
COMMUN. MATH. SCI. © 2024 International Press

Vol. 22, No. 2, pp. 285–314

REPRODUCING ACTIVATION FUNCTION FOR DEEP LEARNING∗

SENWEI LIANG† , LIYAO LYU‡ , CHUNMEI WANG§ , AND HAIZHAO YANG¶

Abstract. We propose reproducing activation functions (RAFs) motivated by applied and com-
putational harmonic analysis to improve deep learning accuracy for various applications ranging from
computer vision to scientific computing. The idea is to employ several basic functions and their
learnable linear combination to construct neuron-wise data-driven activation functions for each neu-
ron. Armed with RAFs, neural networks (NNs) can reproduce traditional approximation tools and,
therefore, approximate target functions with a smaller number of parameters than traditional NNs.
As demonstrated by extensive numerical tests, the proposed RAFs can facilitate the convergence of
deep learning optimization for a solution with higher accuracy than existing deep learning solvers
for audio/image/video reconstruction, PDEs, and eigenvalue problems. With RAFs, the errors of
audio/video reconstruction, PDEs, and eigenvalue problems are decreased by over 14%, 73%, 99%,
respectively, compared with baseline, while the performance of image reconstruction increases by 58%.
Numerically, in the NN training, RAFs can generate neural tangent kernels with better condition
numbers than traditional activation functions, which provides a prospective for understanding the im-
proved optimization convergence using the theory of neural tangent kernel. The code is available at
https://github.com/LeungSamWai/Reproducing-Activation-Function.

Keywords. Deep Neural Network; Activation Function; Neural Tangent Kernel; Polynomials;
Fourier Basis; Wavelets; Radial Basis Functions.

AMS subject classifications. 65M75; 65N75; 62M45.

1. Introduction
High-dimensional problems are ubiquitous in science and engineering. Deep learn-

ing has been an important tool for solving a wide range of high-dimensional problems
with surprising performance. For example, neural network-based optimization has be-
come a powerful tool for solving high-dimensional and nonlinear differential equations
in complicated domains [3,24,34,35,44,61,80]. First of all, as a form of function approx-
imation via the compositions of nonlinear functions [21], deep neural networks (DNNs)
as a mesh-free parametrization can efficiently approximate various high-dimensional so-
lutions lessening the curse of dimensionality [2, 17, 18, 29, 45, 52–54, 59, 65, 78] and/or
achieving exponential approximation rates [16, 41, 45, 54, 57, 65, 76]. Second, DNN pa-
rameters are identified via energy minimization from variational formulation, which
usually enjoys a summation form that can be accelerated by the stochastic gradient de-
scent (SGD) for a local minimizer. It is believed that the implicit regularization of SGD
and DNNs helps to obtain approximate solutions to a certain class of nonlinear PDEs,
though current optimization analysis [47] and generalization analysis [4, 25, 47, 66] are
limited to the case of linear PDEs.

Though neural network-based optimization for solving PDEs admits attractive prop-
erties mentioned above, it is also well known that the optimization problem is highly
non-convex and hence challenging to solve for a highly accurate solution. There has

∗Received: June 15, 2022; Accepted (in revised form): June 19, 2023. Communicated by Jianfeng
Lu.

†Equal contribution. Department of Mathematics, Purdue University, West Lafayette, IN 47907,
USA (liang339@purdue.edu).

‡Equal contribution. Department of Computational Mathematics, Science, and Engineering, Michi-
gan State University, East Lansing, MI 48824, USA (lyuliyao@msu.edu).

§Department of Mathematics, University of Florida, 1400 Stadium Rd, Gainesville, FL 32611, USA
(chunmei.wang@ufl.edu).

¶Corresponding author. Department of Mathematics, University of Maryland College Park, 4176
Campus Drive, College Park, MD 20742, USA (hzyang@umd.edu).

285

https://github.com/LeungSamWai/Reproducing-Activation-Function
mailto:liang339@purdue.edu
mailto:lyuliyao@msu.edu
mailto:chunmei.wang@ufl.edu
mailto:hzyang@umd.edu

286 REPRODUCING ACTIVATION FUNCTION

been extensive research on improving the accuracy of the PDE solution provided by
neural network-based optimization. They include but are not limited to the following
examples. Building neural networks satisfying the initial/boundary conditions of the
PDE can simplify the optimization formulation and increase the accuracy [23, 38, 48].
Applying first-order methods to reformulate high-order PDEs can reduce the difficulty
of neural network optimization [7, 48]. Improving the sampling strategy of SGD [9, 55]
or the sample weights in the objective function [22] can facilitate the convergence of
neural network-based optimization. Building special neural network structures or neu-
ral network solutions according to solution ansatz inspired by physical knowledge can
significantly alleviate the training difficulty of neural network optimization, e.g., using
oscillatory structures [6], multiscale structures [44], and other spectral structures [23].
Finally, hybrid algorithms combining neural network-based solvers and traditional iter-
ative solvers can provide highly accurate solutions to low-dimensional nonlinear PDEs
efficiently [28,75].

Though high-dimensional problems are the main application domains of deep learn-
ing, it was also observed that deep learning can outperform traditional computational
tools in low-dimensional problems. Recently in computer vision and graphics, deep
neural networks were used as a mesh-free representation of objects, scene geometry, and
appearance, resulting in notable performance compared to traditional discrete repre-
sentations. These deep neural networks are called “coordinate-based” networks in [71]
because they take low-dimensional coordinates as inputs and output an object value of
the shape, density, and/or color at the given input coordinate. This strategy is com-
pelling in data compression and reconstruction, e.g., see [10, 20, 33, 43, 50, 58, 62, 68].
Similarly to the case of high-dimensional applications, obtaining high accuracy in these
applications is also a challenging topic. Exploring different neural network architec-
tures and training strategies for highly accurate solutions to these problems has been
an active research direction.

In this paper, we propose the reproducing activation function (RAF) to improve
deep learning accuracy in the above applications. The idea of reproducing activation
functions is to employ several basic functions and their learnable linear combination to
construct neuron-wise data-driven activation functions for each neuron. Armed with
such activation functions, deep neural networks can reproduce traditional approxima-
tion tools efficiently, e.g., orthogonal polynomials, Fourier basis functions, wavelets, and
radial basis functions. Therefore, deep neural networks with the proposed reproducing
activation function can approximate a wide class of target functions with a smaller
number of parameters than traditional neural networks (e.g., networks with ReLU ac-
tivation functions). Therefore, these basic functions are referred to as basic activation
functions, and the data-driven activation functions are called reproducing activation
functions. The proposed reproducing activation function is a general concept including
many existing network structures with super approximation power, e.g., the Sine-ReLU
networks [78], the Floor-ReLU networks [65], the Floor-Exponential-Sign networks [64].

In terms of training dynamics of deep learning, reproducing activation functions
can empirically generate neural tangent kernels with a better condition number than
traditional activation functions lessening the spectrum bias of deep learning. Neural
network-based optimization usually can find a smooth solution with the fast decay in
the frequency domain due to the implicit regularization of network structures and the
stochastic gradient descent (SGD) for solving the minimization problem. It was shown
through the frequency principle of neural networks [75] and the neural tangent kernel [8]
that neural networks have an implicit bias towards functions that decay fast in the

S. LIANG, L. LYU, C. WANG, AND H. YANG. 287

Fourier domain and the gradient descent method tends to fit a low-frequency function
better than a high-frequency function. Therefore, designing an efficient deep learning
algorithm to identify oscillatory or singular solutions to regression and PDE problems is
challenging. The proposed reproducing activation function is a general concept that also
includes many existing network structures lessening the spectral bias of deep learning
(e.g., the multiscale neural network [6], deep neural networks composed with Fourier
feature models [71]).

The incorporation of trainable parameters into basic activation functions is widely
used in various applications. These trainable parameters are applied as either coefficients
for linear combinations of activation functions [49, 60, 70] or scaling parameters for
input [31,32], while our RAF concept utilizes both. Previous works use basic activation
functions that are proven to be effective in the corresponding applications, such as
ReLU, ELU, SELU [70] in computer vision and tanh in scientific computing. Inspired by
applied harmonic analysis, we investigate basic functions like polynomial and Gaussian
functions and showcase their effectiveness in RAF through both theory and numerical
examples. We also summarize a comparison of RAF with other methods in Table 1.1.

Method Linear combination? Input scaling? Application Basic functions

Qian et al. [60] ! % Image classification Leaky-ReLU, Elu

Manessi et al. [49] ! % Image classification Identity, ReLU, Tanh

Sutfeld et al. [70] ! % Image classification ReLU, ELU, SELU, Identity and Swish

Adaptive activation function [31,32] % ! PDE, Function approximation Tanh

Reproducing activation function (ours) ! !
PDE, Function approximation,
Coordinate-based regression

Polynomial, Sine,
Gaussian

Table 1.1: Comparison of our reproducing activation function with related methods.

Contribution. We summarize our contribution as follows.

(1) We propose RAFs and their approximation theory. NNs with RAFs can repro-
duce traditional approximation tools (e.g., polynomials, Fourier basis functions,
wavelets, radial basis functions) and approximate a certain class of functions
with exponential and dimension-independent approximation rates.

(2) Empirically, RAFs can generate neural tangent kernels with smaller condition
numbers than traditional activation functions, which provides a prospective
for understanding the improved optimization convergence using the theory of
neural tangent kernel.

(3) Extensive experiments on coordinate-based data representation and PDEs
demonstrate the effectiveness of the proposed activation function.

The paper is organized as follows. In Section 2, preliminary knowledge will be intro-
duced. In Section 3, we introduce the proposed activation function. Numerical results
will be presented in Section 4 to demonstrate the effectiveness. Finally, we conclude
this paper in Section 5.

2. Preliminaries
In this section, we will introduce deep neural networks and their applications in

regression problems and solving PDEs.

2.1. Deep neural networks. Mathematically, DNNs are a form of highly
non-linear function parametrization via function compositions using simple non-linear
functions [21]. The justification of this kind of approximation is given by the universal
approximation theorems of DNNs in [2, 37, 76, 77] with newly developed quantitative
and explicit error characterization [45,63,65], which shows those function compositions

288 REPRODUCING ACTIVATION FUNCTION

are more powerful than other traditional approximation tools. There are two popular
neural network structures used in deep learning-based PDE solvers.

The first one is the fully connected feed-forward neural network (FNN), which is
the composition of L simple nonlinear functions as follows:

ϕ(x;θ) :=aThL ◦hL−1 ◦···◦h1(x), (2.1)

where hℓ(x)=σ (Wℓx+bℓ) with Wℓ∈RNℓ×Nℓ−1 , bℓ∈RNℓ for ℓ=1,. ..,L, a∈RNL , σ is
a non-linear activation function, e.g., a rectified linear unit (ReLU) σ(x)=max{x,0}
or hyperbolic tangent function tanh(x). Each hℓ is referred to as a hidden layer, Nℓ

is the width of the ℓ-th layer, and L is called the depth of the FNN. In the above
formulation, θ :={a,Wℓ, bℓ : 1≤ ℓ≤L} denotes the set of all parameters in ϕ, which
uniquely determines the underlying neural network.

Another popular network is the residual neural network (ResNet) introduced in [27].
We present its variant defined recursively as follows:

h0=V x,gℓ=σ(Wℓhℓ−1+bℓ), ℓ=1,2,. ..,L,

hℓ= Ūℓhℓ−2+Uℓgℓ, ℓ=1,2,. ..,L, ϕ(x;θ)=aThL, (2.2)

where V ∈RN0×d, Wℓ∈RNℓ×N0 , Ũℓ∈RN0×N0 , Uℓ∈RN0×Nℓ , bℓ∈RNℓ for ℓ=1, ·· · ,L,
a∈RN0 , h−1=0. Throughout this paper, we consider N0=Nℓ=N and Uℓ is set as the
identity matrix in the numerical implementation of ResNets for the purpose of simplicity.
Furthermore, as used in [19], we set Ũℓ as the identity matrix when ℓ is even and set
Ũℓ=0 when ℓ is odd.

2.2. Deep learning for regression problems. Regression problems aim
at identifying an unknown target function f :x∈Ω→y∈R from training samples
{(xi,yi)}Ni=1, where xi’s are usually assumed to be i.i.d samples from an underlying
distribution π defined on a domain Ω⊆Rn, and yi=f(xi) (probably with an additive

noise). Consider the square loss ℓ(x,y;θ)= |ϕ(x;θ)−y|2 of a given DNN ϕ(x;θ) that is
used to approximate f(x), the population risk (error) and empirical risk (error) func-
tions are respectively

J (θ)=
1

2
Ex∼π

[
|ϕ(x;θ)−f(x)|2

]
, Ĵ (θ)=

1

2N

N∑
i=1

|ϕ(xi;θ)−yi|2 , (2.3)

which are also functions that depend on the depth L and width Nℓ of ϕ implicitly. The
optimal set θ̂ is identified via θ̂=argminθ Ĵ (θ), and ϕ(·;θ̂) :Ω→R is the learned DNN
that approximates the unknown function f .

2.3. Deep learning for solving PDEs. Deep learning can be applied to solve
various PDEs including the initial value problems and boundary value problems (BVP)
based on different variational formulations [13,19,38,42]. In this paper, we will take the
example of BVP and the least squares method (LSM) [13,38] without loss of generality.
The generalization to other problems and methods is similar. Consider the BVP

Du(x)=f(u(x),x), in Ω, Bu(x)=g(x), on ∂Ω, (2.4)

where D :Ω→Ω is a differential operator that can be nonlinear, f(u(x),x) can be a
nonlinear function in u, Ω is a bounded domain in Rd, and Bu=g characterizes the
boundary condition. Other types of problems like initial value problems can also be

S. LIANG, L. LYU, C. WANG, AND H. YANG. 289

formulated as a BVP as discussed in [22]. Then LSM seeks a solution u(x;θ) as a
neural network with a parameter set θ via the following optimization problem

min
θ

L(θ) :=∥Du(x;θ)−f(u,x)∥2L2(Ω)+λ∥Bu(x;θ)−g(x)∥2L2(∂Ω), (2.5)

where L is the loss function consisting of the L2-norm of the PDE residual Du(x;θ)−
f(u,x) and the boundary residual Bu(x;θ)−g(x), and λ>0 is a regularization param-
eter.

The goal of (2.5) is to find an appropriate set of parameters θ such that the DNN
u(x;θ) minimizes the loss L(θ). If the loss L(θ) is minimized to zero with some θ, then
u(x;θ) satisfies Du(x;θ)−f(x)=0 in Ω and Bu(x;θ)−g(x)=0 on ∂Ω, implying that
u(x;θ) is exactly a solution of (2.4). If L is minimized to a nonzero but small positive
number, u(x;θ) is close to the true solution as long as (2.4) is well-posed (e.g. the
elliptic PDE with Neumann boundary condition, see Theorem 4.1 in [22]).

In the implementation of LSM, the minimization problem in (2.5) is solved by SGD
or its variants, e.g., Adam [36]. In each iteration of the SGD, a stochastic loss function
defined below is minimized instead of the original loss function in (2.5):

min
θ

L̂(θ) := 1

2N

N∑
i=1

(
Du(xi;θ)−f(xi)

)2
+

λ

2M

M∑
j=1

(
Bu(x̃j ;θ)−g(x̃j)

)2
, (2.6)

where {xi}Ni=1 are N uniformly sampled random points in Ω and {x̃j}Mj=1 are M uni-
formly sampled random points on ∂Ω. These random samples will be renewed in each
iteration. Throughout this paper, we will use Adam, which is a variant of SGD based
on momentum, to solve the neural network-based optimization.

To facilitate the optimization convergence to the desired PDE solution, special
network structures can be proposed such that the DNN can satisfy common boundary
conditions, which can simplify the loss function in (2.5) to min

θ
L(θ) :=∥Du(x;θ)−

f(u,x)∥2L2(Ω), since Bu(x;θ)=g(x) is satisfied by construction. The stochastic loss
function is reduced to

min
θ

L̂(θ) := 1

2N

N∑
i=1

(
Du(xi;θ)−f(u,xi)

)2
. (2.7)

In the numerical implementation, the LSM loss function in (2.7) is more attractive
because (2.6) heavily relies on the selection of a suitable weight parameter λ and a
suitable initial guess. If λ is not appropriate, it may be difficult to identify a reasonably
good minimizer of (2.5), as shown by extensive numerical experiments in [23, 38, 48].
However, we would like to remark that it is difficult to build neural networks that
automatically satisfy complicated boundary conditions especially when the domain Ω
is irregular.

The design of these special neural networks depends on the type of boundary
conditions. We will discuss the case of Dirichlet boundary conditions by taking one-
dimensional problems defined in the domain Ω=[a,b] as an example. Network struc-
tures for more complicated boundary conditions in high-dimensional domains can be
constructed similarly. The reader is referred to [23, 48] for other kinds of boundary
conditions.

Suppose û(x;θ) is a generic DNN with trainable parameters θ. We will aug-
ment û(x;θ) with several specially designed functions to obtain a final network u(x;θ)

290 REPRODUCING ACTIVATION FUNCTION

that satisfies Bu(x;θ)=g(x) automatically. For simplicity, let us consider the bound-
ary conditions u(a)=a0 and u(b)= b0. In this case, we can introduce two special
functions h(x) and l(x) to augment û(x;θ) to obtain the final network u(x;θ) by
u(x;θ)=h(x)û(x;θ)+ l(x). Then u(x;θ) is used to approximate the true solution of
the PDE and is trained through (2.7).

A straightforward choice for l(x) is l(x)=(b0−a0)(x−a)/(b−a)+a0, and h(x) can
be set as h(x)=(x−a)pa(x−b)pb , with 0<pa, pb≤1. To obtain an accurate approxi-
mation, pa and pb should be chosen to be consistent with the orders of a and b of the
true solution, and hence no singularity will be brought into the network structure.

2.4. The training behavior of deep learning. The least-squares optimiza-
tion problems in (2.6) and (2.7) are highly non-convex and hence they are challenging
to solve. For regression problems or solving linear PDEs, under the assumption of
over-parameterized DNNs (i.e., the width of DNNs is sufficiently large) and appro-
priate random initialization of DNN parameters, it was shown that the least-squares
optimization admits global convergence by gradient descent with a linear convergence
rate [11,14,30,47,79]. Though the over-parametrization assumption might not be realis-
tic, it is still a positive sign for the justification of DNNs in these least-squares problems.
However, the convergence rate depends on the spectrum of the target function. The
training of a randomly initialized DNN has a stronger preference for reducing the fitting
error of low-frequency components of a target solution. The high-frequency component
of the target function would not be well captured until the low-frequency error has been
eliminated. This phenomenon is called the F-principle in [75] and the spectral bias of
deep learning in [8]. Related works on the learning behavior of DNNs in the frequency
domain can be found in [46,75]. In the case of nonlinear PDEs, these theoretical works
imply that deep learning-based solvers would also have a bias towards reducing low-
frequency errors [74]. Without the assumption of over-parametrization, to the best of
our knowledge, there is no theoretical guarantee that neural network-based PDE solvers
can identify the global minimizer via a standard SGD. Through the analysis of the opti-
mization energy landscape of SGD without the over-parameterization, it was shown that
SGD with small batches tends to converge to the flattest minimum [12,40,56]. However,
such local minimizers might not give the desired PDE solutions. Hence, designing new
training techniques to make SGD capable of identifying better minimizers has been an
active research field.

2.5. Neural tangent kernel. Neural tangent kernel (NTK) originally intro-
duced in [30] and further investigated in [1, 8, 39, 47, 74] is one of the popular tools to
study the training behavior of deep learning in regression problems and PDE problems.
Let us briefly introduce the main idea of NTK following the linearized model for re-
gression problems in [39] for simplicity. This brief introduction will be sufficient for
our purposes, as we aim to leverage the NTK theory to gain insights into the training
convergence of NNs with different activation functions.

Let us use X to denote the set of training sample locations {xi}Ni=1 in the empirical

loss function Ĵ (θ) in (2.3). Let Y be the set of function values at these sample locations.
Using gradient flow to analyze the training dynamics of Ĵ (θ), we have the following
evolution equations:

θ̇t=−∇θϕt(X)T∇ϕt(X)Ĵ , (2.8)

and

ϕ̇t(X)=∇θϕt(X)θ̇t=−Θ̂t(X ,X)∇ϕt(X)Ĵ , (2.9)

S. LIANG, L. LYU, C. WANG, AND H. YANG. 291

where θt is the parameter set at iteration time t, ϕt(X)=vec([ϕt(x;θt)]x∈X) is the N×1
vector of concatenated function values for all samples, and ∇ϕt(X)Ĵ is the gradient of

the loss with respect to the network output vector ϕt(X), Θ̂t := Θ̂t(X ,X) in RN×N is
the NTK at iteration t defined by

Θ̂t=∇θϕt(X)∇θϕt(X)T . (2.10)

The NTK can also be defined for general arguments, e.g., Θ̂t(x,X) with x as a test
sample location.

After initialization, the training dynamics of deep learning can be characterized
by (2.8) and (2.9). The steady-state solutions of these evolution equations give the
learned network parameters and the learned neural network in the regression problem.
However, these evolution equations are highly nonlinear and it is difficult to obtain
the explicit formulations of their solutions. Fortunately, as discussed in the literature
[1,8,30,39,47], when the network width goes to infinity, these evolution equations can be
approximately characterized by their linearization, the solution of which admits simple
explicit formulas.

For simplicity, we consider the linearization in [39] to obtain explicit solutions to
discuss the training dynamics. In particular, the following linearized network by Taylor
expansion is considered,

ϕlin
t (x) :=ϕ(x;θ0)+∇θϕ(x;θ0)ωt, (2.11)

where ωt :=θt−θ0 is the change in the parameters from their initial values. The dy-
namics of gradient flow using this linearized function are governed by

ω̇t=−∇θϕ0(X)T∇ϕlin
t (X)Ĵ , ϕ̇lin

t (x)=−Θ̂0(x,X)∇ϕlin
t (X)Ĵ . (2.12)

The above evolution equations have closed-form solutions

ωt=−∇θϕ0(X)T Θ̂−1
0

(
I−e−Θ̂0t

)
(ϕ0(X)−Y), ϕlin

t (X)=
(
I−e−Θ̂0t

)
Y+e−Θ̂0tϕ0(X).

(2.13)
For an arbitrary point x,

ϕlin
t (x)=ϕ0(x)−Θ̂0(x,X)Θ̂−1

0

(
I−e−Θ̂0t

)
(ϕ0(X)−Y). (2.14)

Therefore, once the initialized network ϕ0(x) and the NTK at initialization Θ̂0 are
computed, we can obtain the time evolution of the linearized neural network without
running gradient descent. The solution in (2.14) serves as an approximate solution to
the nonlinear evolution equation in (2.9). Based on (2.14), we see that deep learning
can be approximated by a kernel method with the NTK Θ̂0 that updates the initial
prediction ϕ0(x) to a correct one.

There are mainly two kinds of observations from (2.14) from the perspective of
kernel methods. The first one is through the eigendecomposition of the initial NTK.
If the initial NTK is positive definite, ϕlin

t will eventually converge to a neural net-
work that fits all training examples and its generalization capacity is similar to kernel
regression by (2.14). The error of ϕlin

t along the direction of eigenvectors of Θ̂0 corre-
sponding to large eigenvalues decays much faster than the error along the direction of
eigenvectors of small eigenvalues, which is referred to as the spectral bias of deep learn-
ing. The second one is through the condition number of the initial NTK. Since NTK
is real symmetric, its condition number is equal to its largest eigenvalue over its small-
est eigenvalue. If the initial NTK is positive definite, in the ideal case when t goes to

292 REPRODUCING ACTIVATION FUNCTION

infinity,
(
I−e−Θ̂0t

)
(ϕ0(X)−Y) in (2.14) approaches to ϕ0(X)−Y and, hence, ϕlin

t (x)

goes to the desired function value for x∈X . However, in practice, when Θ̂0 is very ill-

conditioned, a small approximation error in
(
I−e−Θ̂0t

)
(ϕ0(X)−Y)≈ϕ0(X)−Y may

be amplified significantly, resulting in a poor accuracy for ϕlin
t (x) to solve the regression

problem.
The above discussion is for the NTK in a regression setting. In the case of PDE

solvers, we introduce the NTK below

Θ̂t=(∇θDϕt(X))(∇θDϕt(X))
T
, (2.15)

where D is the differential operator of the PDE. Similar to the discussion for regression
problems, the spectral bias and the conditioning issue also exist in deep learning-based
PDE solvers by almost the same arguments.

Although the condition number of the NTK matrix provides a perspective for un-
derstanding the improved optimization convergence of training error, they may not
necessarily indicate better test performance in general. In this paper, we demonstrate
the effectiveness of our RAF approach using coordinate-based data representation and
PDE with the least squares method. In both applications, the training error closely
matches the testing error because the training points are repeatedly and randomly sam-
pled from a distribution at every iteration, and the testing points are sampled from
the same distribution. Therefore, the test performance in our numerical examples is
reflected in the training error, which in turn can be reflected in the condition numbers
of the NTK matrix.

In fact, better optimization convergence would also help to improve testing errors
for other applications in certain cases. In theory, the testing error is bounded by the
neural network approximation error plus the neural network optimization error plus the
neural network statistical error. Therefore, if the optimization error dominates the error
bound, then improving the optimization convergence (e.g., either reducing the condition
number or improving the convergence rate) will lead to a smaller optimization error and,
hence, a smaller testing error.

3. Reproducing activation functions
In this section, we will introduce the concept of reproducing activation functions,

for example, reproducing properties, and the corresponding NTK.

3.1. Abstract framework. In Section 2.1, we have introduced deep neural net-
works built with the same activation function σ(x) used in each neuron of the network.
The concept of reproducing activation functions is to apply different activation functions
in different neurons. Let A={γ1(x),. ..,γP (x)} be a set of P different basic activation
functions. In the i-th neuron of the ℓ-th layer, an activation function

σi,ℓ(x)=

P∑
p=1

αp,i,ℓγp(βp,i,ℓx) (3.1)

is applied, where {αp,i,ℓ,βp,i,ℓ}Pp=1 is a set of learnable parameters. In this paper, αp,i,ℓ

is called a learnable combination coefficient and βp,i,ℓ is called a learnable scaling pa-
rameter. Let α be the union of all learnable combination coefficients and β be the union
of all learnable scaling parameters in all reproducing activation functions, and then we
use ϕ(x;θ,α,β) to denote a deep neural network, where θ is the set of all weights and
bias introduced in (2.1) and (2.2). The key idea of reproducing activation functions is

S. LIANG, L. LYU, C. WANG, AND H. YANG. 293

to use a small number of basic activation functions that can reproduce a large class of
functions. If a large number of basic activation functions are used, it is computationally
expensive, and overfitting phenomena may occur. As we shall see later in our theory,
a small number of basic activation functions motivated by applied harmonic analysis is
sufficiently powerful.

In deep learning for regression problems, the new population and empirical loss
functions with reproducing activation functions become

J (θ,α,β)=
1

2
Ex∼π

[
|ϕ(x;θ,α,β)−f(x)|2

]
, Ĵ (θ,α,β)=

1

2N

N∑
i=1

|ϕ(xi;θ,α,β)−yi|2 ,

(3.2)

respectively. The optimal parameter set is identified via {θ̂,α̂,β̂}=
argminθ,α,β Ĵ (θ,α,β), and ϕ(·;θ̂,α̂,β̂) :Ω→R is the learned DNN that approxi-
mates the unknown function f .

Similarly, when solving the PDE in (2.4), the population loss function in (2.5)
becomes

min
θ,α,β

L(θ,α,β) :=∥Du(x;θ,α,β)−f(u,x)∥2L2(Ω)+λ∥Bu(x;θ,α,β)−g(x)∥2L2(∂Ω),

(3.3)
and in each iteration of the SGD, the empirical loss function in (2.6) becomes

min
θ,α,β

L̂(θ,α,β) :=
1

2N

N∑
i=1

(
Du(xi;θ,α,β)−f(xi)

)2
+

λ

2M

M∑
j=1

(
Bu(x̃j ;θ,α,β)−g(x̃j)

)2
.

(3.4)

3.2. Examples and reproducing properties. Here, a few examples of RAFs
will be discussed, including existing examples with super approximation power in the
literature, examples lessening the spectral bias in the literature, and our new examples.
We will only introduce examples with multiple basic activation functions for simplicity.

3.2.1. Example 1: Sine-ReLU. The Sine-ReLU network proposed in [78]
applies sine function sin(x) or ReLU function max{0,x} in each neuron to construct a
deep neural network. Instead, the proposed reproducing activation function here has
a set of trainable parameters α and β. The theory of Sine-ReLU networks proved
in [78] provides a theoretical upper bound of the approximation capacity of reproducing
activation function for the set of basic activation functions A={sin(x),max{0,x}}. In
fact, sin(x) can be replaced by any Lipschitz periodic function as shown in Theorem
6.1 of [78]. Let Fr,d be the unit ball of the d-dimensional Sobolev space Hr,∞([0,1]d)
where r>0. Following the proof of this theorem, we have the following theorem for
reproducing activation functions below.

Theorem 3.1 (Dimension-Independent and Exponential Approximation Rate). Fix
r>0 and an integer d. Let σ be a Lipschitz periodic function with period T . Suppose
σ(x)>0 for x∈ (0,T/2], σ(x)<0 for x∈ (T/2,T), and maxx∈Rσ(x)=−minx∈Rσ(x).
For any sufficiently large integer W >0 and any f(x)∈Fr,d, there exists an NN
ϕ(x;θ,α,β) such that: (1) The total number of parameters in {θ,α,β} is less than or
equal to W ; (2) ϕ(x;θ,α,β) is built with RAFs associated with A={σ(x),max{0,x}};
(3) ∥f(x)−ϕ(x;θ,α,β)∥∞≤ exp

(
−cr,dW

1/2
)
with a constant cr,d>0 only depending on

r and d.

294 REPRODUCING ACTIVATION FUNCTION

There are other types of network structures utilizing both sin(x) and ReLU acti-
vation functions together in a single network but for different application purposes and
with different strategies. For example, the network structure in [81] uses plane waves
with different frequencies as activation functions in the first hidden layer and uses ReLU
in other layers for the purpose of high-resolution image reconstruction in cryo-electron
microscopy. The same idea is applied in [51] for high-resolution scene and shape recon-
struction in various applications. The same structure is used in [26] for the purpose of
generating networks satisfying periodic boundary conditions. A variant of this structure
with several blocks is designed in [44,73] for solving high-frequency PDEs. As discussed
in [71], using plane waves with different frequencies in the first hidden layer may lessen
the spectral bias of deep learning using NTK analysis.

3.2.2. Example 2: Floor-Exponential-Sign. Recently, networks with super
approximation power (e.g., an exponential approximation rate without the curse of
dimensionality for Hölder continuous functions) have been proposed in [64,65], e.g., the
Floor-Exponential-Sign network that uses one of the following three activation functions
in each neuron:

σ1(x) := ⌊x⌋, σ2(x) :=2x, σ3 :=T (x−⌊x⌋− 1

2
). (3.5)

Here, T (x) :=11x≥0=

{
1, x≥0,
0, x<0.

Obviously, the concept of reproducing activation func-

tions includes the Floor-Exponential-Sign networks as a special case when the set of
combination coefficients α is a fixed binary set and the set of scaling coefficients β is a
set of constant ones. The theory of Floor-Exponential-Sign networks proved in [64] pro-
vides a theoretical upper bound of the approximation power of reproducing activation
function for the set of basic activation functions A={σ1(x),σ2(x),σ3(x)}. Following the
proof of Theorem 1.1 in [64], we have the theorem for reproducing activation functions
below.

Theorem 3.2 (Dimension-Independent and Exponential Approximation Rate).
Given f in C([0,1]d) and W ∈N+, there exists an NN ϕ(x;θ,α,β) of width W and
depth 4 built with RAFs associated with A={σ1(x),σ2(x),σ3(x)} such that, for any
x∈ [0,1]d,

|ϕ(x;θ,α,β)−f(x)|≤2ωf (2
√
d)2−W +ωf (2

√
d2−W) (3.6)

for any x=(x1,·· · ,xd)∈ [0,1]d. The total number of parameters in {θ,α,β} is bounded
by 2W 2+(d+22)W +1.

In the above theorem, ωf (·) is the modulus of continuity of f defined as

ωf (r) :=sup
{
|f(x)−f(y)| :∥x−y∥2≤ r, x,y∈ [0,1]d

}
, (3.7)

for any r≥0, where ∥x∥2=
√

x2
1+x2

2+ ·· ·+x2
d for any x=(x1,x2, ·· · ,xd)∈Rd. In The-

orem 1.1 in [64], it was shown that only W parameters in the Floor-Exponential-Sign
network depend on f . However, introducing more parameters in the reproducing activa-
tion function concept may alleviate the optimization difficulty of identifying parameters.
We would like to point out that, although the approximation power of the network in
Theorem 3.2 is very attractive, there are no efficient optimization methods for train-
ing networks with piecewise constant activation functions. Hence, it is worth exploring
other reproducing activation functions as we shall see in the next part.

S. LIANG, L. LYU, C. WANG, AND H. YANG. 295

3.2.3. Example 3: Poly-Sine-Gaussian. Finally, we propose the poly-sine-
Gaussian network usingA={x,x2,sin(x),e−x2} such that NNs can reproduce traditional
approximation tools efficiently, e.g., orthogonal polynomials, Fourier basis functions,
wavelets, radial basis functions, etc. Therefore, this new NN may approximate a wide
class of target functions with a smaller number of parameters than existing NNs, e.g.,
ReLU NNs, since existing approximation theory with a continuous weight selection of
ReLU NNs is established by using ReLU networks to approximate x and x2 as basic
building blocks. We present several theorems proved in the Appendix to illustrate the
approximation capacity of this new network.

Theorem 3.3 (Reproducing Polynomials). Assume P (x)=
∑J

j=1 cjx
αj for αj ∈

Nd. For any N,L,a,b∈N+ such that ab≥J and (L−2b−blog2N)N ≥ bmaxj |αj |, there
exists a poly-sine-Gaussian network ϕ with width 2Na+d+1 and depth L such that
ϕ(x)=P (x) for any x∈Rd.

The proof of Theorem 3.3 can be found in Appendix A. Theorem 3.3 characterizes
how well poly-sine-Gaussian networks reproduce arbitrary polynomials including orthog-
onal polynomials. Compared to the results of ReLU NNs for polynomials in [45, 76],
poly-sine-Gaussian networks require fewer parameters. Orthogonal polynomials are
important tools for classical approximation theory and numerical computation. For ex-
ample, the Chebyshev series lies at the heart of approximation theory. In particular, for
analytic functions, the truncated Chebyshev series defined as fn(x)=

∑n
k=0 ckTk(x/M)

are exponentially accurate approximations by Theorem 8.2 [72], where Tk is the Cheby-
shev polynomial of degree k defined on [−1,1]. More precisely, for some scalars M ≥1

and s>1, if we define aMs =M s+s−1

2 ,bMs =M s−s−1

2 , and the Bernstein s-ellipse scaled

to [−M,M], EM
s =

{
x+ iy∈C : x2

(aM
s)2

+ y2

(bMs)2
=1
}
, then we have the following theorem.

Theorem 3.4 (Exponential Approximation Rate). For any M ≥1, s>1, Cf >0, 0<
ϵ<1, and any real-valued analytic function f on [−M,M] that is analytically continuable
to the open ellipse EM

s , where it satisfies |f(x)|≤Cf , there is a poly-sine-Gaussian
network ϕ with width 2N+2 and depth L such that ∥ϕ(x)−f(x)∥L∞([−M,M])≤ ϵ, where

N and L are positive integers satisfying (L−2n−2−(n+1)log2N)N ≥n(n+1) and

n=O
(

1
log2 s

log2
2Cf

ϵ

)
.

The proof of Theorem 3.4 can be found in Appendix B. By choosing N =O(n)
and L=O(n log2(n)) in Theorem 3.4, the width and depth of ϕ are O

(
log2

1
ϵ

)
and

O
((
log2

1
ϵ

)
log2

(
log2

1
ϵ

))
, respectively, leading to a network size smaller than that of the

ReLU NN in Theorem 2.6 in [54].
Next, we prove the approximation of poly-sine-Gaussian networks to generalized

bandlimited functions below.

Definition 3.1. Let d≥2 be an integer, M ≥1 be a scalar, and B=[0,1]d. Suppose
K :R→C is analytic and bounded by a constant DK ∈ (0,1] on [−dM,dM] and K sat-
isfies the assumption of Theorem 3.4 for s>1 and CK >0. We define the Hilbert space
HK,M (B) of generalized bandlimited functions via

HK,M (B)=

{
f(x)=

∫
[−M,M]d

F (w)K(w ·x)dw
F : [−M,M]d→C is in L2([−M,M]d)

}
, (3.8)

with ⟨f,g⟩HK,M (B) :=
∫
[−M,M]d

Ff (w)F g(w)dw and its induced norm ∥f∥HK,M (B), where

Ff =argminF∈Sf ∥F∥L2([−M,M]d) and Sf =

{
F

f(x)=
∫
[−M,M]d

F (w)K(w ·x)dw
}
.

296 REPRODUCING ACTIVATION FUNCTION

Note that HK,M (B) is a reproducing kernel Hilbert space (RKHS); a classical exam-
ple of interest is K(t)=eit. For simplicity, we will use F instead of Ff for f ∈HK,M (B),
when the dependency on f is clear.

Theorem 3.5 (Dimension-Independent Approximation). For any real-valued
function f in HK,M (B), M ≥1, s>1, CK >0, and d≥2. Assume

∫
Rd |F (w)|dw=∫

[−M,M]d
|F (w)|dw=CF . For any measure µ and ϵ∈ (0,1), there exists a poly-sine-

Gauss. network ϕ on B=[0,1]d, that has width O
(

4CF

√
µ(B)

ϵ2 log2 s
log2

4CF

√
µ(B)CK

ϵ

)
and

depth O
((

1
log2 s

log2
4CF

√
µ(B)CK

ϵ

)
log2 log2

4CF

√
µ(B)CK

ϵ

)
such that ∥ϕ−f∥L2(µ,B)=√∫

B
|ϕ(x)−f(x)|2dµ(x)≤ ϵ.

The proof of Theorem 3.5 can be found in Appendix C. We would like to revisit the
discussion in [2, 54] about CF and µ(B). If F is a mollifier then CF =1, whereas if F
is a normal distribution truncated to [−M,M]d then CF <1. In general, however, CF

might grow algebraically or exponentially with the dimension d. If µ is a probability
measure, then µ(B)≤1 for any compact domain B. If µ is a Lebesgue measure, then
µ(B)=1 for B=[0,1]d, but grows exponentially with the dimension d if B=[0,ℓ]d, ℓ>1.
Hence, the curse of dimensionality of approximation may exist due to large CF and
µ(B). However, the approximation rate of poly-sine-Gaussian networks is dimension-
independent. Compared to ReLU networks in Theorem 3.2 in [54] approximating the
same bandlimited function, the poly-sine-Gaussian network in Theorem 3.5 requires
fewer parameters.

Poly-sine-Gaussian networks can also reproduce typical applied harmonic analysis
tools as in the following lemma, the proof of which can be found in Appendix D.

Lemma 3.1.

(i) Poly-sine-Gaussian networks can reproduce all basis functions in the discrete
cosine transform and the discrete windowed cosine transform with a Gaussian
window function in an arbitrary dimension.

(ii) Poly-sine-Gaussian networks with complex parameters can reproduce all basis
functions in the discrete Fourier transform and the discrete Gabor wavelet trans-
form in an arbitrary dimension.

Fig. 3.1: The comparison of fitted signal and training curves on two audio clips, Bach and Counting,
for SIREN and our RAFs (Sine and Sine-Gaussian).

S. LIANG, L. LYU, C. WANG, AND H. YANG. 297

(a) Camera (b) Astronaut (c) Cat (d) Coin

Fig. 3.2: Training dataset for fitting images in coordinate-based data representation.

Activation Camera Astronaut Cat Coin

SIREN 45.80/0.9913 44.84/0.9962 49.58/0.9970 43.05/0.9868
Sine 60.60/0.9995 59.37/0.9997 65.94/0.9999 62.66/0.9998

Poly-Sine 61.21/0.9996 59.99/0.9997 66.41/0.9999 63.57/0.9998
Poly-Sine-Gauss. 73.80/1.0000 70.98/1.0000 82.55/1.0000 74.92/1.0000

Table 3.1: The comparison of PSNR/SSIM of the fitted images using SIREN and our RAFs (Sine,
Poly-Sine, Poly-Sine-Gauss.). The larger these numbers, the better the performance.

Lemma 3.1 above implies that poly-sine-Gaussian networks may be useful in many
computer vision and audio tasks involving Fourier transforms and wavelet transforms.
Due to the advantage of wavelets to represent functions with singularity, poly-sine-
Gaussian networks may also be useful in representing functions with singularity. We
would like to highlight that the Gaussian function may not be the optimal choice in
the concept of RAF. Other window functions in wavelet analysis may provide better
performance and this would be problem-dependent.

Finally, we have the next lemma for radial basis functions. The proof of Lemma 3.2
can be found in Appendix E.

Lemma 3.2. Poly-sine-Gaussian networks can reproduce Gaussian radial basis func-
tions and approximate radial basis functions defined on a bounded closed domain with
analytic kernels with an exponential approximation rate.

We will conclude this section with an informal discussion about the NTK of poly-
sine-Gaussian networks. As we discussed in Section 2, deep learning can be approxi-
mated by kernel methods with a kernel Θ̂0 in (2.14). Therefore, from the perspective of
kernel regression for regressing f(x) with training samples {(xi,f(xi))}Ni=1, Θ̂0(x,xi)
quantifies the similarity of the point x and a training point xi∈X and, hence, serves
as a weight of f(xi) in a toy regression formulation: ϕ(x;ω) :=

∑N
i=1ωif(xi)Θ̂(x,xi),

where ω=[ω1,. ..,ωN] is a set of learnable parameters and ϕ(x;ω) is the approximant
of the target function f(x). To enable a kernel method to learn both smooth functions
and highly oscillatory functions, the kernel function Θ̂ should have a widely spreading
Fourier spectrum. By using sin(βx) with a tunable β in the poly-sine-Gaussian, the
poly-sine-Gaussian network could learn an appropriate kernel for both kinds of func-
tions. Similarly, by using exp(−(βx)2)) with a tunable β in the poly-sine-Gaussian,
the poly-sine-Gaussian network could learn an appropriate kernel for both smooth and
singular functions. We will provide numerical examples to demonstrate this empirically
in the next section.

298 REPRODUCING ACTIVATION FUNCTION

4. Numerical results
In this section, we will illustrate the advantages of RAFs in two kinds of applications,

data representation and scientific computing. The optimal choice of basic activation
functions would be problem-dependent.

4.1. Coordinate-based data representation. We verify the performance of
RAFs on data representations using coordinate-based NNs. Mean square error (MSE)
quantifies the difference between the ground truth and the NN output. Standard NNs,
e.g., ReLU NNs, were shown to have poor performance to fit high-frequency components
of signals [67,71]. SIREN activation function [67], i.e., sin(30x), improves the ability of
NNs to represent complex signals.

As we discussed in Section 3.2, the SIREN function is a special case of the poly-
sine-Gaussian activation function in our framework. We will show that the poly-sine-
Gaussian activation function can provide better performance than SIREN when the
combination coefficients α and the scaling parameters β are specified or trained ap-
propriately in a problem-dependent manner. We follow the official implementation of
SIREN on representations of audio, image, and video signals (refer to [67] for details).
The main difference between the SIREN code and ours is the activation function. In
coordinate-based data representation, fully connected networks are memory-efficient
and continuous representations for objects such as shapes or scenes. One important
application is signal compression [15,69], where the signal is stored in the parameters of
a neural network. The training error characterizes how well the network fits the data.
Additionally, we compare our method with SIREN [67] and report the training loss
as done in SIREN. All trainable parameters are trained to minimize the empirical loss
function in (3.2). The NN is optimized by Adam optimizer with an initial learning rate
10−4 and cosine learning rate decay.

4.1.1. Audio signal. We start by modeling audio signals on two audio clips,
Bach and Counting as shown in Figure 3.1. An NN is trained to regress from a
one-dimensional time coordinate to the corresponding sound level. Note that audio
signals are purely oscillatory signals. Therefore, in the reproducing activation frame-
work, x and x2 are not necessary. We apply two forms of RAFs, Sine, and Sine-
Gaussian. The Sine one is set as α1 sin(β1x), while the Sine-Gaussian one is set as
α1 sin(β1x)+α2exp(−x2/(2β2

2)), where α1 is initialized as N (2,0.1), α2 is initialized as
N (1.0,0.1), β1 is initialized as N (30,0.001), and β2 is initialized with a uniform distri-
bution U(0.01,0.05). We use a 3-hidden-layer neural network with 256 neurons per layer
to fit the audio signal following the network structure of SIREN. The NNs are trained
for 2000 iterations. Figure 3.1 displays the fitted signals and training curves. Figure 3.1
shows our method has the capacity of modeling the audio signals more accurately than
SIREN and leads to a smaller error in regression. Besides, our RAFs can converge to
a better local minimum at a faster speed compared with SIREN. Moreover, we can see
the add-in Gaussian function enhances the fitting ability.

4.1.2. Image signal. We regress a grayscale image by learning a mapping
from two-dimensional pixel coordinates to the corresponding pixel value. Four images
of size 256×256 are used, including Camera, Astronaut, Cat, and Coin (as shown in
Figure 3.2), which are available in Python Pillow. Note that images usually contain a
cartoon part and a texture part. We apply three types of RAFs for image fitting: Sine,
α1 sin(β1x); Poly-Sine, α1 sin(β1x)+α3x+α4x

2; and Poly-Sine-Gaussian,

α1 sin(β1x)+α2exp(−x2/(2β2
2))+α3x+α4x

2. (4.1)

S. LIANG, L. LYU, C. WANG, AND H. YANG. 299

0 250 500 750 1000 1250 1500 1750 2000

Iteration

10 2

10 1

100

M
SE

ReLU (width:64, hidden:3, #params:12.7k)
ReLU (width:64, hidden:4, #params:16.9k)
ReLU (width:64, hidden:5, #params:21.1k)
ReLU (width:64, hidden:6, #params:25.2k)
Sine-Poly-Gauss. (width:64, hidden:3, #params:14.3k)
Poly-Sine-Gauss. (width:64, hidden:4, #params:18.8k)

(a) Layer

0 250 500 750 1000 1250 1500 1750 2000

Iteration

10 2

10 1

100

M
SE

ReLU (width:32, hidden:3, #params:3.3k)
ReLU (width:64, hidden:3, #params:12.7k)
ReLU (width:128, hidden:3, #params:50.0k)
Poly-Sine-Gauss. (width:32, hidden:3, #params:4.1k)
Sine-Poly-Gauss. (width:64, hidden:3, #params:14.3k)

(b) Width

Fig. 4.1: Comparison of training loss for fitting the image “Astronaut” with different activation

functions in neural networks of different numbers of neurons (width) and hidden layers.

Fig. 4.2: Comparison of the video frames fitted by different activation functions and the corresponding
training curves.

Here, α1, α2, α3, α4, β1, and β2 are initialized as N (2,0.1), N (1,0.1), N (0.0,0.1),
N (1.0,0.1), N (30,0.001), and U(0.01,0.05), respectively. An NN with 3 hidden layers
and 256 neurons per layer is trained for 2,000 iterations. Here we use peak signal-to-
noise ratio peak (PSNR) and structural similarity (SSIM) to characterize the quality of
the fitted image.

Table 3.1 summarizes the PSNR and SSIM of the fitted images showing that RAFs
outperform SIREN by a significant margin.

Since RAF is applied to each hidden neuron, the cost caused by RAF will grow
linearly with the number of hidden nodes, while the cost increases quadratically with the
number of hidden nodes for the ReLU network. Second, the improvement benefited by
RAF is more significant than that benefited by enlarging the network size. In Figure 4.1,
we compare the training loss for different network sizes by increasing the width of the
hidden layer or the number of hidden layers. We can see the training loss decreases with
the growth of the network size for specific activation functions, but it is marginal simply
by increasing the width of the hidden layer or the number of hidden layers. However,
the Poly-Sine-Gaussian network with 14.3k parameters achieves significantly lower error
than the ReLU network with 25.2k parameters or 50.0k parameters.

4.1.3. Video signal. We fit a color video named BIKE with 250 frames available
in Python Skvideo Package (example frames can be seen in Figure 4.2). The regression
is from three-dimensional coordinates to RGB pixel values. We apply Sine-Guassian as
defined in Section 4.1.1, but α1, α2, β1 and β2 are initialized by N (1,0.1), N (1,0.1),

300 REPRODUCING ACTIVATION FUNCTION

N (30,0.001) and U(0.002,0.01), respectively. An NN with 3 hidden layers and 400
neurons per layer is trained for 100,000 iterations. Figure 4.2 displays the video frames
fitted by different activation functions and the training curves of video fitting for different
activation functions, and our Sine-Gaussian can lead to a better minimizer. Computed
with 250 frames, our Sine-Gaussian achieves a larger mean PSNR (32.79) than SIREN
(32.17), and has a smaller standard derivation of PSNR (2.10) than SIREN (2.16).

4.2. Scientific computing applications. We will compare the proposed poly-
sine-Gaussian RAF with existing activation functions, e.g., the ReLU function, the
ReLU3 function, and the rational activation function in [5]. We will also provide an
ablation study to justify the combination of A={x,x2,sin(x),exp(−x2)} in the poly-
sin-Gaussian network.

The Adam optimizer is employed to minimize the loss functions discussed in Section
2 for regression and solving PDEs. Besides, we will follow the approach of [26] for the
loss function of eigenvalue problems.

The overall setting for all examples is summarized as follows.

Optimization. Adam [36] is used with the default hyperparameters. The learning
rate decreases step by step in all examples following the formula τn= τ0 ∗q⌊

n
s ⌋, where τn

is the learning rate in the n−th iteration, q is a factor set to be 0.95, and s means that
we update learning rate after s steps. The number of training and testing samples for
regression and PDE problems are 10,000. The number of training and testing samples
for eigenvalue problems are 2,048 following the approach in [26].

Network setting. In all PDE examples, we construct a special network that
satisfies the given boundary condition as discussed in Section 2.3. In all examples,
we apply ResNet with two residual blocks and each block contains two hidden layers.
The width is set as 50 unless specified. Unless specified particularly, all weights and
biases in the ℓ-th layer are initialized by U(−1/

√
Nℓ−1,1/

√
Nℓ−1), where Nℓ−1 is the

width of the (ℓ−1)-th layer. Note that the network with RAFs can be expressed by a
network with a single activation function in each neuron but different neurons can use
different activation functions. For example, in the case of poly-sine-Gaussian networks,
we will use 1/4 neurons within each layer with x activation function, 1/4 with x2,
1/4 with sin(x), and 1/4 with exp(−x2) for coding simplicity. In the case of poly-sine
networks, 1/3 neurons for x, x2, and sin(x) activation functions. In this new setting, it
is not necessary to train extra combination coefficients in the RAF. Though training the
scaling parameters in the RAF might be beneficial in general applications, we focus on
justifying the poly-sine-Gaussian function without emphasizing the scaling parameters.
Hence, in almost all tests, the scaling parameters are set to be one for x, x2, and sin(x),
and the scaling parameter is set to be 0.1 for exp(−x2). In the case of oscillatory
target functions, we specify the scaling parameter of sin(x) to introduce oscillation in
the NTK as we shall discuss and improved performance is observed. The idea of scaling
parameters has been tested and verified in [31,32].

Performance evaluation. We define the relative L2 test error by(∑N
i=1(u(xi)−û(xi))

2∑N
i=1u

2(xi)

) 1
2

, where {xi}Ni=1 are random samples uniformly distributed in the

function domain, u is the ground true solution, and û is the estimation by deep learning.
We will use two criteria to evaluate the performance of different activation functions
based on relative L2 error on test samples. Since the ground truth solution is not avail-
able in real-world applications, we cannot determine when to end training. To address
this, we will track two test error measures:

S. LIANG, L. LYU, C. WANG, AND H. YANG. 301

• Min: The minimum relative L2 test error of the past given iteration.

• Moving-average: The average L2 test error of the past 100 iterations at a given
iteration.

The second criterion is the condition number of the NTK matrices. A smaller condition
number usually leads to a smaller iteration number to achieve the same accuracy.

4.2.1. Discontinuous function regression. We first show the advantage
of the poly-sine-Gaussian activation function by regressing a discontinuous function,
f(x)=−2x+1, when x≥0, f(x)=−2x−1, when x<0, on the domain Ω=[−1,1]. The
relative L2 error is presented in Table 4.1 and the training process is visualized in
Figure 4.3(a). The regression result shows that the poly-sine-Gaussian activation has
the best performance. We would like to remark that rational activation [5] works well
for regression problems but fails in our PDE problems without meaningful solutions.
Hence, we only compare RAFs with rational activation functions in this example. The
numerical results justify the combination of four kinds of activation functions. Remark
that the computational time of rational activation functions is twice the time of RAFs,
though their accuracy is almost the same.

Relative L2 Relative L2 Forward Backward
Activation Function Error (Moving Error Evaluation Propagation

-Average) (Min) Time Time
ReLU 6.61 e-02 4.16 e-02 1.98 e-03 3.05 e-03
ReLU3 1.13 e-01 9.71 e-02 2.07 e-03 3.43 e-03
x⊕x2 3.71 e-01 3.46 e-01 4.79 e-03 5.44 e-03

x⊕x2⊕ReLU 9.98 e-02 7.61 e-02 3.33 e-03 4.12 e-03
x⊕x2⊕ReLU3 9.12 e-02 6.85 e-02 3.62 s-03 4.34 e-03
x⊕x2⊕sin(x) 9.07 e-02 7.27 e-02 4.83 e-03 6.92 e-03

x⊕x2⊕sin(x)⊕ Gaussian 3.46 e-02 1.08 e-02 5.92 e-03 8.91 e-03
Rational function 3.94 e-02 5.84 e-03 5.31 e-03 2.03 e-02

Table 4.1: The performance comparison for the regression problem in terms of the accuracy after
50,000 iterations and the average computational time for one forward or backward evaluation. ⊕ means
that the activation function is applied together with other activation functions.

Relative L2 Relative L2 Optimization
Activation Function Error (Moving Error Time (Per

-Average) (Min) Iteration)

ReLU3 1.38 e-03 2.99 e-04 5.86 e-02
x⊕x2 4.48 e-04 4.26 e-04 6.87 e-02

x⊕x2⊕ReLU 4.48 e-04 4.12 e-04 8.20 e-02
x⊕x2⊕ReLU3 1.40 e-03 9.88 e-04 9.33 e-02
x⊕x2⊕sin(x) 4.18 e-04 3.82 e-04 8.64 e-02

x⊕x2⊕sin(x)⊕ exp(−x2) 6.87 e-05 6.36 e-05 1.11 e-01

Table 4.2: The accuracy and computational cost for the Poisson equation defined in (4.2) with a
smooth solution.

4.2.2. Poisson equation with a smooth solution. Now we solve a two-
dimensional Poisson equation

−∆u=f for x∈Ω and u=0 for x∈∂Ω (4.2)

302 REPRODUCING ACTIVATION FUNCTION

0.0 0.2 0.4 0.6 0.8 1.0
Iterations numbers ×104

10−1

100

Re
la

tiv
e
L2

 e
rro

r

ReLu(x)
ReLu(x)3

x⊕ x2

x⊕ x2 ⊕ReLu(x)
x⊕ x2 ⊕ReLu(x)3

x⊕ x2 ⊕ sin(x)
x⊕ x2 ⊕ sin(x) ⊕ Gaussian
Rational

(a) Regression

0.0 0.2 0.4 0.6 0.8 1.0
Iterations numbers ×105

10−4

10−3

10−2

10−1

100

Re
la

tiv
e
L2

 e
rro

r

ReLU3

x⊕ x2

x⊕ x2 ⊕ ReLU
x⊕ x2 ⊕ ReLU3

x⊕ x2 ⊕ sin(x)
x⊕ x2 ⊕ sin(x) ⊕ Gaussian

(b) Poisson equation

0 1 2 3
Iterations numbers ×105

10−4

10−3

10−2

10−1

100

Re
la

tiv
e
L2

 e
rro

r

ReLU3

x⊕ x2

x⊕ x2 ⊕ ReLU
x⊕ x2 ⊕ ReLU3

x⊕ x2 ⊕ sin(x)
x⊕ x2 ⊕ sin(x) ⊕ Gaussian

(c) Non-smooth solution

0 1 2 3
Iterations numbers ×105

10−3

10−2

10−1

100
Re

la
tiv

e
L2

 e
rro

r
ReLU3

Sin
Swish
Tanh

(d) Non-smooth solution with other acti-
vation function

Fig. 4.3: The training process of (a) the regression problem, (b) the Poisson equation in (4.2) with a
smooth solution, and (c) the Equation (4.3) with a solution which is not smooth at the origin.

with a smooth solution u(x)=x2
1(1−x1)x

2
2(1−x2) defined on Ω=[0,1]2. The numerical

solution can be constructed as û(x;θ)=
(
Π2

i=1xi(1−xi)
)
ϕ(x;θ), where ϕ(x;θ) is an NN.

We apply the loss function (2.7) to identify an estimated solution. The relative L2 errors
for different activation functions are shown in Table 4.2 and the corresponding train-
ing process is visualized in Figure 4.3(b). The RAF with A={x,x2,sin(x),exp(−x2)}
achieves the best performance. The networks with other activation functions reach
local minima and cannot escape from these minima after 20k iterations, while the poly-
sine-Gaussian network continuously reduces the error even after 50k iterations. The
numerical results also justify the combination of four kinds of activation functions. The
proposed activation functions can improve the accuracy by one to two digits while the
computational cost only increases by a factor of 2.

4.2.3. PDE with low regularity. Next, we consider a two-dimensional PDE

−∇·(|x|∇u)=f for x∈Ω and u=0 for x∈∂Ω (4.3)

S. LIANG, L. LYU, C. WANG, AND H. YANG. 303

with a solution u(x)=sin(2π(1−|x|)) defined on Ω={x : |x|≤1}. The exact solution
has low regularity at the origin. Let û(x;θ)=(1−|x|)ϕ(x;θ), where ϕ(x;θ) is an NN and
û(x;θ) satisfies the boundary condition automatically. The loss function (2.7) is used to
identify an estimated solution to the Equation (4.3). The relative L2 errors for different
activation functions are shown in Table 4.3 and the training curves are visualized in
Figure 4.3(c). Since the true solution has low regularity, it is more challenging than the
Example (4.2) to obtain good accuracy. The RAF with A={x,x2,sin(x),exp(−x2)}
achieves the lowest test error, which justifies the combination of four activation func-
tions. The proposed activation functions can improve the accuracy by one digit while
the computational cost only increases by a factor of 2.

Relative L2 Relative L2 Optimization
Activation Function Error (Moving Error Time (Per

-Average) (Min) Iteration)

ReLU3 1.49 e-03 2.99 e-04 5.83 e-02
x⊕x2 4.39 e-02 2.97 e-02 6.98 e-02

x⊕x2⊕ReLU 6.06 e-01 1.20 e-01 8.27 e-02
x⊕x2⊕ReLU3 9.48 e-04 2.35 e-04 9.17 e-02
x⊕x2⊕sin(x) 2.42 e-03 7.82 e-04 8.71 e-02

x⊕x2⊕sin(x)⊕ Gaussian 1.91 e-04 3.96 e-05 1.09 e-01

Table 4.3: The accuracy and computation cost for (4.3) with a solution that is not smooth at the
origin.

4.2.4. PDE with an oscillatory solution. Next, to verify the performance
of sin(x) in the RAF, we consider a two-dimensional nonlinear PDE as follows,

−∆u+(u+2)2=f for x∈Ω (4.4)

with a Dirichlet boundary condition and an oscillatory solution u(x)=
sin(6πx1)sin(6πx2) defined on Ω=[0,1]2. The NN is constructed as in Section 4.2.2
with width 100. The least squares method is used to identify the NN solution. The
test error is shown in Table 4.4 and Figure 4.4(a). RAFs with {x,x2,sin(x),exp(−x2)}
achieve the best performance.

As discussed in Section 3, introducing oscillation in NNs is crucial to lessen the
spectral bias of NNs. Fixing different scaling parameters in sin(x) can help to lessen
the spectral bias better and obtain a high-resolution image reconstruction [71]. There-
fore, in the case of oscillatory target functions, we also specify scaling parameters in
sin(x) to verify the performance. If n sine functions are used in a layer, we will use
{sin(2πx),sin(4πx),. ..,sin(2nπx)}. Besides, it is also of interest to see the performance
of cos(x). Since specifying a wide range of scaling parameters in every hidden layer
creates too much oscillation, we only specify scaling parameters either in the first or
the last hidden layer. Therefore, four tests were conducted and the results are shown
in Table 4.5 and Figure 4.4(b). The results show that cos(x) does not have an effective
gain, but specifying different scaling parameters improves the performance, especially
in the first hidden layer. Furthermore, we consider a more high oscillatory solution
u(x)=sin(40πx1)sin(40πx2). ReLU

3, x⊕x2⊕sin(x) and x⊕x2⊕sin(x) (first) ⊕ Gaus-
sian is compared as activation function. The numerical result can be seen in Table
4.6 and Figure 4.5. The proposed activation functions can improve the accuracy by
one digit while the computational cost only increases by a factor of 2 in the case of
non-oscillatory solutions. In the case of oscillatory solutions, the proposed activation
function can significantly improve the accuracy and computational cost.

304 REPRODUCING ACTIVATION FUNCTION

Relative L2 Relative L2 Optimization
Activation Function Error (Moving Error Time (Per

-Average) (Min) Iteration)

ReLU3 3.16 e-05 3.01 e-05 7.10 e-02
x⊕x2 9.45 e-02 8.03 e-02 8.22 e-02

x⊕x2⊕ReLU 3.81 e+01 9.99 e-01 1.02 e-01
x⊕x2⊕ReLU3 3.15 e-05 2.93 e-05 1.10 e-01
x⊕x2⊕sin(x) 4.69 e-06 4.48 e-06 1.09 e-01

x⊕x2⊕sin(x)⊕ Gaussian 3.35 e-06 3.21 e-06 1.29 e-01

Table 4.4: The accuracy and computation cost for the equation in (4.4) with an oscillatory solution.

0.0 0.5 1.0 1.5 2.0
Iterations numbers ×106

10−4

10−2

100

102

Re
la

tiv
e
L2

 e
rro

r

ReLU3

x⊕ x2

x⊕ x2 ⊕ ReLU
x⊕ x2 ⊕ ReLU3

x⊕ x2 ⊕ sin(x)
x⊕ x2 ⊕ sin(x) ⊕ Gaussian

(a) Oscillatory solution

0.0 0.5 1.0 1.5 2.0
Iterations numbers ×106

10−5

10−3

10−1

Re
la

tiv
e
L2

 e
rro

r

x⊕ x2 ⊕ sin(x) (first)
x⊕ x2 ⊕ sin(x) (last)
x⊕ x2 ⊕ sin(x) ⊕ cos(x) (first)
x⊕ x2 ⊕ sin(x) ⊕ cos(x) (last)
x⊕ x2 ⊕ sin(x)

(b) Different scaling params

Fig. 4.4: The training process of the Equation (4.4) with an oscillatory solution. Here “first” and
“last” refer to the locations of pre-fixed scaling parameters.

0.0 0.2 0.4 0.6 0.8 1.0
Iterations numbers ×105

10−3

10−2

10−1

100

101

Re
la

tiv
e
L2

 e
rro

r

ReLU3

x⊕ x2 ⊕ sin(x) (first)
x⊕ x2 ⊕ sin(x) (First) ⊕Gaussian

Fig. 4.5: The training process of the Equation (4.4) with solution u(x)=sin(40πx1)sin(40πx2).

4.2.5. Nonlinear Schrödinger equation. We consider a nonlinear
Schrödinger operator with a cubic term,

Lφ=−∆φ+φ3+V φ, in Ω=[0,2π]d, (4.5)

S. LIANG, L. LYU, C. WANG, AND H. YANG. 305

Relative L2 Relative L2 Optimization
Activation Function Error (Moving Error Time (Per

-Average) (Min) Iteration)
x⊕x2⊕sin(x) (first) 2.31 e-07 2.22 e-07 1.04 e-01
x⊕x2⊕sin(x) (last) 2.14 e-06 2.99 e-06 1.05 e-01

x⊕x2⊕sin(x)⊕cos(x) (first) 3.79 e-07 3.62 e-07 1.11 e-01
x⊕x2⊕sin(x)⊕cos(x) (last) 1.90 e-03 6.73 e-06 1.09 e-01

Table 4.5: The accuracy and computation cost for the Equation (4.4) when the scaling parameters
of sine activation functions either in the first hidden layer or the last hidden layer are pre-fixed.

Relative L2 Relative L2 Optimization
Activation Function Error (Moving Error Time (Per

-Average) (Min) Iteration)

ReLU3 3.09 0.99 6.73 e-01
x⊕x2⊕sin(x) 1.61 e-02 1.57 e-02 1.08 e-01

x⊕x2⊕sin(x)⊕ Gaussian 6.58 e-04 5.54 e-04 1.28 e-01

Table 4.6: The accuracy for the equation in (4.4) with solution u(x)=sin(40πx1)sin(40πx2).

where V (x)=− 1
c2 exp(

2
d

∑d
i=1cosxi)+

∑d
i=1(

sin2xi

d2 − cosxi

d)−3. Here, λ=−3 and

φ(x)=exp(1d
∑d

j=1 cos(xj))/c is the leading eigenpair of the operator L. c is a posi-

tive constant such that
∫
Ω
φ2(x)dx= |Ω|. We follow the approach in [26] to solve the

leading eigenpair. The NN used in [26] consists of two parts: (1) the first hidden layer
uses sin(x) and cos(x) with different frequencies so that the whole network satisfies
periodic boundary conditions; (2) the other hidden layers use ReLU activation func-
tions. We compare three activation functions, ReLU, ReLU3, and poly-sine-Gaussian,
after the first hidden layer. For d=5, the relative L2 errors are 0.307, 6.38e−03, and
2.09e−03, respectively. For d=10, the relative L2 errors are 0.223, 4.59 and 1.10e−03,
respectively. Figure 4.6(a) and 4.6(b) display the training curves for d=5 and d=10,
respectively. One can see that poly-sine-Gaussian reaches a smaller minimum than
ReLU, ReLU3.

0 1 2 3 4 5 6
Iterations numbers ×104

10−2

10−1

100

101

Re
la

tiv
e
L2

 e
rro

r

ReLU3

ReLU
x⊕ x2 ⊕ sin(x) ⊕ Gaussian

(a) Eigenpair d=5

0 1 2 3 4 5 6 7 8
Iterations numbers ×104

10−3

10−2

10−1

100

Re
la

tiv
e
L2

 e
rro

r

ReLU3

ReLU
x⊕ x2 ⊕ sin(x) ⊕ Gaussian

(b) Eigenpair d=10

0 1 2 3 4 5
Iterations numbers ×104

10−4

10−3

10−2

10−1

100

Re
la

tiv
e
L2

 e
rro

r

ReLU3

x⊕ x2 ⊕ sin(x) ⊕ Gaussian
ReLU3 + SelectNet
x⊕ x2 ⊕ sin(x) ⊕ Gaussian + SelectNet

(c) SelectNet

Fig. 4.6: Training process with different activation functions for the Equation (4.5) when (a) d=5
and (b) d=10, and (c) the Equation (4.6) using SelectNet.

306 REPRODUCING ACTIVATION FUNCTION

4.2.6. SelectNet. We consider solving high dimensional PDE using Select-
Net [22]:

−∇(a(x)∇u)+µ|u|=f, x∈Ω={x : |x|<1},
u(x)=g(x), x∈∂Ω,

(4.6)

with a(x)=1+ 1
2 |x|

2. In this case, we specify the exact solution by

u(x)=sin(
π

2
(1−|x|))2.5. (4.7)

Let µ=1 and d=10. The problem is non-linear and defined in high dimensions. A
DNN ϕ(x;θ) is used to approximate the solution u(x), and we also introduce a DNN
ϕs(x,θs)∈ [m1,m2] for weighting. The loss function is defined as

min
θ

max
θs

L(θ,θs)=Ex∈Ω[ϕs(x,θs)|−∇(a(x)∇θ)+µ|θ|−f |2]

+λEx∈∂Ω[ϕs(x,θs)|ϕ(x,θ)−g(x)|2]

−ϵ−1(
1

|Ω|

∫
Ω

ϕs(x,θs)−1)2−ϵ−1(
1

|∂Ω|

∫
∂Ω

ϕs(x,θs)−1)2. (4.8)

The numerical result is shown in Table 4.7 and Figure 4.6(c). We compared the ReLU3

and x⊕x2⊕sin(x)⊕ Gaussian as activation functions under the condition of whether
or not we use SelectNet. One can find x⊕x2⊕sin(x)⊕ Gaussian cooperating with
SelectNet gets the best result. The proposed activation functions can improve the
accuracy by one digit while the computational cost only increases by a factor of 2.

Relative L2 Relative L2 Optimization
Activation Function Error (Moving Error Time (Per

-Average) (Min) Iteration)

ReLU3 7.74 e-4 6.88 e-04 4.9 e-01
x⊕x2⊕sin(x)⊕ Gaussian 3.46 e-04 2.06 e-04 5.4 e-01

ReLU3 + SelectNet 4.33 e-04 1.47 e-04 6.0 e-01
x⊕x2⊕sin(x)⊕ Gaussian + SelectNet 7.72 e-05 4.74 e-05 7.9 e-01

Table 4.7: The accuracy and computational cost for the Equation (4.6).

4.2.7. Neural tangent kernel of PDE solvers. In Section 2.5 analysis, the
condition number of NTK can provide a perspective for understanding the training
behavior of deep learning. We summarize the condition numbers of the NTK matrices
for different PDE problems at the NN initialization with various activation functions
in Table 4.8. We evaluate the NTK matrix using 100 random samples, resulting in a
100×100 size matrix. As shown in the table, the NTKmatrices associated with the poly-
sine-Gaussian activation function exhibit the smallest condition numbers. This finding
supports the improved training convergence of combining basic activation functions in
the poly-sine-Gaussian activation function from the perspective of the NTK theory.

5. Conclusion
We propose RAF and its approximation theory. NNs with this activation function

can reproduce traditional approximation tools (e.g., polynomials, Fourier basis func-
tions, wavelets, radial basis functions) and approximate a certain class of functions

S. LIANG, L. LYU, C. WANG, AND H. YANG. 307

Activation Eqn. (4.2) Eqn. (4.3) Eqn. (4.4)

ReLU3 1.32 e+11 2.60 e+10 3.23 e+11
x⊕x2 4.71 e+11 1.74 e+11 4.28 e+11

x⊕x2⊕ReLU 1.01 e+11 1.09 e+10 3.11 e+10
x⊕x2⊕ReLU3 2.03 e+12 1.65 e+11 3.45 e+11
x⊕x2⊕sin(x) 1.92 e+12 5.18 e+10 1.10 e+11

x⊕x2⊕sin(x)⊕ Gaussian 3.91 e+08 4.11 e+09 1.36 e+10

Table 4.8: The condition number of the NTK matrix in (2.15) of PDE solvers at the NN initialization.

with exponential and dimension-independent approximation rates. We have numeri-
cally demonstrated that RAFs can generate neural tangent kernels with a better con-
dition number than traditional activation functions, which provides a prospective for
understanding the improved optimization convergence using the theory of neural tan-
gent kernel. Extensive experiments on coordinate-based data representation and PDEs
demonstrate the effectiveness of the proposed activation function. We have not ex-
plored the optimal choice of basic activation functions in this paper, which would be
problem-dependent and is left for future work.

Acknowledgments. C.W. is partially supported by the US National Science Foun-
dation CAREER Award DMS-1849483. H.Y. was partially supported by the US Na-
tional Science Foundation CAREER Award DMS-1945029, DMS-2206333, and ONR
Young Investigator Award. S. L. acknowledges the support of the Ross-Lynn fellowship
of Purdue University.

Appendix A. Proof of Theorem 3.3. The proof of Theorem 3.3 relies on the
following lemma.

Lemma A.1.
(i) An identity map in Rd can be realized exactly by a poly-sine-Gaussian network

with one hidden layer and d neurons.

(ii) f(x)=x2 can be realized exactly by a poly-sine-Gaussian network with one hid-
den layer and one neuron.

(iii) f(x,y)=xy= (x+y)2−(x−y)2

4 can be realized exactly by a poly-sine-Gaussian net-
work with one hidden layer and two neurons.

(iv) Assume P (x)=xα=xα1
1 xα2

2 ·· ·xαd

d for α∈Nd. For any N,L∈N+ such that
NL+2⌊log2N⌋≥|α|, there exists a poly-sine-Gaussian network ϕ with width
2N+d and depth L+⌈log2N⌉ such that

ϕ(x)=P (x) for any x∈Rd.

Proof. Part (i) to (iii) are trivial. We will only prove Part (iv). In the case of
|α|=k≤1, the proof is simple and left for the reader. When |α|=k≥2, the main idea
of the proof of (v) can be summarized in Figure A.1. By Part (i), we can apply a poly-
sine-Gaussian network to implement a d-dimensional identity map. This identity map
maintains necessary entries of x to be multiplied together. We apply poly-sine-Gaussian
networks to implement the multiplication function in Part (iii) and carry out the multi-
plication N times per layer. After L layers, there are k−NL≤N multiplications to be
implemented. Finally, these at most N multiplications can be carried out with a small
poly-sine-Gaussian network in a dyadic tree structure.

Now we are ready to prove Theorem 3.3.

308 REPRODUCING ACTIVATION FUNCTION

Proof. (Proof of Theorem 3.3.) The main idea of the proof is to apply Part
(iv) of Lemma A.1 J times to construct J poly-sine-Gaussian networks, {ϕj(x)}Jj=1,
to represent xαj and arrange these poly-sine-Gaussian networks as subnetwork blocks
to form a larger poly-sine-Gaussian network ϕ̃(x) with ab blocks as shown in Figure
A.2, where each red rectangle represents one poly-sine-Gaussian network ϕj(x) and
each blue rectangle represents one poly-sine-Gaussian network of width 1 as an identity
map of R. There are ab red blocks with a rows and b columns. When ab≥J , these
subnetwork blocks can carry out all monomials xαj . In each column, the results of
the multiplications of xαj are added up to the input of the narrow poly-sine-Gaussian
network, which can carry the sum over to the next column. After the calculation of
b columns, J additions of the monomials xαj have been implemented, resulting in the
output P (x).

Fig. A.1: Left: An illustration of the proof of Lemma A.1 (iv). Green vectors represent the input
and output of the poly-sine-Gaussian network carrying out P (x). Blue vectors represent the poly-sine-
Gaussian network that implements a d-dimensional identity map in Part (i), which was repeatedly
applied for L times. Black arrows represent the data flow for carrying out the identity maps. Red
vectors represent the poly-sine-Gaussian networks implementing the multiplication function in Part
(iii) and there are NL such red vectors. Red arrows represent the data flow for carrying out the
multiplications. Finally, a red triangle represents a poly-sine-Gaussian network of width at most 2N
and depth at most ⌈logN2 ⌉ carrying out the rest of the multiplications. Right: An example of the red
triangle is given on the right when it consists of 15 red vectors carrying out 15 multiplications.

By Part (iv) of Lemma A.1, for any N ∈N+, there exists a poly-sine-Gaussian

network ϕj(x) of width d+2N and depth Lj = ⌈ |αj |
N ⌉+⌈log2N⌉ to implement xαj .

Since

bmax
j

Lj ≤ b

(
maxj |αj |

N
+2+log2N

)
,

there exists a poly-sine-Gaussian network ϕ̃(x) of depth b
(

maxj |αj |
N +2+log2N

)
and

width da+2Na+1 to implement P (x) as in Figure A.2. Note that the total width
of each column of blocks is ad+2Na+1 but in fact, this width can be reduced to
d+2Na+1, since the red blocks in each column can share the same identity map of

Rd (the blue part of Figure A.1). Note that b
(

maxj |αj |
N +2+log2N

)
≤L is equivalent

to (L−2b−blog2N)N ≥ bmaxj |αj |. Hence, for any N,L,a,b∈N+ such that ab≥J and
(L−2b−blog2N)N ≥ bmaxj |αj |, there exists a poly-sine-Gaussian network ϕ(x) with

width 2Na+d+1 and depth L such that ϕ̃(x) is a subnetwork of ϕ(x) in the sense of
ϕ(x)=Id◦ ϕ̃(x) with Id as an identify map of R, which means that ϕ(x)= ϕ̃(x)=P (x).
The proof of Part (v) is completed.

S. LIANG, L. LYU, C. WANG, AND H. YANG. 309

Fig. A.2: An illustration of the proof of Theorem 3.3. Green vectors represent the input and output of
the poly-sine-Gaussian network ϕ̃(x) carrying out P (x). Each red rectangle represents one poly-sine-
Gaussian network ϕj(x) and each blue rectangle represents one poly-sine-Gaussian network of width
1 as an identity map of R. There are ab≥J red blocks with a rows and b columns. When ab≥J, these
subnetwork blocks can carry out all monomials xαj . In each column, the results of the multiplications
of xαj are added up to (indicated by black arrows) the input of the narrow poly-sine-Gaussian network,
which can carry the sum over to the next column. Each red arrow passes x to the next red block. After
the calculation of b columns, J additions of the monomials xαj have been implemented, resulting in
the output P (x).

Appendix B. Proof of Theorem 3.4.

Proof. (Proof of Theorem 3.4.) Let M ≥1, s>1, Cf >0 and 0<ϵ<1 be four
scalars, and f be an analytic function defined on [−M,M] that is analytically con-
tinuable to the open Bernstein s-ellipse EM

s , where it satisfies |f(x)|≤Cf . We first
approximate f by a truncated Chebyshev series fn, and then approximate fn by a
poly-sine-Gaussian network ϕ using Theorem 3.3.

Since f is analytic in the open Bernstein s-ellipse EM
s then, for any integer n≥2,

∥fn(x)−f(x)∥L∞([−M,M])≤
2Cfs

−n

s−1
=O

(
Cfs

−n
)
.

Therefore, if we take n=O
(

1
log2 s

log2
2Cf

ϵ

)
, then the above term is bounded by ϵ.

Let us now approximate fn by a poly-sine-Gaussian network ϕ. We first write
fn(x)=

∑n
k=0 ckTk

(
x
M

)
, with

max
0≤k≤n

|ck|=O(Cfs) , via Theorem 8.1 in [72]. (B.1)

Since, fn is a polynomial of degree n, by Theorem 3.3 with d=1, a=1, and b=n+1,
there exists a poly-sine-Gaussian network ϕ with width 2N+2 and depth L such that

ϕ(x)=fn(x)

for x∈R, as long as N and L satisfy (L−2n−2−(n+1)log2N)N ≥n(n+1). This
yields

|ϕ(x)−f(x)|= |fn(x)−f(x)|≤ ϵ.

Appendix C. Proof of Theorem 3.5. To show the approximation of poly-
sine-Gaussian networks to generalized bandlimited functions, we will need Maurey’s
unpublished theorem below. It was used to study shallow network approximation by
Barron in [2].

Theorem C.1 (Maurey’s theorem). Let H be a Hilbert space with norm ∥·∥. Suppose
there exists G⊂H such that for every g∈G, ∥g∥≤ b for some b>0. Then, for every f
in the convex hull of G and every integer n≥1, there is a fn in the convex hull of n
points in G and a constant c>b2−∥f∥2 such that ∥f−fn∥2≤ c

n .

310 REPRODUCING ACTIVATION FUNCTION

Proof. (Proof of Theorem 3.5.) Let f be an arbitrary function in HK,M , and
µ be an arbitrary measure. Let F (w)= |F (w)|eiθ(w). Since f is real-valued, we may
write

f(x)=Re

(∫
Rd

CF e
iθ(w)K(w ·x) |F (w)|

CF
dw

)

=

∫
[−M,M]d

CF

[
cos(θ(w))KR(w ·x)−sin(θ(w))KI(w ·x)

]
|F (w)|
CF

dw,

where KR(w ·x)=Re(K(w ·x)) and KI(w ·x)=Im(K(w ·x)). The integral above rep-
resents f as an infinite convex combination of functions in the set

GK,M =
{
γ
[
cos(β)Re(K(w ·x))−sin(β)Im(K(w ·x))

]
, |γ|≤CF , β∈R,w∈ [−M,M]d

}
.

Therefore, f is in the closure of the convex hull of GK,M . Since functions in GK,M are

bounded in the L2(µ,B)-norm by 2CFDK

√
µ(B)≤2CF

√
µ(B), Theorem C.1 tells us

that there exist real coefficients bj ’s and βj ’s such that1

fϵ0(x)=

⌈1/ϵ20⌉∑
j=1

bj
[
cos(βj)KR(w ·x)−sin(βj)KI(w ·x)

]
,

⌈1/ϵ20⌉∑
j=1

|bj |≤CF ,

for some 0<ϵ0<1 to be determined later, such that ∥fϵ0(x)−f(x)∥L2(µ,B)≤
2CF

√
µ(B)ϵ0.

We now approximate fϵ0(x) by a poly-sine-Gaussian network ϕ(x). Note that KR

and KI are both analytic and satisfy the same assumptions as K. Using Theorem 3.4,
they can be approximated to accuracy ϵ0 using networks K̃R and K̃I of width and depth

O
(

1

log2s
log2

CK

ϵ0

)
and O

((
1

log2s
log2

CK

ϵ0

)
log2 log2

CK

ϵ0

)
,

respectively. We define the poly-sine-Gaussian network ϕ(x) by

ϕ(x)=

⌈1/ϵ20⌉∑
j=1

bj
[
cos(βj)K̃R(w ·x)−sin(βj)K̃I(w ·x)

]
.

This network has width O
(

1
ϵ20 log2 s

log2
CK

ϵ0

)
and depth O

((
1

log2 s
log2

CK

ϵ0

)
log2 log2

CK

ϵ0

)
,

and

|ϕ(x)−fϵ0(x)|≤

⌈ 1
ϵ20

⌉∑
j=1

|bj ||K̃R(wj ·x)−KR(wj ·x)|+

⌈ 1
ϵ20

⌉∑
j=1

|bj ||K̃I(wj ·x)−KI(wj ·x)|≤2CF ϵ0,

which yields

∥ϕ(x)−fϵ0(x)∥L2(µ,B)≤2CF

√
µ(B)ϵ0.

The total approximation error satisfies

∥ϕ(x)−f(x)∥L2(µ,B)≤4CF

√
µ(B)ϵ0.

1We use Theorem C.1 with b=2CF

√
µ(B), c= b2>b2−∥f∥2, and ∥·∥=∥·∥L2(µ,B).

S. LIANG, L. LYU, C. WANG, AND H. YANG. 311

We take

ϵ0=
ϵ

4CF

√
µ(B)

to complete the proof.

Appendix D. Proof of Lemma 3.1.

Proof. (Proof of Lemma 3.1.) The proof of this lemma is simple by three
facts: (1) the affine linear transforms before activation functions can play the role of
translation and dilation in the spatial and Fourier domains; (2) the Gaussian activation
function plays the role of localization in the transforms in this lemma; (3) Lemma A.1
shows that the x2 activation function can reproduce multiplication.

Appendix E. Proof of Lemma 3.2.

Proof. (Proof of Lemma 3.2.) The proof of this lemma is trivial by Lemma A.1,
Theorem 3.3, and the proof of Theorem 3.4.

REFERENCES

[1] S. Arora, S. Du, W. Hu, Z. Li, and R. Wang, Fine-grained analysis of optimization and gen-
eralization for overparameterized two-layer neural networks, Proc. Int. Conf. Mach. Learn.,
97:322–332, 2019. 6, 7

[2] A.R. Barron, Universal approximation bounds for superpositions of a sigmoidal function, IEEE
Trans. Inf. Theory, 39(3):930–945, 1993. 1, 3, 12, 25

[3] J. Berg and K. Nyström, A unified deep artificial neural network approach to partial differential
equations in complex geometries, Neurocomputing, 317:28–41, 2018. 1

[4] J. Berner, P. Grohs, and A. Jentzen, Analysis of the generalization error: Empirical risk min-
imization over deep artificial neural networks overcomes the curse of dimensionality in the
numerical approximation of Black-Scholes partial differential equations, SIAM J. Math. Data
Sci., 2(3):631–657, 2020. 1

[5] N. Boullé, Y. Nakatsukasa, and A. Townsend, Rational neural networks, Adv. Neur. Inf. Process.
Syst., 33:14243–14253, 2020. 16, 17

[6] W. Cai, X. Li, and L. Liu, A phase shift deep neural network for high frequency approximation and
wave problems, SIAM J. Sci. Comput., 42(5):A3285–A3312, 2020. 2, 3

[7] Z. Cai, J. Chen, M. Liu, and X. Liu, Deep least-squares methods: An unsupervised learning-based
numerical method for solving elliptic PDEs, J. Comput. Phys., 420:109707, 2020. 2

[8] Y. Cao, Z. Fang, Y. Wu, D.-X. Zhou, and Q. Gu, Towards understanding the spectral bias of deep
learning, Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence,
2205– 2211, 2021. 2, 6, 7

[9] J. Chen, R. Du, P. Li, and L. Lyu, Quasi-Monte Carlo sampling for machine-learning partial
differential equations, Numer. Math. Theor. Meth. Appl., 14:377–404, 2021. 2

[10] Z. Chen and H. Zhang, Learning implicit fields for generative shape modeling, 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 5932–5941, 2019. 2

[11] Z. Chen, Y. Cao, D. Zou, and Q. Gu, How much over-parameterization is sufficient to learn deep
ReLU networks?, arXiv preprint, arXiv:1911.12360, 2019. 6

[12] X. Dai and Y. Zhu, Towards theoretical understanding of large batch training in stochastic gradient
descent, arXiv preprint, arXiv:1812.00542, 2018. 6

[13] M.W.M.G. Dissanayake and N. Phan-Thien, Neural-network-based approximations for solving
partial differential equations, Commun. Numer. Meth. Eng., 10:195–201, 1994. 4

[14] S.S. Du, X. Zhai, B. Poczos, and A. Singh, Gradient descent provably optimizes over-parameterized
neural networks, arXiv preprint, arXiv:1810.02054, 2018. 6

[15] E. Dupont, A. Golinski, M. Alizadeh, Y.W. Teh, and A. Doucet, COIN: COmpression with im-
plicit neural representations, Neural Compression: From Information Theory to Applications–
Workshop @ ICLR 2021, 2021. 14

[16] W. E and Q. Wang, Exponential convergence of the deep neural network approximation for analytic
functions, Sci. China Math., 61:1733–1740, 2018. 1

[17] W. E, C. Ma, and Q. Wang, A priori estimates of the population risk for residual networks, arXiv
preprint, arXiv.1903.02154, 2019. 1

http://proceedings.mlr.press/v97/arora19a.html
https://doi.org/10.1109/18.256500
https://doi.org/10.1016/j.neucom.2018.06.056
https://doi.org/10.1137/19M125649X
https://papers.nips.cc/paper/2020/file/a3f390d88e4c41f2747bfa2f1b5f87db-Paper.pdf
https://doi.org/10.1137/19M1310050
https://doi.org/10.1016/j.jcp.2020.109707
https://www.ijcai.org/proceedings/2021/0304.pdf
https://doc.global-sci.org/uploads/online_news/NMTMA/202010090844-17305.pdf
https://doi.org/10.48550/arXiv.1812.02822
https://doi.org/10.48550/arXiv.1911.12360
https://doi.org/10.48550/arXiv.1812.00542
https://doi.org/10.1002/cnm.1640100303
https://doi.org/10.48550/arXiv.1810.02054
https://openreview.net/pdf?id=yekxhcsVi4
https://link.springer.com/article/10.1007/s11425-018-9387-x
https://doi.org/10.48550/arXiv.1903.02154

312 REPRODUCING ACTIVATION FUNCTION

[18] W. E, C. Ma, and L. Wu, A priori estimates of the population risk for two-layer neural networks,
Commun. Math. Sci., 17(5):1407–1425, 2019. 1

[19] W. E and B. Yu, The deep Ritz method: A deep learning-based numerical algorithm for solving
variational problems, Commun. Math. Stat., 6:1–12, 2018. 4

[20] K. Genova, F. Cole, A. Sud, A. Sarna, and T. Funkhouser, Local deep implicit functions for
3D shape, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
4856–4865, 2020. 2

[21] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press, Cambridge, 2016. 1, 3
[22] Y. Gu, H. Yang, and C. Zhou, SelectNet: Self-paced learning for high-dimensional partial differ-

ential equations, J. Comput. Phys., 441(15):110444, 2021. 2, 5, 22
[23] Y. Gu, C. Wang, and H. Yang, Structure probing neural network deflation, J. Comput. Phys.,

434:110231, 2021. 2, 5
[24] J. Han, A. Jentzen, and W. E, Solving high-dimensional partial differential equations using deep

learning, Proc. Natl. Acad. Sci., 115(34):8505–8510, 2018. 1
[25] J. Han and J. Long, Convergence of the deep BSDE method for coupled FBSDEs, Probab. Uncer-

tain. Quant. Risk, 5:5, 2020. 1
[26] J. Han, J. Lu, and M. Zhou, Solving high-dimensional eigenvalue problems using deep neural

networks: A diffusion Monte Carlo like approach, J. Comput. Phys., 423:109792, 2020. 10, 16,
21

[27] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 770–778, 2016. 4

[28] J. Huang, H. Wang, and H. Yang, Int-deep: A deep learning initialized iterative method for
nonlinear problems, J. Comput. Phys., 419:109675, 2020. 2

[29] M. Hutzenthaler, A. Jentzen, Th. Kruse, and T.A. Nguyen, A proof that rectified deep neural net-
works overcome the curse of dimensionality in the numerical approximation of semilinear heat
equations, Technical Report 2019-10, Seminar for Applied Mathematics, ETH Zürich, Switzer-
land, 2019. 1

[30] A. Jacot, F. Gabriel, and C. Hongler, Neural tangent kernel: Convergence and generalization
in neural networks, Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing, 2021. 6, 7

[31] A.D. Jagtap, K. Kawaguchi, and G. Em Karniadakis, Locally adaptive activation functions with
slope recovery for deep and physics-informed neural networks, Proc. Roy. Soc. A Math. Phys.
Eng. Sci., 476(2239):2020.0334, 2020. 3, 16

[32] A.D. Jagtap, K. Kawaguchi, and G. Em Karniadakis, Adaptive activation functions accelerate
convergence in deep and physics-informed neural networks, J. Comput. Phys., 404:109136, 2020.
3, 16

[33] T. Jeruzalski, B. Deng, M. Norouzi, J.P. Lewis, G. Hinton, and A. Tagliasacchi, NASA: Neural
articulated shape approximation, European Conference on Computer Vision, 612–628, 2020. 2

[34] S. Justin and S. Konstantinos, DGM: A deep learning algorithm for solving partial differential
equations, J. Comput. Phys., 375:1339–1364, 2018. 1

[35] Y. Khoo, J. Lu, and L. Ying, Solving Parametric PDE Problems with Artificial Neural Networks,
Cambridge University Press, 2021. 1

[36] D.P. Kingma and J. Ba, Adam: a method for stochastic optimization, arXiv preprint,
arXiv:1412.6980, 2014. 5, 16

[37] V. Kůrková, Kolmogorov’s theorem and multilayer neural networks, Neural Netw., 5:501–506,
1992. 3

[38] I.E. Lagaris, A. Likas, and D.I. Fotiadis, Artificial neural networks for solving ordinary and partial
differential equations, IEEE Trans. Neural Netw., 9:987–1000, 1998. 2, 4, 5

[39] J. Lee, L. Xiao, S.S. Schoenholz, Y. Bahri, R. Novak, J. Sohl-Dickstein, and J. Pennington, Wide
neural networks of any depth evolve as linear models under gradient descent, J. Stat. Mech.
Theory Exp., 2020(12):124002, 2020. 6, 7

[40] D. Lei, Z. Sun, Y. Xiao, and W.Y. Wang, Implicit regularization of stochastic gradient descent in
natural language processing: Observations and implications, arXiv preprint, arXiv:1811.00659,
2018. 6

[41] S. Liang and R. Srikant, Why deep neural networks for function approximation?, arXiv preprint,
arXiv:1610.04161, 2016. 1

[42] Y. Liao and P. Ming, Deep Nitsche method: Deep Ritz method with essential boundary conditions,
Commun. Comput. Phys., 29:1365–1384, 2021. 4

[43] S. Liu, Y. Zhang, S. Peng, B. Shi, M. Pollefeys, and Z. Cui, DIST: Rendering deep implicit signed
distance function with differentiable sphere tracing, 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2016–2025, 2020. 2

[44] Z. Liu, W. Cai, and Z.-Q.J. Xu, Multi-scale deep neural network (MscaleDNN) for solving Poisson-

https://dx.doi.org/10.4310/CMS.2019.v17.n5.a11
https://link.springer.com/article/10.1007/s40304-018-0127-z
https://doi.org/10.48550/arXiv.1912.06126
https://link.springer.com/article/10.1007/s10710-017-9314-z
https://doi.org/10.1016/j.jcp.2021.110444
https://doi.org/10.1016/j.jcp.2021.110231
https://doi.org/10.1073/pnas.1718942115
https://probability-risk.springeropen.com/articles/10.1186/s41546-020-00047-w
https://doi.org/10.1016/j.jcp.2020.109792
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1016/j.jcp.2020.109675
https://link.springer.com/article/10.1007/s42985-019-0006-9
https://doi.org/10.1145/3406325.3465355
https://doi.org/10.1098/rspa.2020.0334
https://doi.org/10.1016/j.jcp.2019.109136
https://link.springer.com/chapter/10.1007/978-3-030-58571-6_36
https://doi.org/10.1016/j.jcp.2018.08.029
https://doi.org/10.1017/S0956792520000182
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1016/0893-6080(92)90012-8
https://doi.org/10.1016/0893-6080(92)90012-8
https://doi.org/10.1109/72.712178
https://iopscience.iop.org/article/10.1088/1742-5468/abc62b
https://doi.org/10.48550/arXiv.1811.00659
https://doi.org/10.48550/arXiv.1811.00659
https://doi.org/10.48550/arXiv.1610.04161
https://doi.org/10.4208/cicp.OA-2020-0219
https://ieeexplore.ieee.org/document/9156730/

S. LIANG, L. LYU, C. WANG, AND H. YANG. 313

Boltzmann equation in complex domains, Commun. Comput. Phys., 28(5):1970–2001, 2020. 1,
2, 10

[45] J. Lu, Z. Shen, H. Yang, and S. Zhang, Deep network approximation for smooth functions, SIAM
J. Math. Anal., 53(5):5465–5506, 2021. 1, 3, 11

[46] T. Luo, Z. Ma, Z.J. Xu, and Y. Zhang, Theory of the frequency principle for general deep neural
networks, CSIAM Trans. Appl. Math., 2(3):484–507, 2021. 6

[47] T. Luo and H. Yang, Two-layer neural networks for partial differential equations: optimization
and generalization theory, arXiv preprint, arXiv:2006.15733, 2020. 1, 6, 7

[48] L. Lyu, K. Wu, R. Du, and J. Chen, Enforcing exact boundary and initial conditions in the deep
mixed residual method, CSIAM Trans. Appl. Math., 2:748–775, 2021. 2, 5

[49] F. Manessi and A. Rozza, Learning combinations of activation functions, 2018 IEEE International
Conference on Pattern Recognition (ICPR), 61–66, 2018. 3

[50] M. Michalkiewicz, J.K. Pontes, D. Jack, M. Baktashmotlagh, and A. Eriksson, Implicit surface
representations as layers in neural networks, 2019 IEEE/CVF International Conference on
Computer Vision (ICCV), 4742–4751, 2019. 2

[51] B. Mildenhall, P.P. Srinivasan, M. Tancik, J.T. Barron, R. Ramamoorthi, and R. Ng, NeRF:
Representing scenes as neural radiance fields for view synthesis, in A. Vedaldi, H. Bischof, T.
Brox, and J.M. Frahm (eds.), Computer Vision – ECCV 2020, Lecture Notes in Computer
Science, vol 12346. Springer, Cham. 405–421, 2020. 10

[52] H. Montanelli and Q. Du, New error bounds for deep networks using sparse grids, SIAM J. Math.
Data Sci., 1(1):78–92, 2019. 1

[53] H. Montanelli and H. Yang, Error bounds for deep ReLU networks using the Kolmogorov-Carnold
superposition theorem, Neural Netw., 129:1–6, 2020. 1

[54] H. Montanelli, H. Yang, and Q. Du, Deep ReLU networks overcome the curse of dimensionality
for bandlimited functions, J. Comp. Math., 39:801–815, 2021. 1, 11, 12

[55] T. Nakamura-Zimmerer, Q. Gong, and W. Kang, Adaptive deep learning for high dimensional
Hamilton-Jacobi-Bellman equations, SIAM J. Sci. Comput., 43(2):A1221–A1247, 2021. 2

[56] B. Neyshabur, R. Tomioka, R. Salakhutdinov, and N. Srebro, Geometry of optimization and
implicit regularization in deep learning, arXiv preprint, arXiv:1705.03071, 2017. 6

[57] J.A.A. Opschoor, C. Schwab, and J. Zech, Exponential ReLU DNN expression of holomorphic
maps in high dimension, Constr. Approx., 55:537–582, 2022. 1

[58] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove, DeepSDF: Learning continuous
signed distance functions for shape representation, 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 165–174, 2019. 2

[59] T. Poggio, H.N. Mhaskar, L. Rosasco, B. Miranda, and Q. Liao, Why and when can deep–but
not shallow–networks avoid the curse of dimensionality: A review, Inter. J. Auto. Comput.,
14:503–519, 2017. 1

[60] S. Qian, H. Liu, C. Liu, S. Wu, and H.S. Wong, Adaptive activation functions in convolutional
neural networks, Neurocomputing, 272:204–212, 2018. 3

[61] M. Raissi, P. Perdikaris, and G.E. Karniadakis, Physics-informed neural networks: A deep learn-
ing framework for solving forward and inverse problems involving nonlinear partial differential
equations, J. Comput. Phys., 378:686–707, 2019. 1

[62] S. Saito, Z. Huang, R. Natsume, S. Morishima, A. Kanazawa, and H. Li, PiFU: Pixel-aligned
implicit function for high-resolution clothed human digitization, 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), 2304–2314, 2019. 2

[63] Z. Shen, H. Yang, and S. Zhang, Deep network approximation characterized by number of neurons,
Commun. Comput. Phys., 28:1768–1811, 2020. 3

[64] Z. Shen, H. Yang, and S. Zhang, Neural network approximation: Three hidden layers are enough,
141:160–173, 2021. 2, 10

[65] Z. Shen, H. Yang, and S. Zhang, Deep network with approximation error being reciprocal of width
to power of square root of depth, Neural Comput., 33(4):1005–1036, 2021. 1, 2, 3, 10

[66] Y. Shin, J. Darbon, and G. Karniadakis, On the convergence and generalization of physics in-
formed neural networks, Commun. Comput. Phys., 28:2042–2074, 2020. 1

[67] V. Sitzmann, J. Martel, A. Bergman, D. Lindell, and G. Wetzstein, Implicit neural representations
with periodic activation functions, Adv. Neural Inf. Process. Syst., 626:7462–7473, 2020. 14

[68] V. Sitzmann, M. Zollhöfer, and G. Wetzstein, Scene representation networks: Continuous 3D-
structure-aware neural scene representations, Neur. Inf. Process. Syst., 2019. 2

[69] Y. Strümpler, J. Postels, R. Yang, L. Van Gool, and F. Tombari, Implicit neural representations
for image compression, ECCV 2022: 17th European Conference, Springer, 74–91, 2022. 14

[70] L. René Sütfeld, F. Brieger, H. Finger, S. Füllhase, and G. Pipa, Adaptive blending units: Trainable
activation functions for deep neural networks, Science and Information Conference, Springer,
37–50, 2020. 3

https://doi.org/10.4208/cicp.OA-2020-0179
https://doi.org/10.1137/20M134695X
https://global-sci.org/intro/article_detail/csiam-am/19447.html
https://doi.org/10.48550/arXiv.2006.15733
https://doi.org/10.4208/csiam-am.SO-2021-0011
https://doi.org/10.1109/ICPR.2018.8545362
https://doi.org/10.1109/ICCV.2019.00484
https://link.springer.com/chapter/10.1007/978-3-030-58452-8_24
https://doi.org/10.1137/18M1189336
https://doi.org/10.1016/j.neunet.2019.12.013
https://doi.org/10.4208/jcm.2007-m2019-0239
https://doi.org/10.1137/19M1288802
https://doi.org/10.48550/arXiv.1705.03071
https://doi.org/10.1007/s00365-021-09542-5
https://doi.org/10.1109/CVPR.2019.00025
https://link.springer.com/article/10.1007/s11633-017-1054-2
https://doi.org/10.1016/j.neucom.2017.06.070
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1109/ICCV.2019.00239
https://doi.org/10.4208/cicp.OA-2020-0149
https://doi.org/10.1016/j.neunet.2021.04.011
https://doi.org/10.1162/neco_a_01364
https://doi.org/10.4208/cicp.OA-2020-0193
https://dlnext.acm.org/doi/10.5555/3495724.3496350
https://proceedings.neurips.cc/paper/2019/file/b5dc4e5d9b495d0196f61d45b26ef33e-Paper.pdf
https://link.springer.com/chapter/10.1007/978-3-031-19809-0_5
https://link.springer.com/chapter/10.1007/978-3-030-52243-8_4

314 REPRODUCING ACTIVATION FUNCTION

[71] M. Tancik, P.P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N. Raghavan, U. Singhal, R. Ra-
mamoorthi, J.T. Barron, and R. Ng, Fourier features let networks learn high frequency func-
tions in low dimensional domains, Neur. Inf. Process. Syst., 33:7537–7547, 2020. 2, 3, 10, 14,
19

[72] L.N. Trefethen, Approximation Theory and Approximation Practice, Other Titles in Applied
Mathematics, SIAM, 2013. 11, 25

[73] B. Wang, Multi-scale deep neural network (MscaleDNN) methods for oscillatory Stokes flows in
complex domains, Commun. Comput. Phys., 28(5):2139–2157, 2020. 10

[74] S. Wang, X. Yu, and P. Perdikaris, When and why PINNs fail to train: A neural tangent kernel
perspective, J. Comput. Phys., 449:110768, 2022. 6

[75] Z.-Q.J. Xu, Y. Zhang, T. Luo, Y. Xiao, and Z. Ma, Frequency principle: Fourier analysis sheds
light on deep neural networks, Commun. Comput. Phys., 28(5):1746–1767, 2020. 2, 6

[76] D. Yarotsky, Error bounds for approximations with deep ReLU networks, Neural Netw., 94:103–
114, 2017. 1, 3, 11

[77] D. Yarotsky, Optimal approximation of continuous functions by very deep ReLU networks, Pro-
ceedings of the 31st Conference On Learning Theory, 75:639–649, 2018. 3

[78] D. Yarotsky and A. Zhevnerchuk, The phase diagram of approximation rates for deep neural
networks, Neur. Inf. Process. Syst., 33:13005–13015, 2020. 1, 2, 9

[79] Z. Song, Z.A.-Zhu, and Y. Li, A convergence theory for deep learning via over-parameterization,
Proceedings of the 36th International Conference on Machine Learning, 97:242–252, 2019. 6

[80] Y. Zang, G. Bao, X. Ye, and H. Zhou, Weak adversarial networks for high-dimensional partial
differential equations, J. Comput. Phys., 411:109409, 2020. 1

[81] E.D. Zhong, T. Bepler, J.H. Davis, and B. Berger, Reconstructing continuous distributions of 3D
protein structure from cryo-EM images, arXiv preprint, arXiv:1909.05215, 2020. 9

https://proceedings.neurips.cc/paper/2020/file/55053683268957697aa39fba6f231c68-Paper.pdf
https://epubs.siam.org/doi/book/10.1137/1.9781611975949
https://doi.org/10.4208/cicp.OA-2020-0192
https://www.sciencedirect.com/science/article/abs/pii/S002199912100663X
https://doi.org/10.4208/cicp.OA-2020-0085
https://doi.org/10.1016/j.neunet.2017.07.002
https://doi.org/10.1016/j.neunet.2017.07.002
http://proceedings.mlr.press/v75/yarotsky18a
https://proceedings.neurips.cc/paper/2020/file/979a3f14bae523dc5101c52120c535e9-Paper.pdf
https://doi.org/10.48550/arXiv.1811.03962
https://doi.org/10.1016/j.jcp.2020.109409
https://doi.org/10.48550/arXiv.1909.05215

