py−H(p)], y∈R, (1.3)
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and let L :R×R+
0 →R+

0 ∪{+∞} be given by

L(z,y)=


L
(
z
y

)
y, (z,y)∈R×R+,

+∞, z ̸=0, y=0,

0, z=0, y=0.

(1.4)

The constrained variational problem is

Problem 1.2. Suppose that m0∈P(R), H is uniformly convex, and Q, V , and uT
are continuous. Find φ : [0,T ]×R→R that minimizes the functional

φ 7→
∫ T

0

∫
R
L(φt,φx)−V (x)φx−u′T (x)φt dxdt,

over the set of functions such that φx(t,·) is a probability density on R for t∈ [0,T ],
φx(0,·)=m0(·), and satisfying∫

R
φ(t,x)−M0(x)dx=−

∫ t

0

Q(s)ds, t∈ [0,T ],

where M0(x)=
∫ x
−∞m0(y)dy.

We rigorously study Problem 1.2 in Section 3 by considering a variational problem
and a relaxed version. We use Proposition A.1 and Corollary A.1 in the Appendix
to show that the formulation of Problem 1.2 is independent of the solution (u,m,ϖ)
of Problem 1.1, and relies only on problem data. In Section 3.1, relying on the tech-
nical results of Proposition 3.1 and Corollary 3.1, Proposition 3.2 shows uniqueness of
solutions to Problem 1.2. Moreover, Proposition 3.3 offers additional bounds on the
minimization problem. However, the limit of minimizing sequences may not be admis-
sible. Therefore, in Section 3.2, we use Proposition 3.4, Lemma 3.1, and Theorem 3.1
to identify a relaxed variational problem that is lower semi-continuous. Theorem 3.2
obtains existence of minimizers in the relaxed setting. Next, we address the relation
between solutions of Problems 1.1 and 1.2 in Section 4. In Proposition 4.1, we show
that the price ϖ in (1.1) is given by a Lagrange multiplier associated to the variational
setting. The improvement of our approach consists in obtaining the solution of Problem
1.1 from a simpler problem, Problem 1.2, which is a convex minimization problem with
constraints. This is the content of our main result, proved in Section 4:

Theorem 1.1. Suppose that φ∈C2([0,T ]×R) solves Problem 1.2 . Then, the solution
(u,m,ϖ) of Problem 1.1 admits the representation

u(t,x)=uT (x)−
∫ T
t
H
(
L′

(
φt(s,x)
φx(s,x)

))
ds−(T − t)V (x), (t,x)∈ [0,T ]×R

m(t,x)=φx(t,x), (t,x)∈ [0,T ]×R
ϖ(t)=wT −

∫ T
t
w(s)ds, t∈ [0,T ],

where wT =
∫
R(L

∗
z(T,y)−u′T (y))φx(T,y)dy,

w(s)=

∫
R

(
(L∗

z(s,y))t+
(
L∗
y(s,y)−V (y)

)
x

)
φx(s,y)dy, s∈ [0,T ],

and L∗
z and L∗

y are defined in (4.10) and (4.11), respectively.
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Because the previous main result holds under regularity assumptions, further study
of the properties of solutions of Problem 1.2 is required. However, some classes of
problems admit regular solutions, as in the linear-quadratic setting, which we illustrate
in Section 5. In this case, Theorem 1.1 shows that existence of solutions of Problem
1.1 is equivalent to existence of solutions of Problem 1.2, as well as for its relaxed
formulation. Moreover, because Problem 1.2 is a convex minimization problem, we
approximate its solution φ using standard optimization methods. Furthermore, using
the approximations for φ and Theorem 1.1, we obtain efficient approximation methods
for the solution to Problem 1.1. In the linear-quadratic setting, we use the explicit
formulas provided in [34] as benchmarks. For all these benchmarks, our numerical
method provides accurate approximations.

2. Derivation of the variational problem
In this section, we present a formal derivation of the variational problem for the

potential function using the solution of the MFGs system. In Proposition 2.1, we show
that (1.1) corresponds to the Euler-Lagrange equation of a variational problem. The
rigorous statement of the variational problem is given in Section 3, where we no longer
rely on the solution of the MFGs system.

Recalling (1.4), let us consider the functional∫ T

0

∫
R
L(φt,φx)−V φxdxdt−

∫
R
u′T (x)(φ(T,x)−φ(0,x)) dx (2.1)

subject to ∫
R
−(φt+Qφx)dx=0, on [0,T ], (2.2)

and with initial condition

φ(0,x)=

∫ x

−∞
m0(y)dy,

where φ : [0,T ]×R→R. We consider the augmented functional associated with the
constraint (2.2); that is, we introduce a Lagrange multiplier ϖ : [0,T ]→R and define

Ĩ[φ,ϖ] :=

∫ T

0

∫
R
L(φt,φx)−ϖ(φt+Qφx )−V φx−u′T (x)φt dxdt (2.3)

with initial condition φ(0,x)=
∫ x
−∞m0(y)dy. In Section 4, we address the existence of

the priceϖ as a Lagrange multiplier associated with a minimizer of (2.1). By considering
critical points (φ,ϖ) of the functional in (2.3), we obtain the following.

Proposition 2.1. Let (φ,ϖ) be a critical point of the functional (2.3) over C2([0,T ]×
R)×C1([0,T ]) satisfying φ(0,x)=

∫ x
−∞m0(y)dy. Assume further that φx>0. Then, the

corresponding Euler-Lagrange equation is equivalent to{
−
(
L′

(
φt

φx

)
−ϖ

)
t
+
(
H
(
L′

(
φt

φx

)))
x
+V ′=0 [0,T ]×R,

−
∫
Rφt+Qφx dx=0 t∈ [0,T ],

(2.4)

with terminal condition

L′
(
φt(T,x)

φx(T,x)

)
−ϖ(T )=u′T (x) x∈R. (2.5)
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The function φ obtained as follows allows to identify the variational problem whose
Euler-Lagrange Equation (2.4) and (2.5) is precisely (1.1) and (1.2). Let (u,m,ϖ) solve
Problem 1.1 with m>0. Then, the second equation in (1.1) can be written as

div(t,x) (m,−H ′(ϖ+ux)m)=0, [0,T ]×R. (2.6)

The previous equation combined with Poincaré lemma (see [19], Theorem 1.22) gives
the existence of a function (the potential) φ : [0,T ]×R→R such that{

m=φx,

H ′(ϖ+ux)m=φt.
(2.7)

Because H is uniformly convex, H ′ is strictly monotone. Therefore, by (1.3), we have

L′(y)=(H ′)
−1

(y). (2.8)

Hence, from the second equation in (2.7), we deduce that

ux=L
′
(
φt
φx

)
−ϖ. (2.9)

If V ∈C1(R), and u is twice differentiable, we differentiate the Hamilton-Jacobi
equation in (1.1) with respect to x to obtain

−(ux)t+(H(ϖ+ux))x+V
′=0.

Using the previous equation and (2.9), we obtain (2.4) and (2.5).

Remark 2.1. Notice that the initial condition implies that φx(0,x)=m0(x), x∈R,
which is the first equation in (1.2). Moreover, we have the following explicit formula for
φ in terms of the solution (u,m,ϖ) of (1.1) and (1.2)

φ(t,x)=

∫ x

−∞
m0(y)dy+

∫ t

0

H ′(ϖ(s)+ux(s,x))m(s,x)ds, (t,x)∈ [0,T ]×R. (2.10)

Therefore, the potential function φ, which in principle has a closed formula arising from
the solution of (1.1) and (1.2), can be characterized using the initial condition with m0,
(2.4) and (2.5), which depend only, up to ϖ, on problem data.

Remark 2.2. Notice that the first equation in (2.4) shows that the expression

−
(
L′

(
φt
φx

))
t

+

(
H

(
L′

(
φt
φx

)))
x

+V ′

is independent of x∈R, so it is a function of time only and equal to ϖ̇. Similarly, (2.5)
shows that

L′
(
φt(T,x)

φx(T,x)

)
−u′T (x)

is independent of x∈R, and equal to the constant ϖ(T ). Because any numerical method
to compute φ provides an approximation of the value φ(t,x), we can not expect the
numerical approximation to be independent of x in (2.4) and (2.5). Therefore, we can
not rely on these formulas to recover ϖ using an approximation of φ. In Section 4, we
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provide a formula approximating ϖ that averages the dependence on x, and thus, can
be implemented with any approximation of the potential.

Remark 2.3. To understand the role that the uni-dimensionality of (1.1) plays in the
use of Poincaré lemma, let us obtain (2.7) from (2.6) using differential forms. Consider
the 1-form ω1=mdx+mH ′(ϖ+ux)dt. Then,

dω1=
∂(m)

∂t
dt∧dx+

∂(mH ′(ϖ+ux))

∂x
dx∧dt=

(
∂(m)

∂t
− ∂(mH ′(ϖ+ux))

∂x

)
dt∧dx=0.

Thus, ω1 is a closed form, and, by Poincaré lemma, it is exact; that is, ω1=dω0 for a
0-form ω0, which can be identified with a function, φ : [0,T ]×R→R. Then, (2.7) follows
from writing dω0=dφ= ∂φ

∂t dt+
∂φ
∂x dx and using the expression for ω1.

Now, let us consider (2.6) in dimension d>1. In this setting, the state variable x∈R,
as presented in Problem 1.1, is replaced by x∈Rd, the supply function Q : [0,T ]→R is
replaced by Q=(Q1,. ..,Qd) : [0,T ]→Rd, and H,V :Rd→R. The corresponding MFG
system is 

−ut+H(ϖ+Du)+V (x)=0 [0,T ]×Rd,
mt−div(mDH(ϖ+Du))=0 [0,T ]×Rd,
−
∫
RdmHpi(ϖ+Du)dx=Qi(t) [0,T ], i∈{1,. ..,d},

and {
m(0,x)=m0(x)

u(T,x)=uT (x)
x∈Rd.

The previous system is a natural extension of (1.1) and (1.2) for a multi-dimensional
commodity with supply Q. However, the existence and uniqueness results we rely on
were presented in [34] for the one-dimensional model. Nonetheless, consider the d-form

ωd=mdx1∧ .. .∧dxd+mHp1 dt∧dx2∧ .. .∧dxd

+mHp2 dx1∧dt∧dx3∧ .. .∧dxd+ .. .+mHpd dx1∧dx2∧ .. .∧dxd−1∧dt.

Then,

dωd=

(
∂m

∂t
− ∂(mHp1)

∂x1
− .. .− ∂(mHpd)

∂xd

)
dt∧dx1∧ .. .∧dxd=0.

As before, by Poincaré lemma, ωd, being closed is exact. Thus, ωd=dωd−1 for a (d−1)-
form ωd−1. However, unlike in the one-dimensional setting, ωd−1 can not be identified
with a function on [0,T ]×Rd. Yet, it is possible to obtain a variational problem in the
context of differential forms, similar to those introduced in [21] and [20], and obtain
existence and uniqueness of minimizers in a weak sense. While most of the tools devel-
oped in [21] and [20] could be used in our setting, we have chosen to limit the scope
of the present work to the one-dimensional case, which allows us to illustrate the main
features of our approach and rely on the results presented in [34].

Proof. (Proof of Proposition 2.1.) Let (φ,ϖ) be a critical point of (2.3). Taking
(β1,β2)∈C1

c ((0,T ]×R)×C([0,T ]), we have

d

dε
Ĩ[(φ,ϖ)+ε(β1,β2)]

∣∣∣∣
ε=0

=0. (2.11)
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The previous identity implies that

−(Lz(φt,φx)−ϖ)t−(Ly(φt,φx))x+V
′=0, (2.12)

and

Lz(φt(T,x),φx(T,x))−ϖ(T )−u′T (x)=0 (2.13)

on [0,T ]×R. Because φx>0, (1.4) gives

Lz(φt,φx)=L
′
(
φt
φx

)
,

(Ly(φt,φx))x=

(
−φt
φx
L′

(
φt
φx

)
+L

(
φt
φx

))
x

=−φt
φx

(
L′

(
φt
φx

))
x

.

(2.14)

Notice that, by (2.8), we have(
H

(
L′

(
φt
φx

)))
x

=
φt
φx

(
L′

(
φt
φx

))
x

. (2.15)

Combining the identities in (2.14) with (2.15) and using (2.12), we deduce the first
equation in (2.4). Using the first identity of (2.14) in (2.13), we obtain (2.5).

Finally, taking β1≡0 in (2.11), we obtain∫ T

0

(∫
R
−(φt+Qφx)dx

)
β2 dt=0,

where β2 is arbitrary. Thus, the second equation in (2.4) holds.

3. The variational approach
Here, we examine a variational problem associated with the MFG system (1.1)-

(1.2). This problem is obtained by minimizing the functional (2.1) in a suitable class
of admissible functions. We study the existence and uniqueness of solutions to this
variational problem. Relying on the results in the Appendix, we show that, contrary to
the formal derivation in Section 2, we can formulate the variational problem regardless
of the solution (u,m,ϖ) of (1.1). In Section 3.1, we obtain uniqueness of solutions to
the variational problem. We introduced a relaxed formulation in Section 3.2 to obtain
existence. The results of this section allow us to establish a formula representing the
solution to the MFG system (1.1)-(1.2), in terms of the solution to this variational
problem, as we prove in Section 4.

First, we recall that, under Assumptions 1.1-1.5, Theorem 1 in [34] gives existence
and uniqueness of solutions (u,m,ϖ) to Problem 1.1, where m∈P(R)∩C([0,T ]×R).
Moreover, u is a viscosity solution to the first equation in (1.1), Lipschitz continuous
and semi-concave in x, and ux, uxx, m are bounded. Furthermore, by the results in [10],
ϖ is Lipschitz continuous.

Next, to formulate our variational problem, we use Corollary A.1 in the Appendix
to motivate the choice of the function spaces.

Remark 3.1. Consider the potential φ associated with the solution (u,m,ϖ) of
the MFG system (1.1)-(1.2), as given by (2.7). By Corollary A.1, we deduce that the
gradient of the potential φ has compact support; that is, supp(φt(t,·)),supp(φx(t, ·))⊆
[−Rm,Rm] for all t∈ [0,T ]. Thus, (A.11) shows that, by selecting

R> (R0+C0T )
(
1+C0Te

C0T
)
,
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we obtain a compact set [−R,R] that depends only on problem data and which contains
the support of the gradient of φ when (2.10) holds. Thus, using this compact set, we can
formulate our variational problem independently of the solution (u,m,ϖ) of the MFGs
system (1.1) and (1.2). Notice that (2.10) already suggests a candidate for a minimizer.
However, we study the existence of solutions to the variational problem independently
of solutions to the MFGs system. Moreover, if uniqueness holds and we have existence
for both problems, then (2.10) is the unique minimizer.

3.1. Statement of the variational problem. In this subsection, we present our
variational approach rigorously using only problem data. We start with the notations
and the definition of admissible functions, deriving technical properties in Proposition
3.1 and Corollary 3.1. Then, we formulate our variational problem, obtaining uniqueness
in Proposition 3.2 and bounds in Proposition 3.3.

Let R0 be given by Assumption 1.6 and let

R>max
{
(R0+C0T )

(
1+C0Te

C0T
)
,R0+∥Q∥L1([0,T ])

}
. (3.1)

Notice that, by (A.11), R is an upper bound for Rm, as required, according to Re-
mark 3.1. The additional requirement R>R0+∥Q∥L1([0,T ]) guarantees that the set of
admissible functions we define below is not empty. Set

ΩR=[0,T ]× [−R,R], Ω=[0,T ]×R.

We denote by M(ΩR) (M(Ω)) the set of Radon measures on ΩR⊂R2 (Ω⊂R2) and by
BV (ΩR) (BV (Ω)) the set of functions with bounded variation on ΩR (Ω) (see [9, 26]).

To define the admissible set for our variational problem, we rewrite the balance
condition, the second equation in (2.4). Recall that supp(m0)⊂ [−R0,R0] and R>R0.
Let

M0(x)=

∫ x

−∞
m0(y)dy=

∫ x

−R
m0(y)dy, x∈R, (3.2)

be the cumulative density function of m0. Note that after integrating the balance
condition over [0,t], and requiring that

∫
Rφx(t,x)dx=1 for t∈ [0,T ] (which follows in

case that (2.7) holds), we get∫ t

0

∫
R
φt dxds=−

∫ t

0

Q(s)ds, t∈ [0,T ].

Therefore, we write the balance condition as∫
R
φ(t,x)−M0(x) dx=−

∫ t

0

Q(s)ds, t∈ [0,T ]. (3.3)

Relying on (3.3) and taking into account the discussion in Remark 3.1, for any set
A⊂R2 satisfying [0,T ]× [−R,R]⊆A, we denote

BR(A)=
{
φ : [0,T ]× [−R,R] : (φ−M0)∈W 1,1(A),

supp(φt(t,·)),supp(φx(t,·))⊆ (−R,R), t∈ [0,T ]},

B(A)=
{
φ∈BR(A) : φx⩾0, φ(0,x)=

∫ x

−R
m0(y)dy, x∈R∫

R
φ(t,x)−M0(x) dx=−

∫ t

0

Q(s) ds,

∫ R

−R
φx(t,x)dx=1, t∈ [0,T ]

}
,
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which are convex sets. Before proceeding, we prove a crucial property of the set B(Ω).

Proposition 3.1. For any function φ∈B(Ω), we have, for t∈ [0,T ],

φ(t,x)=


0 x∈ (−∞,−R],
φ(t,x) x∈ (−R,R),
1 x∈ [R,+∞).

Finally, the set of admissible functions for our variational problem is given by

A(ΩR)={φ∈B(ΩR) : φ(t,−R)=0}. (3.4)

As a result of Proposition 3.1, we obtain the following relation between the admissible
set A(ΩR) and the set B(Ω).

Corollary 3.1. For any function φ∈B(Ω) there exists a function φ̃∈A(ΩR) such
that φ≡ φ̃ in ΩR. The opposite is also true.

Under Assumption 1.4, we have∣∣∣∣∫
ΩR

u′T (x)φt dxdt

∣∣∣∣⩽Lip(uT )

∫
ΩR

|φt| dxdt, (3.5)

where Lip(uT ) is the Lipschitz constant of uT . Relying on the previous inequality, we
consider the following variational problem

inf
φ∈B(Ω)

∫
ΩR

L(φt,φx)−V φx−u′T (x)φt dxdt,

which, by Corollary 3.1, coincides with the following (see (2.1))

inf
φ∈A(ΩR)

I[φ], (3.6)

where

I[φ] :=

∫
ΩR

L(φt,φx)−V φx−u′T (x)φt dxdt.

As anticipated in Remark 3.1, (3.1) guarantees that the previous variational problem
does not rely on the solution (u,m,ϖ) to (1.1)-(1.2) but only on the data of Problem
1.1. Moreover, the next result shows that the infimum in (3.6) can be attained by at
most one function.

Proposition 3.2. Suppose that Assumptions 1.1-1.6 hold. Then, at most, one
function attains the infimum in (3.6).

Next, we prove that the infimum in (3.6) is bounded.

Proposition 3.3. Assume that Assumptions 1.1-1.6 hold. Then, there exist positive
constants, C1 and C2, depending only on the problem data such that

−C2⩽ inf
φ∈A(ΩR)

I[φ]⩽C1. (3.7)

Furthermore, there exists a positive constant, C, depending only on problem data, such
that for every minimizing sequence {φn}n∈N of the variational problem (3.6), we have∫

ΩR

|φn
t |

p

(φn
x )

p−1 dxdt⩽C, ∥φnt ∥L1(ΩR)⩽C. (3.8)
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Thus, for all minimizing sequences of the variational problem (3.6), we obtain uni-
form bounds inW 1,1(ΩR). Therefore, any minimizing sequence has a weakly convergent
sub-sequence in BV (ΩR) ([26], Chapter 5). However, it is not guaranteed that the infi-
mum in (3.6) is attained in A(ΩR). Therefore, we enlarge the set of admissible functions
by relaxing the conditions defining A(ΩR), as we present in the next section.

Proof. (Proof of Proposition 3.1.) Because (φ−M0)∈W 1,1(Ω) and
lim

x→+∞
M0(x)=1, for each t∈ [0,T ], there exists a sequence xk such that xk→∞ and

lim
k→+∞

φ(t,xk)=1. On the other hand, recalling that

supp(φt(t,·)),supp(φx(t,·))⊂ (−R,R),

we have that φ is constant on Ω\ [0,T ]×(−R,R). Consequently, φ(t,x)=1 for x∈
[R,+∞). Similarly, we can prove that φ(t,x)=0, x∈ (−∞,−R].

Proof. (Proof of Proposition 3.2.) Let φ1 and φ2 attain the infimum in (3.6).
By Proposition 3.3, we denote

ℓ= min
φ∈A(ΩR)

I[φ]∈R.

Thus, I[φ1]= I[φ2]= ℓ. Set φ̄= 1
2 (φ

1+φ2). Due to the properties of the Legendre-
Fenchel transform (1.3), L is convex, which in turn implies the convexity of L (see [12],
Lemma 8.1). Thus, we obtain

ℓ⩽ I[φ̄]⩽ 1
2I[φ

1]+ 1
2I[φ

2]= ℓ. (3.9)

Hence, φ̄ is also minimizer of (3.6). Let φ̃= φ1+φ̄
2 and

U1={(t,x)∈ΩR :φ1
x>0}, U2={(t,x)∈ΩR :φ2

x>0},
Ũ ={(t,x)∈ΩR : φ̃x>0}= Ū ={(t,x)∈ΩR : φ̄x>0}=U1∪U2.

Arguing as in (3.9), we have

ℓ⩽ I[φ̃]⩽ 1
2I[φ

1]+ 1
2I[φ̄]= ℓ. (3.10)

This with (3.9), yields that

L(φ1
t ,φ

1
x),L(φ

2
t ,φ

2
x),L(φ̄t,φ̄x),L(φ̃t,φ̃x)<+∞ a.e. in ΩR.

Therefore,

φ1
t =0 a.e. in ΩR \U1,

φ2
t =0 a.e. in ΩR \U2,

φ̄t=0 a.e. in ΩR \Ū
φ̃t=0 a.e. in ΩR \Ũ .

(3.11)

Furthermore, (3.10) implies∫
ΩR

(
1
2L(φ

1
t ,φ

1
x)+

1
2L(φ̄t,φ̄x)−L(φ̃t,φ̃x)

)
dxdt=0. (3.12)
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The convexity of L and (3.12) implies

1
2L(φ

1
t ,φ

1
x)+

1
2L(φ̄t,φ̄x)−L(φ̃t,φ̃x)=0, a.e. in ΩR.

Consequently, the following also holds

1
2L(φ

1
t ,φ

1
x)+

1
2L(φ̄t,φ̄x)−L(φ̃t,φ̃x)=0, a.e. in U1∩Ū ∩Ũ . (3.13)

Because L is strictly convex in R×R+ and U1∩Ū ∩Ũ =U1⊂R×R+, we obtain from
(3.13) that {

φ1
t = φ̄t

φ1
x= φ̄x.

a.e. in U1

Hence, {
φ1
t =φ

2
t

φ1
x=φ

2
x.

a.e. in U1 (3.14)

Taking φ2 instead of φ1 in (3.10) and arguing as before, we obtain{
φ1
t =φ

2
t

φ1
x=φ

2
x.

a.e. in U2 (3.15)

Combing (3.11), (3.14) and (3.15), we conclude that φ1=φ2.

Proof. (Proof of Proposition 3.3.) First, we prove the upper bound in (3.7).
Let

φ0(t,x)=M0(x−q(t)),

where M0 is defined by (3.2) and q(t)=
∫ t
0
Q(τ) dτ . Therefore, since q(0)=0, we have

φ0(0,x)=

∫ x

−R
m0(y)dy, φ0

x=m0(x−q(t)), φ0
t =−m0(x−q(t))Q(t). (3.16)

Thus, recalling (3.1),

φ0∈A(ΩR). (3.17)

Taking into account (3.16), we have

inf
A(Ω)

I[φ]⩽ I[φ0]⩽
∫
ΩR

L(φ0
t ,φ

0
x)+ ||V ||L∞([−R,R])φ

0
x+ ||u′

T ||L∞(ΩR)|φ0
t | dxdt=:C1. (3.18)

Next, relying on this bound, we prove (3.8), implying the lower bound in (3.7). By
Assumption 1.1 , L⩾0. Thus, for all φ∈A(ΩR), we have

−
∫
ΩR

V φx+u
′
Tφtdxdt⩽ I[φ]. (3.19)

Recalling that V is continuous and taking into account Assumption 1.4 by (3.5) and
(3.19), we get

−C(uT ,R,V )−Lip(uT )

∫
ΩR

|φt(t,x)|dxdt⩽ I[φ]. (3.20)
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From (3.18) follows that for any minimizing sequence {φn}n∈N, there exists N such
that n⩾N implies I[φn]⩽C1+1. Consequently, recalling the definition of L in (1.4),
by Assumption 1.1 and (3.5), we deduce that

c

∫
ΩR

|φnt |
p

(φnx)
p−1

dxdt⩽C1+1+ ||V ||L∞([−R,R])

∫
ΩR

φnxdxdt+Lip(uT )

∫
ΩR

|φnt (t,x)|dxdt

⩽C+Lip(uT )

∫
ΩR

|φnt (t,x)|dxdt,

(3.21)

for all n∈N. On the other hand, by Young’s inequality, we have∫
ΩR

|φnt |dxdt=
∫
ΩR

|φnt |
(φnx)

p−1
p

(φnx)
p−1
p dxdt⩽ε

∫
ΩR

|φnt |
p

(φnx)
p−1

dxdt+C(ε)

∫
ΩR

φnxdxdt,

(3.22)

where ε= c

2Lip(uT )
. Recalling that

∫ R
−Rφx(·,x)dx=1, the preceding inequality and

(3.21) imply (3.8). Finally, (3.8) and (3.20) yield the lower bound in (3.7).

3.2. Relaxed variational problem. Here, we relax the variational problem
(3.6) to ensure the existence of minimizers in the set of admissible functions. Using
Proposition 3.4, Lemma 3.1, and Theorem 3.1, we identify the appropriate relaxed
problem for which lower semi-continuity holds, and we obtain existence of minimizers
in Theorem 3.2.

First, we extend the functional in (3.6) to the convex set

BV +
0 (ΩR)={ψ∈BV (ΩR) :ψx⩾0}.

For that, let W :BV +
0 (ΩR)→R∪{+∞} be given by

W [φ]=

{∫
ΩR
L(φt,φx)−V φx−u′T (x)φt dxdt, φ∈W 1,1(ΩR)∩BV +

0 (ΩR)

+∞, otherwise.

In BV (ΩR), we consider the intermediate convergence; that is, (φk)k∈N⊂BV (ΩR) con-
verges to φ∈BV (ΩR) in the intermediate (or strict) sense if

φk→φ in L1(ΩR) and ∥Dφk∥(ΩR)→∥Dφ∥(ΩR),

where ∥Dφ∥(ΩR) is the total variation of the measure Dφ on ΩR (see [9]). We recall
that W 1,1(ΩR) is dense in BV (ΩR) with respect to the intermediate convergence (see
Theorem 10.1.2 in [11]). We aim to define a functional W, the sequential lower semicon-
tinuous envelope of W w.r.t. intermediate convergence on BV (Chapter 3, [22]); that
is

W[φ]=sup{G[φ] : G⩽W, G is sequentially lower semicontinuous on BV (ΩR)

w.r.t. intermediate convergence},

which is the greatest functional belowW that is sequentially lower semi-continuous w.r.t
intermediate convergence in BV (ΩR). Let

J [φ]=inf

{
liminf
n→∞

I[φn] : {φn}⊂W 1,1(ΩR)∩BV +
0 (ΩR),
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φn→φ in the sense of the intermediate convergence in BV (ΩR)

}
.

Next, we prove that actually W=J and obtain an explicit expression for J .
Assuming that Assumption 1.1 holds for some c>0, p>1 and arguing as in (3.22)

by using Young’s inequality, we obtain

cp(|v1|+v2)⩽L(v1,v2)+c(2p−1)v2, (v1,v2)∈R×R+
0 . (3.23)

Let

f(v1,v2)=L(v1,v2)−u′T v1−V v2=fN (v1,v2)+fL(v1,v2), (3.24)

where

fN (v1,v2)=L(v1,v2)+c(2p−1)v2, fL(v1,v2)=−u′T v1−(V +c(2p−1))v2.

According to Lemmas 8.1 and 8.3 in [12], if Assumption 1.2 holds, the function L defined
in (1.4) is convex and lower semicontinuous in R×R+

0 ; therefore, fN is convex and lower
semicontinuous.

For the next result, we compute the recession function, f̄N , of fN , which is given
by

f̄N (z,y) :=sup{fN (w1+z,w2+y)−fN (w1,w2) : (w1,w2)∈dome(fN )},

for (z,y)∈R×R+
0 , where

dome(fN ) :=
{
(w1,w2)∈R×R+

0 : fN (w1,w2)<+∞
}
.

Because fN is convex, from Theorem 4.70 in [29], we have

f̄N (z,y)= lim
t→∞

fN ((z,y)t+(w1,w2))−fN (w1,w2)

t
,

for any (w1,w2)∈R×R+
0 . Taking (w1,w2)=(0,0) in the preceding equation and con-

sidering (1.4), we deduce that fN is equal to its recession function; that is,

f̄N (z,y)=fN (z,y)=


L
(
z
y

)
y+c(2p−1)y (z,y)∈R×R+,

+∞ z ̸=0,y=0,

0 z=0,y=0,

where the constants c and p are given by Assumption 1.1. Using the preceding obser-
vation, we prove that the first integrand of the functional in (2.1) is sequentially lower
semi-continuous w.r.t. the weak -∗ convergence of measures.

Proposition 3.4. Suppose that Assumption 1.2 holds. Let (vn1 ,v
n
2 )∈L1(ΩR)×

L1(ΩR;R+
0 ) and µ=(µ1,µ2)∈M(ΩR)×M(ΩR;R+

0 ) be such that

(vn1 ,v
n
2 )L2⌊ΩR

∗
⇀ (µ1,µ2), in M(ΩR)×M(ΩR;R+

0 ).

Then,

liminf
n→∞

∫
ΩR

fN (vn1 ,v
n
2 )dxdt



YURI, TIGRAN, DIOGO, AND JULIAN 241

⩾
∫
ΩR

fN

(
dµ

dL2
(t,x)

)
dxdt+

∫
ΩR

fN

(
dµs
d||µs||

(t,x)

)
d||µs||(t,x),

where µ= dµ
dL2 ⌊ΩR+µs is the Radon-Nikodym decomposition of µ w.r.t. the two-

dimensional Lebesgue measure L2, and dµs

d||µs|| is the Radon-Nikodym derivative of µs
w.r.t its total variation.

Proof. By Assumption 1.2, fN is convex and lower semi-continuous in R×R+
0 and

f̄N =fN . Hence, the proof follows from Theorem 5.19 in [29].

Lemma 3.1. Suppose that Assumption 1.4 holds. Let vn1 →v1 and vn2 →v2 weakly in
M(ΩR). Then,

lim
n→∞

(
−
∫
ΩR

(V +C)vn1 +u
′
T v

n
2 dxdt

)
=−

∫
ΩR

(V +C)v1+u
′
T (x)v2 dxdt,

for any C ∈R.

Proof. It is enough to notice that the functions V and u′T (x) are continuous.

Now, we are ready to prove that W=J .

Theorem 3.1. Suppose that Assumptions 1.2 and 1.4 hold for some c>0 and p>1.
Then, for every φ∈BV +

0 (ΩR)

W[φ]=J [φ]=

∫
ΩR

fN

(
d(Dt,xφ)

dL2
(t,x)

)
dxdt−

∫
ΩR

(V +c(2p−1))φx−
∫
ΩR

u′T (x)φt

+

∫
ΩR

fN

(
d(Dt,xφ)s
d||(Dt,xφ)s||

(t,x)

)
d||(Dt,xφ)s||(t,x).

Next, relying on Theorem 3.1, we state the relaxed variational problem. We set

K0(ΩR)=
{
φ∈BV +

0 (ΩR) : supp(φt(t,·)),supp(φx(t,·))⊆ (−R,R)
}
,

K(ΩR)=

{
φ∈K0(ΩR) :φ(0,x)=

∫ x

−R
m0(y)dy, φ(t,−R)=0,∫ R

−R
φx(t,x)=1,

∫ R

−R
φ(t,x)−M0(x) dx=−

∫ t

0

Q(s) ds, t∈ [0,T ]

}
.

Note that A(ΩR)⊂B(ΩR)⊂K(ΩR), so (3.17) guarantees that K(ΩR) is a nonempty
convex set. Our relaxed variational problem is

min
φ∈K(ΩR)

I[φ], (3.25)

where

I[φ]=
∫
ΩR

fN

(
d(Dt,xφ)

dL2
(t,x)

)
dxdt−

∫
ΩR

(V +c(2p−1))φx−
∫
ΩR

u′T (x)φt

+

∫
ΩR

fN

(
d(Dt,xφ)s
d||(Dt,xφ)s||

(t,x)

)
d||(Dt,xφ)s||(t,x).

The next theorem proves the existence of solutions to the preceding variational problem.
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Theorem 3.2. Suppose that Assumptions 1.1-1.5 hold. Then, there exists φ∈K(ΩR)
such that

I[φ]= min
ψ∈K(ΩR)

I[ψ].

Remark 3.2. Under Assumptions 1.2-1.5, Theorem 1 in [34] implies that φ given by
(2.10) belongs to K(ΩR) and is a minimizer of (3.25). Thus, under Assumptions 1.1-1.5,
if we have uniqueness, φ given by Theorem 3.2, and φ given by (2.10) coincide.

Proof. (Proof of Theorem 3.1.) Taking into account (3.23) and the definition
of fN , (3.24), we have

cp(|v1|+v2)⩽fN (v1,v2), (v1,v2)∈R×R+
0 .

Recalling that fN is convex and using the preceding estimate, the proof follows from
Remark 5.37 in [29] and Proposition 3.1.

Proof. (Proof of Theorem 3.2.) We recall that W 1,1(ΩR) is dense in BV (ΩR)
with respect to the intermediate convergence (see Theorem 10.1.2 in [11]). Accordingly,
we can take a minimizing sequence, {φn}∞n=1, such that φn∈W 1,1(ΩR). Therefore,

min
ψ∈K(ΩR)

I[ψ]= lim
n→∞

I[φn]= liminf
n→∞

I[φn],

where I, I are defined by (3.6) and (3.25), respectively. Note that because

φnx ∈P(−R,R)∩L1(−R,R),

where P(−R,R) denotes the set of probability measures on (−R,R), there exists µ∈
P(−R,R), such that

||φnx ||L1(ΩR)⩽C, φnx⇀µ weakly in M(ΩR). (3.26)

Combining these estimates with the argument in Proposition 3.3, we deduce that

||φnt ||L1(ΩR)⩽C. (3.27)

Consequently, because ΩR is bounded, Prohorov lemma (see Theorem 2.29 in [35]) gives
the existence of ν ∈M(ΩR) such that φnt ⇀ν weakly in M(ΩR). On the other hand,

because
∫ R
−Rφ(t,x)−M0(x) dx=−

∫ t
0
Q(s) ds, we have that

∣∣∣∫ R−Rφndx∣∣∣⩽C, where C
does not depend on φ. Hence, by Poincaré inequality (see Theorem 1 in Section 5.8.1
in [25]) from (3.26) and (3.27), we get

||φn||L1(ΩR)⩽ ||φnx ||L1(ΩR)+ ||φnt ||L1(ΩR)+C⩽C.

Therefore, ||φn||W 1,1(ΩR)⩽C. Consequently, Rellich-Kondrachov theorem (see Theorem
1, Section 5.7 in [25]) implies that there exists φ∈Lα(ΩR) for α∈ [1,2), such that
φn converges to φ strongly in Lα(ΩR). In particular, φn converges to φ strongly in
L1(ΩR). This convergence, combined with (3.26) and (3.27), implies that there exists
φ∈BV (ΩR), such that φn→φ in the sense of intermediate convergence in BV (ΩR).
Finally, relying on this and recalling that φn∈K(ΩR)∩W 1,1(ΩR) from [11, Theorem
10.2.2], we deduce that φ∈K(ΩR). Moreover, recalling the definition of fN and using
Propositions 3.4 and 3.1, we get

min
ψ∈K(ΩR)

I[ψ]= lim
n→∞

I[φn]= liminf
n→∞

I[φn]⩾I[φ]= min
ψ∈K(ΩR)

I[ψ],

which completes the proof.
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4. Price as Lagrange multiplier
In this section, we provide a representation formula for the price ϖ using the mini-

mizer φ of (3.6). This formula shows that the Lagrange multiplier associated with the
balance constraint (3.3) characterizes the price.

Proposition 4.1. Suppose that Assumptions 1.2-1.5 hold. Let R satisfy (3.1). Let
(u,m,ϖ) solve (1.1) and let φ∈A(ΩR) attain the minimum in (3.6). Furthermore,
assume that φ∈C2(ΩR). Then, ϖ is given by a Lagrange multiplier w : [0,T ]→R asso-
ciated with φ.

The previous result is critical to proving our main result, Theorem 1.1.

Proof. (Proof of Theorem 1.1.) Because φ solves Problem 1.2, we obtain ϖ
according to Proposition 4.1. Therefore, (φ,ϖ) minimizes (2.3), and by Proposition
2.1 satisfies an Euler-Lagrange equation equivalent to (2.4)-(2.5). Since the solution
(u,m,ϖ) of (1.1) defines a potential function according to (2.10), which satisfies (2.4)-
(2.5), the convexity of (2.3) implies that this potential is a minimizer of (2.3). Thus, by
Proposition 3.2, we conclude that the potential function defined by (u,m,ϖ) coincides
with the minimizer φ. Thus, we can recover u and m using (2.7); that is,

u(t,x)=uT (x)−
∫ T

t

H

(
L′

(
φt(s,x)

φx(s,x)

))
ds−(T − t)V (x), (t,x)∈ [0,T ]×R, (4.1)

where the right-hand side of the previous expression is well defined because φx and φt
have the same compact support, and m(t,x)=φx(t,x), (t,x)∈ [0,T ]×R.

Proof. (Proof of Proposition 4.1.) The existence and uniqueness of the solution,
(u,m,ϖ), to Problem 1.1 follows from Theorem 1 in [34]. Because L is convex, and
recalling Remark 2.1, the solution (u,m,ϖ) to Problem 1.1 defines a minimizer of (3.6)
in A(ΩR), which is given by (2.10). By Proposition 3.2, we deduce that φ coincides
with (2.10), as it is the unique minimizer of (3.6). Furthermore, by Remark 2.1 and
Corollary A.1, it follows that there exists 0<R1<R such that

supp(φx(t,·))⊆ [−R1,R1]⊆ (−R,R), t∈ [0,T ]. (4.2)

Because φ is the minimizer of (3.6)

φt(t,x)=0 a.e. in{φx(t,x)=0 : (t,x)∈ΩR}. (4.3)

Let

x(t) :=

∫
R
xφx(t,x)dx=R−

∫ R

−R
φ(t,x)dx, t∈ [0,T ]. (4.4)

Let ψ∈W 1,1(ΩR) be such that ψ(t,·) is a cumulative distribution function on (−R,R)
for t∈ [0,T ], and satisfies

ψ(0,x)=φ(0,x), supp(ψx(t,·))⊆ supp(φx(t,·))⊆ [−R1,R1]⊂ (−R,R), t∈ [0,T ],
(4.5)

and

ψt(t,x)=0 a.e. in {(t,x)∈ΩR : ψx(t,x)=0}. (4.6)

Set

z(t) :=

∫
R
xψx(t,x)dx=R−

∫ R

−R
ψ(t,x)dx, t∈ [0,T ]. (4.7)
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Notice that |x−z|⩽4R. Let 0<ε<min
{
R−R1

4R ,1
}
. Thus,

[−R1,R1]⊂ (−R−ε(x(t)−z(t)),R−ε(x(t)−z(t)))∩(−R,R), t∈ [0,T ]. (4.8)

Let

φε(t,x) :=(1−ε)φ(t,x−ε(x(t)−z(t)))+εψ(t,x−ε(x(t)−z(t))).

We claim that φε∈A(ΩR). Indeed, by (4.5) and (4.8), we have

φεx⩾0,

∫ R

−R
φεxdx=1, φε(0,x)=M0(x) x∈ [−R,R],

φε(t,−R)=0, t∈ [0,T ].

It remains to prove that φε satisfies the balance condition; that is,∫ R

−R
φε(t,x)dx=−

∫ t

0

Q(s)ds+

∫ R

−R
M0(x)dx, t∈ [0,T ]. (4.9)

Because φ∈A(ΩR), (4.4) shows that to prove (4.9), it is enough to verify that∫
R
xφεx(t,x)dx=x(t), t∈ [0,T ].

Computing the left-hand side of the previous identity, we have∫
R
xφεx(t,x)dx

=(1−ε)
∫
R
xφx(t,x−ε(x(t)−z(t)))dx+ε

∫
R
xψx(t,x−ε(x(t)−z(t)))dx

=(1−ε)
∫
R
xφx(t,x)dx+ε(x(t)−z(t))+ε

∫
R
xψx(t,x)dx+ε(x(t)−z(t))

=(1−ε)(x(t)+ε(x(t)−z(t)))+ε(z(t)+ε(x(t)−z(t)))
=x(t).

Therefore, φε∈A(ΩR), and the map ε 7→ I[φε] has a minimum at ε=0; that is,

lim
ε→0+

d

dε
I[φε]⩾0.

To compute the left-hand side of the previous inequality, we notice that

φεt (t,x)=(1−ε)
(
φt(t,x−ε(x(t)−z(t)))−φx(t,x−ε(x(t)−z(t)))ε

(
ẋ(t)− ż(t)

))
+ε

(
ψt(t,x−ε(x(t)−z(t)))−ψx(t,x−ε(x(t)−z(t)))ε

(
ẋ(t)− ż(t)

))
,

φεx(t,x)=(1−ε)φx(t,x−ε(x(t)−z(t)))+εψx(t,x−ε(x(t)−z(t))).

Note that (4.3) and (4.6) imply

φεt (t,x)=0 a.e. in {φεx(t,x)=0 : (t,x)∈ΩR}.



YURI, TIGRAN, DIOGO, AND JULIAN 245

Furthermore,

lim
ε→0+

d

dε
φεt (t,x)=−φt(t,x)−φtx(t,x)(x(t)−z(t))−φx(t,x)

(
ẋ(t)− ż(t)

)
+ψt(t,x)

=
d

dt

(
−φ(t,x)+ψ(t,x)−φx(t,x)(x(t)−z(t))

)
,

lim
ε→0+

d

dε
φεx(t,x)=−φx(t,x)−φxx(t,x)(x(t)−z(t))+ψx(t,x)

=
d

dx

(
−φ(t,x)+ψ(t,x)−φx(t,x)(x(t)−z(t))

)
.

For ease of notation, we denote

L∗
z(t,x)=

{
Lz(φt(t,x),φx(t,x)), φx(t,x)>0

0, otherwise,
(4.10)

and

L∗
y(t,x)=

{
Ly(φt(t,x),φx(t,x)), φx(t,x)>0

0, otherwise.
(4.11)

Taking into account (4.3) and (4.6), we obtain

lim
ε→0+

d

dε
I[φε]=

∫ T

0

∫ R

−R

(
L

∗
z(t,x)−u′

T (x)
) d
dt

(
ψ(t,x)−φ(t,x)−φx(t,x)(x(t)−z(t))

)
dxdt

+

∫ T

0

∫ R

−R

(
L

∗
y(t,x)−V (x)

) d

dx

(
ψ(t,x)−φ(t,x)−φx(t,x)(x(t)−z(t))

)
dxdt.

Integrating by parts in the right-hand side of the previous identity, using that x(0)=
z(0), and recalling (4.2) and (4.5), we obtain

lim
ε→0+

d

dε
I[φε]=

∫ R

−R
(L∗

z(T,x)−u′T (x))
(
ψ(T,x)−φ(T,x)−φx(T,x)(x(T )−z(T ))

)
dx

−
∫ T

0

∫ R

−R

(
(L∗

z(t,x))t+
(
L∗
y(t,x)−V (x)

)
x

)
(
ψ(t,x)−φ(t,x)−φx(t,x)(x(t)−z(t))

)
dxdt. (4.12)

Recalling (4.4) and (4.7), we have

x(t)−z(t)=
∫ R

−R
(ψ(t,x)−φ(t,x))dx, t∈ [0,T ].

Using the previous identity and Fubini’s theorem, we write the first term on the right-
hand side of (4.12) as follows∫ R

−R
(L∗

z(T,x)−u′T (x))
(
ψ(T,x)−φ(T,x)−φx(T,x)(x(T )−z(T ))

)
dx

=

∫ R

−R

(
L∗
z(T,x)−u′T (x)−

∫ R

−R
(L∗

z(T,y)−u′T (y))φx(T,y)dy
)
(ψ(T,x)−φ(T,x))dx.

(4.13)
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Similarly, the second term on the right-hand side of (4.12) becomes∫ T

0

∫ R

−R

(
(L∗

z(t,x))t+
(
L

∗
y(t,x)−V (x)

)
x

)
(ψ(t,x)−φ(t,x)−φx(t,x)(x(t)−z(t)))dxdt

=

∫ T

0

∫ R

−R

(
(L∗

z(t,x))t+
(
L

∗
y(t,x)−V (x)

)
x

−
∫ R

−R

(
(L∗

z(t,y))t+
(
L

∗
y(t,y)−V (y)

)
x

)
φx(t,y)dy

)
(ψ(t,x)−φ(t,x))dxdt. (4.14)

Define the Lagrange multiplier by

wT =

∫ R

−R
(L∗

z(T,y)−u′T (y))φx(T,y)dy,

w(t)=

∫ R

−R

(
(L∗

z(t,y))t+
(
L∗
y(t,y)−V (y)

)
x

)
φx(t,y)dy, t∈ [0,T ]. (4.15)

Then, replacing (4.13) and (4.14) in (4.12), we get∫ R

−R

(
L

∗
z(T,x)−u′

T (x)−wT

)
(ψ(T,x)−φ(T,x))dx

+

∫ T

0

∫ R

−R

(
(L∗

z(t,x))t+
(
L

∗
y(t,x)−V (x)

)
x
−w(t)

)
(ψ(t,x)−φ(t,x))dxdt⩾0. (4.16)

Notice that, in the previous inequality, the function ϕ=ψ−φ can be selected to be
strictly positive or negative in any neighborhood of (0,T )×(−R,R). Therefore, we can
infer the nullity of the functions in both integrals in (4.16) as follows. First, select ψ
satisfying ψ(T, ·)=φ(T, ·). Then, (4.16) shows that∫ T

0

∫ R

−R

(
(L∗

z(t,x))t+
(
L∗
y(t,x)−V (x)

)
x
−w(t)

)
ϕ(t,x)dxdt⩾0. (4.17)

The regularity of

(t,x) 7→ (L∗
z(t,x))t+

(
L∗
y(t,x)−V (x)

)
x
−w(t)

allows the localization of the integral in (4.17) using ϕ, and we conclude that

(L∗
z(t,x))t+

(
L∗
y(t,x)−V (x)

)
x
−w(t)=0 a.e. (t,x)∈ (0,T )×(−R,R). (4.18)

Then, (4.16) reduces to∫ R

−R

(
L∗
z(T,x)−u′T (x)−wT

)
(ψ(T,x)−φ(T,x))dx⩾0,

and we proceed as before by localizing the integral using x 7→ϕ(T,x) to conclude that

L∗
z(T,x)−u′T (x)−wT =0 a.e. x∈ (−R,R). (4.19)

Recalling (2.12), which characterizes ϖ, the identities (4.18) and (4.19) show that the
price, ϖ, is given by the Lagrange multiplier (4.15) according to

ϖ̇(t)=w(t), t∈ [0,T ], ϖ(T )=wT , (4.20)

which completes the proof.
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5. Numerical results
In this section, we provide the results of the potential approach applied to the

price formation MFG system with quadratic cost and oscillating supply. We use the
semi-explicit formulas introduced in [34] to assess the error in our approximation. We
use the standard solver for finite-dimensional convex problems provided by the software
Mathematica to approximate the potential function in a discrete grid in time and space.

Let κ∈R, η⩾0, and c>0. For the quadratic cost configuration, we take

H(p)=
1

2c
p2, V (x)=−η

2
(x−κ)2 , and uT (x)≡0.

Thus, L(v)= c
2v

2. As shown in [34] and [33], a feature of the quadratic setting is the
solvability of the Hamilton-Jacobi equation in (1.1) in the class of quadratic functions
of x with time-dependent coefficients

u(t,x)=a0(t)+a1(t)x+a2(t)x
2, t∈ [0,T ], x∈R.

The coefficients a0, a1, and a2 solve an ODE system that derives from the Hamilton-
Jacobi equation by matching powers of the x variable. Figure 5.1c shows the value
function for (x,t)∈ [0,T ]× [−1,1]. Moreover, the price has the following explicit formula

ϖ(t)=η (κ−m0)(T − t)−η
∫ T

t

∫ s

0

Q(r)drds−cQ(t), t∈ [0,T ],

wherem0=
∫
Rxm0(x)dx. The initial conditionm0 is centered at x=0 and with compact

support [−0.5,0.5] (see Figure 5.1a). The vector-field transporting m0 is

b(t,x)=−1

c
(ϖ(t)+a1(t)+2a2(t)x), t∈ [0,T ], x∈R,

which we use to compute m using the method of characteristics (see Figure 5.2b).
Thus, recalling (2.7) and (2.10), we have explicit formulas for φ, φx, and φt. We use
the previous expressions as a benchmark for the approximation obtained using (4.15).

For the discretization of the time variable, we set T =1 and Nt=20 time steps
uniformly spaced. Thus, ht=0.05 is the time step size. To discretize the space variable,
the selection of R in (3.1), where R0=0.5, becomes

R>max{5.57742 , 0.811579}.

However, to simplify the computational cost, we optimize the selection of R by looking at
the support ofm(t,·) for t∈ [0,T ], which we illustrate in Figure 5.2b. Thus, we discretize
the space variable in the space domain [−1,1] using Nx=40 time steps equally spaced.
Thus, hx=0.05 is the step size.

Because in several applications, the supply function satisfies a mean reversion as-
sumption, we assume that it follows the ordinary differential equation{

Q̇(t)=Q(t)−αQ(t), t∈ [0,T ],

Q(0)= q0,

where Q : [0,T ]→R represents the average supply over time, α∈R measures the ten-
dency to go towards the average, and q0∈R is the initial supply. For numerical purposes,
we select

Q(t)=5sin(3πt), α=4, q0=−0.5.
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While the particular choice of Q does not change the problem substantially, the preced-
ing choice has oscillatory features, as we want to demonstrate how price changes, and,
at the same time, we recover simple analytic expressions. As Figure 5.1b shows, the
price inherits the oscillating behavior from the supply.

Using the solution (u,m,ϖ), we get φt, φx from (2.7) (see Figures 5.2a and 5.2b),
and so (2.10) gives φ, illustrated in Figure 5.2c. The value of (3.6) is 0.106525, which
we use as an additional benchmark to assess our numerical approximation.

(a) m0 (b) Price and supply (c) value function u

Fig. 5.1: Data m0 and Q, and solutions u and ϖ for Q(t)=5sin(3πt).

(a) φt (b) φx=m (c) potential φ

Fig. 5.2: Analytic solution φ and its partial derivatives for Q(t)=5sin(3πt). The blue lines outline
the support of m.

We discretize (3.6) over the time-space grid using finite differences to approximate
φt and φx; that is

φt(ti,xj)=
φ(ti+ht,xj)−φ(ti,xj)

ht
, φx(ti,xj)=

φ(ti,xj+hx)−φ(ti,xj)
hx

,

for i=1,. ..,20, and j=1,. ..,40. We obtain a finite-dimensional convex optimization
problem with the following constraints

φx(ti,xj)⩾0,

Nx∑
j=1

(φ(ti,xj)−M0(xj))hx+

i∑
k=0

Q(tk)ht,

φ(0,xj)−M0(xj)=0, φ(ti,−1)=0, φ(ti,1)=1, i=1,. ..,Nt, j=1,. ..,Nx,

which correspond to the discretization of the admissible set A(ΩR) (see (3.4)). The
results are depicted in Figure 5.3. The approximated value of (3.6) is 0.103765, in good
agreement with the theoretical value 0.106525.



YURI, TIGRAN, DIOGO, AND JULIAN 249

(a) φt approximation (b) approximation error

(c) φx=m approximation (d) approximation error

(e) φ approximation (f) approximation error

Fig. 5.3: Approximated solution φ for Q(t)=5sin(3πt).

(a) ϖ approximation (b) approximation error

Fig. 5.4: Approximated solution ϖ for Q(t)=5sin(3πt).

Using (4.15), we obtain the corresponding approximation of ϖ, illustrated in Figure
5.4. Because of the implementation of finite differences, we can compute the price on
the time horizon [2ht,T ]. The plots show good agreement between the values of our
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(a) u approximation (b) approximation error

Fig. 5.5: Approximated solution u for Q(t)=5sin(3πt).

numerical results with a small discrepancy that improves as the grid size increases (here,
we show the results for the finest grid we used).

As the last benchmark, we consider the value function u. To compute u, we round
the approximation to avoid indeterminate expressions, and we use (4.1). The result is
depicted in Figure 5.5. Again, we obtain a good agreement with the exact solution.

6. Conclusions and further directions
In this paper, we presented a variational approach based on Poincaré lemma, reduc-

ing one variable in the MFG price formation model. We studied the variational approach
independently of the MFG problem. We obtained existence for a relaxed formulation
using bounded variation functions, and we proved uniqueness of the potential function.
We showed that price existence follows a Lagrange multiplier rule associated with the
balance constrained, an integral equation for the MFG model depending on a supply
function. For the price problem, the variational formulation allows an efficient compu-
tation without solving the backward-forward coupled problem with integral constraints.
The convexity of the variational approach allows the use of standard optimization tools
to solve its discrete formulation. Our numerical method shows promising results and
good agreement with the explicit solutions. We consider that we can apply a similar
approach to the price formation model with common noise, which corresponds to the
case of a stochastic supply function. One challenge is the dependence of the variational
problem formulation on the supply, requiring the discretization of time, state variables,
and the common noise. We plan to investigate this case in future works.

Acknowledgements. The authors were supported by King Abdullah University
of Science and Technology (KAUST) baseline funds and KAUST OSR-CRG2021-4674.

Appendix. Preliminary results for the continuity equation. Here, we prove
a general result for the continuity equation (the second equation in (1.1)).

We recall the following result from [15] about the existence and uniqueness of solu-
tions to the continuity equation. Let µ0∈C1(R), b∈L1([0,T ];W 1,1

loc (R))∩C([0,T ]×R),
and bx∈L∞([0,T ]×R). Then, the continuity equation{

µt+(bµ)x=0 [0,T ]×R,
µ(0,x)=µ0(x) x∈R

(A.1)

has a unique solution µ∈L∞([0,T ]×R) in the distributional sense. The existence re-
sult follows from Theorem 1.1 in [15], which addresses the existence and uniqueness of
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distributional solutions to the continuity Equation (A.1) for a vector field b satisfying
weaker conditions.

Now, we prove that if the initial condition µ0 of the continuity equation is compactly
supported, the solution µ is also compactly supported.

Proposition A.1. Let µ0∈C1(R), b∈L1([0,T ];W 1,1
loc (R))∩C([0,T ]×R), and bx∈

L∞([0,T ]×R). Assume further that µ0∈C1
c (R). Then, the unique solution to the con-

tinuity Equation (A.1) has compact support; that is, µ∈L∞
c ([0,T ]×R).

Proof. From the results in [15], it follows that there exists a unique, µ∈L∞([0,T ]×
R) solving (A.1) in the distributional sense. Let bε be a sequence of functions in
C∞([0,T ]×R) satisfying:

• bε is Lipschitz continuous w.r.t. x, and its Lipschitz constant satisfies Lip(bε)⩽
Lip(b),

• bε→ b uniformly on every compact set of [0,T ]×R.
We can obtain such a sequence bε by considering the convolution with standard mollifiers
in x and a partition of unity construction in t. Next, we consider the continuity equation
with the vector field bε {

µεt +(bεµε)x=0 [0,T ]×R,
µε(0,x)=µ0(x) x∈R.

(A.2)

Because bε, bεx∈C1([0,T ]×R), by Theorem 6.3 in [41], (A.2) has a unique solution µε∈
C1([0,T ]×R) given by

µε(t,Xε(t;y))J(t;y)=µ0(y), (t,y)∈ [0,T ]×R, (A.3)

where

J(t;y)=exp

(∫ t

0

bεx(s,X
ε(s;y)) ds

)
, (A.4)

and Xε solves the following initial value problem{
Ẋε(t;y)= bε(t,Xε(t;y)) (t,y)∈ (0,T ]×R,
Xε(0;y)=y y∈R.

(A.5)

Because bε∈C1([0,T ]×R), the map y 7→Xε(t;y) is a diffeomorphism (see [40], Chapter
3). Moreover, because bε∈C1([0,T ]×R) is Lipschitz continuous w.r.t. x, we have

|bε(t,x)|⩽Cε (1+ |x|) , (A.6)

where, by the uniform convergence of bε to b on compact sets, we have

Cε⩽max{1+∥b(·,0)∥L∞([0,T ]),Lip(b)}, (A.7)

for 0<ε≪1. Integrating (A.5) on [0,t], for 0⩽ t⩽T , and using A.6, we have

|Xε(t;y)|⩽ |y|+
∫ t

0

|bε(s,Xε(s;y))|ds

⩽ |y|+Cεt+Cε
∫ t

0

|Xε(s;y)|ds
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⩽ |y|+CεT +Cε

∫ t

0

|Xε(s;y)|ds;

that is, for y∈R, the non-negative function

η(t) := |Xε(t;y)|, t∈ [0,T ],

satisfies

η(t)⩽C1

∫ t

0

η(s)ds+C2,

for C1=Cε and C2= |y|+CεT . Therefore, by the integral Grönwall’s inequality (see [25],
Appendix B), we obtain

|Xε(t;y)|⩽ (|y|+CεT )
(
1+CεTe

CεT
)
. (A.8)

Because µ0∈C1
c (R), there exists R0>0 such that µ0(y)=0 for all |y|>R0. This, with

(A.3), implies that µε may have non-zero values only for those y satisfying |y|⩽R0.
Hence, (A.8) yields

|Xε(t;y)|⩽ (R0+CεT )
(
1+CεTe

CεT
)
=:Rε.

Thus, supp(µε)⊆ [0,T ]× [−Rε,Rε], which, by (A.7), provides the existence of R>0,
depending on T and Lip(b), such that suppµε⊆ [0,T ]× [−R,R] for every 1≫ε>0. Fur-
thermore, (A.3) and (A.4) imply that there exists C⩾0, depending on T , Lip(b) and µ0,
such that ||µε||L∞([0,T ]×R)⩽C for all 1≫ε>0. Therefore, by Banach-Alaoglu theorem,
there exists µ̄∈L∞([0,T ]×R) such that

µε
∗
⇀µ̄ as ε→0 in L∞([0,T ]×R).

Consequently, suppµ̄⊆ [0,T ]× [−R,R] as well. On the other hand, µε also solves (A.2)
in the sense of distributions; that is,

−
∫ T

0

∫
R
µε (ϕt−bεϕx)dxdt=

∫
R
µ0ϕ dx, (A.9)

for any ϕ∈C1
c ([0,T )×R).

Thus, given ϕ∈C1
c ([0,T )×R), we write

−
∫ T

0

∫
R
µ̄(ϕt−bϕx)dxdt

=−
∫ T

0

∫
R
µε (ϕt−bεϕx)+(µε− µ̄)(ϕt−bϕx)+µεϕx (b−bε)dxdt. (A.10)

Because ϕt, ϕx, bϕx∈L1([0,T ]×R), the second term on the right-hand side of (A.10)
vanishes as ε→0. Furthermore, using the uniform bound for µε, and because bε con-
verges uniformly to b in the compact support of ϕ, we obtain that the third term on the
right-hand side of (A.10) also vanishes as ε→0. Thus, using (A.9), we get

−
∫ T

0

∫
R
µ̄(ϕt−bϕx)dxdt=

∫
R
µ0ϕ dx,
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and since ϕ is arbitrary, we conclude that µ̄ is a solution to (A.1) in the distributional
sense.

To conclude the proof, it is enough to recall that the results in [15] provide unique-
ness for the initial value problem in (A.1) in the sense of the distributions.

Applying the previous result to the MFG system (1.1)-(1.2), we obtain the following.

Corollary A.1. Suppose that Assumptions 1.1-1.5 hold. Let (u,m,ϖ) be the solution
to (1.1). Assume further that Assumption 1.6 holds with R0>0. Then, m is compactly
supported; that is, there exists a constant Rm⩾R0, such that suppm(t,·)⊆ [−Rm,Rm]
for t∈ [0,T ]. Moreover, Rm is bounded by a constant that depends only on the problem
data.

Proof. Let b(t,x)=H ′(ϖ(t)+ux(t,x)) denote the vector field of the continuity
equation in (1.1). By Proposition 8 in [34], |uxx|⩽C(T,V,uT ), which implies that ux
is Lipschitz w.r.t. x. By Assumptions 1.1 and 1.2, for p>2, |H ′′|⩽C(L), for some
C(L)>0. Thus, b(t,·)∈C1(R) is Lipschitz continuous in R uniformly with respect to t.
Furthermore, the Lipchitz constant satisfies

Lip(b(t,·))⩽C0,

where C0=C0(T,V,L,uT ). Therefore, Proposition A.1 implies the first part of the
result. Moreover, (A.8) shows that

Rm⩽ (R0+C0T )
(
1+C0Te

C0T
)
, (A.11)

which concludes the proof.
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Z. Wróblewska, A price model with finitely many agents, Bulletin of the Portuguese Mathe-
matical Society, 2019. 1

[9] L. Ambrosio, N. Fusco, and D. Pallara, Functions of Bounded Variation and Free Discontinuity
Problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press,
New York, 2000. 3.1, 3.2

[10] Y. Ashrafyan, T. Bakaryan, D. Gomes, and J. Gutierrez, A Duality Approach to a Price Formation
MFG Model, Heldermann Verlag, 2021. 3

[11] H. Attouch, G. Buttazzo, and G. Michaille, Variational Analysis in Sobolev and BV spaces:
Applications to PDEs and Optimization, SIAM, 2014. 3.2, 3.2, 3.2

https://doi.org/10.1137/100790069
https://doi.org/10.1137/090758477
https://link.springer.com/chapter/10.1007/978-3-030-59837-2_4
https://doi.org/10.1111/mafi.12340
https://doi.org/10.3934/JDG.2021012
https://doi.org/10.1007/s10957-019-01619-3
https://link.springer.com/article/10.1007/s10479-023-05270-0
http://hdl.handle.net/10754/662310
https://global.oup.com/academic/product/functions-of-bounded-variation-and-free-discontinuity-problems-9780198502456
http://hdl.handle.net/10754/671165
https://epubs.siam.org/doi/book/10.1137/1.9781611973488


254 VARIATIONAL METHODS IN PRICE FORMATION

[12] T. Bakaryan, R. Ferreira, and D. Gomes, A potential approach for planning mean-field games in
one dimension, Commun. Pure. Appl. Anal., 21(6):2147–2187, 2022. 1, 3.1, 3.2

[13] T. Basar and R. Srikant, Revenue-maximizing pricing and capacity expansion in a many-users
regime, Proceedings. Twenty-First Annual Joint Conference of the IEEE Computer and Com-
munications Societies, 1(1):294–301, 2002. 1

[14] F. Bonnans, P. Lavigne, and L. Pfeiffer, Discrete potential mean field games: duality and numer-
ical resolution, Math. Program., 202:241–278, 2023. 1

[15] L. Caravenna and G. Crippa, Uniqueness and Lagrangianity for solutions with lack of integrability
of the continuity equation, C. R. Math., 354(12):1168–1173, 2016. 6, 6, 6, 6

[16] P. Cardaliaguet, A short course on Mean field games, Lecture Notes, Université de PARIS -
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